JP2009186065A - Hot water storage type water supply device - Google Patents

Hot water storage type water supply device Download PDF

Info

Publication number
JP2009186065A
JP2009186065A JP2008025201A JP2008025201A JP2009186065A JP 2009186065 A JP2009186065 A JP 2009186065A JP 2008025201 A JP2008025201 A JP 2008025201A JP 2008025201 A JP2008025201 A JP 2008025201A JP 2009186065 A JP2009186065 A JP 2009186065A
Authority
JP
Japan
Prior art keywords
hot water
water storage
storage tank
water
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008025201A
Other languages
Japanese (ja)
Inventor
Akihiro Nishida
明広 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008025201A priority Critical patent/JP2009186065A/en
Publication of JP2009186065A publication Critical patent/JP2009186065A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hot water storage type water supply device that suppresses a rise in power consumption of a boiling operation by suppressing deterioration of the coefficient of performance of a heat pump unit occurring upon performing the boiling operation in a state of medium temperature water being generated in a hot water storage tank. <P>SOLUTION: The hot water storage type water supply device 1 includes: the heat pump unit A having a heat exchanger 12 for boiling water and converting it to hot water; the hot water storage tank 20 for storing the hot water boiled by the heat exchanger 12, a circulation circuit 30 for making water flow from a hot water storage tank lower part 21 to the heat exchanger 12 and returning the hot water that flows out from the heat exchanger 12 to a hot water storage tank upper part 22; and a mixing valve 36 for mixing the medium temperature water, taken out from a water intake opening 23 provided at a hot water storage tank side part 24, with the water flowing into the heat exchanger 12. The flow rate of the medium temperature water taken out from the water intake opening 23 by the mixing valve 36 is controlled to perform the boiling operation. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、貯湯式給湯装置に関するものである。   The present invention relates to a hot water storage type hot water supply apparatus.

貯湯式給湯装置では、貯湯タンクの下部から水を取り出して、ヒートポンプユニットなどでこの水を沸き上げ、沸き上げた湯を貯湯タンクの上部から該貯留タンクに戻して貯留する。このとき、貯湯タンクの下部には水層が形成されるのに対して、貯湯タンクの上部には湯層が形成される。また、湯層と水層の間には、中温水から成る中温水層が形成される。この中温水層が貯湯タンクの下部にまで拡大すると、貯湯タンクの下部から取り出される水の温度が比較的高くなる。   In the hot water storage type hot water supply apparatus, water is taken out from the lower part of the hot water storage tank, the water is boiled by a heat pump unit or the like, and the heated hot water is returned from the upper part of the hot water storage tank to the storage tank for storage. At this time, a water layer is formed in the lower part of the hot water storage tank, whereas a hot water layer is formed in the upper part of the hot water storage tank. Further, an intermediate temperature water layer made of intermediate temperature water is formed between the hot water layer and the aqueous layer. When this intermediate temperature water layer expands to the lower part of the hot water storage tank, the temperature of the water taken out from the lower part of the hot water storage tank becomes relatively high.

例えば、水を湯に沸き上げて貯湯タンクに貯留する沸上運転が終了してからの経過時間が長いほど、上記中温水層が貯湯タンクの下部まで拡大しやすくなる。また、貯湯タンクに貯留した湯と浴槽水とを熱交換器に供給して両者の間で熱交換させることにより浴槽水を追い焚きすると、熱交換により温度低下した湯が貯湯タンクに戻されることから、上記中温水層が貯湯タンクの下部まで拡大しやすくなる。一度温くなった浴槽水を貯湯タンク内の湯を利用して所望温度に加温するときに上記中温水層の生成が抑制されるように、例えば特許文献1に示す貯湯式給湯装置では、浴槽水の追い焚きをせずに、温くなった浴槽水を所定量排出した後に貯湯タンク内の高温の湯を所定量足し湯することで浴槽水を所望温度に加温している。   For example, the longer the elapsed time from the end of the boiling operation in which water is boiled into hot water and stored in the hot water storage tank, the more easily the intermediate hot water layer extends to the lower part of the hot water storage tank. In addition, if the hot water stored in the hot water storage tank and the bathtub water are supplied to the heat exchanger and heat is exchanged between them, the hot water whose temperature has decreased due to the heat exchange is returned to the hot water storage tank. From the above, it becomes easy for the intermediate temperature water layer to expand to the lower part of the hot water storage tank. For example, in a hot water storage type hot water supply apparatus shown in Patent Document 1, a bath water that has been heated once is heated to a desired temperature using hot water in a hot water storage tank. Without discharging the water, the bath water is heated to a desired temperature by discharging a predetermined amount of warm bath water and adding a predetermined amount of hot water in the hot water storage tank.

特開2007−127363号公報JP 2007-127363 A

しかしながら、特許文献1に示す貯湯式給湯装置では、貯湯タンク内の高温の湯を足し湯しない場合、沸上運転の早期から比較的高温の水で沸上運転を行わなければならず、沸上運転にかかる消費電力量の上昇を避けることができなかった。   However, in the hot water storage type hot water supply apparatus shown in Patent Document 1, when hot water in the hot water storage tank is not added, boiling operation must be performed with relatively high temperature water from the early stage of boiling operation. An increase in power consumption for driving could not be avoided.

本発明は上記の事情に鑑みてなされたものであり、貯湯タンク内に中温水が生じた状態で沸上運転を行った際に起こるヒートポンプユニットの成績係数の低下を抑制することができる貯湯式給湯装置を得ることを目的とする。   The present invention has been made in view of the above circumstances, and is a hot water storage type that can suppress a decrease in the coefficient of performance of the heat pump unit that occurs when the boiling operation is performed in a state where intermediate temperature water is generated in the hot water storage tank. It aims at obtaining a hot-water supply apparatus.

上述した課題を解決し、目的を達成するために、本発明の貯湯式給湯装置は、水を沸き上げて湯に変換する熱交換器を有するヒートポンプユニットと、熱交換器により沸き上げられた湯を貯留する貯湯タンクと、貯湯タンクの下部から熱交換器へ水を流入させて該熱交換器から流出した湯を貯湯タンク上部に戻す循環回路と、を備えた貯湯式給湯装置であって、循環回路を流れる水に貯湯タンクの側部に設けられた取水口から引き抜いた中温水を混合する混合弁を有し、該混合弁により取水口から引き抜いた中温水の流量を調整して沸上運転を行うことを特徴とする。   In order to solve the above-described problems and achieve the object, the hot water storage type hot water supply apparatus of the present invention includes a heat pump unit having a heat exchanger for boiling water and converting it into hot water, and hot water boiled by the heat exchanger. A hot water storage tank comprising: a hot water storage tank that stores water; and a circulation circuit that causes water to flow from the lower part of the hot water storage tank into the heat exchanger and return the hot water that has flowed out of the heat exchanger to the upper part of the hot water storage tank, It has a mixing valve that mixes the water flowing through the circulation circuit with the medium-temperature water drawn from the intake port provided on the side of the hot water storage tank, and adjusts the flow rate of the medium-temperature water drawn from the water intake port by the mixing valve. It is characterized by performing driving.

この発明の貯湯式給湯装置では、中温水を貯湯タンク内から引き抜いて、循環回路を流れる水に当該中温水を混入させることができるとともに、このときの中温水の混入量を混合弁により調整することができる。そのため、貯湯タンク下部の水温が低い間は、循環回路を流れる水にヒートポンプユニットの成績係数が低下しない範囲で中温水を混入させて、ヒートポンプユニットの成績係数が低下する温度の水を用いて沸き上げ運転をしなければならない時間を短縮させることが可能になる。これにより、熱交換器に流入する水が高温となることに起因するヒートポンプユニットの成績係数の低下を抑制し、沸上運転の消費電力量の上昇を抑制することができる。   In the hot water storage type hot water supply apparatus of the present invention, the intermediate temperature water can be extracted from the hot water storage tank, and the intermediate temperature water can be mixed into the water flowing through the circulation circuit, and the mixing amount of the intermediate temperature water at this time is adjusted by the mixing valve. be able to. For this reason, while the water temperature at the bottom of the hot water storage tank is low, medium-temperature water is mixed into the water flowing through the circulation circuit within a range where the coefficient of performance of the heat pump unit does not decrease, and the water is boiled with water at a temperature that decreases the coefficient of performance of the heat pump unit. It is possible to reduce the time required for the raising operation. Thereby, the fall of the coefficient of performance of the heat pump unit resulting from that the water which flows in into a heat exchanger becomes high temperature can be suppressed, and the raise of the power consumption of boiling operation can be suppressed.

以下に、本発明にかかる貯湯式給湯装置の実施の形態を図面に基づいて詳細に説明する。なお、この発明は、下記の実施の形態に限定されるものではない。   Hereinafter, an embodiment of a hot water storage type hot water supply apparatus according to the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited to the following embodiment.

実施の形態1.
図1は、本発明にかかる貯湯式給湯装置の実施の形態1の構成図である。同図に示すように、実施の形態1の貯湯式給湯装置1は、ヒートポンプユニットAと、貯湯タンクユニットBとを備えている。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram of Embodiment 1 of a hot water storage type hot water supply apparatus according to the present invention. As shown in the figure, the hot water storage type hot water supply apparatus 1 according to the first embodiment includes a heat pump unit A and a hot water storage tank unit B.

ヒートポンプユニットAでは、圧縮機11と、熱交換器12と、膨張弁13と、蒸発器14とが配管15で順次接続されて、冷凍サイクルを構成している。ヒートポンプユニットAは、圧縮機11により増圧されて熱を帯びた冷媒が熱交換器12に流入して、後述する熱交換器12を通る貯湯タンクユニットBの循環回路30の水と熱交換を行う。これにより、熱交換器12から流出する循環回路30内の水が湯に沸き上げられる。熱交換器12で上記の水と熱交換した冷媒は、膨張弁13により減圧され、蒸発器14により熱が排出される。ヒートポンプユニットAの動作は、後述する制御装置40の制御部41により制御される。   In the heat pump unit A, the compressor 11, the heat exchanger 12, the expansion valve 13, and the evaporator 14 are sequentially connected by a pipe 15 to constitute a refrigeration cycle. In the heat pump unit A, the refrigerant heated by the pressure increased by the compressor 11 flows into the heat exchanger 12, and exchanges heat with water in the circulation circuit 30 of the hot water storage tank unit B passing through the heat exchanger 12 described later. Do. Thereby, the water in the circulation circuit 30 which flows out from the heat exchanger 12 is boiled to hot water. The refrigerant having exchanged heat with the water in the heat exchanger 12 is decompressed by the expansion valve 13 and the heat is discharged by the evaporator 14. Operation | movement of the heat pump unit A is controlled by the control part 41 of the control apparatus 40 mentioned later.

貯湯タンクユニットBは、貯湯タンク20と、循環回路30と、制御装置40とを有している。貯湯タンクユニットBは、熱交換器12に水を流入させ、該熱交換器12で沸き上げられた湯を貯留して外部へ供給するためのものである。貯湯タンク20の下部には、外部からの水の流路となる外部給水管37の一端が接続されており、外部給水管37の他端は水道等の水源に接続される。また、貯湯タンク20の上部には、外部への湯の流路となる外部給湯管38の一端が接続されており、外部給湯管38の他端には図示しない給湯栓などが設けられている。使用者がこの給湯栓を開くことにより、所定量の湯が貯湯タンク20から供給される。   The hot water tank unit B includes a hot water tank 20, a circulation circuit 30, and a control device 40. The hot water storage tank unit B is for allowing water to flow into the heat exchanger 12, storing hot water boiled by the heat exchanger 12, and supplying the hot water to the outside. One end of an external water supply pipe 37 serving as a flow path of water from the outside is connected to the lower part of the hot water storage tank 20, and the other end of the external water supply pipe 37 is connected to a water source such as a water supply. In addition, one end of an external hot water supply pipe 38 serving as a flow path of hot water to the outside is connected to the upper part of the hot water storage tank 20, and a hot water tap (not shown) is provided at the other end of the external hot water supply pipe 38. . When the user opens the hot water tap, a predetermined amount of hot water is supplied from the hot water storage tank 20.

貯湯タンク20は、外部給水管37から供給された水と、熱交換器12により沸き上げられた湯とを貯留するためのタンクである。貯湯タンク下部21には、外部給水管37と、循環回路30の一端とが接続されている。また、貯湯タンク上部22には、外部給湯管38と、循環回路30の他端とが接続されている。貯湯タンク側部24には、取水口23が設けられている。取水口23には、中温水管35が接続されている。貯湯タンク20での取水口23の形成位置は、貯湯式給湯装置1のメーカにより設定され、貯湯タンク20内に形成される中温水層の位置を考慮して設けられる。貯湯タンク20は、外部給水管37から供給される水により常時満水状態に保たれている。   The hot water storage tank 20 is a tank for storing the water supplied from the external water supply pipe 37 and the hot water boiled up by the heat exchanger 12. An external water supply pipe 37 and one end of the circulation circuit 30 are connected to the hot water storage tank lower part 21. The hot water storage tank upper part 22 is connected to an external hot water supply pipe 38 and the other end of the circulation circuit 30. The hot water storage tank side portion 24 is provided with a water intake 23. A medium temperature water pipe 35 is connected to the water intake 23. The formation position of the water intake port 23 in the hot water storage tank 20 is set by the manufacturer of the hot water storage type hot water supply apparatus 1 and is provided in consideration of the position of the intermediate hot water layer formed in the hot water storage tank 20. The hot water storage tank 20 is always kept full with water supplied from the external water supply pipe 37.

循環回路30は、配管部31と、循環ポンプPとを有している。配管部31は、沸上運転時に貯湯タンク下部21から熱交換器12に水を流入させるとともに、熱交換器12により沸き上げられた湯を貯湯タンク上部22へ戻すための配管である。配管部31は、第1配管部31aと、第2配管部31bと、第3配管部31cとを含んでいる。   The circulation circuit 30 includes a piping part 31 and a circulation pump P. The piping part 31 is a pipe for allowing water to flow into the heat exchanger 12 from the lower part of the hot water storage tank 21 during the boiling operation and returning the hot water boiled by the heat exchanger 12 to the upper part 22 of the hot water storage tank. The piping part 31 includes a first piping part 31a, a second piping part 31b, and a third piping part 31c.

第1配管部31aと第2配管部31bとは、熱交換器12に水を流入させるための配管である。第1配管部31aは、上流側の端部が貯湯タンク下部21と接続され、下流側の端部が混合弁36と接続されている。第2配管部31bは、上流側の端部が混合弁36と接続され、下流側の端部が熱交換器12と接続されている。従って、第1配管部31aと、第2配管部31bとは、混合弁36の上流側と下流側とに分かれている。第3配管部31cは、熱交換器12により沸き上げられた湯を貯湯タンク上部22へ戻すための配管である。第3配管部31cは、上流側の端部が熱交換器12に接続され、下流側の端部が貯湯タンク上部22に接続されている。   The 1st piping part 31a and the 2nd piping part 31b are piping for making water flow in into the heat exchanger 12. As shown in FIG. The first pipe portion 31 a has an upstream end connected to the hot water storage tank lower portion 21 and a downstream end connected to the mixing valve 36. The second piping part 31 b has an upstream end connected to the mixing valve 36 and a downstream end connected to the heat exchanger 12. Therefore, the first piping part 31 a and the second piping part 31 b are divided into an upstream side and a downstream side of the mixing valve 36. The third piping part 31 c is a pipe for returning the hot water boiled by the heat exchanger 12 to the hot water storage tank upper part 22. The third piping portion 31 c has an upstream end connected to the heat exchanger 12 and a downstream end connected to the hot water storage tank upper portion 22.

循環ポンプPは、第2配管部31bに設けられており、第2配管部31b内の水を昇圧することにより、循環回路30内の水を循環させるためのものである。循環ポンプPには、後述する制御装置40の制御部41が接続され、制御部41により動作制御される。   The circulation pump P is provided in the second piping part 31b, and circulates the water in the circulation circuit 30 by increasing the pressure in the second piping part 31b. The circulation pump P is connected to a control unit 41 of a control device 40 described later, and the operation is controlled by the control unit 41.

中温水管35は、取水口23から取り出された中温水を混合弁36に流入させるための配管である。中温水管35は、上流側の端部が取水口23に接続され、下流側の端部が混合弁36の流入口に接続されている。   The intermediate temperature water pipe 35 is a pipe for allowing the intermediate temperature water taken out from the intake port 23 to flow into the mixing valve 36. The intermediate temperature water pipe 35 has an upstream end connected to the water intake 23 and a downstream end connected to the inlet of the mixing valve 36.

混合弁36は、閉から開方向に切り替えることにより第1配管部31a内の水に中温水管35内の中温水を混合するための三方弁である。混合弁36には、上流側にある2つの流入口に中温水管35と第1配管部31aとが接続され、下流側にある流出口に第2配管部31bが接続されている。混合弁36は、後述する制御装置40の制御部41と接続されており、制御部41により動作制御される。混合弁36は、制御部41から開度調整の信号を受けた際に弁開度を調節する。これにより、第1配管部31aからの水と中温水管35からの中温水との混合量を調整する。つまり、混合弁36は、第1配管部31aから第2配管部31bに流入する水の流量と、中温水管35から第2配管部31bに流入する中温水の流量とを調整する。   The mixing valve 36 is a three-way valve for mixing the intermediate temperature water in the intermediate temperature water pipe 35 with the water in the first piping portion 31a by switching from the closed direction to the open direction. The mixing valve 36 is connected to the intermediate warm water pipe 35 and the first piping part 31a at the two inlets on the upstream side, and to the second piping part 31b at the outlet on the downstream side. The mixing valve 36 is connected to a control unit 41 of the control device 40 to be described later, and its operation is controlled by the control unit 41. The mixing valve 36 adjusts the valve opening degree when it receives a signal for adjusting the opening degree from the control unit 41. Thereby, the mixing amount of the water from the 1st piping part 31a and the intermediate temperature water from the intermediate temperature water pipe 35 is adjusted. That is, the mixing valve 36 adjusts the flow rate of water flowing into the second piping portion 31b from the first piping portion 31a and the flow rate of intermediate warm water flowing into the second piping portion 31b from the intermediate warm water pipe 35.

温度検出センサTは、第2配管部31bに設けられ、第2配管部31b内の水の温度を検出する。温度検出センサTは、後述する制御装置40の制御部41と接続されており、沸上運転が行われている間、第2配管部31b内を流れる水の温度を周期的に検出して検出結果を制御装置40に出力する。   The temperature detection sensor T is provided in the 2nd piping part 31b, and detects the temperature of the water in the 2nd piping part 31b. The temperature detection sensor T is connected to a control unit 41 of the control device 40 to be described later, and periodically detects and detects the temperature of the water flowing in the second piping unit 31b during the boiling operation. The result is output to the control device 40.

制御装置40は、同一の制御基板上に設けられた制御部41と記憶部42とを有する。制御部41は、記憶部42に格納された情報と、図示しない操作部から伝えられた制御情報などを用いて、ヒートポンプユニットAと、貯湯タンクユニットBとの動作を制御する。制御部41は、ヒートポンプユニットA、混合弁36、循環ポンプP、温度検出センサTなどに接続されている。   The control device 40 includes a control unit 41 and a storage unit 42 provided on the same control board. The control unit 41 controls operations of the heat pump unit A and the hot water storage tank unit B using information stored in the storage unit 42, control information transmitted from an operation unit (not shown), and the like. The control unit 41 is connected to the heat pump unit A, the mixing valve 36, the circulation pump P, the temperature detection sensor T, and the like.

制御部41は、記憶部42に格納された情報と、図示しない貯湯タンク20内に設けられたタンク温度検出センサにより検出した貯湯タンク内温度の検出結果などをもとに、ヒートポンプユニットAと循環ポンプPとの動作を制御して所定量の湯を貯湯タンク20に貯留する制御を行う。   The control unit 41 circulates with the heat pump unit A based on the information stored in the storage unit 42 and the detection result of the temperature in the hot water storage tank detected by a tank temperature detection sensor provided in the hot water storage tank 20 (not shown). Control of the operation with the pump P is performed to store a predetermined amount of hot water in the hot water storage tank 20.

また、制御部41は、記憶部42に格納されている情報と、温度検出センサTにより検出した水温の検出結果とを用いて、混合弁36の弁開度の制御を行う。ここで使用する上記の情報とは、温度検出センサTからの水温の検出結果の出力周期や、温度検出センサTの検出結果と混合弁36の弁開度との関係を示す情報や、混合弁36の開度調整を行う際の水温の基準値などである。上記各情報は、例えばメーカにより貯湯式給湯装置1のメーカにより予め記憶部42に格納される。   Further, the control unit 41 controls the valve opening degree of the mixing valve 36 using the information stored in the storage unit 42 and the detection result of the water temperature detected by the temperature detection sensor T. The information used here includes the output cycle of the detection result of the water temperature from the temperature detection sensor T, the information indicating the relationship between the detection result of the temperature detection sensor T and the valve opening of the mixing valve 36, the mixing valve The reference value of the water temperature when the opening degree adjustment of 36 is performed. Each said information is stored in the memory | storage part 42 beforehand by the manufacturer of the hot water storage type hot-water supply apparatus 1, for example by the manufacturer.

混合弁36の開度調整を行う際の水温の基準値の決定方法について説明する。図2は、水温とヒートポンプユニットの成績係数(COP)との関係の一例を示す図である。図2に示すように、ヒートポンプユニットの成績係数は、ヒートポンプユニットの熱交換器に流入する水の温度が概ね20℃以下で高い数値を維持している一方で、水温が20℃を超えると急激に低下している。つまり、図2は、ヒートポンプユニットの熱交換器に供給される水の温度が略20℃以下となるようにして沸上運転を行うと、ヒートポンプユニットの成績係数の低下が抑制されることを表している。   A method for determining the reference value of the water temperature when adjusting the opening of the mixing valve 36 will be described. FIG. 2 is a diagram illustrating an example of the relationship between the water temperature and the coefficient of performance (COP) of the heat pump unit. As shown in FIG. 2, the coefficient of performance of the heat pump unit maintains a high value when the temperature of the water flowing into the heat exchanger of the heat pump unit is approximately 20 ° C. or less, while it suddenly increases when the water temperature exceeds 20 ° C. It has dropped to. That is, FIG. 2 shows that when the boiling operation is performed so that the temperature of the water supplied to the heat exchanger of the heat pump unit is approximately 20 ° C. or less, a decrease in the coefficient of performance of the heat pump unit is suppressed. ing.

図1に示す制御部41は、貯湯タンク20内に中温水層がある状態で沸き上げ運転を行う際に、熱交換器12へ流入する水の温度の基準値を略20℃に設定して、熱交換器12に流入する水の温度が基準値に近い温度となるように混合弁36の弁開度を制御する。   The control unit 41 shown in FIG. 1 sets the reference value of the temperature of the water flowing into the heat exchanger 12 to about 20 ° C. when performing the boiling operation with the hot water tank 20 in the middle temperature water layer. The valve opening degree of the mixing valve 36 is controlled so that the temperature of the water flowing into the heat exchanger 12 becomes a temperature close to the reference value.

ここで、制御部41による混合弁36の開度調整制御の一例について説明する。まず、制御部41は、沸上運転が開始されているか否かを判断する。制御部41は、沸上運転が開始されていないと判断したときには混合弁36の開度調整の制御を行わず、沸上運転が開始されていると判断したときには混合弁36の開度調整の制御を開始する。   Here, an example of the opening adjustment control of the mixing valve 36 by the control unit 41 will be described. First, the control unit 41 determines whether or not the boiling operation is started. When it is determined that the boiling operation is not started, the control unit 41 does not control the opening adjustment of the mixing valve 36, and when it is determined that the boiling operation is started, the controller 41 does not adjust the opening of the mixing valve 36. Start control.

混合弁36の制御を開始した制御部41は、温度検出センサTによる水温の検出結果を取得して、第2配管部31b内の水温が基準値以上であるか否かを判断する。検出された水温が基準値より低いと判断すると、制御部41は、混合弁36の弁開度が所定開度比率分だけ開くように当該混合弁36に開度調整信号を出力して、第1配管部31aからの水の流量に対する中温水管35からの中温水の流量を増大させる。一方、検出された水温が基準値より高いと判断すると、制御部41は、混合弁36の弁開度が所定開度比率分だけ閉じるように当該混合弁36に開度調整信号を出力して、第1配管部31aからの水の流量に対する中温水管35からの中温水の流量を減少させる。制御部41は、温度検出センサTにより検出される水温が上昇して混合弁36が全閉状態となるまで、混合弁36の弁開度の調整を繰り返す。制御部41は、温度検出センサTにより検出される水温が前述の基準値を超えない範囲で、第1配管部31aからの水に中温水管35からの中温水を混入させる制御を行う。次に、図1に示した貯湯式給湯装置1での沸上運転の動作について説明する。   The control part 41 which started control of the mixing valve 36 acquires the detection result of the water temperature by the temperature detection sensor T, and judges whether the water temperature in the 2nd piping part 31b is more than a reference value. If it is determined that the detected water temperature is lower than the reference value, the control unit 41 outputs an opening degree adjustment signal to the mixing valve 36 so that the opening degree of the mixing valve 36 is opened by a predetermined opening ratio. The flow rate of the intermediate temperature water from the intermediate temperature water pipe 35 is increased with respect to the flow rate of the water from the one piping part 31a. On the other hand, when determining that the detected water temperature is higher than the reference value, the control unit 41 outputs an opening adjustment signal to the mixing valve 36 so that the opening of the mixing valve 36 is closed by a predetermined opening ratio. The flow rate of the intermediate temperature water from the intermediate temperature water pipe 35 is decreased with respect to the flow rate of the water from the first piping part 31a. The controller 41 repeats the adjustment of the valve opening of the mixing valve 36 until the water temperature detected by the temperature detection sensor T rises and the mixing valve 36 is fully closed. The control unit 41 performs control to mix the medium temperature water from the medium temperature water pipe 35 into the water from the first piping unit 31a in a range where the water temperature detected by the temperature detection sensor T does not exceed the above-described reference value. Next, the operation of the boiling operation in the hot water storage type hot water supply apparatus 1 shown in FIG. 1 will be described.

貯湯式給湯装置1では、沸上運転開始時に、制御装置40内の図示しない操作部によりユーザが設定する操作設定や、予め記憶部42に設定された沸上運転開始時刻などを受けて制御部41がヒートポンプユニットAと循環ポンプPとに運転開始信号を出力する。貯湯タンク20内に前回の沸上運転時に生成された湯が残存していた場合、沸上運転開始時の貯湯タンク20内には、その上部に湯層が形成され、その下部に水層が形成され、これら湯層と水層との間には中温水層が形成されているが、沸上運転開始時には貯湯タンク20の下部に形成されている水層の水が貯湯タンク下部21から循環回路30に流入する。   In the hot water storage type hot water supply device 1, when the boiling operation is started, the control unit receives an operation setting set by a user through an operation unit (not shown) in the control device 40 or a boiling operation start time set in the storage unit 42 in advance. 41 outputs an operation start signal to the heat pump unit A and the circulation pump P. When the hot water generated during the previous boiling operation remains in the hot water storage tank 20, a hot water layer is formed in the upper part of the hot water storage tank 20 at the start of the boiling operation, and an aqueous layer is formed in the lower part thereof. An intermediate temperature water layer is formed between the hot water layer and the water layer, but the water in the water layer formed in the lower part of the hot water storage tank 20 is circulated from the lower part of the hot water storage tank 21 at the start of the boiling operation. Flows into the circuit 30.

次いで、制御部41が混合弁36の弁開度の制御を開始して、温度検出センサTにより検出される水温を基準値に近い温度にする。貯湯タンク20内の中温水が中温水管35から混合弁36を介して循環回路30に流入する。   Subsequently, the control part 41 starts control of the valve opening degree of the mixing valve 36, and makes the water temperature detected by the temperature detection sensor T the temperature close | similar to a reference value. The intermediate temperature water in the hot water storage tank 20 flows from the intermediate temperature water pipe 35 into the circulation circuit 30 through the mixing valve 36.

沸上運転の開始から時間が経過するにつれて、貯湯タンク上部22に戻された湯により貯湯タンク20内の湯層が貯湯タンク下部21の方向に拡大するため、貯湯タンク下部21から循環回路30に流入する水の温度が徐々に上昇する。図2を用いて既に説明したように、熱交換器12に供給される水の温度がある程度以上高くなるとヒートポンプユニットAの成績係数が急激に低下するが、貯湯式給湯装置1では制御部41が前述のように混合弁36を制御するので、中温水管35により中温水を引き抜かない場合と比較して、熱交換器12に供給される水の温度がヒートポンプユニットAの成績係数を急激に低下させる温度になるまでに要する時間が長くなる。   As the time elapses from the start of the boiling operation, the hot water returned to the hot water storage tank upper part 22 expands the hot water layer in the hot water storage tank 20 in the direction of the hot water storage tank lower part 21. The temperature of the incoming water gradually rises. As already described with reference to FIG. 2, when the temperature of the water supplied to the heat exchanger 12 becomes higher than a certain level, the coefficient of performance of the heat pump unit A rapidly decreases. Since the mixing valve 36 is controlled as described above, the temperature of the water supplied to the heat exchanger 12 sharply decreases the coefficient of performance of the heat pump unit A as compared with the case where the intermediate temperature water is not drawn out by the intermediate temperature water pipe 35. It takes longer time to reach the temperature to be heated.

貯湯タンク20には、図示しない貯湯温度センサが設けられており、貯湯温度センサにより検出された湯の温度が一定温度に達すると、制御部41は、貯湯タンク20内に必要量の湯が確保されていると判断して、沸上運転を終了する。   The hot water storage tank 20 is provided with a hot water storage temperature sensor (not shown), and when the temperature of the hot water detected by the hot water storage temperature sensor reaches a certain temperature, the control unit 41 secures a necessary amount of hot water in the hot water storage tank 20. It judges that it is carried out, and ends boiling operation.

図3は、沸上運転時の積算消費電力量と水温との関係の一例を示す図である。図3に示すように、実線Qで示す貯湯式給湯装置1では、中温水管35から混合弁36を介して循環回路30に流入する中温水の影響により、熱交換器12に供給される水の温度が比較的早期に基準値Tsまで上昇するが、その後は制御部41により基準値Tsを超えない範囲で中温水の流入量が制御されることから、時間q1まで基準値Ts付近で概ね一定となる。そして、時間q1から沸上終了までは、貯湯タンク内の湯層の拡大により、熱交換器12に供給される水の温度が急激に上昇する。ただし、一点鎖線Rで示す従来の貯湯式給湯装置、すなわち沸上運転時に中温水を引き抜かない貯湯式給湯装置に比べれば、熱交換器12に供給される水の温度が基準値Ts以下に維持される時間が長く(q1>r1)なる。   FIG. 3 is a diagram illustrating an example of the relationship between the accumulated power consumption during boiling operation and the water temperature. As shown in FIG. 3, in the hot water storage type hot water supply apparatus 1 indicated by the solid line Q, the water supplied to the heat exchanger 12 due to the influence of intermediate temperature water flowing into the circulation circuit 30 from the intermediate temperature water pipe 35 through the mixing valve 36. The temperature of the water increases to the reference value Ts relatively early, but thereafter, the inflow amount of the medium-temperature water is controlled by the control unit 41 within a range not exceeding the reference value Ts. It becomes constant. From the time q1 to the end of boiling, the temperature of the water supplied to the heat exchanger 12 increases rapidly due to the expansion of the hot water layer in the hot water storage tank. However, the temperature of the water supplied to the heat exchanger 12 is maintained below the reference value Ts as compared with the conventional hot water storage hot water supply device indicated by the one-dot chain line R, that is, the hot water storage hot water supply device that does not extract the intermediate temperature water during the boiling operation. The time taken is longer (q1> r1).

熱交換器12に供給される水の温度が基準値Ts以下に維持されているときの積算消費電力量は、ヒートポンプユニットAで高い成績係数が得られることから、沸上時間に対して一定の上昇率を示し、上記の水温が基準値Tsを超えたときの積算消費電力は、ヒートポンプユニットAの成績係数が低下することから、急激に上昇する。一点鎖線Rで示す従来の貯湯式給湯装置では、沸上運転開始から沸上運転終了までの時間の約3分の1の時間に相当する時刻r1から沸上運転終了までの時間帯で水温が急激に上昇するとともに積算消費電力量が急激に上昇する。これに対して、実線Qで示す貯湯式給湯装置1では、上記の水温が基準値Ts以下に維持される時間が長い(q1>r1)ことから、従来の貯湯式給湯装置に比べて積算消費電力量がNだけ小さくなる。   The accumulated power consumption when the temperature of the water supplied to the heat exchanger 12 is maintained below the reference value Ts is constant with respect to the boiling time because a high coefficient of performance is obtained in the heat pump unit A. The accumulated power consumption when the water temperature exceeds the reference value Ts, indicating an increase rate, increases rapidly because the coefficient of performance of the heat pump unit A decreases. In the conventional hot water storage type hot water supply apparatus indicated by the alternate long and short dash line R, the water temperature is from the time r1 corresponding to about one third of the time from the start of the boiling operation to the end of the boiling operation until the completion of the boiling operation. The accumulated power consumption increases rapidly as it increases rapidly. On the other hand, in the hot water storage type hot water supply device 1 indicated by the solid line Q, since the time during which the water temperature is maintained below the reference value Ts is long (q1> r1), the accumulated consumption is compared with the conventional hot water storage type hot water supply device. The amount of power is reduced by N.

つまり、貯湯式給湯装置1は、貯湯タンク20内に中温水が生じている状態で沸上運転を行った際に、ヒートポンプユニットAの成績係数の低下を抑制し、結果として、沸上運転時の消費電力量を抑制する。   That is, the hot water storage type hot water supply device 1 suppresses a decrease in the coefficient of performance of the heat pump unit A when the boiling operation is performed in a state where intermediate temperature water is generated in the hot water storage tank 20, and as a result, during the boiling operation To reduce power consumption.

なお、実施の形態1では、基準値Tsを1点としているが、本発明はこれに限定されるものではない。例えば、混合弁36の弁開度を所定開度比率分だけ上げて中温水管35から循環回路30に流入する中温水の流量を増大させる基準値Tslと、混合弁36の弁開度を所定開度比率分だけ下げて中温水管35から循環回路30に流入する中温水の流量を減少させる基準値Tshとの2つの基準値を用いることもできる。また、沸上運転の終了を判断する湯温度の検出手段として図示しない貯湯温度センサを用いているが、本発明はこれに限定されるものではなく、例えば温度検出センサTが貯湯温度センサを兼ねていてもよい。   In the first embodiment, the reference value Ts is one point, but the present invention is not limited to this. For example, the valve opening of the mixing valve 36 is increased by a predetermined opening ratio, and the reference value Tsl for increasing the flow rate of the intermediate warm water flowing from the intermediate warm water pipe 35 into the circulation circuit 30 and the valve opening of the mixing valve 36 are predetermined. It is also possible to use two reference values, that is, a reference value Tsh that reduces the flow rate of the intermediate temperature water flowing from the intermediate temperature water pipe 35 into the circulation circuit 30 by the opening ratio. Further, although a hot water storage temperature sensor (not shown) is used as a hot water temperature detecting means for determining the end of the boiling operation, the present invention is not limited to this, and for example, the temperature detection sensor T also serves as the hot water storage temperature sensor. It may be.

実施の形態2.
図4は、本発明にかかる貯湯式給湯装置の実施の形態2の構成図である。図4に示す貯湯式給湯装置100は、第2取水口123と、第2中温水管135と、給湯切替弁151と、バイパス配管152と、第1電磁弁153と、第2電磁弁154とを有する以外は図1に示す貯湯式給湯装置1と同様の構成を有する。また、図1に示した第3配管部31cは、給湯切替弁151の上流側の上流側第3配管部31cuと、下流側の下流側第3配管部31cdとに分かれている。図4に示す構成部材のうちで図1に示した構成部材と機能上共通するものについては、図1で用いた参照符号と同じ参照符号を付してその説明を省略する。
Embodiment 2. FIG.
FIG. 4 is a configuration diagram of Embodiment 2 of the hot water storage type hot water supply apparatus according to the present invention. A hot water storage type hot water supply apparatus 100 shown in FIG. 4 includes a second water intake 123, a second intermediate hot water pipe 135, a hot water supply switching valve 151, a bypass pipe 152, a first electromagnetic valve 153, and a second electromagnetic valve 154. 1 has the same configuration as the hot water storage type hot water supply apparatus 1 shown in FIG. Moreover, the 3rd piping part 31c shown in FIG. 1 is divided into the upstream 3rd piping part 31cu of the upstream of the hot water supply switching valve 151, and the downstream 3rd piping part 31cd of the downstream. Among the structural members shown in FIG. 4, those that are functionally common to the structural members shown in FIG. 1 are given the same reference numerals as those used in FIG. 1 and description thereof is omitted.

給湯切替弁151は、閉から開に切り替えることにより上流側第3配管部31cuからバイパス配管152に水を流入させ、開から閉に切り替えることにより上流側第3配管部31cuから下流側第3配管部31cdに水を流入させる三方弁である。給湯切替弁151は、上流側にある流入口に上流側第3配管部31cuが接続され、下流側にある2つの流出口に下流側第3配管部31cdとバイパス配管152とが接続されている。給湯切替弁151は、制御部41と接続されており、制御部41により動作制御される。給湯切替弁151は、制御部41から開度調整の信号を受けた際に弁開度を調節する。バイパス配管152は、一端が給湯切替弁151の流出口と接続されており、他端が混合弁36の流入口と接続されている。   The hot water supply switching valve 151 causes water to flow into the bypass pipe 152 from the upstream third piping section 31cu by switching from closed to open, and switches from the upstream third pipe section 31cu to the downstream third piping by switching from open to closed. This is a three-way valve that allows water to flow into the portion 31cd. In the hot water supply switching valve 151, the upstream third piping part 31 cu is connected to the inlet on the upstream side, and the downstream third piping part 31 cd and the bypass pipe 152 are connected to the two outlets on the downstream side. . The hot water supply switching valve 151 is connected to the control unit 41, and its operation is controlled by the control unit 41. The hot water supply switching valve 151 adjusts the valve opening when receiving an opening adjustment signal from the control unit 41. One end of the bypass pipe 152 is connected to the outlet of the hot water supply switching valve 151, and the other end is connected to the inlet of the mixing valve 36.

貯湯タンク側部24には、第1取水口23と、第2取水口123とが設けられている。第1中温水管35は、一端が第1取水口23と接続されており、他端がバイパス配管152と接続されている。また、第1中温水管35には、閉から開に切り替わることにより第1取水口23とバイパス配管152とを連通させる第1電磁弁153が設けられている。第1電磁弁153は、制御部41に接続されており、制御部41から開閉信号を受ける。   The hot water storage tank side portion 24 is provided with a first water intake 23 and a second water intake 123. One end of the first intermediate hot water pipe 35 is connected to the first water intake port 23, and the other end is connected to the bypass pipe 152. The first intermediate hot water pipe 35 is provided with a first electromagnetic valve 153 that allows the first intake port 23 and the bypass pipe 152 to communicate with each other by switching from closed to open. The first electromagnetic valve 153 is connected to the control unit 41 and receives an open / close signal from the control unit 41.

第2取水口123は、第1取水口23よりも貯湯タンク側部24の上方向に設けられている。第2中温水管135は、一端が第2取水口123と接続されており、他端がバイパス配管152と接続されている。第2中温水管135には、閉から開に切り替わることにより第2取水口123とバイパス配管152とを連通させる第2電磁弁154が設けられている。第2電磁弁154は、制御部41に接続されており、制御部41から開閉信号を受ける。   The second intake port 123 is provided above the hot water storage tank side portion 24 relative to the first intake port 23. The second intermediate hot water pipe 135 has one end connected to the second water intake 123 and the other end connected to the bypass pipe 152. The second intermediate hot water pipe 135 is provided with a second electromagnetic valve 154 that allows the second water intake 123 and the bypass pipe 152 to communicate with each other by switching from closed to open. The second electromagnetic valve 154 is connected to the control unit 41 and receives an open / close signal from the control unit 41.

次に、貯湯式給湯装置100での沸上運転の動作について説明する。沸上運転の初期段階で、制御部41は、給湯切替弁151と混合弁36とに開信号を出力して、熱交換器12から上流側第3配管部31cuに流入した水を、バイパス配管152を介して第2配管部31bに流入させる。第2配管部31bへ流入した水は、熱交換器12に流入して再度沸き上げられ、上流側第3配管部31cuへ流入する。制御部41は、温度検出センサTにより検出された水温が所定湯温度になるまで給湯切替弁151と混合弁36とに開信号を出力し続ける。従って、運転開始直後に熱交換器12により沸き上げられた低温の湯は、所定湯温度になるまで貯湯タンク20上部へ流出しない。これにより、運転開始直後に熱交換器12により沸き上げられた低温の湯が貯湯タンク上部22に流入することに起因する湯層と水層との層境界の破壊を抑制し、貯湯タンク20内の対流を抑制できるため、貯湯タンク下部21に形成される水層の温度上昇を抑えることができる。ここで、所定湯温度とは、貯湯タンク20内での温度成層の破壊が実質的に抑えられる温度を意味する。   Next, the operation of the boiling operation in the hot water storage type hot water supply apparatus 100 will be described. In the initial stage of the boiling operation, the control unit 41 outputs an open signal to the hot water supply switching valve 151 and the mixing valve 36, and the water flowing from the heat exchanger 12 into the upstream third piping unit 31cu is bypassed. It is made to flow into the 2nd piping part 31b via 152. The water that has flowed into the second piping part 31b flows into the heat exchanger 12, is boiled up again, and flows into the upstream third piping part 31cu. The control unit 41 continues to output an open signal to the hot water supply switching valve 151 and the mixing valve 36 until the water temperature detected by the temperature detection sensor T reaches a predetermined hot water temperature. Therefore, the low temperature hot water boiled by the heat exchanger 12 immediately after the start of operation does not flow out to the upper part of the hot water storage tank 20 until the predetermined hot water temperature is reached. Thereby, the destruction of the layer boundary between the hot water layer and the water layer caused by the flow of low temperature hot water boiled by the heat exchanger 12 immediately after the start of operation into the hot water storage tank upper portion 22 is suppressed, and the inside of the hot water storage tank 20 Therefore, the temperature rise of the water layer formed in the hot water storage tank lower part 21 can be suppressed. Here, the predetermined hot water temperature means a temperature at which the destruction of the temperature stratification in the hot water storage tank 20 can be substantially suppressed.

次いで、制御部41は、第2電磁弁154に開信号を出力して、第2取出口123から第2中温水管135に流入した中温水を混合弁36へ流入させる。次に、制御部41は、実施の形態1に示した混合弁36の弁開度の制御を行い、混合弁36に流入した中温水を循環回路30に流入させて、温度検出センサTにより検出される水温を基準値に近い温度にする。沸上運転の開始から時間が経過して温度検出センサTにより検出される水温がある程度以上高くなると、制御部41は、開信号を出力すべき電磁弁を第2電磁弁154から第1電磁弁153に切り替えて、実施の形態1に示した混合弁36の弁開度の制御を行う。従って、貯湯式給湯装置100は、沸上運転時に、貯湯タンク20内の湯層の拡大に伴う貯湯タンク20の上下方向での中温水層の位置変化に対応して中温水を引き抜くことができる。このため、1つの取出口から中温水を引き抜く場合と比較して、熱交換器12に供給される水の温度を基準値Ts(図2参照)に維持する時間をより長く確保することができる。   Next, the control unit 41 outputs an open signal to the second electromagnetic valve 154, and causes the medium temperature water that has flowed into the second medium temperature water pipe 135 from the second outlet 123 to flow into the mixing valve 36. Next, the control unit 41 controls the valve opening degree of the mixing valve 36 shown in the first embodiment, and causes the medium temperature water flowing into the mixing valve 36 to flow into the circulation circuit 30 and is detected by the temperature detection sensor T. Set the water temperature to be close to the reference value. When time elapses from the start of the boiling operation and the water temperature detected by the temperature detection sensor T becomes higher than a certain level, the control unit 41 changes the electromagnetic valve that should output an open signal from the second electromagnetic valve 154 to the first electromagnetic valve. Switching to 153, the valve opening degree of the mixing valve 36 shown in the first embodiment is controlled. Therefore, the hot water storage type hot water supply apparatus 100 can draw out the intermediate hot water in response to the change in the position of the intermediate hot water layer in the vertical direction of the hot water storage tank 20 accompanying the expansion of the hot water layer in the hot water storage tank 20 during the boiling operation. . For this reason, it is possible to secure a longer time for maintaining the temperature of the water supplied to the heat exchanger 12 at the reference value Ts (see FIG. 2), compared to the case where the medium-temperature water is drawn out from one outlet. .

なお、実施の形態2では、2つの取水口23、123を設けているが、本発明はこれに限定されるものではなく、3つ以上の取水口を設けてもよい。また、第2配管部31bに設けられた温度検出センサTにより検出された水温を用いて給湯切替弁151、第1電磁弁153、第2電磁弁154の開閉を切り替えるタイミングを判断しているが、本発明はこれに限定するものではなく、例えば図1に示した温度検出センサT以外に別途第2配管部31bに温度検出センサを設けてもよいし、上流側第3配管部31cu及びバイパス配管152のいずれかに新たに温度検出センサを設けてもよい。   In the second embodiment, the two intake ports 23 and 123 are provided. However, the present invention is not limited to this, and three or more intake ports may be provided. In addition, the timing of switching between opening and closing of the hot water supply switching valve 151, the first electromagnetic valve 153, and the second electromagnetic valve 154 is determined using the water temperature detected by the temperature detection sensor T provided in the second piping portion 31b. The present invention is not limited to this. For example, in addition to the temperature detection sensor T shown in FIG. 1, a temperature detection sensor may be separately provided in the second piping portion 31b, or the upstream side third piping portion 31cu and the bypass may be provided. A temperature detection sensor may be newly provided in any of the pipes 152.

以上のように、本発明にかかる貯湯式給湯装置は、貯湯タンク内に中温水が生じた状態で沸上運転を行った際に生じるヒートポンプユニットの成績係数の低下を抑制することで沸上運転の消費電力量の上昇を抑制する貯湯式給湯装置に適用して好適である。   As described above, the hot water storage type hot water supply apparatus according to the present invention suppresses the decrease in the coefficient of performance of the heat pump unit that occurs when the boiling operation is performed in a state where intermediate temperature water is generated in the hot water storage tank. It is suitable for application to a hot water storage type hot water supply apparatus that suppresses an increase in power consumption.

本発明にかかる貯湯式給湯装置の実施の形態1の構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram of Embodiment 1 of the hot water storage type hot water supply apparatus concerning this invention. 水温とヒートポンプユニットの成績係数(COP)との関係の一例を示す図である。It is a figure which shows an example of the relationship between water temperature and the coefficient of performance (COP) of a heat pump unit. 沸上運転時の水温と積算消費電力量の関係の一例を示す図である。It is a figure which shows an example of the relationship between the water temperature at the time of boiling operation, and integrated power consumption. 本発明にかかる貯湯式給湯装置の実施の形態2の構成図である。It is a block diagram of Embodiment 2 of the hot water storage type hot-water supply apparatus concerning this invention.

符号の説明Explanation of symbols

1,100 貯湯式給湯装置
12 熱交換器
20 貯湯タンク
21 貯湯タンク下部
22 貯湯タンク上部
23,123 取水口
24 貯湯タンク側部
30 循環回路
31 配管部
31a 第1配管部
31b 第2配管部
31c 第3配管部
31cu 上流側第3配管部
31cd 下流側第3配管部
35 中温水管
36 混合弁
37 外部給水管
38 外部給湯管
40 制御装置
41 制御部
42 記憶部
151 給湯切替弁
152 バイパス配管
153 第1電磁弁
154 第2電磁弁
A ヒートポンプユニット
B 貯湯タンクユニット
P 循環ポンプ
T 温度検出センサ
DESCRIPTION OF SYMBOLS 1,100 Hot water storage type hot water supply device 12 Heat exchanger 20 Hot water storage tank 21 Hot water storage tank lower part 22 Hot water storage tank upper part 23,123 Water intake 24 Hot water storage tank side part 30 Circulation circuit 31 Piping part 31a First piping part 31b Second piping part 31c First 3 piping section 31 cu upstream third piping section 31 cd downstream third piping section 35 medium temperature water pipe 36 mixing valve 37 external water supply pipe 38 external hot water supply pipe 40 control device 41 control section 42 storage section 151 hot water supply switching valve 152 bypass piping 153 first 1 Solenoid valve 154 2nd solenoid valve A Heat pump unit B Hot water tank unit P Circulation pump T Temperature detection sensor

Claims (4)

水を沸き上げて湯に変換する熱交換器を有するヒートポンプユニットと、前記熱交換器により沸き上げられた湯を貯留する貯湯タンクと、前記貯湯タンクの下部から前記熱交換器へ水を流入させて該熱交換器から流出した湯を前記貯湯タンク上部に戻す循環回路と、を備えた貯湯式給湯装置であって、
前記循環回路を流れる水に前記貯湯タンクの側部に設けられた取水口から引き抜いた中温水を混合する混合弁を有し、該混合弁により前記取水口から引き抜いた中温水の流量を調整して沸上運転を行うことを特徴とする貯湯式給湯装置。
A heat pump unit having a heat exchanger for boiling water to convert it into hot water, a hot water storage tank for storing hot water boiled by the heat exchanger, and water flowing into the heat exchanger from the lower part of the hot water storage tank A hot water flowing out of the heat exchanger and a circulation circuit for returning the hot water to the upper part of the hot water storage tank,
It has a mixing valve that mixes the water flowing through the circulation circuit with the medium temperature water drawn from the intake port provided on the side of the hot water storage tank, and adjusts the flow rate of the medium temperature water drawn from the water intake port by the mixing valve. A hot water storage type hot water supply device that performs boiling operation.
前記沸上運転の際に、前記熱交換器に供給される水の温度が基準値以下になるように前記混合弁の開度調整を行うことを特徴とする請求項1に記載の貯湯式給湯装置。   2. The hot water storage type hot water supply according to claim 1, wherein the opening degree of the mixing valve is adjusted so that a temperature of water supplied to the heat exchanger becomes a reference value or less during the boiling operation. apparatus. 前記混合弁が三方弁であることを特徴とする請求項1または2に記載の貯湯式給湯装置。   The hot water storage type hot water supply apparatus according to claim 1 or 2, wherein the mixing valve is a three-way valve. 前記中温水を引き抜く複数個の取水口が、前記貯湯タンク側部での上下方向に分散して形成されることを特徴とする請求項1〜3のいずれか1つに記載の貯湯式給湯装置。   The hot water storage type hot water supply apparatus according to any one of claims 1 to 3, wherein a plurality of water intake ports for drawing out the medium temperature water are formed in a vertically distributed manner on the side of the hot water storage tank. .
JP2008025201A 2008-02-05 2008-02-05 Hot water storage type water supply device Pending JP2009186065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008025201A JP2009186065A (en) 2008-02-05 2008-02-05 Hot water storage type water supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008025201A JP2009186065A (en) 2008-02-05 2008-02-05 Hot water storage type water supply device

Publications (1)

Publication Number Publication Date
JP2009186065A true JP2009186065A (en) 2009-08-20

Family

ID=41069489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008025201A Pending JP2009186065A (en) 2008-02-05 2008-02-05 Hot water storage type water supply device

Country Status (1)

Country Link
JP (1) JP2009186065A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010122759A1 (en) * 2009-04-21 2010-10-28 パナソニック株式会社 Hot water storage-type hot water supply device, hot water supply and heating device, operation control device, operation control method, and program
WO2015098281A1 (en) * 2013-12-27 2015-07-02 ダイキン工業株式会社 Hot water supplying device
JP2015137829A (en) * 2014-01-24 2015-07-30 東芝キヤリア株式会社 Water heater
JP2021169873A (en) * 2020-04-14 2021-10-28 三菱電機株式会社 Storage-type water heater

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010122759A1 (en) * 2009-04-21 2010-10-28 パナソニック株式会社 Hot water storage-type hot water supply device, hot water supply and heating device, operation control device, operation control method, and program
JP5498959B2 (en) * 2009-04-21 2014-05-21 パナソニック株式会社 Hot water storage type hot water supply device, hot water supply and heating device, operation control device, operation control method and program
US9170030B2 (en) 2009-04-21 2015-10-27 Panasonic Intellectual Property Management Co., Ltd. Storage hot water supplying apparatus, hot water supplying and space heating apparatus, operation control apparatus, operation control method, and operation control program
WO2015098281A1 (en) * 2013-12-27 2015-07-02 ダイキン工業株式会社 Hot water supplying device
JP2015137829A (en) * 2014-01-24 2015-07-30 東芝キヤリア株式会社 Water heater
JP2021169873A (en) * 2020-04-14 2021-10-28 三菱電機株式会社 Storage-type water heater
JP7310690B2 (en) 2020-04-14 2023-07-19 三菱電機株式会社 Storage hot water heater

Similar Documents

Publication Publication Date Title
KR100847619B1 (en) Heat pump water heater
JP5171868B2 (en) Hot water storage water heater
JP2009250481A (en) Hot water supplying heating system
JP2009186065A (en) Hot water storage type water supply device
JP3632645B2 (en) Heat pump water heater
JP2007046856A (en) Heat pump hot-water supply floor heating device
JP2007046851A (en) Heat pump hot-water supply bathroom heating/drying device
JP2009236424A (en) Heat pump hot water supply system
JP2006234314A (en) Heat pump water heater
JP2012132583A (en) Heat-pump type heating water heater
JP2007003057A (en) Storage water heater
JP2016095089A (en) Storage water heater
JP5575049B2 (en) Heat pump water heater
JP2010190479A (en) Water heater
JP2009052798A (en) Storage water heater with bath hot water supply function
JP5069955B2 (en) Heat pump type water heater
JP6683171B2 (en) Hot water storage system
JP2012237492A (en) Storage type water heater
JP5152211B2 (en) Water heater
JP2009063262A (en) Heat pump type water heater
JP2015078773A (en) Hot water storage type water heater
JP2005140439A (en) Heat pump water heater
JP2009287794A (en) Heat pump type water heater
JP2008304145A (en) Hot water supply device and control device for the same
JP2007198637A (en) Heat pump type water heater