WO2015098281A1 - Hot water supplying device - Google Patents

Hot water supplying device Download PDF

Info

Publication number
WO2015098281A1
WO2015098281A1 PCT/JP2014/078902 JP2014078902W WO2015098281A1 WO 2015098281 A1 WO2015098281 A1 WO 2015098281A1 JP 2014078902 W JP2014078902 W JP 2014078902W WO 2015098281 A1 WO2015098281 A1 WO 2015098281A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot water
boiling
storage tank
temperature
water storage
Prior art date
Application number
PCT/JP2014/078902
Other languages
French (fr)
Japanese (ja)
Inventor
泰光 野村
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2015098281A1 publication Critical patent/WO2015098281A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/174Supplying heated water with desired temperature or desired range of temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/215Temperature of the water before heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/219Temperature of the water after heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/305Control of valves
    • F24H15/315Control of valves of mixing valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/335Control of pumps, e.g. on-off control
    • F24H15/34Control of the speed of pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • F24H4/04Storage heaters

Definitions

  • This invention relates to a hot water supply apparatus.
  • a hot water supply device it is stored in a heat pump unit that heats hot water in a hot water storage tank, a heat recovery tank that stores a heat storage agent that is exhausted into tap water, and tap water and hot water tank that are exhausted from the heat storage agent Some hot water is mixed with a mixing valve to discharge hot water (see, for example, JP-A-2006-132873 (Patent Document 1)).
  • the regenerative hot water from the reheating heat exchanger absorbs heat with the heat storage agent, thereby In addition, a large amount of hot water of intermediate temperature is suppressed.
  • the above-described conventional hot water supply apparatus has a problem that a space for providing a heat storage agent is required and a circuit configuration is complicated, resulting in an increase in cost.
  • an object of the present invention is to provide a hot water supply apparatus that can efficiently boil hot water in a hot water storage tank with a simple configuration.
  • the hot water supply apparatus of the present invention is: A mixing valve for mixing hot water from the upper part of the hot water storage tank with hot water from the lower part of the hot water storage tank; A boiling circuit connected from the lower part of the hot water storage tank to the upper part of the hot water storage tank via the mixing valve and a boiling heat exchanger; A boiling pump disposed in the boiling circuit; A heat pump unit for boiling hot water from the outlet side of the mixing valve by the boiling heat exchanger; The mixing valve, the boiling pump, and a controller for controlling the heat pump unit are provided.
  • the control unit controls the mixing valve, the boiling pump, and the heat pump unit, and circulates the hot water in the hot water tank through the boiling circuit to perform the boiling operation.
  • the mixing valve By mixing the medium temperature water from the upper part of the hot water and the hot water from the lower part of the hot water storage tank by the mixing valve, it becomes possible to boil the intermediate temperature water in the hot water storage tank. Therefore, hot water in the hot water storage tank can be efficiently boiled with a simple configuration without providing a heat storage agent or the like.
  • the control device During boiling operation, when the water temperature at the upper part of the hot water storage tank is equal to or higher than a preset upper judgment temperature and the water temperature at the lower part of the hot water storage tank is lower than a preset lower judgment temperature, the hot water storage of the mixing valve The mixing valve is controlled so that the opening on the lower side of the tank is fully opened.
  • the water temperature at the upper part of the hot water storage tank is equal to or higher than the preset upper determination temperature
  • the area of the intermediate temperature water to be boiled in the hot water storage tank is small
  • the water temperature at the lower part of the hot water storage tank is When the temperature is lower than the preset lower determination temperature, it is assumed that the amount of heat stored in the hot water storage tank is small and boiling is required.
  • the mixing valve is controlled so that the opening of the lower side of the hot water storage tank of the mixing valve is fully opened. This allows hot water in the hot water storage tank to be circulated through the boiling circuit without boiling water from the upper part of the hot water tank and hot water from the lower part of the hot water tank through the mixing valve. it can.
  • the control device During boiling operation, when the water temperature at the upper part of the hot water storage tank is lower than the preset upper judgment temperature and the water temperature at the lower part of the hot water storage tank is lower than the preset lower mixing judgment temperature, the mixing valve is opened. The hot water from the upper part of the hot water storage tank and the hot water from the lower part of the hot water storage tank are mixed by controlling the degree.
  • the opening degree of the mixing valve is controlled, Hot water from the upper part of the hot water storage tank and hot water from the lower part of the hot water storage tank are mixed. This makes it possible to accurately determine whether or not the hot water in the upper and lower hot water tanks is mixed by the mixing valve from the state of temperature distribution in the hot water storage tank.
  • the control device An efficiency priority mode in which the opening of the lower side of the hot water storage tank of the mixing valve is fully opened and the boiling operation is performed, and hot water at the upper part of the hot water storage tank is mixed with the hot water at the lower part of the hot water storage tank by the mixing valve.
  • An operation mode selection unit that selects any one of the hot water amount priority modes for performing the boiling operation is provided.
  • the efficiency priority mode in which the boiling operation is performed by fully opening the opening of the lower side of the hot water storage tank of the mixing valve, and the hot water in the upper part of the hot water storage tank is added to the hot water in the lower part of the hot water storage tank by the mixing valve.
  • the boiling efficiency is improved as the incoming water temperature of the boiling heat exchanger is lowered.
  • the operation priority mode is selected by the operation mode selection unit, and when the user desires that the hot water tank does not run out, the hot water priority mode is selected by the operation mode selection unit. The convenience can be improved.
  • a hot water outlet provided in the upper part of the hot water storage tank is connected to the water inlet side of the mixing valve via a bath reheating circuit in which a reheating heat exchanger is provided.
  • the hot water outlet provided in the upper part of the hot water storage tank is connected to the water inlet side of the mixing valve via the bath reheating circuit in which the reheating heat exchanger is arranged, thereby As a circuit from the upper part of the tank to the water inlet side of the mixing valve, it can also be used as a bath reheating circuit, and the circuit configuration can be simplified.
  • the outlet side of the mixing valve is connected to a return port provided in the upper part of the hot water storage tank via the boiling circuit,
  • a rectifying plate is provided in the hot water storage tank and in the vicinity of the return port, and suppresses the flow toward the hot water outlet provided at the upper part of the hot water storage tank.
  • the boiled hot water is discharged from the hot water outlet by suppressing the flow toward the hot water outlet provided in the upper part of the hot water storage tank by the rectifying plate provided in the hot water storage tank and in the vicinity of the return port. It can be prevented from getting out and boiling again.
  • the control device Provided with an incoming water temperature sensor for detecting the incoming water temperature of the boiling heat exchanger, The control device The opening degree of the mixing valve is feedback-controlled so that the incoming water temperature of the boiling heat exchanger detected by the incoming water temperature sensor is within a preset temperature range.
  • the opening degree of the mixing valve is fed back by the control device so that the incoming water temperature of the boiling heat exchanger detected by the incoming water temperature sensor is within a preset temperature range.
  • a tapping temperature sensor for detecting tapping temperature of the boiling heat exchanger for detecting tapping temperature of the boiling heat exchanger
  • the control device Feedback control of the rotation speed of the boiling pump so that the boiling temperature of the boiling heat exchanger detected by the boiling temperature sensor becomes the target temperature.
  • the feedback control interval of the mixing valve was made longer than the feedback control interval of the boiling pump.
  • the control device feedback-controls the rotation speed of the boiling pump so that the outlet temperature of the heating heat exchanger detected by the outlet temperature sensor becomes the target outlet temperature.
  • the tapping temperature of the boiling heat exchanger can be stabilized at the target tapping temperature.
  • a tapping temperature sensor for detecting tapping temperature of the boiling heat exchanger for detecting tapping temperature of the boiling heat exchanger
  • the control device Feedback control of the rotation speed of the boiling pump so that the boiling temperature of the boiling heat exchanger detected by the boiling temperature sensor becomes the target temperature.
  • the feedback gain in the feedback control of the mixing valve is made smaller than the feedback gain in the feedback control of the boiling pump.
  • the control device feedback-controls the rotation speed of the boiling pump so that the outlet temperature of the heating heat exchanger detected by the outlet temperature sensor becomes the target outlet temperature.
  • the tapping temperature of the boiling heat exchanger can be stabilized at the target tapping temperature.
  • An upper limit value was set for the opening degree of the upper side of the hot water storage tank of the mixing valve.
  • the hot water storage tank of the mixing valve By providing an upper limit value for the opening on the upper side, the boiling efficiency can be prevented from being excessively lowered.
  • An HFC refrigerant was used in the heat pump unit.
  • hot water runs out more easily than the CO 2 refrigerant capable of high temperature hot water, but the hot water in the upper and lower parts of the hot water tank is mixed to boil the intermediate water.
  • the amount of heat stored in the hot water storage tank can be increased, and the effect of preventing running out of hot water is great.
  • the hot water in the hot water tank when the hot water in the hot water tank is circulated through the boiling circuit and heated, the hot water in the upper part of the hot water tank is mixed with the hot water in the lower part of the hot water tank.
  • the hot water in the hot water storage tank can be boiled, and a hot water supply apparatus that can efficiently boil hot water in the hot water storage tank with a simple configuration can be realized.
  • FIG. 1 is a piping system diagram of a heat pump type hot water supply apparatus according to an embodiment of the present invention.
  • FIG. 2 is a control block diagram of the hot water supply apparatus.
  • FIG. 3 is a diagram for explaining a change in temperature distribution before and after boiling in the hot water storage tank of the hot water supply apparatus.
  • FIG. 4 is a comparative example of a change in temperature distribution before and after boiling in the hot water storage tank.
  • FIG. 1 shows a piping system diagram of a heat pump type hot water supply apparatus according to an embodiment of the present invention.
  • the hot water supply apparatus includes a hot water storage unit 1 and a heat pump unit 2 connected to the hot water storage unit 1.
  • the hot water storage unit 1 includes a hot water storage tank 3, a boiling heat exchanger 10, a reheating heat exchanger 20, a control device 100 (shown in FIG. 2), and the like.
  • One end of the pipe L1 is connected to the lower part of the hot water storage tank 3, and the other end of the pipe L1 is connected to a first water inlet port of a mixing valve 50 for boiling as an example of a mixing valve.
  • One end of the pipe L ⁇ b> 2 is connected to the water outlet port of the boiling mixing valve 50, and the other end of the pipe L ⁇ b> 2 is connected to one end of the boiling heat exchanger 10.
  • the other end of the boiling heat exchanger 10 is connected to one end of the pipe L3, and the other end of the pipe L3 is connected to a return port 3a provided in the upper part of the hot water storage tank 3.
  • a boiling circulation pump P1 as an example of a boiling pump is disposed in the pipe L2.
  • a rectifying plate 70 is provided in the hot water storage tank 3 and in the vicinity of the return port 3a to suppress the flow toward the hot water outlet 3b provided in the upper part of the hot water storage tank 3.
  • piping L1, piping L2, boiling heat exchanger 10, and piping L3 constitute a boiling circuit.
  • the hot water in the hot water storage tank 3 is supplied to the pipe L1 by driving the boiling circulation pump P1 with the opening degree of the first mixing port 50 (hot water storage tank 3 side) of the boiling mixing valve 50 fully opened. , Circulating through the mixing valve 50 for boiling, the pipe L2, the boiling heat exchanger 10, and the pipe L3.
  • the boiling heat exchanger 10 is connected to the heat pump unit 2 via the refrigerant pipes L4 and L5.
  • the heat pump unit 2 uses an HFC refrigerant, and can control the temperature of the hot water from the boiling heat exchanger 10 in a range of 50 ° C. to 70 ° C., for example.
  • Examples of the HFC refrigerant used in the heat pump unit 2 include R32, R125, R134a, R404A, R410A, and R407C.
  • an external water supply pipe is connected to the lower part of the hot water storage tank 3 via a pipe L11.
  • a pressure reducing valve 11 and a check valve 12 are arranged in this pipe L11 in order from the upstream side. This check valve 12 allows only the flow from the water supply pipe side to the hot water storage tank 3 side.
  • one end of the pipe L21 is connected to the hot water outlet 3b provided in the upper part of the hot water storage tank 3, and the other end of the pipe L21 is driven to connect to the primary water inlet port of the heat exchanger 20.
  • One end of the pipe L22 is connected to the primary water outlet port of the reheating heat exchanger 20, and the other end of the pipe L22 is connected to the second water inlet port of the boiling mixing valve 50.
  • the hot water in the upper part of the hot water storage tank 3 is removed by driving the circulating pump P1 for boiling while the opening degree of the second mixing port 50 (the bath reheating circuit side) of the boiling mixing valve 50 is fully opened. And circulating through the pipe L21, the reheating heat exchanger 20 (primary side), the pipe L22, the boiling mixing valve 50, the pipe L2, the boiling heat exchanger 10, and the pipe L3.
  • one end of the pipe L31 is connected to the upper part of the hot water storage tank 3, and the other end of the pipe L31 is connected to the first water inlet port of the hot water mixing valve 22.
  • a check valve 21 that allows only a flow from the hot water storage tank 3 side to the hot water supply mixing valve 22 is disposed in the pipe L31.
  • One end of the branch pipe L12 is connected to the second water inlet port of the hot water supply mixing valve 22, and the other end of the branch pipe L12 is connected between the pressure reducing valve 11 and the check valve 12 of the pipe L11.
  • the branch pipe L12 is provided with a check valve 23 that allows only the flow from the pipe L11 side to the hot water supply mixing valve 22.
  • one end of the pipe L32 is connected to the water outlet port of the hot water mixing valve 22, and the other end of the pipe L32 is connected to the hot water tap 60 (a faucet in this embodiment).
  • a water amount sensor 24 is disposed in the pipe L32.
  • the branch pipe L12, the pipe L31, the pipe L32, the check valve 21, the hot water mixing valve 22, the check valve 23, and the water amount sensor 24 constitute a hot water supply circuit.
  • one end of the pipe L33 is connected to the upstream side of the water amount sensor 24 of the pipe L32, and the other end of the pipe L33 is connected to the hot water supply port 9a of the connection adapter 9 provided in the bathtub 4.
  • a hot water filling solenoid valve 25, a check valve 26, a water amount sensor 27, and a check valve 28 are arranged in this order from the upstream side of the pipe L33. These check valves 26 and 28 allow only the flow from the hot water supply mixing valve 22 side to the bathtub 4.
  • the pipe L33, the hot water solenoid valve 25, the check valves 26 and 28, and the water amount sensor 27 constitute a bath hot water supply circuit branched from the hot water supply pipe L32 and connected to the bathtub 4.
  • One end of the pipe L35 is connected to the water intake port 9b for replenishment of the connection adapter 9 and the other end of the pipe L35 is connected to the water inlet port on the secondary side of the heat exchanger 20.
  • a circulation pump P2 for bath is disposed in the pipe L35.
  • one end of the pipe L34 is connected to the downstream side of the water amount sensor 27 of the pipe L33, and the other end of the pipe L34 is connected to the secondary water outlet port of the heat exchanger 20.
  • the hot water in the bathtub 4 is circulated through the pipe L35, the reheating heat exchanger 20 (secondary side), the pipe L34, and the pipe L33 (part) by the bath circulation pump P2.
  • piping L35, reheating heat exchanger 20 (secondary side), piping L34, and piping L33 (part) constitute a bath circulation circuit.
  • one end of the pipe L41 is connected to the pipe L21, and the other end of the pipe L41 is connected to the drain port.
  • a relief valve 31 is provided in the pipe L41.
  • the hot water storage tank 3 is provided with four temperature sensors T1 to T4 at substantially equal intervals from the lower side to the upper side.
  • a temperature sensor T11 for detecting the incoming water temperature is provided in the pipe L2
  • a temperature sensor T12 for detecting the hot water temperature is provided in the pipe L3.
  • the temperature sensor T3 is an example of an upper temperature sensor
  • the temperature sensor T1 is an example of a lower temperature sensor
  • the temperature sensor T11 is an example of an incoming water temperature sensor
  • the temperature sensor T12 is an example of a tapping temperature sensor. It is.
  • the boiling heat exchanger 10 is provided with a temperature sensor T13.
  • a temperature sensor T ⁇ b> 21 for detecting a hot water supply temperature is provided in the pipe L ⁇ b> 32 connected to the hot water tap 60 on the downstream side of the water amount sensor 24.
  • a water level sensor LS, a water flow switch SW, and a temperature sensor T23 are connected to the pipe L35 connected to the bathtub 4 from the connection adapter 9 side between the connection adapter 9 on the bathtub 4 side and the circulation pump P2 for bath.
  • a temperature sensor T22 that detects the temperature of hot water supplied to the bathtub 4 is provided downstream of the check valve 28 of the pipe L33 connected to the bathtub 4 and at a connection point between the pipe L33 and the pipe L34. Yes.
  • the hot water supply device includes a control device 100 including a microcomputer and an input / output circuit, and a remote controller 200 that transmits and receives signals to and from the control device 100.
  • the control device 100 includes signals from temperature sensors T1 to T4, T11 to T13, T21 to T23, a water level sensor LS, a water flow switch SW, water volume sensors 24 and 27, an outside air temperature sensor (not shown), a remote controller 200, and the like.
  • the heat pump unit 2 the boiling circulation pump P1, the bath circulation pump P2, the hot water mixing valve 22, the hot water solenoid valve 25, the boiling mixing valve 50, and the like are controlled.
  • control device 100 includes a boiling control unit 100a that controls an operation of boiling hot water in the hot water storage tank 3, a hot water supply control unit 100b that controls a hot water supply temperature to the hot water tap 60, and a “bath hot water operation”.
  • the hot water supply control unit 100b controls the mixing ratio of the hot water supply mixing valve 22 so that the hot water supply temperature detected by the temperature sensor T21 becomes the hot water supply set temperature.
  • ⁇ Boiling operation> In the “boiling operation” in which hot water in the hot water storage tank 3 is boiled by the heat pump unit 2, the boiling control unit 100 a of the control device 100 causes the first mixing port 50 side of the boiling mixing valve 50 (hot water storage tank 3 side).
  • the boiling circulation pump P1 is operated with the opening of the valve fully opened, and the hot water in the hot water storage tank 3 is connected to the pipe L1, the boiling mixing valve 50, the pipe L2, the boiling heat exchanger 10, and the pipe L3. Circulate through.
  • the boiling control unit 100a controls the opening degree of the mixing valve 50 for boiling during the heating operation, and the heat pump unit 2 so that the hot water temperature detected by the temperature sensor T12 becomes the target hot water temperature TS.
  • the boiling circulation pump P1 is controlled.
  • the target hot water temperature TS is calculated by the control device 100 based on the amount of hot water supplied from the hot water storage tank 3 and the like. For example, when the amount of hot water used is large, the target hot water temperature TS is as high as 70 ° C., for example, and when the amount of hot water used is small, the target hot water temperature TS is as low as 50 ° C., for example.
  • ⁇ Bath bathing operation> when performing a “bath hot water filling operation” in which hot water is supplied from the hot water storage tank 3 into the bath tub 4, the hot water filling electromagnetic valve 25 is opened by the hot water injection controller 100 c of the control device 100, and the hot water storage tank 3 is filled. Is supplied into the bathtub 4 through the hot water mixing valve 22 and the bath hot water supply circuit (L33, 25, 26, 27, 28). At this time, the hot water pouring control unit 100c controls the hot water supply mixing valve 22 to mix the hot water from the hot water storage tank 3 and the external water supply based on the target set temperature, and the water level sensor LS. When the detected water level in the bathtub 4 reaches the set water level, the hot water solenoid valve 25 is closed.
  • the reheating controller 100d performs a reheating operation using the hot water in the hot water storage tank 3 as a heat source without using the heat pump unit 2. Or when the amount of heat in the hot water storage tank 3 is not sufficient, the bath pumping operation is performed using the heat pump unit 2.
  • the hot water from the boiling heat exchanger 10 is recirculated with the hot water tank 3, the boiling circuit (L 1, L 2, 10, L 3) and the bath reheating with the circulation pump P 1. Circulate through the circuit (L21, 20, L22) to retreat the bath.
  • the controller 100 controls the boiling mixing valve 50, the boiling circulation pump P1, and the heat pump unit 2 to boil the hot water in the hot water storage tank 3 (L1, L2,. 10, L 3)
  • the boiling mixing valve 50 controls the boiling mixing valve 50, the boiling circulation pump P1, and the heat pump unit 2 to boil the hot water in the hot water storage tank 3 (L1, L2,. 10, L 3)
  • hot water from the upper part of the hot water tank 3 and hot water from the lower part of the hot water tank 3 are mixed by the boiling mixing valve 50.
  • FIGS. 3 (a) and 3 (b) show changes in temperature distribution before and after boiling in the hot water storage tank 3 of the hot water supply apparatus.
  • the boiling end temperature during the boiling operation is set to 40 ° C., and the boiling operation ends when the incoming water temperature of the boiling heat exchanger 10 reaches the boiling end temperature of 40 ° C.
  • the hot water is boiled again, as shown in FIG. 3 (b), a layer of high-temperature water (around 60 ° C), intermediate water (around 50 ° C) and low-temperature water (around 40 ° C) are stacked. Boil up.
  • the area occupied by the high-temperature water (around 60 ° C.) in the hot water storage tank 3 is greatly increased, the layer of intermediate water (around 50 ° C.) is reduced, and the amount of heat stored in the hot water storage tank 3 can be increased.
  • the stacked state can be recovered from the temperature distribution state in which the hot water storage tank 3 has a large amount of medium temperature water area to the temperature distribution in which the water temperature is high from the lower part to the upper part of the hot water storage tank 3 and the intermediate temperature water area is less.
  • FIG. 4A from the same temperature distribution state in the hot water storage tank 3 as in FIG.
  • the region occupied by the high-temperature water (around 60 ° C.) in the hot water storage tank 3 is only part of the upper part, and most of the region is a layer of intermediate water (around 50 ° C.). In this case, the amount of heat stored in the hot water storage tank 3 is small, and hot water runs out easily.
  • the hot water storage tank 3 when the water temperature in the upper part of the hot water storage tank 3 detected by the temperature sensor T3 as the upper temperature sensor is equal to or higher than a predetermined upper determination temperature (for example, 55 ° C.), the hot water storage tank 3 It is assumed that there is little area of medium-temperature water that reboils inside. Further, when the water temperature in the lower part of the hot water storage tank 3 detected by the temperature sensor T1, which is a lower temperature sensor, is lower than a predetermined lower determination temperature (for example, 30 ° C.), the amount of heat stored in the hot water storage tank 3 is less boiling. It is necessary to raise it.
  • a predetermined upper determination temperature for example, 55 ° C.
  • the water temperature at the upper part of the hot water storage tank 3 detected by the temperature sensor T3 during the boiling operation is equal to or higher than the upper determination temperature, and the water temperature at the lower part of the hot water storage tank 3 detected by the temperature sensor T1 is determined as the lower part.
  • the temperature is lower than the temperature, it is necessary to boil in a state where the amount of medium-temperature water is small. Therefore, since the boiling operation is performed by circulating only in the boiling circuit, the lower side of the hot water storage tank 3 of the boiling mixing valve 50 is opened.
  • the boiling mixing valve 50 is controlled so that the degree is fully open. Accordingly, the hot water in the hot water storage tank 3 is circulated through the boiling circuit (L1, L2, 10, L3) without mixing the upper and lower hot water in the hot water storage tank 3 by the mixing valve 50 for boiling. Can be boiled efficiently.
  • a predetermined upper determination temperature for example, 55 ° C.
  • a predetermined lower temperature sensor for example, 35 ° C.
  • the upper and lower hot water in the hot water storage tank 3 Even if they are mixed by the mixing valve 50 for boiling, the temperature after mixing does not exceed the temperature after boiling.
  • the water temperature at the upper part of the hot water storage tank 3 detected by the temperature sensor T3 during the boiling operation is lower than the upper determination temperature, and the water temperature at the lower part of the hot water storage tank 3 detected by the temperature sensor T1 is lower mixed.
  • the opening degree of the boiling mixing valve 50 is controlled to mix hot water from the upper part of the hot water storage tank 3 with hot water from the lower part of the hot water storage tank 3.
  • the hot water outlet 3b provided in the upper part of the hot water storage tank 3 is fed into the boiling mixing valve 50 through a bath reheating circuit (L21, 20, L22) in which a reheating heat exchanger 20 is disposed.
  • the bath reheating circuit (L21, 20, L22) can be used as a circuit from the upper part of the hot water storage tank 3 to the water inlet side of the mixing valve 50 for boiling, and the circuit configuration can be simplified.
  • the baffled hot water is discharged by suppressing the flow toward the hot water outlet 3b provided at the upper part of the hot water storage tank 3 by the rectifying plate 70 provided in the hot water storage tank 3 and in the vicinity of the return port 3a. It is possible to prevent boiling out again from the gate 3b.
  • the mixing for boiling is performed by the control device 100 so that the incoming water temperature of the boiling heat exchanger 10 detected by the temperature sensor T11 that is the incoming water temperature sensor is within a preset temperature range.
  • the opening degree of the valve 50 is feedback controlled.
  • the above preset temperature range is set to be equal to or higher than the temperature at the bottom of the hot water storage tank 3 and lower than the boiling end temperature. In many cases, it is about 35 to 40 ° C.
  • the controller 100 controls the boiling pump P1 for boiling so that the outlet temperature of the heating heat exchanger 10 detected by the temperature sensor T12 which is a outlet temperature sensor becomes the target outlet temperature TS.
  • the temperature of the hot water of the boiling heat exchanger 10 can be stabilized at the target temperature of the hot water TS.
  • the feedback control interval (3 seconds in this embodiment) of the boiling mixing valve 50 by the control device 100 is longer than the feedback control interval (1 second in this embodiment) of the boiling circulation pump P1. Therefore, even if the opening degree of the mixing valve 50 for boiling is changed and the tapping temperature fluctuates temporarily, the feedback control of the boiling circulation pump P1 is fast, so that it can be adjusted to the target tapping temperature TS immediately. .
  • the controller 100 causes the boiling circulating pump P1 to be heated by the control device 100 so that the hot water temperature of the boiling heat exchanger 10 detected by the temperature sensor T12 which is a hot water temperature sensor becomes the target hot water temperature TS.
  • the temperature of the hot water of the boiling heat exchanger 10 can be stabilized at the target temperature of the hot water TS.
  • the feedback gain in the feedback control of the mixing valve 50 for boiling by the control device 100 may be smaller than the feedback gain in the feedback control of the circulating pump P1 for boiling. As a result, even if the opening degree of the boiling mixing valve 50 is changed and the hot water temperature temporarily fluctuates, the feedback control of the boiling circulation pump P1 is fast, so that it can be quickly adjusted to the target hot water temperature TS. it can.
  • the hot water supply apparatus if the opening degree on the second water inlet port side (the bath reheating circuit side) of the boiling mixing valve 50 is excessively increased, the water temperature of the boiling heat exchanger 10 rises to raise the water. Since the efficiency is reduced, it is possible to prevent the boiling efficiency from being excessively lowered by providing an upper limit value for the opening on the second water inlet port side (the bath reheating circuit side) of the mixing valve 50 for boiling.
  • hot water runs out more easily than the CO 2 refrigerant capable of high temperature hot water, but the upper and lower hot water in the hot water storage tank 3 is mixed to boil up the intermediate water.
  • the amount of heat stored in the hot water storage tank 3 can be increased, and the effect of preventing running out of hot water is great.
  • the hot water is stored in the hot water storage unit 1 which accommodates the hot water storage tank 3, the heating mixing valve 50, the bath reheating circuit (L21, 20, L22), the heating circuit (L1, L2, 10, L3) and the like.
  • the exchanger 10 By arranging the exchanger 10, compared with the case where the boiling heat exchanger 10 is built in the heat pump unit 2 side, the heat dissipation of the hot water in the pipe between the heat pump unit 2 and the hot water storage unit 1 is reduced.
  • the hot water in the hot water storage tank 3 can be boiled efficiently.
  • the refrigerant used for the heat pump unit is not limited to this, and a CO 2 refrigerant or other refrigerant may be used.
  • the tapping temperature in a high temperature range (for example, 65 ° C. to 90 ° C.).
  • the hot water supply apparatus in which the boiling heat exchanger 10 is disposed in the hot water storage unit 1 has been described.
  • the present invention is applied to a hot water supply apparatus in which the boiling heat exchanger 10 is disposed in the heat pump unit 2. Also good.
  • the hot water supply apparatus which connected the upper part of the hot water storage tank 3 to the inflow side of the mixing valve 50 for boiling through the bath reheating circuit was demonstrated, the upper part of the hot water storage tank is connected to another circuit for mixing. You may apply this invention to the hot-water supply apparatus connected to the inflow side of the mixing valve through this.
  • the hot water supply apparatus of the present invention includes an efficiency priority mode in which the opening on the lower side of the hot water storage tank 3 of the mixing valve 50 for boiling is fully opened and the boiling operation is performed, and the hot water storage tank 3 in the hot water below the hot water storage tank 3.
  • the function of an operation mode selection unit (not shown) for selecting any one of hot water amount priority modes in which boiling water is mixed by the boiling mixing valve 50 to perform the boiling operation is, for example, the remote controller 200 (see FIG. 2). May be prepared).
  • the boiling efficiency increases as the incoming water temperature of the boiling heat exchanger 10 decreases. Therefore, when the user desires an efficient boiling operation, the efficiency priority mode is selected as the operation mode selection unit.
  • the hot water amount priority mode can be selected by the operation mode selection unit, so that convenience is improved.

Abstract

A hot water supplying device comprises: a mixing valve (50) that mixes hot water discharged from the top of a hot water storage tank (3) and water from the bottom of the hot water storage tank (3); a boiling circuit (L1, L2, 10, L3) that connects from the bottom of the hot water storage tank (3) to the top of the hot water storage tank (3) through the mixing valve (50) and a boiling heat exchanger (10); a circulating pump for boiling (P1) that is disposed in the boiling circuit (L1, L2, 10, L3); a heat pump unit (2) that boils water from the discharge side of the mixing valve (50) by way of the boiling heat exchanger (10); and a control device (100) that controls the mixing valve (50), the boiling circulation pump (P1), and the heat pump unit (2). By virtue of this, a hot water supplying device capable of boiling hot water in a hot water storage tank efficiently with a simple structure is provided.

Description

給湯装置Water heater
 この発明は、給湯装置に関する。 This invention relates to a hot water supply apparatus.
 従来、給湯装置としては、貯湯タンク内の温水を加熱するヒートポンプユニットと、水道水に排熱する蓄熱剤を収容する熱回収タンクと、蓄熱剤から排熱された水道水と貯湯タンクに蓄えられる温水とを混合弁により混合して出湯するものがある(例えば、特開2006-132873号公報(特許文献1)参照)。 Conventionally, as a hot water supply device, it is stored in a heat pump unit that heats hot water in a hot water storage tank, a heat recovery tank that stores a heat storage agent that is exhausted into tap water, and tap water and hot water tank that are exhausted from the heat storage agent Some hot water is mixed with a mixing valve to discharge hot water (see, for example, JP-A-2006-132873 (Patent Document 1)).
 上記給湯装置では、貯湯タンク内の温水を追い焚き熱交換器を介して循環する循環回路において、追い焚き熱交換器からの追焚戻り湯に対して蓄熱剤により吸熱することによって、貯湯タンク内に中間温度の温水が大量に貯まるのを抑制している。 In the above hot water supply apparatus, in the circulation circuit that circulates the hot water in the hot water storage tank through the reheating heat exchanger, the regenerative hot water from the reheating heat exchanger absorbs heat with the heat storage agent, thereby In addition, a large amount of hot water of intermediate temperature is suppressed.
特開2006-132873号公報JP 2006-132873 A
 しかしながら、上記従来の給湯装置では、蓄熱剤を設けるスペースが必要となると共に回路構成が複雑になるので、コストが高くなるという問題がある。 However, the above-described conventional hot water supply apparatus has a problem that a space for providing a heat storage agent is required and a circuit configuration is complicated, resulting in an increase in cost.
 そこで、この発明の課題は、簡単な構成で効率よく貯湯タンク内の湯水を沸き上げることができる給湯装置を提供することにある。 Therefore, an object of the present invention is to provide a hot water supply apparatus that can efficiently boil hot water in a hot water storage tank with a simple configuration.
 上記課題を解決するため、この発明の給湯装置は、
 貯湯タンクの上部からの湯水と上記貯湯タンクの下部からの湯水とを混合する混合弁と、
 上記貯湯タンクの下部から上記混合弁と沸き上げ熱交換器を介して上記貯湯タンクの上部に接続された沸き上げ回路と、
 上記沸き上げ回路に配設された沸き上げポンプと、
 上記混合弁の出水側からの湯水を上記沸き上げ熱交換器により沸き上げるヒートポンプユニットと、
 上記混合弁と上記沸き上げポンプと上記ヒートポンプユニットを制御する制御装置と
を備えたことを特徴とする。
In order to solve the above problems, the hot water supply apparatus of the present invention is:
A mixing valve for mixing hot water from the upper part of the hot water storage tank with hot water from the lower part of the hot water storage tank;
A boiling circuit connected from the lower part of the hot water storage tank to the upper part of the hot water storage tank via the mixing valve and a boiling heat exchanger;
A boiling pump disposed in the boiling circuit;
A heat pump unit for boiling hot water from the outlet side of the mixing valve by the boiling heat exchanger;
The mixing valve, the boiling pump, and a controller for controlling the heat pump unit are provided.
 上記構成によれば、制御装置により混合弁と沸き上げポンプとヒートポンプユニットを制御して、貯湯タンク内の湯水を沸き上げ回路を介して循環させて沸き上げを行う沸き上げ運転時に、貯湯タンク内の上部からの中温水と貯湯タンクの下部からの湯水とを混合弁により混合することによって、貯湯タンク内の中温水を沸かすことが可能になる。したがって、蓄熱剤などを設けることなく、簡単な構成で効率よく貯湯タンク内の湯水を沸き上げることができる。 According to the above configuration, the control unit controls the mixing valve, the boiling pump, and the heat pump unit, and circulates the hot water in the hot water tank through the boiling circuit to perform the boiling operation. By mixing the medium temperature water from the upper part of the hot water and the hot water from the lower part of the hot water storage tank by the mixing valve, it becomes possible to boil the intermediate temperature water in the hot water storage tank. Therefore, hot water in the hot water storage tank can be efficiently boiled with a simple configuration without providing a heat storage agent or the like.
 また、一実施形態の給湯装置では、
 上記制御装置は、
 沸き上げ運転時に、上記貯湯タンクの上部の水温が予め設定された上部判定温度以上で、かつ、上記貯湯タンクの下部の水温が予め設定された下部判定温度未満のとき、上記混合弁の上記貯湯タンクの下部側の開度が全開になるように上記混合弁を制御する。
Moreover, in the hot water supply apparatus of one embodiment,
The control device
During boiling operation, when the water temperature at the upper part of the hot water storage tank is equal to or higher than a preset upper judgment temperature and the water temperature at the lower part of the hot water storage tank is lower than a preset lower judgment temperature, the hot water storage of the mixing valve The mixing valve is controlled so that the opening on the lower side of the tank is fully opened.
 上記実施形態によれば、貯湯タンクの上部の水温が予め設定された上部判定温度以上であるときは、貯湯タンク内に沸き直しする中温水の領域が少ないものとし、貯湯タンクの下部の水温が予め設定された下部判定温度未満であるときは、貯湯タンク内に蓄えられた熱量が少なく沸き上げが必要であるものとする。そうすることによって、沸き上げ運転時に、貯湯タンクの上部の水温が上部判定温度以上で、かつ、貯湯タンクの下部の水温が下部判定温度未満のときは、中温水の少ない状態で沸き上げが必要であるので、沸き上げ回路のみで循環させて沸き上げ運転を行うため、混合弁の貯湯タンクの下部側の開度が全開になるように混合弁を制御する。これにより、貯湯タンク内の上部からの湯水と貯湯タンクの下部からの湯水とを混合弁により混合することなく、貯湯タンク内の湯水を沸き上げ回路を介して循環させて効率よく沸き上げることができる。 According to the above embodiment, when the water temperature at the upper part of the hot water storage tank is equal to or higher than the preset upper determination temperature, it is assumed that the area of the intermediate temperature water to be boiled in the hot water storage tank is small, and the water temperature at the lower part of the hot water storage tank is When the temperature is lower than the preset lower determination temperature, it is assumed that the amount of heat stored in the hot water storage tank is small and boiling is required. By doing so, when the water temperature at the upper part of the hot water tank is higher than the upper judgment temperature and the water temperature at the lower part of the hot water tank is lower than the lower judgment temperature during boiling operation, it is necessary to boil in a state where the medium temperature water is low Therefore, since the boiling operation is performed by circulating only in the boiling circuit, the mixing valve is controlled so that the opening of the lower side of the hot water storage tank of the mixing valve is fully opened. This allows hot water in the hot water storage tank to be circulated through the boiling circuit without boiling water from the upper part of the hot water tank and hot water from the lower part of the hot water tank through the mixing valve. it can.
 また、一実施形態の給湯装置では、
 上記制御装置は、
 沸き上げ運転時に、上記貯湯タンクの上部の水温が予め設定された上部判定温度未満で、かつ、上記貯湯タンクの下部の水温が予め設定された下部混合判定温度未満のとき、上記混合弁の開度を制御して、上記貯湯タンクの上部からの湯水と上記貯湯タンクの下部からの湯水とを混合する。
Moreover, in the hot water supply apparatus of one embodiment,
The control device
During boiling operation, when the water temperature at the upper part of the hot water storage tank is lower than the preset upper judgment temperature and the water temperature at the lower part of the hot water storage tank is lower than the preset lower mixing judgment temperature, the mixing valve is opened. The hot water from the upper part of the hot water storage tank and the hot water from the lower part of the hot water storage tank are mixed by controlling the degree.
 上記実施形態によれば、貯湯タンクの上部の水温が予め設定された上部判定温度未満であるときは、貯湯タンク内の上側に沸き直しする中温水の領域が多いものとし、貯湯タンクの下部の水温が予め設定された下部混合判定温度未満であるときは、貯湯タンク内の上部と下部の湯水を混合弁により混合しても、混合後の温度が沸き終い温度を越えない。そうすることによって、沸き上げ運転時に、貯湯タンクの上部の水温が上部判定温度未満で、かつ、貯湯タンクの下部の水温が下部混合判定温度未満のとき、混合弁の開度を制御して、貯湯タンクの上部からの湯水と貯湯タンクの下部からの湯水とを混合する。これにより、貯湯タンク内の温度分布の状態から貯湯タンク内の上部と下部の湯水を混合弁により混合するか否かを正確に判断することが可能になる。 According to the above embodiment, when the water temperature at the upper part of the hot water storage tank is lower than the preset upper determination temperature, it is assumed that there are many regions of intermediate hot water that reboils upward in the hot water tank, When the water temperature is lower than the preset lower mixing determination temperature, even if the upper and lower hot water in the hot water storage tank are mixed by the mixing valve, the temperature after mixing does not exceed the temperature after boiling. By doing so, at the time of boiling operation, when the water temperature at the upper part of the hot water storage tank is lower than the upper determination temperature and the water temperature at the lower part of the hot water storage tank is lower than the lower mixing determination temperature, the opening degree of the mixing valve is controlled, Hot water from the upper part of the hot water storage tank and hot water from the lower part of the hot water storage tank are mixed. This makes it possible to accurately determine whether or not the hot water in the upper and lower hot water tanks is mixed by the mixing valve from the state of temperature distribution in the hot water storage tank.
 また、一実施形態の給湯装置では、
 上記制御装置は、
 上記混合弁の上記貯湯タンクの下部側の開度を全開にして沸き上げ運転を行う効率優先モードと、上記貯湯タンクの下部の湯水に上記貯湯タンクの上部の湯水を上記混合弁で混合して沸き上げ運転を行う湯量優先モードのいずれか一方を選択する運転モード選択部を有する。
Moreover, in the hot water supply apparatus of one embodiment,
The control device
An efficiency priority mode in which the opening of the lower side of the hot water storage tank of the mixing valve is fully opened and the boiling operation is performed, and hot water at the upper part of the hot water storage tank is mixed with the hot water at the lower part of the hot water storage tank by the mixing valve. An operation mode selection unit that selects any one of the hot water amount priority modes for performing the boiling operation is provided.
 上記実施形態によれば、混合弁の貯湯タンクの下部側の開度を全開にして沸き上げ運転を行う効率優先モードと、貯湯タンクの下部の湯水に貯湯タンクの上部の湯水を上記混合弁で混合して沸き上げ運転を行う湯量優先モードのいずれか一方を運転モード選択部により選択することによって、一般的に、沸き上げ熱交換器の入水温度が下がるほど、沸き上げ効率は向上するため、ユーザーは、効率のよい沸き上げ運転を希望するときは、効率優先モードを運転モード選択部により選択し、貯湯タンクの湯切れが起きないように希望するときは、湯量優先モードを運転モード選択部により選択することができ、利便性が向上する。 According to the embodiment, the efficiency priority mode in which the boiling operation is performed by fully opening the opening of the lower side of the hot water storage tank of the mixing valve, and the hot water in the upper part of the hot water storage tank is added to the hot water in the lower part of the hot water storage tank by the mixing valve. By selecting one of the hot water amount priority modes for mixing and boiling operation by the operation mode selection unit, generally, the boiling efficiency is improved as the incoming water temperature of the boiling heat exchanger is lowered. When the user desires efficient boiling operation, the operation priority mode is selected by the operation mode selection unit, and when the user desires that the hot water tank does not run out, the hot water priority mode is selected by the operation mode selection unit. The convenience can be improved.
 また、一実施形態の給湯装置では、
 上記貯湯タンクの上部に設けられた出湯口は、追い焚き熱交換器が配設された風呂追い焚き回路を介して上記混合弁の入水側に接続されている。
Moreover, in the hot water supply apparatus of one embodiment,
A hot water outlet provided in the upper part of the hot water storage tank is connected to the water inlet side of the mixing valve via a bath reheating circuit in which a reheating heat exchanger is provided.
 上記実施形態によれば、貯湯タンクの上部に設けられた出湯口を、追い焚き熱交換器が配設された風呂追い焚き回路を介して混合弁の入水側に接続していることによって、貯湯タンクの上部から混合弁の入水側への回路として風呂追い焚き回路を兼用でき、回路構成を簡略化できる。 According to the above embodiment, the hot water outlet provided in the upper part of the hot water storage tank is connected to the water inlet side of the mixing valve via the bath reheating circuit in which the reheating heat exchanger is arranged, thereby As a circuit from the upper part of the tank to the water inlet side of the mixing valve, it can also be used as a bath reheating circuit, and the circuit configuration can be simplified.
 また、一実施形態の給湯装置では、
 上記混合弁の出水側は、上記沸き上げ回路を介して上記貯湯タンクの上部に設けられた戻り口に接続されており、
 上記貯湯タンク内かつ上記戻り口近傍に設けられ、上記貯湯タンクの上部に設けられた出湯口側への流れを抑制する整流板を備えた。
Moreover, in the hot water supply apparatus of one embodiment,
The outlet side of the mixing valve is connected to a return port provided in the upper part of the hot water storage tank via the boiling circuit,
A rectifying plate is provided in the hot water storage tank and in the vicinity of the return port, and suppresses the flow toward the hot water outlet provided at the upper part of the hot water storage tank.
 上記実施形態によれば、貯湯タンク内かつ戻り口近傍に設けられた整流板により、貯湯タンクの上部に設けられた出湯口側への流れを抑制することによって、沸き上げられた湯が出湯口から出て再び沸き上げられるのを防ぐことができる。 According to the embodiment, the boiled hot water is discharged from the hot water outlet by suppressing the flow toward the hot water outlet provided in the upper part of the hot water storage tank by the rectifying plate provided in the hot water storage tank and in the vicinity of the return port. It can be prevented from getting out and boiling again.
 また、一実施形態の給湯装置では、
 上記沸き上げ熱交換器の入水温度を検出する入水温度センサを備え、
 上記制御装置は、
 上記入水温度センサにより検出された上記沸き上げ熱交換器の入水温度が予め設定された温度範囲内になるように、上記混合弁の開度をフィードバック制御する。
Moreover, in the hot water supply apparatus of one embodiment,
Provided with an incoming water temperature sensor for detecting the incoming water temperature of the boiling heat exchanger,
The control device
The opening degree of the mixing valve is feedback-controlled so that the incoming water temperature of the boiling heat exchanger detected by the incoming water temperature sensor is within a preset temperature range.
 上記実施形態によれば、沸き上げ運転において、入水温度センサにより検出された沸き上げ熱交換器の入水温度が予め設定された温度範囲内になるように、制御装置により混合弁の開度をフィードバック制御することによって、沸き上げ熱交換器の入水温度が、沸き終い温度を越えないように制御できる。 According to the above embodiment, in the boiling operation, the opening degree of the mixing valve is fed back by the control device so that the incoming water temperature of the boiling heat exchanger detected by the incoming water temperature sensor is within a preset temperature range. By controlling, it is possible to control so that the incoming water temperature of the boiling heat exchanger does not exceed the boiling end temperature.
 また、一実施形態の給湯装置では、
 上記沸き上げ熱交換器の出湯温度を検出する出湯温度センサを備え、
 上記制御装置は、
 上記出湯温度センサにより検出された上記沸き上げ熱交換器の出湯温度が目標出湯温度になるように、上記沸き上げポンプの回転数をフィードバック制御すると共に、
 上記混合弁のフィードバック制御の間隔を上記沸き上げポンプのフィードバック制御の間隔よりも長くした。
Moreover, in the hot water supply apparatus of one embodiment,
A tapping temperature sensor for detecting tapping temperature of the boiling heat exchanger,
The control device
Feedback control of the rotation speed of the boiling pump so that the boiling temperature of the boiling heat exchanger detected by the boiling temperature sensor becomes the target temperature.
The feedback control interval of the mixing valve was made longer than the feedback control interval of the boiling pump.
 上記実施形態によれば、沸き上げ運転において、出湯温度センサにより検出された沸き上げ熱交換器の出湯温度が目標出湯温度になるように、制御装置により沸き上げポンプの回転数をフィードバック制御することによって、沸き上げ熱交換器の出湯温度を目標出湯温度に安定させることができる。さらに、制御装置による混合弁のフィードバック制御の間隔を沸き上げポンプのフィードバック制御の間隔よりも長くすることによって、混合弁の開度が変更されて出湯温度が一時的に変動しても、沸き上げポンプのフィードバック制御が早いため、すぐに目標出湯温度に合わせることができる。 According to the embodiment, in the boiling operation, the control device feedback-controls the rotation speed of the boiling pump so that the outlet temperature of the heating heat exchanger detected by the outlet temperature sensor becomes the target outlet temperature. By this, the tapping temperature of the boiling heat exchanger can be stabilized at the target tapping temperature. Furthermore, by making the interval of feedback control of the mixing valve by the control device longer than the interval of feedback control of the boiling pump, even when the opening of the mixing valve is changed and the tapping temperature fluctuates temporarily, Since the feedback control of the pump is fast, it can be adjusted to the target hot water temperature immediately.
 また、一実施形態の給湯装置では、
 上記沸き上げ熱交換器の出湯温度を検出する出湯温度センサを備え、
 上記制御装置は、
 上記出湯温度センサにより検出された上記沸き上げ熱交換器の出湯温度が目標出湯温度になるように、上記沸き上げポンプの回転数をフィードバック制御すると共に、
 上記混合弁のフィードバック制御におけるフィードバックゲインを上記沸き上げポンプのフィードバック制御におけるフィードバックゲインよりも小さくした。
Moreover, in the hot water supply apparatus of one embodiment,
A tapping temperature sensor for detecting tapping temperature of the boiling heat exchanger,
The control device
Feedback control of the rotation speed of the boiling pump so that the boiling temperature of the boiling heat exchanger detected by the boiling temperature sensor becomes the target temperature.
The feedback gain in the feedback control of the mixing valve is made smaller than the feedback gain in the feedback control of the boiling pump.
 上記実施形態によれば、沸き上げ運転において、出湯温度センサにより検出された沸き上げ熱交換器の出湯温度が目標出湯温度になるように、制御装置により沸き上げポンプの回転数をフィードバック制御することによって、沸き上げ熱交換器の出湯温度を目標出湯温度に安定させることができる。さらに、制御装置による混合弁のフィードバック制御におけるフィードバックゲインを沸き上げポンプのフィードバック制御におけるフィードバックゲインよりも小さくすることによって、混合弁の開度が変更されて出湯温度が一時的に変動しても、沸き上げポンプのフィードバック制御が早いため、すぐに目標出湯温度に合わせることができる。 According to the embodiment, in the boiling operation, the control device feedback-controls the rotation speed of the boiling pump so that the outlet temperature of the heating heat exchanger detected by the outlet temperature sensor becomes the target outlet temperature. By this, the tapping temperature of the boiling heat exchanger can be stabilized at the target tapping temperature. Furthermore, by making the feedback gain in the feedback control of the mixing valve by the control device smaller than the feedback gain in the feedback control of the boiling pump, even if the opening of the mixing valve is changed and the tapping temperature changes temporarily, Since the feedback control of the boiling pump is fast, it can be adjusted to the target hot water temperature immediately.
 また、一実施形態の給湯装置では、
 上記混合弁の上記貯湯タンクの上部側の開度に上限値を設けた。
Moreover, in the hot water supply apparatus of one embodiment,
An upper limit value was set for the opening degree of the upper side of the hot water storage tank of the mixing valve.
 上記混合弁の貯湯タンクの上部側の開度を大きくしすぎると、沸き上げ熱交換器の入水温度が上昇して沸き上げ効率が低下するため、上記実施形態によれば、混合弁の貯湯タンクの上部側の開度に上限値を設けることによって、沸き上げ効率が低下しすぎるのを防止できる。 If the opening on the upper side of the hot water storage tank of the mixing valve is too large, the incoming water temperature of the boiling heat exchanger rises and the boiling efficiency decreases, so according to the embodiment, the hot water storage tank of the mixing valve By providing an upper limit value for the opening on the upper side, the boiling efficiency can be prevented from being excessively lowered.
 また、一実施形態の給湯装置では、
 上記ヒートポンプユニットにHFC冷媒を用いた。
Moreover, in the hot water supply apparatus of one embodiment,
An HFC refrigerant was used in the heat pump unit.
 上記実施形態によれば、HFC冷媒を用いたヒートポンプユニットでは、高温出湯が可能なCO冷媒に比べて湯切れが生じやすいが、貯湯タンクの上部と下部の湯水を混合して中間水を沸き上げることにより、貯湯タンクに貯める熱量を多くでき、湯切れを防ぐ効果が大きい。 According to the above embodiment, in the heat pump unit using the HFC refrigerant, hot water runs out more easily than the CO 2 refrigerant capable of high temperature hot water, but the hot water in the upper and lower parts of the hot water tank is mixed to boil the intermediate water. By raising the temperature, the amount of heat stored in the hot water storage tank can be increased, and the effect of preventing running out of hot water is great.
 以上より明らかなように、この発明によれば、貯湯タンク内の湯水を沸き上げ回路を介して循環させて沸き上げるときに、貯湯タンク内の上部の中温水と貯湯タンクの下部の湯水を混合弁により混合することによって、貯湯タンク内の中温水を沸かすことができ、簡単な構成で効率よく貯湯タンク内の湯水を沸き上げることができる給湯装置を実現することができる。 As is clear from the above, according to the present invention, when the hot water in the hot water tank is circulated through the boiling circuit and heated, the hot water in the upper part of the hot water tank is mixed with the hot water in the lower part of the hot water tank. By mixing with the valve, the hot water in the hot water storage tank can be boiled, and a hot water supply apparatus that can efficiently boil hot water in the hot water storage tank with a simple configuration can be realized.
図1はこの発明の実施の一形態のヒートポンプ式の給湯装置の配管系統図である。FIG. 1 is a piping system diagram of a heat pump type hot water supply apparatus according to an embodiment of the present invention. 図2は上記給湯装置の制御ブロック図である。FIG. 2 is a control block diagram of the hot water supply apparatus. 図3は上記給湯装置の貯湯タンク内の沸き上げ前後の温度分布の変化を説明するための図である。FIG. 3 is a diagram for explaining a change in temperature distribution before and after boiling in the hot water storage tank of the hot water supply apparatus. 図4は貯湯タンク内の沸き上げ前後の温度分布の変化の比較例の図である。FIG. 4 is a comparative example of a change in temperature distribution before and after boiling in the hot water storage tank.
 以下、この発明の給湯装置を図示の実施の形態により詳細に説明する。 Hereinafter, the hot water supply apparatus of the present invention will be described in detail with reference to the illustrated embodiments.
 図1はこの発明の実施の一形態のヒートポンプ式の給湯装置の配管系統図を示している。 FIG. 1 shows a piping system diagram of a heat pump type hot water supply apparatus according to an embodiment of the present invention.
 この給湯装置は、図1に示すように、貯湯ユニット1と、上記貯湯ユニット1に接続されたヒートポンプユニット2を備えている。上記貯湯ユニット1は、貯湯タンク3と、沸き上げ熱交換器10と、追い焚き熱交換器20と、制御装置100(図2に示す)等を有する。 As shown in FIG. 1, the hot water supply apparatus includes a hot water storage unit 1 and a heat pump unit 2 connected to the hot water storage unit 1. The hot water storage unit 1 includes a hot water storage tank 3, a boiling heat exchanger 10, a reheating heat exchanger 20, a control device 100 (shown in FIG. 2), and the like.
 上記貯湯タンク3の下部に配管L1の一端を接続し、配管L1の他端を混合弁の一例としての沸き上げ用混合弁50の第1入水ポートに接続している。上記沸き上げ用混合弁50の出水ポートに配管L2の一端を接続し、配管L2の他端を沸き上げ熱交換器10の一端に接続している。また、上記沸き上げ熱交換器10の他端を配管L3の一端に接続し、配管L3の他端を貯湯タンク3の上部に設けられた戻り口3aに接続している。上記配管L2に沸き上げポンプの一例としての沸き上げ用循環ポンプP1を配設している。また、貯湯タンク3内かつ戻り口3a近傍には、貯湯タンク3の上部に設けられた出湯口3b側への流れを抑制する整流板70を設けている。 One end of the pipe L1 is connected to the lower part of the hot water storage tank 3, and the other end of the pipe L1 is connected to a first water inlet port of a mixing valve 50 for boiling as an example of a mixing valve. One end of the pipe L <b> 2 is connected to the water outlet port of the boiling mixing valve 50, and the other end of the pipe L <b> 2 is connected to one end of the boiling heat exchanger 10. The other end of the boiling heat exchanger 10 is connected to one end of the pipe L3, and the other end of the pipe L3 is connected to a return port 3a provided in the upper part of the hot water storage tank 3. A boiling circulation pump P1 as an example of a boiling pump is disposed in the pipe L2. Further, a rectifying plate 70 is provided in the hot water storage tank 3 and in the vicinity of the return port 3a to suppress the flow toward the hot water outlet 3b provided in the upper part of the hot water storage tank 3.
 上記配管L1,配管L2,沸き上げ熱交換器10,配管L3で沸き上げ回路を構成している。 The above-mentioned piping L1, piping L2, boiling heat exchanger 10, and piping L3 constitute a boiling circuit.
 上記沸き上げ用混合弁50の第1入水ポート側(貯湯タンク3側)の開度を全開にした状態で沸き上げ用循環ポンプP1を駆動することにより、貯湯タンク3内の湯水を、配管L1,沸き上げ用混合弁50,配管L2,沸き上げ熱交換器10,配管L3を介して循環させる。 The hot water in the hot water storage tank 3 is supplied to the pipe L1 by driving the boiling circulation pump P1 with the opening degree of the first mixing port 50 (hot water storage tank 3 side) of the boiling mixing valve 50 fully opened. , Circulating through the mixing valve 50 for boiling, the pipe L2, the boiling heat exchanger 10, and the pipe L3.
 また、上記沸き上げ熱交換器10を冷媒配管L4,L5を介してヒートポンプユニット2に接続している。上記ヒートポンプユニット2は、HFC冷媒を用いており、沸き上げ熱交換器10からの出湯温度を例えば50℃~70℃の範囲で制御することが可能である。このヒートポンプユニット2に用いられるHFC冷媒としては、R32、R125、R134a、R404A、R410A、R407Cなどがある。 Further, the boiling heat exchanger 10 is connected to the heat pump unit 2 via the refrigerant pipes L4 and L5. The heat pump unit 2 uses an HFC refrigerant, and can control the temperature of the hot water from the boiling heat exchanger 10 in a range of 50 ° C. to 70 ° C., for example. Examples of the HFC refrigerant used in the heat pump unit 2 include R32, R125, R134a, R404A, R410A, and R407C.
 次に、上記貯湯タンク3の下部に配管L11を介して外部の給水管を接続している。この配管L11に、減圧弁11と逆止弁12を上流側から順に配設している。この逆止弁12は、給水管側から貯湯タンク3側への流れのみを許容する。 Next, an external water supply pipe is connected to the lower part of the hot water storage tank 3 via a pipe L11. A pressure reducing valve 11 and a check valve 12 are arranged in this pipe L11 in order from the upstream side. This check valve 12 allows only the flow from the water supply pipe side to the hot water storage tank 3 side.
 また、上記貯湯タンク3の上部に設けられた出湯口3bに配管L21の一端を接続し、配管L21の他端を追い焚き熱交換器20の1次側の入水ポートに接続している。上記追い焚き熱交換器20の1次側の出水ポートに配管L22の一端を接続し、配管L22の他端を沸き上げ用混合弁50の第2入水ポートに接続している。 Also, one end of the pipe L21 is connected to the hot water outlet 3b provided in the upper part of the hot water storage tank 3, and the other end of the pipe L21 is driven to connect to the primary water inlet port of the heat exchanger 20. One end of the pipe L22 is connected to the primary water outlet port of the reheating heat exchanger 20, and the other end of the pipe L22 is connected to the second water inlet port of the boiling mixing valve 50.
 上記配管L21,追い焚き熱交換器20,配管L22で風呂追い焚き回路を構成している。 The above-described pipe L21, reheating heat exchanger 20, and line L22 constitute a bath reheating circuit.
 上記沸き上げ用混合弁50の第2入水ポート側(風呂追い焚き回路側)の開度を全開にした状態で沸き上げ用循環ポンプP1を駆動することにより、貯湯タンク3内の上部の湯水を、配管L21,追い焚き熱交換器20(1次側),配管L22,沸き上げ用混合弁50,配管L2,沸き上げ熱交換器10,配管L3を介して循環させる。 The hot water in the upper part of the hot water storage tank 3 is removed by driving the circulating pump P1 for boiling while the opening degree of the second mixing port 50 (the bath reheating circuit side) of the boiling mixing valve 50 is fully opened. And circulating through the pipe L21, the reheating heat exchanger 20 (primary side), the pipe L22, the boiling mixing valve 50, the pipe L2, the boiling heat exchanger 10, and the pipe L3.
 また、上記貯湯タンク3の上部に配管L31の一端を接続し、配管L31の他端を給湯用混合弁22の第1入水ポートに接続している。上記配管L31に、貯湯タンク3側から給湯用混合弁22への流れのみを許容する逆止弁21を配設している。また、給湯用混合弁22の第2入水ポートに、分岐配管L12の一端を接続し、分岐配管L12の他端を、配管L11の減圧弁11と逆止弁12の間に接続している。上記分岐配管L12に、配管L11側から給湯用混合弁22への流れのみを許容する逆止弁23を配設している。 Further, one end of the pipe L31 is connected to the upper part of the hot water storage tank 3, and the other end of the pipe L31 is connected to the first water inlet port of the hot water mixing valve 22. A check valve 21 that allows only a flow from the hot water storage tank 3 side to the hot water supply mixing valve 22 is disposed in the pipe L31. One end of the branch pipe L12 is connected to the second water inlet port of the hot water supply mixing valve 22, and the other end of the branch pipe L12 is connected between the pressure reducing valve 11 and the check valve 12 of the pipe L11. The branch pipe L12 is provided with a check valve 23 that allows only the flow from the pipe L11 side to the hot water supply mixing valve 22.
 そして、上記給湯用混合弁22の出水ポートに配管L32の一端を接続し、配管L32の他端を給湯栓60(この実施形態では蛇口)に接続している。上記配管L32に水量センサ24を配設している。 Then, one end of the pipe L32 is connected to the water outlet port of the hot water mixing valve 22, and the other end of the pipe L32 is connected to the hot water tap 60 (a faucet in this embodiment). A water amount sensor 24 is disposed in the pipe L32.
 上記分岐配管L12と配管L31と配管L32と逆止弁21と給湯用混合弁22と逆止弁23および水量センサ24で給湯回路を構成している。 The branch pipe L12, the pipe L31, the pipe L32, the check valve 21, the hot water mixing valve 22, the check valve 23, and the water amount sensor 24 constitute a hot water supply circuit.
 また、上記配管L32の水量センサ24の上流側に配管L33の一端を接続し、配管L33の他端を、浴槽4に設けられた接続アダプタ9の給湯口9aに接続している。この配管L33の上流側から順に、湯張り用電磁弁25と、逆止弁26と、水量センサ27と、逆止弁28を配設している。この逆止弁26,28は、給湯用混合弁22側から浴槽4への流れのみを許容する。 Further, one end of the pipe L33 is connected to the upstream side of the water amount sensor 24 of the pipe L32, and the other end of the pipe L33 is connected to the hot water supply port 9a of the connection adapter 9 provided in the bathtub 4. A hot water filling solenoid valve 25, a check valve 26, a water amount sensor 27, and a check valve 28 are arranged in this order from the upstream side of the pipe L33. These check valves 26 and 28 allow only the flow from the hot water supply mixing valve 22 side to the bathtub 4.
 上記配管L33と湯張り用電磁弁25と逆止弁26,28および水量センサ27で、給湯回路の配管L32から分岐して浴槽4に接続された風呂給湯回路を構成している。 The pipe L33, the hot water solenoid valve 25, the check valves 26 and 28, and the water amount sensor 27 constitute a bath hot water supply circuit branched from the hot water supply pipe L32 and connected to the bathtub 4.
 上記接続アダプタ9の追焚用吸水口9bに配管L35の一端を接続し、配管L35の他端を追い焚き熱交換器20の2次側の入水ポートに接続している。上記配管L35に風呂用循環ポンプP2を配設している。また、配管L33の水量センサ27よりも下流側に配管L34の一端を接続し、配管L34の他端を追い焚き熱交換器20の2次側の出水ポートに接続している。 One end of the pipe L35 is connected to the water intake port 9b for replenishment of the connection adapter 9 and the other end of the pipe L35 is connected to the water inlet port on the secondary side of the heat exchanger 20. A circulation pump P2 for bath is disposed in the pipe L35. Further, one end of the pipe L34 is connected to the downstream side of the water amount sensor 27 of the pipe L33, and the other end of the pipe L34 is connected to the secondary water outlet port of the heat exchanger 20.
 上記風呂用循環ポンプP2により、浴槽4内の湯水を、配管L35,追い焚き熱交換器20(2次側),配管L34,配管L33(一部)を介して循環させる。 The hot water in the bathtub 4 is circulated through the pipe L35, the reheating heat exchanger 20 (secondary side), the pipe L34, and the pipe L33 (part) by the bath circulation pump P2.
 上記配管L35,追い焚き熱交換器20(2次側),配管L34,配管L33(一部)で風呂循環回路を構成している。 The above-mentioned piping L35, reheating heat exchanger 20 (secondary side), piping L34, and piping L33 (part) constitute a bath circulation circuit.
 さらに、上記配管L21に配管L41の一端を接続し、配管L41の他端を排水口に接続している。また、上記配管L41に逃し弁31を配設している。 Furthermore, one end of the pipe L41 is connected to the pipe L21, and the other end of the pipe L41 is connected to the drain port. A relief valve 31 is provided in the pipe L41.
 上記貯湯タンク3には、下側から上側に向かって略等間隔に4つの温度センサT1~T4を設けている。また、配管L2に入水温度を検出する温度センサT11を設けると共に、配管L3に出湯温度を検出する温度センサT12を設けている。上記温度センサT3は、上部温度センサの一例であり、温度センサT1は、下部温度センサの一例であり、温度センサT11は、入水温度センサの一例であり、温度センサT12は、出湯温度センサの一例である。 The hot water storage tank 3 is provided with four temperature sensors T1 to T4 at substantially equal intervals from the lower side to the upper side. In addition, a temperature sensor T11 for detecting the incoming water temperature is provided in the pipe L2, and a temperature sensor T12 for detecting the hot water temperature is provided in the pipe L3. The temperature sensor T3 is an example of an upper temperature sensor, the temperature sensor T1 is an example of a lower temperature sensor, the temperature sensor T11 is an example of an incoming water temperature sensor, and the temperature sensor T12 is an example of a tapping temperature sensor. It is.
 また、沸き上げ熱交換器10に温度センサT13を設けている。また、給湯栓60に接続された配管L32には、水量センサ24よりも下流側に給湯温度を検出する温度センサT21を設けている。また、浴槽4に接続された配管L35には、浴槽4側の接続アダプタ9と風呂用循環ポンプP2との間に、水位センサLSと、水流スイッチSWと、温度センサT23を接続アダプタ9側から順に設けている。さらに、浴槽4に接続された配管L33の逆止弁28の下流側でかつ配管L33と配管L34との接続点に、浴槽4に供給される給湯水の温度を検出する温度センサT22を設けている。 Also, the boiling heat exchanger 10 is provided with a temperature sensor T13. In addition, a temperature sensor T <b> 21 for detecting a hot water supply temperature is provided in the pipe L <b> 32 connected to the hot water tap 60 on the downstream side of the water amount sensor 24. In addition, a water level sensor LS, a water flow switch SW, and a temperature sensor T23 are connected to the pipe L35 connected to the bathtub 4 from the connection adapter 9 side between the connection adapter 9 on the bathtub 4 side and the circulation pump P2 for bath. In order. Furthermore, a temperature sensor T22 that detects the temperature of hot water supplied to the bathtub 4 is provided downstream of the check valve 28 of the pipe L33 connected to the bathtub 4 and at a connection point between the pipe L33 and the pipe L34. Yes.
 また、上記給湯装置は、図2に示すように、マイクロコンピュータと入出力回路などからなる制御装置100と、上記制御装置100との間で信号を送受信するリモートコントローラ200とを備えている。上記制御装置100は、温度センサT1~T4,T11~T13,T21~T23と水位センサLSと水流スイッチSWと水量センサ24,27と外気温度センサ(図示せず)およびリモートコントローラ200などからの信号を受けて、ヒートポンプユニット2と沸き上げ用循環ポンプP1と風呂用循環ポンプP2と給湯用混合弁22と湯張り用電磁弁25と沸き上げ用混合弁50などを制御する。 Further, as shown in FIG. 2, the hot water supply device includes a control device 100 including a microcomputer and an input / output circuit, and a remote controller 200 that transmits and receives signals to and from the control device 100. The control device 100 includes signals from temperature sensors T1 to T4, T11 to T13, T21 to T23, a water level sensor LS, a water flow switch SW, water volume sensors 24 and 27, an outside air temperature sensor (not shown), a remote controller 200, and the like. In response, the heat pump unit 2, the boiling circulation pump P1, the bath circulation pump P2, the hot water mixing valve 22, the hot water solenoid valve 25, the boiling mixing valve 50, and the like are controlled.
 また、上記制御装置100は、貯湯タンク3内の湯水を沸き上げる運転を制御する沸き上げ制御部100aと、給湯栓60への給湯温度を制御する給湯制御部100bと、「風呂湯張り運転」などを含む浴槽4への注湯運転を制御する注湯制御部100cと、「風呂追い焚き運転」を制御する追い焚き制御部100dとを有する。 Further, the control device 100 includes a boiling control unit 100a that controls an operation of boiling hot water in the hot water storage tank 3, a hot water supply control unit 100b that controls a hot water supply temperature to the hot water tap 60, and a “bath hot water operation”. There are a pouring control unit 100c for controlling the pouring operation to the bathtub 4 including the above and a reheating control unit 100d for controlling the "bath reheating operation".
 上記構成の給湯装置において、給湯制御部100bは、温度センサT21により検出された給湯温度が給湯設定温度になるように、給湯用混合弁22の混合比率を制御する。 In the hot water supply apparatus configured as described above, the hot water supply control unit 100b controls the mixing ratio of the hot water supply mixing valve 22 so that the hot water supply temperature detected by the temperature sensor T21 becomes the hot water supply set temperature.
 <沸き上げ運転>
 上記ヒートポンプユニット2により貯湯タンク3内の湯水を沸き上げる「沸き上げ運転」では、制御装置100の沸き上げ制御部100aにより、沸き上げ用混合弁50の第1入水ポート側(貯湯タンク3側)の開度を全開にした状態で沸き上げ用循環ポンプP1を運転して、貯湯タンク3内の湯水を、配管L1,沸き上げ用混合弁50,配管L2,沸き上げ熱交換器10,配管L3を介して循環させる。
<Boiling operation>
In the “boiling operation” in which hot water in the hot water storage tank 3 is boiled by the heat pump unit 2, the boiling control unit 100 a of the control device 100 causes the first mixing port 50 side of the boiling mixing valve 50 (hot water storage tank 3 side). The boiling circulation pump P1 is operated with the opening of the valve fully opened, and the hot water in the hot water storage tank 3 is connected to the pipe L1, the boiling mixing valve 50, the pipe L2, the boiling heat exchanger 10, and the pipe L3. Circulate through.
 上記沸き上げ制御部100aは、沸き上げ運転時、沸き上げ用混合弁50の開度を制御すると共に、温度センサT12により検出された出湯温度が目標出湯温度TSになるように、ヒートポンプユニット2と沸き上げ用循環ポンプP1を制御する。ここで、目標出湯温度TSは、貯湯タンク3から給湯される湯量などに基づいて制御装置100で算出される。例えば、使用される湯量が多い場合、目標出湯温度TSは例えば70℃と高くなり、使用される湯量が少ない場合、目標出湯温度TSは例えば50℃と低くなる。 The boiling control unit 100a controls the opening degree of the mixing valve 50 for boiling during the heating operation, and the heat pump unit 2 so that the hot water temperature detected by the temperature sensor T12 becomes the target hot water temperature TS. The boiling circulation pump P1 is controlled. Here, the target hot water temperature TS is calculated by the control device 100 based on the amount of hot water supplied from the hot water storage tank 3 and the like. For example, when the amount of hot water used is large, the target hot water temperature TS is as high as 70 ° C., for example, and when the amount of hot water used is small, the target hot water temperature TS is as low as 50 ° C., for example.
 そして、温度センサT11により検出された沸き上げ熱交換器10の入水温度が40℃~45℃(沸き終い温度)になると沸き上げ運転を終了する。 Then, when the incoming water temperature of the boiling heat exchanger 10 detected by the temperature sensor T11 reaches 40 ° C. to 45 ° C. (boiling end temperature), the boiling operation is finished.
 <風呂湯張り運転>
 次に、上記貯湯タンク3から風呂の浴槽4内に給湯する「風呂湯張り運転」を行う場合、制御装置100の注湯制御部100cにより湯張り用電磁弁25を開いて、貯湯タンク3内の湯を給湯用混合弁22と風呂給湯回路(L33,25,26,27,28)を介して浴槽4内に供給する。このとき、注湯制御部100cは、給湯用混合弁22を制御して、目標設定温度に基づいて、貯湯タンク3からの高温の湯と外部からの給水とを混合すると共に、水位センサLSにより検出された浴槽4内の水位が設定水位になると、湯張り用電磁弁25を閉じる。
<Bath bathing operation>
Next, when performing a “bath hot water filling operation” in which hot water is supplied from the hot water storage tank 3 into the bath tub 4, the hot water filling electromagnetic valve 25 is opened by the hot water injection controller 100 c of the control device 100, and the hot water storage tank 3 is filled. Is supplied into the bathtub 4 through the hot water mixing valve 22 and the bath hot water supply circuit (L33, 25, 26, 27, 28). At this time, the hot water pouring control unit 100c controls the hot water supply mixing valve 22 to mix the hot water from the hot water storage tank 3 and the external water supply based on the target set temperature, and the water level sensor LS. When the detected water level in the bathtub 4 reaches the set water level, the hot water solenoid valve 25 is closed.
 <風呂追い焚き運転>
 次に、上記貯湯タンク3から風呂の浴槽4内の湯を追い焚きする「風呂追い焚き運転」を行う場合、制御装置100の追い焚き制御部100dにより、湯張り用電磁弁25を閉じた状態で風呂用循環ポンプP2を運転して、浴槽4内の湯を、配管L35,追い焚き熱交換器20(2次側),配管L34,配管L33(一部)を介して循環させる。
<Bath chasing operation>
Next, when performing “bath chasing operation” for chasing hot water in the bath tub 4 from the hot water storage tank 3, the hot water filling electromagnetic valve 25 is closed by the chasing control unit 100d of the control device 100. Then, the bath circulation pump P2 is operated to circulate the hot water in the bathtub 4 through the pipe L35, the reheating heat exchanger 20 (secondary side), the pipe L34, and the pipe L33 (part).
 そして、温度センサT23により検出された浴槽4内の湯の風呂温度に基づいて、追い焚き制御部100dは、ヒートポンプユニット2を用いずに貯湯タンク3内の湯を熱源とする風呂追い焚き運転を行うか、または、貯湯タンク3の熱量だけでは足らないときにヒートポンプユニット2を用いて風呂追い焚き運転を行う。 Then, based on the bath temperature of the hot water in the bathtub 4 detected by the temperature sensor T23, the reheating controller 100d performs a reheating operation using the hot water in the hot water storage tank 3 as a heat source without using the heat pump unit 2. Or when the amount of heat in the hot water storage tank 3 is not sufficient, the bath pumping operation is performed using the heat pump unit 2.
 上記ヒートポンプユニット2を用いた風呂追い焚き運転では、沸き上げ熱交換器10からの湯を沸き上げ用循環ポンプP1により貯湯タンク3と沸き上げ回路(L1,L2,10,L3)と風呂追い焚き回路(L21,20,L22)を介して循環させて風呂の追い焚きをする。 In the bath reheating operation using the heat pump unit 2, the hot water from the boiling heat exchanger 10 is recirculated with the hot water tank 3, the boiling circuit (L 1, L 2, 10, L 3) and the bath reheating with the circulation pump P 1. Circulate through the circuit (L21, 20, L22) to retreat the bath.
 上記構成の給湯装置によれば、制御装置100により沸き上げ用混合弁50と沸き上げ用循環ポンプP1とヒートポンプユニット2を制御して、貯湯タンク3内の湯水を沸き上げ回路(L1,L2,10,L3)を介して循環させて沸き上げを行う沸き上げ運転時に、貯湯タンク3内の上部からの中温水と貯湯タンク3の下部からの湯水とを沸き上げ用混合弁50により混合することによって、貯湯タンク3内の中温水を沸かすことが可能になる。したがって、蓄熱剤などを設けることなく、簡単な構成で効率よく貯湯タンク3内の湯水を沸き上げることができる。 According to the hot water supply apparatus configured as described above, the controller 100 controls the boiling mixing valve 50, the boiling circulation pump P1, and the heat pump unit 2 to boil the hot water in the hot water storage tank 3 (L1, L2,. 10, L 3) During boiling operation in which boiling is performed by boiling, hot water from the upper part of the hot water tank 3 and hot water from the lower part of the hot water tank 3 are mixed by the boiling mixing valve 50. Thus, it becomes possible to boil the medium temperature water in the hot water storage tank 3. Therefore, hot water in the hot water storage tank 3 can be efficiently boiled with a simple configuration without providing a heat storage agent or the like.
 図3(a),(b)は上記給湯装置の貯湯タンク3内の沸き上げ前後の温度分布の変化を示している。上記給湯装置では、沸き上げ運転時の沸き終い温度が40℃に設定されており、沸き上げ熱交換器10の入水温度が沸き終い温度40℃になると沸き上げ運転を終了する。 FIGS. 3 (a) and 3 (b) show changes in temperature distribution before and after boiling in the hot water storage tank 3 of the hot water supply apparatus. In the hot water supply apparatus, the boiling end temperature during the boiling operation is set to 40 ° C., and the boiling operation ends when the incoming water temperature of the boiling heat exchanger 10 reaches the boiling end temperature of 40 ° C.
 図3(a)に示すように、貯湯タンク3内において、中間水(50℃前後)の層と低温水(40℃前後)の層と低温水(20℃前後)の層が積層された温度分布状態から、貯湯タンク3内の上部の中間水(50℃前後)と貯湯タンク3の下部の低温水(20℃前後)とを沸き上げ用混合弁50により混合して、貯湯タンク3内の湯を沸き上げ直すと、図3(b)に示すように、高温水(60℃前後)と中間水(50℃前後)の層と低温水(40℃前後)の層が積層された状態に沸き上がる。これにより、貯湯タンク3内の高温水(60℃前後)の占める領域が大幅に増え、中間水(50℃前後)の層は少なくなって、貯湯タンク3内に貯める熱量を多くできる。このように、貯湯タンク3内の中温水域が多い温度分布状態から、貯湯タンク3内の下部から上部に向かって水温が高く中温水域が少ない温度分布に積層状態を回復させることができる。 As shown in FIG. 3 (a), in the hot water storage tank 3, the temperature at which the intermediate water layer (around 50 ° C.), the low temperature water layer (around 40 ° C.) and the low temperature water layer (around 20 ° C.) are stacked. From the distribution state, the intermediate water in the upper part of the hot water storage tank 3 (around 50 ° C.) and the low temperature water in the lower part of the hot water storage tank 3 (around 20 ° C.) are mixed by the mixing valve 50 for boiling. When the hot water is boiled again, as shown in FIG. 3 (b), a layer of high-temperature water (around 60 ° C), intermediate water (around 50 ° C) and low-temperature water (around 40 ° C) are stacked. Boil up. As a result, the area occupied by the high-temperature water (around 60 ° C.) in the hot water storage tank 3 is greatly increased, the layer of intermediate water (around 50 ° C.) is reduced, and the amount of heat stored in the hot water storage tank 3 can be increased. As described above, the stacked state can be recovered from the temperature distribution state in which the hot water storage tank 3 has a large amount of medium temperature water area to the temperature distribution in which the water temperature is high from the lower part to the upper part of the hot water storage tank 3 and the intermediate temperature water area is less.
 これに対して、図4(a)に示すように、図3(a)と同じ貯湯タンク3内の温度分布状態から、貯湯タンク3内の上部と下部の湯水を沸き上げ用混合弁50により混合することなく、貯湯タンク3内の湯を沸き上げ直すと、図4(b)に示すように、高温水(60℃前後)と中間水(50℃前後)の層と低温水(40℃前後)の層が積層された状態に沸き上がる。このとき、貯湯タンク3内の高温水(60℃前後)の占める領域は上部の一部にしかなく、多くが中間水(50℃前後)の層となっている。この場合、貯湯タンク3内に貯められた熱量が少なく、湯切れが発生しやすい。 On the other hand, as shown in FIG. 4A, from the same temperature distribution state in the hot water storage tank 3 as in FIG. When the hot water in the hot water storage tank 3 is boiled again without mixing, as shown in FIG. 4 (b), a layer of high temperature water (around 60 ° C.) and intermediate water (around 50 ° C.) and low temperature water (40 ° C. Boiled up and down layers. At this time, the region occupied by the high-temperature water (around 60 ° C.) in the hot water storage tank 3 is only part of the upper part, and most of the region is a layer of intermediate water (around 50 ° C.). In this case, the amount of heat stored in the hot water storage tank 3 is small, and hot water runs out easily.
 また、上記実施の形態の給湯装置において、上部温度センサである温度センサT3により検出された貯湯タンク3の上部の水温が所定の上部判定温度(例えば55℃)以上であるときは、貯湯タンク3内に沸き直しする中温水の領域が少ないものとする。また、下部温度センサである温度センサT1により検出された貯湯タンク3の下部の水温が所定の下部判定温度(例えば30℃)未満であるときは、貯湯タンク3内に蓄えられた熱量が少なく沸き上げが必要であるものとする。そうすることによって、沸き上げ運転時に、温度センサT3により検出された貯湯タンク3の上部の水温が上部判定温度以上で、かつ、温度センサT1により検出された貯湯タンク3の下部の水温が下部判定温度未満のときは、中温水の少ない状態で沸き上げが必要であるので、沸き上げ回路のみで循環させて沸き上げ運転を行うため、沸き上げ用混合弁50の貯湯タンク3の下部側の開度が全開になるように沸き上げ用混合弁50を制御する。これにより、貯湯タンク3内の上部と下部の湯水を沸き上げ用混合弁50により混合することなく、貯湯タンク3内の湯水を沸き上げ回路(L1,L2,10,L3)を介して循環させて効率よく沸き上げることができる。 In the hot water supply apparatus of the above embodiment, when the water temperature in the upper part of the hot water storage tank 3 detected by the temperature sensor T3 as the upper temperature sensor is equal to or higher than a predetermined upper determination temperature (for example, 55 ° C.), the hot water storage tank 3 It is assumed that there is little area of medium-temperature water that reboils inside. Further, when the water temperature in the lower part of the hot water storage tank 3 detected by the temperature sensor T1, which is a lower temperature sensor, is lower than a predetermined lower determination temperature (for example, 30 ° C.), the amount of heat stored in the hot water storage tank 3 is less boiling. It is necessary to raise it. By doing so, the water temperature at the upper part of the hot water storage tank 3 detected by the temperature sensor T3 during the boiling operation is equal to or higher than the upper determination temperature, and the water temperature at the lower part of the hot water storage tank 3 detected by the temperature sensor T1 is determined as the lower part. When the temperature is lower than the temperature, it is necessary to boil in a state where the amount of medium-temperature water is small. Therefore, since the boiling operation is performed by circulating only in the boiling circuit, the lower side of the hot water storage tank 3 of the boiling mixing valve 50 is opened. The boiling mixing valve 50 is controlled so that the degree is fully open. Accordingly, the hot water in the hot water storage tank 3 is circulated through the boiling circuit (L1, L2, 10, L3) without mixing the upper and lower hot water in the hot water storage tank 3 by the mixing valve 50 for boiling. Can be boiled efficiently.
 また、上記上部温度センサである温度センサT3により検出された貯湯タンク3の上部の水温が所定の上部判定温度(例えば55℃)未満であるときは、貯湯タンク3内の上側に沸き直しする中温水の領域が多いものとする。また、下部温度センサである温度センサT1により検出された上記貯湯タンク3の下部の水温が所定の下部混合判定温度(例えば35℃)未満であるときは、貯湯タンク3内の上部と下部の湯水を沸き上げ用混合弁50により混合しても、混合後の温度が沸き終い温度を越えないものとする。そうすることによって、沸き上げ運転時に、温度センサT3により検出された貯湯タンク3の上部の水温が上部判定温度未満で、かつ、温度センサT1により検出された貯湯タンク3の下部の水温が下部混合判定温度未満のとき、沸き上げ用混合弁50の開度を制御して、貯湯タンク3の上部からの湯水と貯湯タンク3の下部からの湯水とを混合する。これにより、貯湯タンク内の温度分布の状態から貯湯タンク3内の上部と下部の湯水を沸き上げ用混合弁50により混合するか否かを正確に判断することが可能になる。 In addition, when the water temperature at the upper part of the hot water storage tank 3 detected by the temperature sensor T3 as the upper temperature sensor is lower than a predetermined upper determination temperature (for example, 55 ° C.), It is assumed that there are many areas of hot water. Further, when the water temperature in the lower part of the hot water storage tank 3 detected by the temperature sensor T1, which is a lower temperature sensor, is lower than a predetermined lower mixing determination temperature (for example, 35 ° C.), the upper and lower hot water in the hot water storage tank 3 Even if they are mixed by the mixing valve 50 for boiling, the temperature after mixing does not exceed the temperature after boiling. By doing so, the water temperature at the upper part of the hot water storage tank 3 detected by the temperature sensor T3 during the boiling operation is lower than the upper determination temperature, and the water temperature at the lower part of the hot water storage tank 3 detected by the temperature sensor T1 is lower mixed. When the temperature is lower than the determination temperature, the opening degree of the boiling mixing valve 50 is controlled to mix hot water from the upper part of the hot water storage tank 3 with hot water from the lower part of the hot water storage tank 3. Thus, it is possible to accurately determine whether or not the hot water in the upper and lower hot water tanks 3 is mixed by the boiling mixing valve 50 from the state of temperature distribution in the hot water storage tank.
 また、上記貯湯タンク3の上部に設けられた出湯口3bを、追い焚き熱交換器20が配設された風呂追い焚き回路(L21,20,L22)を介して沸き上げ用混合弁50の入水側に接続していることによって、貯湯タンク3の上部から沸き上げ用混合弁50の入水側への回路として風呂追い焚き回路(L21,20,L22)を兼用でき、回路構成を簡略化できる。 In addition, the hot water outlet 3b provided in the upper part of the hot water storage tank 3 is fed into the boiling mixing valve 50 through a bath reheating circuit (L21, 20, L22) in which a reheating heat exchanger 20 is disposed. By connecting to the side, the bath reheating circuit (L21, 20, L22) can be used as a circuit from the upper part of the hot water storage tank 3 to the water inlet side of the mixing valve 50 for boiling, and the circuit configuration can be simplified.
 また、上記貯湯タンク3内かつ戻り口3a近傍に設けられた整流板70により、貯湯タンク3の上部に設けられた出湯口3b側への流れを抑制することによって、沸き上げられた湯が出湯口3bから出て再び沸き上げられることがないようにできる。 Also, the baffled hot water is discharged by suppressing the flow toward the hot water outlet 3b provided at the upper part of the hot water storage tank 3 by the rectifying plate 70 provided in the hot water storage tank 3 and in the vicinity of the return port 3a. It is possible to prevent boiling out again from the gate 3b.
 また、上記沸き上げ運転において、入水温度センサである温度センサT11により検出された沸き上げ熱交換器10の入水温度が予め設定された温度範囲内になるように、制御装置100により沸き上げ用混合弁50の開度をフィードバック制御する。 Further, in the above-described boiling operation, the mixing for boiling is performed by the control device 100 so that the incoming water temperature of the boiling heat exchanger 10 detected by the temperature sensor T11 that is the incoming water temperature sensor is within a preset temperature range. The opening degree of the valve 50 is feedback controlled.
 上記の予め設定された温度範囲とは、貯湯タンク3の下部の温度以上で、沸き終い温度未満に設定される。多くの場合、35℃~40℃程度である。 The above preset temperature range is set to be equal to or higher than the temperature at the bottom of the hot water storage tank 3 and lower than the boiling end temperature. In many cases, it is about 35 to 40 ° C.
 また、上記沸き上げ運転において、出湯温度センサである温度センサT12により検出された沸き上げ熱交換器10の出湯温度が目標出湯温度TSになるように、制御装置100により沸き上げ用循環ポンプP1の回転数をフィードバック制御することによって、沸き上げ熱交換器10の出湯温度を目標出湯温度TSに安定させることができる。さらに、制御装置100による沸き上げ用混合弁50のフィードバック制御の間隔(この実施形態では3秒)を沸き上げ用循環ポンプP1のフィードバック制御の間隔(この実施形態では1秒)よりも長くすることによって、沸き上げ用混合弁50の開度が変更されて出湯温度が一時的に変動しても、沸き上げ用循環ポンプP1のフィードバック制御が早いため、すぐに目標出湯温度TSに合わせることができる。 Further, in the above boiling operation, the controller 100 controls the boiling pump P1 for boiling so that the outlet temperature of the heating heat exchanger 10 detected by the temperature sensor T12 which is a outlet temperature sensor becomes the target outlet temperature TS. By performing feedback control on the rotational speed, the temperature of the hot water of the boiling heat exchanger 10 can be stabilized at the target temperature of the hot water TS. Further, the feedback control interval (3 seconds in this embodiment) of the boiling mixing valve 50 by the control device 100 is longer than the feedback control interval (1 second in this embodiment) of the boiling circulation pump P1. Therefore, even if the opening degree of the mixing valve 50 for boiling is changed and the tapping temperature fluctuates temporarily, the feedback control of the boiling circulation pump P1 is fast, so that it can be adjusted to the target tapping temperature TS immediately. .
 あるいは、上記沸き上げ運転において、出湯温度センサである温度センサT12により検出された沸き上げ熱交換器10の出湯温度が目標出湯温度TSになるように、制御装置100により沸き上げ用循環ポンプP1の回転数をフィードバック制御することによって、沸き上げ熱交換器10の出湯温度を目標出湯温度TSに安定させることができる。さらに、制御装置100による沸き上げ用混合弁50のフィードバック制御におけるフィードバックゲインを沸き上げ用循環ポンプP1のフィードバック制御におけるフィードバックゲインよりも小さくしてもよい。これによって、沸き上げ用混合弁50の開度が変更されて出湯温度が一時的に変動しても、沸き上げ用循環ポンプP1のフィードバック制御が早いため、すぐに目標出湯温度TSに合わせることができる。 Alternatively, in the above boiling operation, the controller 100 causes the boiling circulating pump P1 to be heated by the control device 100 so that the hot water temperature of the boiling heat exchanger 10 detected by the temperature sensor T12 which is a hot water temperature sensor becomes the target hot water temperature TS. By performing feedback control on the rotational speed, the temperature of the hot water of the boiling heat exchanger 10 can be stabilized at the target temperature of the hot water TS. Furthermore, the feedback gain in the feedback control of the mixing valve 50 for boiling by the control device 100 may be smaller than the feedback gain in the feedback control of the circulating pump P1 for boiling. As a result, even if the opening degree of the boiling mixing valve 50 is changed and the hot water temperature temporarily fluctuates, the feedback control of the boiling circulation pump P1 is fast, so that it can be quickly adjusted to the target hot water temperature TS. it can.
 また、上記給湯装置では、沸き上げ用混合弁50の第2入水ポート側(風呂追い焚き回路側)の開度を大きくしすぎると、沸き上げ熱交換器10の入水温度が上昇して沸き上げ効率が低下するため、沸き上げ用混合弁50の第2入水ポート側(風呂追い焚き回路側)の開度に上限値を設けることによって、沸き上げ効率が低下しすぎるのを防止できる。 Further, in the hot water supply apparatus, if the opening degree on the second water inlet port side (the bath reheating circuit side) of the boiling mixing valve 50 is excessively increased, the water temperature of the boiling heat exchanger 10 rises to raise the water. Since the efficiency is reduced, it is possible to prevent the boiling efficiency from being excessively lowered by providing an upper limit value for the opening on the second water inlet port side (the bath reheating circuit side) of the mixing valve 50 for boiling.
 また、HFC冷媒を用いたヒートポンプユニット2では、高温出湯が可能なCO冷媒に比べて湯切れが生じやすいが、貯湯タンク3内の上部と下部の湯水を混合して中間水を沸き上げることにより、貯湯タンク3に貯める熱量を多くでき、湯切れを防ぐ効果が大きい。 Further, in the heat pump unit 2 using the HFC refrigerant, hot water runs out more easily than the CO 2 refrigerant capable of high temperature hot water, but the upper and lower hot water in the hot water storage tank 3 is mixed to boil up the intermediate water. Thus, the amount of heat stored in the hot water storage tank 3 can be increased, and the effect of preventing running out of hot water is great.
 また、上記貯湯タンク3と沸き上げ用混合弁50と風呂追い焚き回路(L21,20,L22)と沸き上げ回路(L1,L2,10,L3)などを収容する貯湯ユニット1内に沸き上げ熱交換器10を配置していることによって、ヒートポンプユニット2側に沸き上げ熱交換器10が内蔵されている場合に比べて、ヒートポンプユニット2と貯湯ユニット1との間の配管での湯の放熱がなく、貯湯タンク3内の湯水を効率よく沸き上げることができる。 Further, the hot water is stored in the hot water storage unit 1 which accommodates the hot water storage tank 3, the heating mixing valve 50, the bath reheating circuit (L21, 20, L22), the heating circuit (L1, L2, 10, L3) and the like. By arranging the exchanger 10, compared with the case where the boiling heat exchanger 10 is built in the heat pump unit 2 side, the heat dissipation of the hot water in the pipe between the heat pump unit 2 and the hot water storage unit 1 is reduced. The hot water in the hot water storage tank 3 can be boiled efficiently.
 なお、上記実施の形態では、ヒートポンプユニット2にHFC冷媒を用いたが、ヒートポンプユニットに用いる冷媒はこれに限らず、CO冷媒や他の冷媒を用いてもよい。 Although the HFC refrigerant is used for the heat pump unit 2 in the above embodiment, the refrigerant used for the heat pump unit is not limited to this, and a CO 2 refrigerant or other refrigerant may be used.
 例えば、ヒートポンプユニットにCO冷媒を用いることで、出湯温度を高い温度範囲(例えば65℃~90℃)で制御することが可能になる。 For example, by using a CO 2 refrigerant in the heat pump unit, it is possible to control the tapping temperature in a high temperature range (for example, 65 ° C. to 90 ° C.).
 上記実施の形態では、貯湯ユニット1内に沸き上げ熱交換器10を配置した給湯装置について説明したが、ヒートポンプユニット2内に沸き上げ熱交換器10を配置した給湯装置にこの発明を適用してもよい。 In the above embodiment, the hot water supply apparatus in which the boiling heat exchanger 10 is disposed in the hot water storage unit 1 has been described. However, the present invention is applied to a hot water supply apparatus in which the boiling heat exchanger 10 is disposed in the heat pump unit 2. Also good.
 また、上記実施の形態では、貯湯タンク3の上部を風呂追い焚き回路を介して沸き上げ用混合弁50の入水側に接続した給湯装置について説明したが、貯湯タンクの上部を混合用の別回路を介して混合弁の入水側に接続した給湯装置にこの発明を適用してもよい。 Moreover, in the said embodiment, although the hot water supply apparatus which connected the upper part of the hot water storage tank 3 to the inflow side of the mixing valve 50 for boiling through the bath reheating circuit was demonstrated, the upper part of the hot water storage tank is connected to another circuit for mixing. You may apply this invention to the hot-water supply apparatus connected to the inflow side of the mixing valve through this.
 また、この発明の給湯装置は、沸き上げ用混合弁50の貯湯タンク3の下部側の開度を全開にして沸き上げ運転を行う効率優先モードと、貯湯タンク3の下部の湯水に貯湯タンク3の上部の湯水を沸き上げ用混合弁50で混合して沸き上げ運転を行う湯量優先モードのいずれか一方を選択する運転モード選択部(図示せず)の機能を例えばリモートコントローラ200(図2に示す)に備えてもよい。 Further, the hot water supply apparatus of the present invention includes an efficiency priority mode in which the opening on the lower side of the hot water storage tank 3 of the mixing valve 50 for boiling is fully opened and the boiling operation is performed, and the hot water storage tank 3 in the hot water below the hot water storage tank 3. The function of an operation mode selection unit (not shown) for selecting any one of hot water amount priority modes in which boiling water is mixed by the boiling mixing valve 50 to perform the boiling operation is, for example, the remote controller 200 (see FIG. 2). May be prepared).
 この場合、一般的に、沸き上げ熱交換器10の入水温度が下がるほど沸き上げ効率が向上するため、ユーザーは、効率のよい沸き上げ運転を希望するときは、効率優先モードを運転モード選択部により選択し、貯湯タンク3の湯切れが起きないように希望するときは、湯量優先モードを運転モード選択部により選択することができ、利便性が向上する。 In this case, generally, the boiling efficiency increases as the incoming water temperature of the boiling heat exchanger 10 decreases. Therefore, when the user desires an efficient boiling operation, the efficiency priority mode is selected as the operation mode selection unit. The hot water amount priority mode can be selected by the operation mode selection unit, so that convenience is improved.
 この発明の具体的な実施の形態について説明したが、この発明は上記実施の形態に限定されるものではなく、この発明の範囲内で種々変更して実施することができる。 Although specific embodiments of the present invention have been described, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the present invention.
 1…貯湯ユニット
 2…ヒートポンプユニット
 3…貯湯タンク
 3a…戻り口
 3b…出湯口
 4…浴槽
 9…接続アダプタ
 9a…給湯口
 9b…追焚用吸水口
 10…沸き上げ熱交換器
 11…減圧弁
 12,21,23,26,28…逆止弁
 20…追い焚き熱交換器
 22…給湯用混合弁
 24,27…水量センサ
 25…湯張り用電磁弁
 31…逃し弁
 50…沸き上げ用混合弁
 60…給湯栓
 70…整流板
 100…制御装置
 100a…沸き上げ制御部
 100b…給湯制御部
 100c…注湯制御部
 100d…追い焚き制御部
 200…リモートコントローラ
 L1,L2,L3,L11,L21,L22,L31~L35,L41…配管
 L4,L5…冷媒配管
 L12…分岐配管
 LS…水位センサ
 P1…沸き上げ用循環ポンプ
 P2…風呂用循環ポンプ
 SW…水流スイッチ
 T1~T4,T11~T13,T21~T23…温度センサ
DESCRIPTION OF SYMBOLS 1 ... Hot water storage unit 2 ... Heat pump unit 3 ... Hot water storage tank 3a ... Return port 3b ... Outlet 4 ... Bathtub 9 ... Connection adapter 9a ... Hot water supply port 9b ... Water intake 10 for boiling water 10 ... Boiling heat exchanger 11 ... Pressure reducing valve 12 , 21, 23, 26, 28 ... Check valve 20 ... Reheating heat exchanger 22 ... Mixing valve for hot water supply 24, 27 ... Water volume sensor 25 ... Solenoid valve for hot water filling 31 ... Relief valve 50 ... Mixing valve for boiling 60 ... Hot water tap 70 ... Rectifying plate 100 ... Control device 100a ... Boiling control unit 100b ... Hot water supply control unit 100c ... Pouring hot water control unit 100d ... Reheating control unit 200 ... Remote controllers L1, L2, L3, L11, L21, L22, L31 to L35, L41 ... Piping L4, L5 ... Refrigerant piping L12 ... Branch piping LS ... Water level sensor P1 ... Boiling circulation pump P2 ... Bath circulation pump SW ... Water flow switch T1-T4, T11 to T13, T21 to T23 ... Temperature sensor

Claims (11)

  1.  貯湯タンク(3)の上部からの湯水と上記貯湯タンク(3)の下部からの湯水とを混合する混合弁(50)と、
     上記貯湯タンク(3)の下部から上記混合弁(50)と沸き上げ熱交換器(10)を介して上記貯湯タンク(3)の上部に接続された沸き上げ回路(L1,L2,10,L3)と、
     上記沸き上げ回路(L1,L2,10,L3)に配設された沸き上げポンプ(P1)と、
     上記混合弁(50)の出水側からの湯水を上記沸き上げ熱交換器(10)により沸き上げるヒートポンプユニット(2)と、
     上記混合弁(50)と上記沸き上げポンプ(P1)と上記ヒートポンプユニット(2)を制御する制御装置(100)と
    を備えたことを特徴とする給湯装置。
    A mixing valve (50) for mixing hot water from the upper part of the hot water storage tank (3) and hot water from the lower part of the hot water storage tank (3);
    Boiling circuits (L1, L2, 10, L3) connected from the lower part of the hot water storage tank (3) to the upper part of the hot water storage tank (3) through the mixing valve (50) and the heating heat exchanger (10). )When,
    A boiling pump (P1) disposed in the boiling circuit (L1, L2, 10, L3);
    A heat pump unit (2) for boiling hot water from the outlet side of the mixing valve (50) by the boiling heat exchanger (10);
    A hot water supply apparatus comprising the mixing valve (50), the boiling pump (P1), and a control device (100) for controlling the heat pump unit (2).
  2.  請求項1に記載の給湯装置において、
     上記制御装置(100)は、
     沸き上げ運転時に、上記貯湯タンク(3)の上部の水温が予め設定された上部判定温度以上で、かつ、上記貯湯タンク(3)の下部の水温が予め設定された下部判定温度未満のとき、上記混合弁(50)の上記貯湯タンク(3)の下部側の開度が全開になるように上記混合弁(50)を制御することを特徴とする給湯装置。
    The hot water supply apparatus according to claim 1,
    The control device (100)
    During boiling operation, when the water temperature at the upper part of the hot water storage tank (3) is not less than the preset upper judgment temperature and the water temperature at the lower part of the hot water storage tank (3) is lower than the preset lower judgment temperature, The hot water supply apparatus characterized by controlling the said mixing valve (50) so that the opening degree of the lower side of the said hot water storage tank (3) of the said mixing valve (50) may be fully opened.
  3.  請求項1に記載の給湯装置において、
     上記制御装置(100)は、
     沸き上げ運転時に、上記貯湯タンク(3)の上部の水温が予め設定された上部判定温度未満で、かつ、上記貯湯タンク(3)の下部の水温が予め設定された下部混合判定温度未満のとき、上記混合弁(50)の開度を制御して、上記貯湯タンク(3)の上部からの湯水と上記貯湯タンク(3)の下部からの湯水とを混合することを特徴とする給湯装置。
    The hot water supply apparatus according to claim 1,
    The control device (100)
    During boiling operation, when the water temperature at the upper part of the hot water storage tank (3) is lower than a preset upper judgment temperature and the water temperature at the lower part of the hot water storage tank (3) is lower than a preset lower mixing judgment temperature A hot water supply apparatus for controlling the opening of the mixing valve (50) to mix hot water from the upper part of the hot water storage tank (3) and hot water from the lower part of the hot water storage tank (3).
  4.  請求項1から3までのいずれか1つに記載の給湯装置において、
     上記制御装置(100)は、
     上記混合弁(50)の上記貯湯タンク(3)の下部側の開度を全開にして沸き上げ運転を行う効率優先モードと、上記貯湯タンク(3)の下部の湯水に上記貯湯タンク(3)の上部の湯水を上記混合弁(50)で混合して沸き上げ運転を行う湯量優先モードのいずれか一方を選択する運転モード選択部を有することを特徴とする給湯装置。
    In the hot water supply device according to any one of claims 1 to 3,
    The control device (100)
    An efficiency priority mode in which the opening of the lower side of the hot water storage tank (3) of the mixing valve (50) is fully opened and the boiling operation is performed, and the hot water storage tank (3) is added to the hot water at the lower part of the hot water storage tank (3). A hot water supply apparatus comprising an operation mode selection unit that selects any one of hot water amount priority modes in which hot water is mixed by the mixing valve (50) to perform a boiling operation.
  5.  請求項1から4までのいずれか1つに記載の給湯装置において、
     上記貯湯タンク(3)の上部に設けられた出湯口(3b)は、追い焚き熱交換器(20)が配設された風呂追い焚き回路(L21,20,L22)を介して上記混合弁(50)の入水側に接続されていることを特徴とする給湯装置。
    In the hot water supply device according to any one of claims 1 to 4,
    The hot water outlet (3b) provided at the upper part of the hot water storage tank (3) is connected to the mixing valve (L21, 20, L22) via a bath reheating circuit (L21, 20, L22) provided with a reheating heat exchanger (20). 50) A hot water supply apparatus connected to the water inlet side.
  6.  請求項1から5までのいずれか1つに記載の給湯装置において、
     上記混合弁(50)の出水側は、上記沸き上げ回路(L1,L2,10,L3)を介して上記貯湯タンク(3)の上部に設けられた戻り口(3a)に接続されており、
     上記貯湯タンク(3)内かつ上記戻り口(3a)近傍に設けられ、上記貯湯タンク(3)の上部に設けられた出湯口(3b)側への流れを抑制する整流板(70)を備えたことを特徴とする給湯装置。
    In the hot water supply device according to any one of claims 1 to 5,
    The outlet side of the mixing valve (50) is connected to a return port (3a) provided in the upper part of the hot water storage tank (3) via the boiling circuit (L1, L2, 10, L3).
    A rectifying plate (70) is provided in the hot water storage tank (3) and in the vicinity of the return port (3a) and suppresses the flow toward the hot water outlet (3b) provided at the upper part of the hot water storage tank (3). A water heater characterized by that.
  7.  請求項1から6までのいずれか1つに記載の給湯装置において、
     上記沸き上げ熱交換器(10)の入水温度を検出する入水温度センサ(T11)を備え、
     上記制御装置(100)は、
     上記入水温度センサ(T11)により検出された上記沸き上げ熱交換器(10)の入水温度が予め設定された温度範囲内になるように、上記混合弁(50)の開度をフィードバック制御することを特徴とする給湯装置。
    In the hot water supply device according to any one of claims 1 to 6,
    An incoming water temperature sensor (T11) for detecting the incoming water temperature of the boiling heat exchanger (10);
    The control device (100)
    The opening degree of the mixing valve (50) is feedback controlled so that the incoming water temperature of the boiling heat exchanger (10) detected by the incoming water temperature sensor (T11) is within a preset temperature range. A water heater characterized by that.
  8.  請求項7に記載の給湯装置において、
     上記沸き上げ熱交換器(10)の出湯温度を検出する出湯温度センサ(T11)を備え、
     上記制御装置(100)は、
     上記出湯温度センサ(T11)により検出された上記沸き上げ熱交換器(10)の出湯温度が目標出湯温度になるように、上記沸き上げポンプ(P1)の回転数をフィードバック制御すると共に、
     上記混合弁(50)のフィードバック制御の間隔を上記沸き上げポンプ(P1)のフィードバック制御の間隔よりも長くしたことを特徴とする給湯装置。
    The hot water supply apparatus according to claim 7,
    A tapping temperature sensor (T11) for detecting a tapping temperature of the boiling heat exchanger (10);
    The control device (100)
    In addition to feedback controlling the number of revolutions of the boiling pump (P1) so that the tapping temperature of the boiling heat exchanger (10) detected by the tapping temperature sensor (T11) becomes the target tapping temperature,
    The hot water supply apparatus characterized in that the feedback control interval of the mixing valve (50) is longer than the feedback control interval of the boiling pump (P1).
  9.  請求項7に記載の給湯装置において、
     上記沸き上げ熱交換器(10)の出湯温度を検出する出湯温度センサ(T11)を備え、
     上記制御装置(100)は、
     上記出湯温度センサ(T11)により検出された上記沸き上げ熱交換器(10)の出湯温度が目標出湯温度になるように、上記沸き上げポンプ(P1)の回転数をフィードバック制御すると共に、
     上記混合弁(50)のフィードバック制御におけるフィードバックゲインを上記沸き上げポンプ(P1)のフィードバック制御におけるフィードバックゲインよりも小さくしたことを特徴とする給湯装置。
    The hot water supply apparatus according to claim 7,
    A tapping temperature sensor (T11) for detecting a tapping temperature of the boiling heat exchanger (10);
    The control device (100)
    In addition to feedback controlling the number of revolutions of the boiling pump (P1) so that the tapping temperature of the boiling heat exchanger (10) detected by the tapping temperature sensor (T11) becomes the target tapping temperature,
    A hot water supply apparatus characterized in that a feedback gain in feedback control of the mixing valve (50) is made smaller than a feedback gain in feedback control of the boiling pump (P1).
  10.  請求項1から9までのいずれか1つに記載の給湯装置において、
     上記混合弁(50)の上記貯湯タンク(3)の上部側の開度に上限値を設けたことを特徴とする給湯装置。
    The hot water supply device according to any one of claims 1 to 9,
    A hot water supply apparatus characterized in that an upper limit is provided for the opening of the mixing valve (50) on the upper side of the hot water storage tank (3).
  11.  請求項1から10までのいずれか1つに記載の給湯装置において、
     上記ヒートポンプユニット(2)にHFC冷媒を用いたことを特徴とする給湯装置。
    In the hot water supply device according to any one of claims 1 to 10,
    A hot water supply apparatus using an HFC refrigerant in the heat pump unit (2).
PCT/JP2014/078902 2013-12-27 2014-10-30 Hot water supplying device WO2015098281A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-272149 2013-12-27
JP2013272149A JP5821943B2 (en) 2013-12-27 2013-12-27 Water heater

Publications (1)

Publication Number Publication Date
WO2015098281A1 true WO2015098281A1 (en) 2015-07-02

Family

ID=53478159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078902 WO2015098281A1 (en) 2013-12-27 2014-10-30 Hot water supplying device

Country Status (2)

Country Link
JP (1) JP5821943B2 (en)
WO (1) WO2015098281A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006132888A (en) * 2004-11-09 2006-05-25 Matsushita Electric Ind Co Ltd Heat pump hot water supply apparatus
JP2006132873A (en) * 2004-11-08 2006-05-25 Denso Corp Hot water supply apparatus
JP2007278553A (en) * 2006-04-04 2007-10-25 Toshiba Electric Appliance Co Ltd Water heater
JP2009186065A (en) * 2008-02-05 2009-08-20 Mitsubishi Electric Corp Hot water storage type water supply device
JP2012197982A (en) * 2011-03-22 2012-10-18 Mitsubishi Electric Corp Storage type water heater
JP2013204842A (en) * 2012-03-27 2013-10-07 Kansai Electric Power Co Inc:The Storage type water heater
JP2013245919A (en) * 2012-05-29 2013-12-09 Mitsubishi Electric Corp Storage type water heater

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006132873A (en) * 2004-11-08 2006-05-25 Denso Corp Hot water supply apparatus
JP2006132888A (en) * 2004-11-09 2006-05-25 Matsushita Electric Ind Co Ltd Heat pump hot water supply apparatus
JP2007278553A (en) * 2006-04-04 2007-10-25 Toshiba Electric Appliance Co Ltd Water heater
JP2009186065A (en) * 2008-02-05 2009-08-20 Mitsubishi Electric Corp Hot water storage type water supply device
JP2012197982A (en) * 2011-03-22 2012-10-18 Mitsubishi Electric Corp Storage type water heater
JP2013204842A (en) * 2012-03-27 2013-10-07 Kansai Electric Power Co Inc:The Storage type water heater
JP2013245919A (en) * 2012-05-29 2013-12-09 Mitsubishi Electric Corp Storage type water heater

Also Published As

Publication number Publication date
JP2015124989A (en) 2015-07-06
JP5821943B2 (en) 2015-11-24

Similar Documents

Publication Publication Date Title
JP5200842B2 (en) Water heater
JP4407643B2 (en) Hot water storage water heater
JP5793450B2 (en) Heat pump heat source system
JP2009210205A (en) Water heater
JP2013242115A (en) Storage type hot water supply system
JP2016095089A (en) Storage water heater
JP6146360B2 (en) Water heater
JP2007003057A (en) Storage water heater
KR20130118793A (en) Heat pump heat source system
JP5920390B2 (en) Water heater
JP5821943B2 (en) Water heater
JP2017156063A (en) Hot water system
JP5915684B2 (en) Water heater
JP5567520B2 (en) Heat pump water heater
KR101343445B1 (en) Hybrid hot-water supply apparatus
JP5892152B2 (en) Water heater
JP5862654B2 (en) Water heater
JP5134461B2 (en) Hot water storage water heater with built-in hot water pressure pump
JP2008170101A (en) Storage type hot water supply system
JP2005049065A (en) Reservoir type hot water supply system
JP2005069625A (en) Reservoir type hot water supply system
JP2004205140A (en) Reheating device for bath
JP2006234210A (en) Hot water storage type water heater
JP5928511B2 (en) Water heater
JP5982238B2 (en) Hot water storage water heater

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14874190

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14874190

Country of ref document: EP

Kind code of ref document: A1