JP2009074678A - スラストプレートの製造方法、軸受装置、軸受装置の製造方法、およびスピンドルモータ - Google Patents

スラストプレートの製造方法、軸受装置、軸受装置の製造方法、およびスピンドルモータ Download PDF

Info

Publication number
JP2009074678A
JP2009074678A JP2007331899A JP2007331899A JP2009074678A JP 2009074678 A JP2009074678 A JP 2009074678A JP 2007331899 A JP2007331899 A JP 2007331899A JP 2007331899 A JP2007331899 A JP 2007331899A JP 2009074678 A JP2009074678 A JP 2009074678A
Authority
JP
Japan
Prior art keywords
intermediate member
manufacturing
shaft
thrust plate
curved surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007331899A
Other languages
English (en)
Inventor
Masato Gomyo
五明  正人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Corp
Original Assignee
Nidec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Corp filed Critical Nidec Corp
Priority to JP2007331899A priority Critical patent/JP2009074678A/ja
Priority to US12/197,342 priority patent/US20090056136A1/en
Priority to CN2008102126988A priority patent/CN101377213B/zh
Publication of JP2009074678A publication Critical patent/JP2009074678A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Motor Or Generator Frames (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

【課題】凹形曲面を有するスラストプレートを容易かつ迅速に作製することができる技術を提供する。
【解決手段】熱可塑性樹脂を素材とする中間部材342pの上面に、加熱された工具60を押し付け、中間部材342pを軟化変形させることにより、凹部を形成する。これにより、凹部を有するスラストプレートを容易かつ迅速に作製することができる。シャフトの下端部の曲率半径に応じて工具60を適切に選定すれば、中間部材342p上に適切な曲率半径の凹部を形成することができ、耐摩耗性の高いスラストプレートを作製することができる。
【選択図】図5

Description

本発明は、軸受装置に用いられるスラストプレートの製造方法、当該製造方法により製造されたスラストプレートを備える軸受装置、軸受装置の製造方法、および当該製造方法により製造された軸受装置を備えるスピンドルモータに関する。
パーソナルコンピュータやカーナビゲーション等に使用されるハードディスク装置には、磁気ディスクをその中心軸を中心として回転させるためのスピンドルモータが搭載されている。スピンドルモータは、ステータ部とロータ部とを軸受装置を介して相対的に回転させる構成となっている。
従来の軸受装置は、シャフトを径方向に支持するラジアル軸受部と、シャフトを軸方向に支持するスラスト軸受部とを有している。ラジアル軸受部は、例えば、シャフトが挿通される軸受穴を有するスリーブにより構成され、シャフトとスリーブとの間に介在する潤滑オイルの流体動圧を利用してシャフトを支持する。また、スラスト軸受部は、例えば、円板状のスラストプレートにより構成され、スラストプレートの一方の面にシャフトの先端部を当接させることによりシャフトを軸方向に支持する。
このような従来の軸受装置については、例えば、特許文献1,2に開示されている。
特開2002−78280号公報 特開2005−113987号公報
しかしながら、スラストプレートを有する従来の軸受装置を長期に使用すると、スラストプレートとシャフトとの摺接によってスラストプレートの表面が摩耗し、シャフトの軸方向の位置がずれてしまうという問題があった。シャフトの軸方向の位置がずれると、ディスクの軸方向の位置もずれるため、ディスクに対する情報の読み書き動作の信頼性に影響を及ぼす可能性があった。
このようなスラストプレートの摩耗を防止するためには、スラストプレートの支持面に適当な曲率を有する凹形曲面を予め形成しておき、当該凹形曲面上にシャフトを支持することが望ましい。このようにすれば、シャフトの先端部とスラストプレートとの実接触面積が増加するため、シャフトからスラストプレートへの圧力が分散し、スラストプレートの摩耗が低減される。但し、スラストプレートにこのような凹形曲面を形成することは、製造工程の複雑化や製造コストの上昇を伴うものであった。
本発明は、このような事情に鑑みなされたものであり、凹形曲面を有するスラストプレートを容易かつ迅速に作製することができる技術を提供することを目的とする。
上記課題を解決するため、請求項1に係る発明は、軸受装置に用いられ、先端部に凸型曲面を有し中心軸を中心として回転するシャフトとの間でスラスト軸受部を形成すると共に、その軸方向一方側の面が前記シャフトの前記先端部に当接するスラストプレートの製造方法であって、工程a)熱可塑性樹脂又は熱硬化性樹脂を素材とする板状の中間部材を軸方向一方側から加熱しつつ、凸型曲面を有する部材を前記中間部材の前記一方側の面に押し付けて、前記中間部材上に凹形曲面を形成する工程を含むことを特徴とする。
請求項2に係る発明は、請求項1記載のスラストプレートの製造方法であって、前記部材の前記凸型曲面は、前記シャフトの前記先端部よりも曲率半径が大きいことを特徴とする。
請求項3に係る発明は、請求項1記載のスラストプレートの製造方法であって、前記工程a)では、前記シャフトの前記先端部を前記部材として用いることを特徴とする。
請求項4に係る発明は、請求項1乃至3のいずれか記載のスラストプレートの製造方法であって、前記工程a)では、加熱された前記部材を前記中間部材の前記一方側の面に押し付けることにより、前記中間部材を軸方向一方側から加熱することを特徴とする。
請求項5に係る発明は、請求項1乃至4のいずれか記載のスラストプレートの製造方法であって、前記中間部材を加熱する前に、前記中間部材の他方側の面に、前記中間部材を構成する樹脂よりも軟化温度が高い材料により構成された支持部材を固着する工程を更に含むことを特徴とする。
請求項6に係る発明は、請求項1乃至5のいずれか記載のスラストプレートの製造方法であって、前記工程a)より後に、前記中間部材の前記一方側の面に、前記中間部材を構成する樹脂よりも耐摩耗性の高い被膜層を形成する工程を更に含むことを特徴とする。
請求項7に係る発明は、請求項1乃至6のいずれか記載のスラストプレートの製造方法であって、前記工程a)では、前記部材を前記中心軸を中心として回転させつつ、前記中間部材の前記一方側の面に前記部材を押し付けることを特徴とする。
請求項8に係る発明は、請求項1乃至7のいずれか記載のスラストプレートの製造方法であって、前記工程a)では、前記中間部材上に前記凹形曲面を形成すると同時に、前記凹形曲面の周囲に隆起部を形成する。
請求項9に係る発明は、軸受装置であって、請求項1乃至8のいずれか記載の製造方法で製造されたスラストプレートを備えたことを特徴とする。
請求項10に係る発明は、軸受装置に用いられ、先端部に凸型曲面を有し中心軸を中心として回転するシャフトとの間でスラスト軸受部を形成すると共に、その軸方向一方側の面が前記シャフトの前記先端部に当接するスラストプレートの製造方法であって、工程a)熱可塑性樹脂又は熱硬化性樹脂を素材とする板状の中間部材の軸方向他方側の面に、前記中間部材を構成する樹脂よりも軟化温度が高い材料により構成された支持部材を固着する工程と、工程b)前記中間部材を加熱しつつ、凸型曲面を有する部材を前記中間部材の前記一方側の面に押し付けて、前記中間部材上に凹形曲面を形成する工程と、を含むことを特徴とする。
請求項11に係る発明は、請求項10記載のスラストプレートの製造方法であって、前記部材の前記凸型曲面は、前記シャフトの前記先端部よりも曲率半径が大きいことを特徴とする。
請求項12に係る発明は、請求項10記載のスラストプレートの製造方法であって、前記工程b)では、前記シャフトの前記先端部を前記部材として用いることを特徴とする。
請求項13に係る発明は、請求項10乃至12のいずれか記載のスラストプレートの製造方法であって、前記工程b)では、加熱された前記部材を前記中間部材の前記一方側の面に押し付けることにより、前記中間部材を軸方向一方側から加熱することを特徴とする。
請求項14に係る発明は、請求項10乃至13のいずれか記載のスラストプレートの製造方法であって、前記工程b)では、前記支持部材を加熱することにより、前記支持部材の熱を前記支持部材から前記中間部材の前記他方側の面を介して前記中間部材の前記一方側の面に伝えることを特徴とする。
請求項15に係る発明は、請求項10乃至14のいずれか記載のスラストプレートの製造方法であって、前記工程b)では、前記部材を前記中心軸を中心として回転させつつ、前記中間部材の前記一方側の面に前記部材を押し付けることを特徴とする。
請求項16に係る発明は、請求項10乃至15のいずれか記載のスラストプレートの製造方法であって、前記工程b)では、前記中間部材上に前記凹形曲面を形成すると同時に、前記凹形曲面の周囲に隆起部を形成することを特徴とする。
請求項17に係る発明は、軸受装置であって、請求項10乃至16のいずれか記載の製造方法で製造されたスラストプレートを備えたことを特徴とする。
請求項18に係る発明は、先端部に凸型曲面を有し中心軸を中心として回転するシャフトを支持するスラスト軸受部を備えた軸受装置の製造方法であって、工程a)軸方向一方側が開口し他方側が閉塞され、前記他方側に位置すると共に熱可塑性樹脂又は熱硬化性樹脂を素材とする中間部材と、前記中間部材から軸方向一方側に延びる円筒部と、を備えるハウジングの内部に、軸受穴を有する円筒状のスリーブを配置する工程と、工程b)前記軸受穴に凸形曲面を有する部材を軸方向一方側から挿入する工程と、工程c)前記工程b)の後に、前記部材の中心軸と前記スリーブの中心軸とが一致するように、前記部材と前記スリーブとの間の相対位置を定める調芯を行う工程と、工程d)前記工程c)の状態で、前記中間部材を前記軸方向一方側から加熱しつつ、前記部材を前記中間部材の一方側の面に押し付けて、前記中間部材上に凹形曲面を形成する工程と、を含むことを特徴とする。
請求項19に係る発明は、請求項18記載の軸受装置の製造方法であって、前記工程c)では、前記部材と前記スリーブとの間の微少間隙に圧縮気体を給送し前記微少間隙を昇圧させることにより、前記調芯を行うことを特徴とする。
請求項20に係る発明は、請求項19記載の軸受装置の製造方法であって、前記部材の外周面には、前記部材の径方向外方へ開口する開口部が形成されており、前記工程c)では、前記圧縮気体は、前記部材の前記開口部から前記微少間隙へ給送されることを特徴とする。
請求項21に係る発明は、請求項18乃至20のいずれか記載の軸受装置の製造方法であって、前記部材の外周面は、前記スリーブの内周面よりも硬度の低い材料で構成されていることを特徴とする。
請求項22に係る発明は、請求項18乃至21のいずれか記載の軸受装置の製造方法であって、前記部材の外周面は、周方向に略均一な厚みを有する弾性体に被覆されており、前記工程c)では、前記工程b)において前記弾性体の外周面が前記スリーブの内周面に弾性変形した状態で当接することにより、前記部材と前記スリーブとの間の相対位置を定める調芯が行われることを特徴とする。
請求項23に係る発明は、請求項18乃至22のいずれか記載の軸受装置の製造方法であって、前記工程d)では、前記部材を前記中心軸を中心として回転させつつ、前記中間部材の前記一方側の面に前記部材を押し付けることを特徴とする。
請求項24に係る発明は、請求項18乃至23のいずれか記載の軸受装置の製造方法であって、前記工程d)では、加熱された前記部材を前記中間部材の前記一方側の面に押し付けることにより、前記中間部材を軸方向一方側から加熱すると共に、前記一方側の面に凹形曲面を形成することを特徴とする。
請求項25に係る発明は、請求項18乃至24のいずれか記載の軸受装置の製造方法であって、前記工程d)では、前記シャフトの前記先端部を前記部材として用いることを特徴とする。
請求項26に係る発明は、請求項25記載の軸受装置の製造方法であって、前記工程d)では、前記シャフトの前記先端部を前記中間部材の前記一方側の面に押し付けると同時に、前記シャフトと前記シャフトの周囲の部材との間に前記軸方向の所定の隙間を形成することを特徴とする。
請求項27に係る発明は、請求項18乃至26のいずれか記載の軸受装置の製造方法であって、前記ハウジングは、前記軸方向他方側に位置すると共に前記円筒部に固着された底部を備え、前記中間部材は、前記底部の軸方向一方側に配置されていることを特徴とする。
請求項28に係る発明は、請求項18乃至26のいずれか記載の軸受装置の製造方法であって、前記円筒部と前記中間部材とは熱可塑性樹脂又は熱硬化性樹脂を素材として継ぎ目のない単一部材から構成され、前記中間部材の前記一方側の面に凹型曲面を形成することを特徴とする。
請求項29に係る発明は、請求項18乃至28のいずれか記載の軸受装置の製造方法であって、前記工程d)では、前記中間部材上に前記凹形曲面を形成すると同時に、前記凹形曲面の周囲に隆起部を形成することを特徴とする。
請求項30に係る発明は、ディスクを回転させるディスク駆動用のスピンドルモータであって、請求項18乃至29のいずれか記載の製造方法により製造された軸受装置と、磁束発生部と、前記シャフトおよび前記スリーブの一方とを備えた静止部と、前記磁束発生部に対向するロータマグネットと、前記シャフトおよび前記スリーブの他方とを備えたロータ部と、を備えることを特徴とする。
請求項1〜9に記載の発明によれば、熱可塑性樹脂を素材とする中間部材を軸方向一方側から加熱しつつ、凸型曲面を有する部材を中間部材の前記一方側の面に押し付けることにより、中間部材上に凹形曲面を形成する。これにより、凹形曲面を有するスラストプレートを容易かつ迅速に作製することができる。スラストプレート上に形成された凹形曲面は、シャフトからの圧力を分散させ、スラストプレートの摩耗を抑制する。
特に、請求項2に記載の発明によれば、シャフトの先端部よりも曲率半径の大きい凸型曲面を有する部材を使用して、中間部材の一方側の面に凹形曲面を形成する。このため、作製されたスラストプレートの凹形曲面の曲率半径は、シャフトの先端部の曲率半径よりも大きくなり、スラストプレート上にシャフトを良好に支持することができる。
特に、請求項3に記載の発明によれば、シャフトの先端部を利用して中間部材上に凹形曲面を形成する。このため、軸受装置とは別体の工具を使用することなく、中間部材上に凹形曲面を形成することができる。これにより、スラストプレートを更に容易に作製することができる。
特に、請求項4に記載の発明によれば、加熱された部材を中間部材の一方側の面に押し付けることにより、中間部材を軸方向一方側から加熱する。このため、中間部材の軸方向一方側の面を容易に加熱することができる。
特に、請求項5に記載の発明によれば、中間部材の他方側の面に、熱可塑性樹脂よりも軟化温度が高い材料により構成された支持部材を固着する。このため、中間部材の一方側の面に凹形曲面を形成するときの熱や圧力により中間部材が全体的に撓んでしまうことを防止することができる。また、中間部材の厚みが小さい場合や、支持部材を金型内に配置して中間部材をインサート成型により得る場合であっても、中間部材上に良好に凹形曲面を形成することができる。
特に、請求項6に記載の発明によれば、中間部材の一方側の面に、熱可塑性樹脂よりも耐摩耗性の高い被膜層を形成する。このため、シャフトによるスラストプレートの摩耗を更に抑制することができる。
特に、請求項7に記載の発明によれば、部材を中心軸を中心として回転させつつ、中間部材の一方側の面に部材を押し付ける。このため、凹形曲面を中心軸上に精度よく形成することができ、シャフトによるスラストプレートの偏摩耗を防止することができる。
特に、請求項8に記載の発明によれば、中間部材上に凹形曲面を形成すると同時に、凹形曲面の周囲に隆起部を形成する。このため、スラストプレートの凹形曲面がシャフトの先端部から外れてしまうことを防止することができる。
また、請求項10〜17に記載の発明によれば、熱可塑性樹脂を素材とする中間部材を加熱しつつ、凸型曲面を有する部材を中間部材の一方側の面に押し付けることにより、中間部材上に凹形曲面を形成する。これにより、凹形曲面を有するスラストプレートを容易かつ迅速に作製することができる。また、中間部材の他方側の面に、熱可塑性樹脂よりも軟化温度が高い材料により構成された支持部材を固着する。このため、中間部材の一方側の面に凹形曲面を形成するときの熱や圧力により中間部材が全体的に撓んでしまうことを防止することができる。また、中間部材の厚みが小さい場合や、支持部材を金型内に配置して中間部材をインサート成型により得る場合であっても、中間部材上に良好に凹形曲面を形成することができる。
特に、請求項11に記載の発明によれば、シャフトの先端部よりも曲率半径の大きい凸型曲面を有する部材を使用して、中間部材の一方側の面に凹形曲面を形成する。このため、作製されたスラストプレートの凹形曲面の曲率半径は、シャフトの先端部の曲率半径よりも大きくなり、スラストプレート上にシャフトを良好に支持することができる。
特に、請求項12に記載の発明によれば、シャフトの先端部を利用して中間部材上に凹形曲面を形成する。このため、軸受装置とは別体の工具を使用することなく、中間部材上に凹形曲面を形成することができる。これにより、スラストプレートを更に容易に作製することができる。
特に、請求項13に記載の発明によれば、加熱された部材を中間部材の一方側の面に押し付けることにより、中間部材を軸方向一方側から加熱する。このため、中間部材の軸方向一方側の面を容易に加熱することができる。
特に、請求項14に記載の発明によれば、支持部材を加熱することにより、支持部材の熱を支持部材から中間部材の他方側の面を介して中間部材の一方側の面に伝える。このため、中間部材を容易に加熱することができる。
特に、請求項15に記載の発明によれば、部材を中心軸を中心として回転させつつ、中間部材の一方側の面に部材を押し付ける。このため、凹形曲面を中心軸上に精度よく形成することができ、シャフトによるスラストプレートの偏摩耗を防止することができる。
特に、請求項16に記載の発明によれば、中間部材上に凹形曲面を形成すると同時に、凹形曲面の周囲に隆起部を形成する。このため、スラストプレートの凹形曲面がシャフトの先端部から外れてしまうことを防止することができる。
また、請求項18〜30に記載の発明によれば、熱可塑性樹脂を素材とする中間部材を軸方向一方側から加熱しつつ、凸型曲面を有する部材を中間部材の一方側の面に押しつけることにより、中間部材上に凹形曲面を形成する。これにより、凹形曲面を有するスラストプレートを容易かつ迅速に作製することができる。また、部材とスリーブとを調芯した状態で、部材を中間部材の一方側の面に押し付ける。このため、スリーブに支持されるシャフトの中心軸と中間部材上に形成される凹形曲面の中心軸とを一致させて、スラストプレートの偏摩耗を防止することができる。
特に、請求項19に記載の発明によれば、部材とスリーブとの間の微少間隙に圧縮気体を給送して微少間隙を昇圧させることにより、調芯を行う。このため、部材とスリーブとを良好に調芯することができる。
特に、請求項20に記載の発明によれば、部材の外周面に形成された開口部から圧縮気体を給送することにより、部材とスリーブとの間の微小間隙を昇圧させる。このため、部材とスリーブとの間の微小間隙を容易に昇圧させることができる。
特に、請求項21に記載の発明によれば、部材の外周面は、スリーブの内周面よりも硬度の低い材料で構成されている。このため、部材の外周面とスリーブの内周面とが接触した場合にも、スリーブの内周面が損傷することを防止することができる。
特に、請求項22に記載の発明によれば、部材の外周面を被覆する弾性体とスリーブの内周面とを当接させることにより、部材とスリーブとを調芯する。このため、部材とスリーブとを良好に調芯することができる。
特に、請求項23に記載の発明によれば、部材を中心軸を中心として回転させつつ、中間部材の一方側の面に部材を押し付ける。このため、凹形曲面を中心軸上に精度よく形成することができ、シャフトによるスラストプレートの偏摩耗を防止することができる。
特に、請求項24に記載の発明によれば、加熱された部材を中間部材の一方側の面に押し付けることにより、中間部材を軸方向一方側から加熱する。このため、中間部材の軸方向一方側の面を容易に加熱することができる。
特に、請求項25に記載の発明によれば、シャフトの先端部を利用して中間部材上に凹形曲面を形成する。このため、軸受装置とは別体の工具を使用することなく、中間部材上に凹形曲面を形成することができる。これにより、スラストプレートを更に容易に作製することができる。
特に、請求項26に記載の発明によれば、シャフトの先端部を中間部材の一方側の面に押し付けると同時に、シャフトとシャフトの周囲の部材との間に軸方向の所定の隙間を形成する。このため、中間部材上の凹形曲面と所定の隙間とを同時に形成することができる。
特に、請求項29に記載の発明によれば、中間部材上に凹形曲面を形成すると同時に、凹形曲面の周囲に隆起部を形成する。このため、スラストプレートの凹形曲面がシャフトの先端部から外れてしまうことを防止することができる。
以下、本発明の好適な実施形態について、図面を参照しつつ説明する。なお、以下の説明では、説明の便宜上、図1〜3,図5〜7,図9〜13,図15〜18,図20〜23,および図26における上下方向に従って「上方」、「下方」、「上面」、「下面」等の語句を使用する。しかしながら、これにより本発明に係る軸受装置およびスピンドルモータの設置姿勢が限定されるものではない。
<1.ディスク駆動装置の構成>
図1は、本発明の一実施形態に係る軸受装置5を備えたディスク駆動装置2の縦断面図である。ディスク駆動装置2は、磁気ディスク22を回転させつつ情報の読み出しおよび書き込みを行うハードディスク装置である。図1に示したように、ディスク駆動装置2は、主として、装置ハウジング21、ディスク22、スピンドルモータ1、およびアクセス部23を備えている。
装置ハウジング21は、カップ状の第1ハウジング部材211と、板状の第2ハウジング部材212とを有している。第1ハウジング部材211は、上部に開口を有し、第1ハウジング部材211の内側の底面には、スピンドルモータ1とアクセス部23とが設置されている。第2ハウジング部材212は、第1ハウジング部材211の上部の開口を覆うように第1ハウジング部材211に接合され、第1ハウジング部材211と第2ハウジング部材212とに囲まれた装置ハウジング21の内部空間213に、ディスク22、スピンドルモータ1、およびアクセス部23が収容される。装置ハウジング21の内部空間213は、塵や埃が極度に少ない清浄な空間とされている。
ディスク22は、中央部に孔を有する円板状の情報記録媒体である。ディスク22は、スピンドルモータ1のハブ部材42に装着され、スピンドルモータ1上に回転可能に支持されている。一方、アクセス部23は、ヘッド231、アーム232、およびヘッド移動機構233を有している。ヘッド231は、ディスク22の主面に近接し、ディスク22に対して情報の読み出しおよび書き込みを磁気的に行う。アーム232は、ヘッド231を支持しつつディスク22の主面に沿って揺動する。ヘッド移動機構233は、ディスク22の側方に設置されている。ヘッド移動機構233は、アーム232を揺動させることにより、ヘッド231をディスク22に対して相対的に移動させる。これにより、ヘッド231は、回転するディスク22の必要な位置にアクセスし、ディスク22に対して情報の読み出しおよび書き込みを行う。なお、ヘッド231は、ディスク22に対する情報の読み出しおよび書き込みのいずれか一方のみを行うものであってもよい。
<2.スピンドルモータの構成>
続いて、上記のスピンドルモータ1の詳細な構成について説明する。図2は、スピンドルモータ1の縦断面図である。図2に示したように、スピンドルモータ1は、主として、ディスク駆動装置2の装置ハウジング21に固定されるステータ部3と、ディスク22を装着して所定の中心軸L周りに回転するロータ部4とを備えている。
ステータ部3は、ベース部材31、ステータコア32、コイル33、および固定軸受ユニット34を有している。
ベース部材31は、アルミニウム等の金属材料により形成され、ディスク駆動装置2の装置ハウジング21にねじ止め等により固定されている。ベース部材31には、中心軸Lの周りにおいて軸方向(中心軸Lに沿った方向。以下同じ。)に突出した略円筒形状のホルダ部311が形成されている。ホルダ部311の内周側(中心軸Lに対する内周側。以下同じ。)は、固定軸受ユニット34を保持するための貫通孔となっている。また、ホルダ部311の外周側(中心軸Lに対する外周側。以下同じ。)の面は、ステータコア32を嵌着させる取り付け面となっている。
なお、本実施形態では、ベース部材31と第1ハウジング部材211とを別体としているが、ベース部材31と第1ハウジング部材211とが1つの部材から構成されていてもよい。この場合、ベース部材31および第1ハウジング部材211を構成する部材にホルダ部311が形成されることとなる。
ステータコア32は、ホルダ部311の外周面に嵌着されるコアバック321と、コアバック321から径方向(中心軸Lに対する径方向。以下同じ。)の外側に向けて突出形成される複数本のティース部322とを有している。ステータコア32は、例えば、電磁鋼板を軸方向に積層させた積層鋼板により形成されている。
コイル33は、ステータコア32の各ティース部322の周囲に巻回された導線により構成されている。コイル33は、所定の電源装置(図示省略)と接続されている。電源装置からコイル33に駆動電流を与えると、ティース部322には径方向の磁束が発生する。ティース部322に発生した磁束は、後述するロータマグネット43の磁束と互いに作用し、ロータ部4を中心軸Lの周りに回転させるためのトルクを発生させる。
固定軸受ユニット34は、ロータ部4側のシャフト41を相対的に回転可能に支持するための機構である。固定軸受ユニット34は、シャフト41とともに流体動圧軸受装置5を構成する。図3は、流体動圧軸受装置5の構成を示した拡大縦断面図である。図3に示したように、固定軸受ユニット34は、スリーブ341、スラストプレート342、シール部材343、および軸受ハウジング344を有している。
スリーブ341は、シャフト41が挿入される軸受穴341aを有する円筒形状の部材である。スリーブ341は、軸受ハウジング344の内周面に固定されている。スリーブ341は、軸受穴341aにシャフト41を支持してシャフト41の径方向の移動を規制しつつ、シャフト41の中心軸L周りの回転を許容するラジアル軸受部を構成している。スリーブ341の内周面とシャフト41の外周面とは微小な(例えば、数μm程度の)隙間を隔てて互いに対向し、その隙間には、後述する潤滑オイル51が充填されている。スリーブ341は、金属粉末を加熱しつつ結合固化させることにより得られた焼結体により構成されている。このため、スリーブ341は、微視的に見れば、多数の微小な空洞を有する多孔質体となっており、その表面に潤滑オイルを含浸する。シャフト41は、潤滑オイルを含浸したスリーブ341に対して良好に摺動する。また、焼結体として構成されるスリーブ341は、比較的安価に得ることができる。
スラストプレート342は、シャフト41の下方に配置された円板状の部材である。スラストプレート342は、その上面をシャフト41の下端部41bに当接させることによりシャフト41を軸方向に支持しつつ、シャフト41の中心軸L周りの回転を許容するスラスト軸受部を構成している。スラストプレート342の上面の中央部分には、凹形曲面(部分球面形状)をなした凹部342aが形成されている。凹部342aの曲率半径は、シャフト41の下端部41bの曲率半径と同一又はそれより大きく設定されている。このため、凹部342aの上面はシャフト41の下端部41bと点または面で接触し、スラストプレート342とシャフト41との間には、いわゆるピボット軸受機構が構成されている。シャフト41は、このようなピボット軸受機構において微小な回転抵抗で中心軸L周りに回転することができる。また、スラストプレート342上に形成された凹部342aは、シャフト41からスラストプレート342への圧力を分散させ、スラストプレート342の上面の摩耗を抑制する。
スラストプレート342は、ポリアセタールやナイロン等の熱可塑性樹脂を素材とし、後述する製造方法により製造される。熱可塑性樹脂としては、ポリアミドイミド(PAI)、ポリエーテルエーテルケトン(PEEK)、熱可塑性ポリイミド(TPI)、ポリテトラフルオロエチレン(PTFE)、ポリフェニレンサルファイド(PPS)、ポリブチレンテレフタレート(PBT)等を使用することも可能である。
但し、スラストプレート342は、必ずしも熱可塑性樹脂のみにより形成されたものである必要はなく、熱可塑性樹脂と熱硬化性樹脂との混合物や、耐摩耗性を向上させるためのフィラを混入させたものであってもよい。フィラとしては、例えば、カーボンファイバー、カーボンナノチューブ、カーボン粉末、グラファイト、グラスファイバー、チタン酸カリウム等を使用することが可能である。
シール部材343は、スリーブ341の上部に配置された円環状の部材である。シール部材343の内周面343aは、上方に向かうに従って内径が増大する傾斜面となっている。このため、シール部材343の内周面343aとシャフト41の外周面との間の間隙343bの幅は、上方に向かうに従って増大する。間隙343bに形成される潤滑オイル51の界面は、表面張力によりメニスカス状となり、これにより潤滑オイル51が固定軸受ユニット34の外部へ漏れ出すことが防止される。すなわち、シール部材343とシャフト41との間隙343bにテーパシールが構成される。シール部材343は、例えば、ステンレスやアルミニウム等の金属あるいは樹脂により形成されたものを使用することができる。なお、シール部材343は、スリーブ341と一体に形成されていてもよい。
軸受ハウジング344は、上記のスリーブ341、スラストプレート342、およびシール部材343を内部に収容する有底略円筒状の部材である。軸受ハウジング344は、ベース部材31のホルダ部311の内周側に形成された貫通孔の内部に、圧入又は焼きばめにより固定されている。スリーブ341およびシール部材343は、軸受ハウジング344の内周面に固定され、スラストプレート342は軸受ハウジング344の底面上に配置されている。軸受ハウジング344は、例えば、冷間圧延鋼板(SPCC,SPCD,SPCE)の表面に亜鉛鍍金を施した亜鉛鍍金鋼板(SECE)を、有底略円筒状にプレス成形することにより得られる。
軸受ハウジング344の内部には、エステルを主成分とする潤滑オイル51が充填されている。潤滑オイル51としては、例えば、ポリオールエステル系オイルやジエステル系オイル等のエステルを主成分とするオイルが使用される。エステルを主成分とするオイルは、耐摩耗性、熱安定性、および流動性に優れているため、流体動圧軸受装置5の潤滑オイル51として好適である。潤滑オイル51は、スリーブ341とシャフト41との間の隙間だけではなく、スラストプレート342と軸受ハウジング344との間や、スリーブ341と軸受ハウジング344との間に部分的に形成された隙間にも、連続して充填されている。すなわち、軸受ハウジング344の内部全体が、潤滑オイル51で満たされている。
図2に戻る。ロータ部4は、シャフト41、ハブ部材42、およびロータマグネット43を有している。
シャフト41は、中心軸Lに沿って設けられた略円柱形状の部材である。シャフト41は、スリーブ341の軸受穴341aに下部を挿入した状態で固定軸受ユニット34に支持されており、中心軸Lを中心として回転する。シャフト41の外周面には、シャフト41の外周面とスリーブ341の内周面との間に介在する潤滑オイル51に流体動圧を発生させるためのヘリングボーン形状のラジアル動圧溝列41aが刻設されている。シャフト41が回転するときには、ラジアル動圧溝列41aにより潤滑オイル51が加圧され、潤滑オイル51が作動流体として作用することによって、シャフト41が径方向に支持されつつ回転する。なお、ラジアル動圧溝列41aは、シャフト41の外周面とスリーブ341の内周面とのいずれか一方に刻設されていればよい。
シャフト41の下端部付近には、固定軸受ユニット34からシャフト41が抜け出すことを防止するための鍔部材411が固定されている。鍔部材411は、シャフト41と一体化されてシャフト41の外周面から径方向に突出する突出部を形成する。鍔部材411の上面は、スリーブ341の下面と軸方向に対向する。ロータ部4に上方へ向かう力が作用したときには、スリーブ341の下面に鍔部材411の上面が当接し、これによりステータ部3とロータ部4とが分離することが防止される。なお、シャフト41および鍔部材411は、単一の部材により形成されていてもよい。
シャフト41の下端部41bは、凸形曲面(球面形状)をなしており、鍔部材411よりも更に下方に突出している。シャフト41の下端部41bは、スラストプレート342の凹部342a(図3参照)に当接し、これにより、シャフト41は軸方向に支持される。
ハブ部材42は、シャフト41に固定されてシャフト41とともに回転する部材である。ハブ部材42は、中心軸Lの周囲において径方向外側に広がる形状を有している。より詳細に説明すると、ハブ部材42は、シャフト41の上端部に圧入又は焼きばめにより接合される接合部421と、接合部421から径方向外側および下方へ向けて広がる胴部422と、胴部422の外周縁から垂下する垂下部423とを有している。ハブ部材42は、このような形状により、ステータコア32、コイル33、および固定軸受ユニット34の上方を覆う。
ハブ部材42の胴部422には、ディスク22を支持するための第1支持面422aおよび第2支持面422bが形成されている。第1支持面422aは、中心軸Lに対して垂直に形成された平面であり、第2支持面422bは、第1支持面422aの内周側において中心軸Lに対して平行に形成された円筒面である。ハブ部材42上にディスク22が装着されたときには、第1支持面422aにディスク22の下面が接触するとともに第2支持面422bにディスク22の内周部(内周面又は内周縁)が接触し、これによりディスク22が水平姿勢で支持される。ハブ部材42は、例えば、アルミニウム、磁性SUS(ステンレス)、冷間圧延鋼板(SPCC,SPCD,SPCE)等の金属材料から形成される。
ロータマグネット43は、ハブ部材42の垂下部423の内周面に固定されている。ロータマグネット43は、中心軸Lを取り囲むように円環状に配置されている。ロータマグネット43の内周面は磁極面となっており、ステータコア32の複数のティース部322の外周面に対向する。
このようなスピンドルモータ1において、ステータ部3のコイル33に駆動電流を与えると、ステータコア32の複数のティース部322に径方向の磁束が発生する。そして、ティース部322とロータマグネット43との間の磁束の作用によりトルクが発生し、ステータ部3に対してロータ部4が中心軸Lを中心として回転する。ハブ部材42上に支持されたディスク22は、シャフト41およびハブ部材42とともに中心軸Lを中心として回転する。
<3.スラストプレートおよび流体動圧軸受装置の製造手順>
続いて、上記のスピンドルモータ1の一部を構成するスラストプレート342および流体動圧軸受装置5の製造手順について説明する。図4は、スラストプレート342の製造手順を示したフローチャートである。スラストプレート342を製造するときには、図4に示したように、まず、スラストプレートの母材となる中間部材342pを準備する(ステップS11)。中間部材342pは、ポリアセタールやナイロン等の熱可塑性樹脂により形成された円板状の部材であり、その厚みは、例えば0.5mm程度とされる。
次に、中間部材342pの上面に凹部342aを形成するための工具60を用意する。工具60は、中間部材342pよりも軟化温度の高い、例えば金属製の部材を使用すればよい。図5に示したように、工具60は略円柱形状をなしており、工具60の下端部60aは、中間部材342pの上面に形成すべき凹部342aの曲面形状に対応した凸形曲面(部分球面形状)となっている。工具60の下端部60aは、待機状態において所定の加熱機構71に挿入され、加熱機構71により所定の温度に加熱される(ステップS12)。
加熱機構71は、例えば、高周波誘導加熱器やホットプレート等の公知の種々の加熱手段を利用して構成することができる。工具60と、加熱機構71と、工具60を移動させるための駆動機構(図示省略)とが、互いに連結された1つの加工装置を構成していてもよい。
加熱機構71において工具60の下端部60aが十分に加熱されると、図5に示したように、加熱機構71から工具60を取り出し、中間部材342pの上方に工具を配置する。その後、図6に示したように、中心軸Lに沿って工具60を下降させ、中間部材342pの上面の中央位置に工具60の下端部60aを当接させるとともに、中間部材342pの上面に工具60の下端部を押し付ける(ステップS13)。そして、所定時間の押圧の後、図7に示したように、中間部材342pから工具60を引き離す。
上記のステップS13において、中間部材342pの上面は、工具60の下端部60aに蓄積された熱と工具60からの押圧力とを受けて軟化変形する。これにより、中間部材342pの上面には、凹形曲面をなした凹部342aが形成される。そして、凹部342aの形成された中間部材342pが、スラストプレート342として使用される。
このように、本実施形態では、熱可塑性樹脂を素材とする中間部材342pの上面に、加熱された工具60を押し付け、中間部材342pを軟化変形させることにより、凹部342aを形成する。このため、凹部342aを有するスラストプレート342を容易かつ迅速に作製することができる。
上記のステップS12〜S13では、シャフト41の下端部41bと同一の曲率半径若しくはそれより大きい曲率半径の凸形曲面を有する工具60を使用すればよい。このようにすれば、中間部材342pの上面に形成される凹部342aの曲率半径も、シャフト41の下端部41bの曲率半径と同一もしくはそれより大きくなる。このため、スラストプレート342の上面に形成された凹部342a上にシャフト41を良好に支持することができる。凹部342aの曲率半径は、使用する工具60の下端部60aの曲率半径により決まる。このため、シャフト41の下端部41bの曲率半径に応じて工具60を適切に選定すれば、中間部材342p上に適切な曲率半径の凹部342aを形成することができ、耐摩耗性の高いスラストプレート342を作製することができる。
図8は、上記の手順で作製されたスラストプレート342を使用して、流体動圧軸受装置5を製造するときの手順を示したフローチャートである。流体動圧軸受装置5を製造するときには、まず、上記の手順で作製されたスラストプレート342を軸受ハウジング344の内部に投入し、軸受ハウジング344の底部上面にスラストプレート342を配置する(ステップS21)。続いて、軸受ハウジング344の内部に、シャフト41、スリーブ341、およびシール部材343を順次に投入し、各部材を軸受ハウジング344内の所定の位置に配置する(ステップS22)。その後、軸受ハウジング344の内部に潤滑オイル51を充填し(ステップS23)、流体動圧軸受装置5を完成させる。
なお、流体動圧軸受装置5を製造するときには、軸受ハウジング344に、ステータ部3側のベース部材31、ステータコア32、およびコイル33が取り付けられていてもよい。また、シャフト41に、ロータ部4側のハブ部材42およびロータマグネット43が取り付けられていてもよい。
<4.変形例>
以上、本発明の一実施形態について説明したが、本発明は上記の実施形態に限定されるものではなく、種々の変形が可能である。以下では、本発明の種々の変形例について説明する。
<4−1.中間部材の加熱について>
上記の実施形態では、工具60の下端部60aを加熱し、工具60から中間部材342pの上面に熱を与えていた。しかしながら、他の方法で中間部材342pの上面に熱を与えてもよい。例えば、工具60とは別個の熱源を中間部材342pの上面に接近または当接させて、中間部材342pの上面に熱を与えるようにしてもよい。但し、1つの工具60で中間部材342pの上面に熱および圧力を与える方が、加工時の構成としてシンプルであり、また、熱と圧力とを中間部材342p上の同一位置に作用させることができる点で望ましい。
<4−2.支持部材について>
上記の実施形態では、単独の中間部材342pに対して工具60を当接させていた。しかしながら、ステップS11において準備された中間部材342pの下面側に、図9〜図10に示したような支持部材342qを固着し、その後に、中間部材342pの上面に工具60の下端部60aを当接させるようにしてもよい。支持部材342qは、中間部材342pよりも軟化温度および剛性の高い材料、例えば金属により構成すればよい。このようにすれば、凹部342aを形成するときの熱や圧力により中間部材342pが全体的に撓んでしまうことを防止することができる。特に、中間部材342p自体の厚みが小さい場合や、支持部材342qを金型内に配置して中間部材342pをインサート成型により得る場合であっても、中間部材342pの上面に良好に凹部342aを形成することができる。
図9〜図10に示したように、支持部材342qに加熱機構72を接続して、支持部材342qを加熱するようにしてもよい。具体的には、中間部材342pの上面に凹部342aを形成するとき、あるいは形成する前に、支持部材342qを加熱し、中間部材342pの下面側を介して中間部材342pの上面付近にまで熱を与えるようにすればよい。このようにすれば、中間部材342pの上面付近に与えられる熱量を増加させることができ、凹部342aを更に容易に形成することができる。場合によっては、工具60の下端部60aを加熱することなく、支持部材342qを加熱して、中間部材342pを下面側からのみ加熱するようにしてもよい。なお、加熱機構72は、例えば、高周波誘導加熱器やホットプレート等の公知の種々の加熱手段を利用して構成することができる。
<4−3.保護膜について>
また、ステップS11において準備された中間部材342pの上面に、図11〜図12に示したような保護膜342rを形成し、その後に、保護膜342rの上面に工具60の下端部60aを当接させるようにしてもよい。このようにすれば、シャフト41との摺接によるスラストプレート342の摩耗を更に抑制することができる。保護膜342rは、中間部材342pを構成する熱可塑性樹脂よりも耐摩耗性の高い被膜層であればよく、例えば、DLC(diamond like carbon)膜とすればよい。なお、中間部材342pの上面に凹部342aを形成した後に、凹部342aを含む中間部材342pの上面に保護膜342rを形成するようにしてもよい。
<4−4.軸受ハウジングの内部で中間部材に凹部を形成する場合について>
上記の実施形態では、軸受ハウジング344の外部において中間部材342pの上面に凹部342aを形成していた。しかしながら、軸受ハウジング344の内部に中間部材342pを配置した後、軸受ハウジング344の内部に工具60を挿入して、中間部材342pの上面に凹部342aを形成するようにしてもよい。このようにすれば、軸受ハウジング344の外部に中間部材342pを配置するためのスペースを設ける必要はなく、また、流体動圧軸受装置5の製造工程もより簡易化することができる。
特に、軸受ハウジング344と中間部材342pとが予め一体化されている場合、例えば、図13に示した流体動圧軸受装置6のように、中間部材342pと軸受ハウジング344の円筒部344aとが熱可塑性樹脂を素材として継ぎ目のない単一部材から構成されている場合には、軸受ハウジング344の内部に工具60を挿入して、中間部材342pの上面に凹部342aを形成すればよい。
このような場合における流体動圧軸受装置の製造手順の例を、図14のフローチャートを参照しつつ説明する。まず、予め中間部材342pが内部に配置された軸受ハウジング344、あるいは、中間部材342pと一体化された軸受ハウジング344を準備する(ステップS31)。続いて、準備された軸受ハウジング344の内部の所定の位置にスリーブ341を配置する(ステップS32)。また、上記実施形態と同じような加熱機構71において、工具60の下端部60aを加熱する(ステップS33)。そして、図15に示したように、軸受ハウジング344の上部の開口から軸受ハウジング344の内部のスリーブ341の軸受穴341aに工具60を挿入し、中間部材342pの上面の中央位置に工具60の下端部60aを押し付ける(ステップS34)。その後、軸受ハウジング344から工具60を取り出し、シャフト41およびシール部材343を軸受ハウジング344内の所定の位置に順次に配置する(ステップS35)。最後に、軸受ハウジング344の内部に潤滑オイル51を充填し(ステップS36)、流体動圧軸受装置を完成させる。
スリーブ341の軸受穴341aに工具60を挿入する場合には、図15に示したように、工具60の下端部60aのうち中央部付近のみに蓄熱部60bを設け、工具60の周縁部には熱を蓄積しないようにすることが望ましい。このようにすれば、工具60からスリーブ341への熱的影響を抑制することができる。また、工具60の少なくとも外周面は、スリーブ341の内周面よりも硬度の低い材料で構成されていることが望ましい。このようにすれば、工具60とスリーブ341とが接触した場合に、スリーブ341が損傷してしまうことを防止することができる。
スリーブ341の軸受穴341aに工具60を挿入する場合には、スリーブ341に対する工具60の位置を調整してスリーブ341および工具60の中心軸を一致させる、いわゆる調芯を行うことが望ましい。そして、スリーブ341と工具60とが調芯された状態で、中間部材342pの上面に工具60の下端部60aを当接させることが望ましい。このようにすれば、スリーブ341に支持されるシャフト41の中心軸と、中間部材342p上に形成される凹部342aの中心軸とを一致させることができるため、スラストプレート342の偏摩耗を防止することができ、シャフト41の回転精度を向上させることもできる。
具体的には、例えば、図16に示したように、工具60の外周面に形成された複数の開口部60cから圧縮気体を吐出させ、工具60とスリーブ341との間に吐出された圧縮気体の静圧により、スリーブ341と工具60とを調芯すればよい。複数の開口部60cは、工具60の外周面に周方向に沿って等間隔に形成され、各開口部60cは径方向外側に向けて開口していることが望ましい。
また、図17に示したように、工具60の外周面を周方向に均一な厚みを有する弾性体61で被覆し、スリーブ341の内周面と弾性体61の外周面とを接触させつつスリーブ341の軸受穴341aに工具60を挿入することにより、スリーブ341と工具60とを調芯してもよい。このようにすれば、弾性体61は、弾性圧縮された状態でスリーブ341の内周面に当接し、工具60に対して外周側から均等な圧力を与えつつ工具60を支持するため、スリーブ341と工具60とを良好に調芯することができる。スリーブ341を損傷から保護するため、弾性体61は、スリーブ341よりも硬度の低い材料により構成されていることが望ましい。
<4−5.工具の回転について>
上記の実施形態では、工具60の軸方向の運動のみによって中間部材342pの上面に工具60を押し付け、中間部材342pの上面に凹部342aを形成していた。しかしながら、図18に示したように、中心軸Lを中心として工具60を回転させつつ、中間部材342pの上面に工具60を押し付けるようにしてもよい。このようにすれば、工具60の下端部60aの中心が中心軸Lから僅かにずれていたとしても、中間部材342pの上面に中心軸Lを中心として回転対称となるように凹部342aを形成することができる。したがって、シャフト41によるスラストプレート342の偏摩耗を更に抑制することができるとともに、シャフト41の回転精度を向上させることができる。
<4−6.工具の代わりにシャフトを利用する場合について>
上記の実施形態では、流体動圧軸受装置5とは別体の工具60を利用して中間部材342pの上面に凹部342aを形成していた。しかしながら、流体動圧軸受装置5の一部であるシャフト41を利用して中間部材342pの上面に凹部342aを形成するようにしてもよい。この場合の製造手順の例を、図19のフローチャートを参照しつつ説明する。まず、上記実施形態のステップS11と同じように、熱可塑性樹脂を素材とする中間部材342pを準備する(ステップS41)。また、上記実施形態と同じような加熱機構71を使用して、シャフト41の下端部41bを加熱しておく(ステップS42)。続いて、中間部材342p、シャフト41、スリーブ341、およびシール部材343を、軸受ハウジング344の内部の所定の位置に順次に配置する(ステップS43)。そして、シャフト41を中心軸Lに沿って若干下降させ、中間部材342pの上面にシャフト41の下端部41bを押し付ける(ステップS44)。中間部材342pの上面は、シャフト41の下端部41bに蓄積された熱と下端部41bからの押圧力とを受けて軟化変形する。これにより、中間部材342pの上面には、凹形曲面をなした凹部342aが形成される。そして、凹部342aの形成された中間部材342pが、スラストプレート342として機能する。
このようにすれば、工具60を使用することなく、中間部材342pの上面に凹部342aを形成することができるので、スラストプレート342および流体動圧軸受装置5を更に容易かつ安価に製造することができる。また、シャフト41の中心と凹部342aの中心とを中心軸L上において容易に一致させることができるため、スラストプレート342の偏摩耗を良好に防止することができる。
このようにシャフト41を利用して凹部342aを形成する場合、図20および図21に示したように、凹部342aの形成と同時に、シャフト41の鍔部材411とスリーブ341の下面との間に軸方向に沿った隙間Dを形成するようにしてもよい。具体的には、ステップS44におけるシャフト41の変位量を、鍔部材411とスリーブ341との間に形成すべき隙間Dの幅と同等になるように制御すればよい。このようにすれば、凹部342aを形成する工程と隙間Dを形成する工程とを別個に行う必要がないため、流体動圧軸受装置5の製造効率を更に向上させることができる。
図22および図23は、鍔部材411の代わりにシール部材343の内周側に凸部343cを形成し、凸部343cとシャフト41の外周面に形成された段差部41cとで固定軸受ユニット34からシャフト41が抜け出すことを防止するタイプの流体動圧軸受装置7を示している。このような流体動圧軸受装置7においても、シャフト41を利用して中間部材342pの上面に凹部342aを形成してもよい。また、図22および図23に示したように、凹部342aの形成と同時に、シャフト41の段差部41cとシール部材343の凸部343cとの間に軸方向に沿った隙間Dを形成するようにしてもよい。
<4−7.中間部材の材料について>
上記の実施形態では、主として熱可塑性樹脂を素材とする中間部材342pを使用してスラストプレート342を作製する場合について説明したが 、熱硬化性樹脂を素材とする中間部材342pに対して上記の実施形態と同等の製造方法を適用して、スラストプレート342を作製してもよい。熱硬化性樹脂としては、例えば、フェノール樹脂やエポキシ樹脂などを使用することができる。また、耐摩耗性を向上させるために、カーボンファイバー、カーボンナノチューブ、カーボン粉末、グラファイト、グラスファイバー、チタン酸カリウム等のフィラを混入させた熱硬化性樹脂を使用してもよい。
このような熱硬化性樹脂は、熱可塑性樹脂に比べて耐熱性に優れている。このため、熱硬化性樹脂によりスラストプレート342を作製すれば、スピンドルモータ1の動作時に、シャフト41の下端部41bとスラストプレート342の凹部342aとの間で摩擦熱が発生した場合にも、スラストプレート342が変形しにくいという利点がある。
図24は、ポリアミドイミド(熱可塑性樹脂)を素材とする中間部材342pと、フェノール樹脂(熱硬化性樹脂)を素材とする中間部材342pとに対して、加熱された工具60の下端部60aを押し付けて、その上面に凹部342aを形成したときの、工具60の温度と、形成された凹部342aの深さとの関係を示したグラフである。図24の例では、いずれの場合にも、中間部材342pに対する工具60の押圧力を250Nとし、押圧時間は15秒とした。
図24の結果を参照すると、ポリアミドイミドを素材とする中間部材342pを使用した場合と、フェノール樹脂を素材とする中間部材342pを使用した場合とで、変化曲線に違いはあるものの、いずれの場合にも、工具60の温度を上昇させるにつれて中間部材342p上に形成される凹部342aの深さは深くなることが分かる。
また、図25は、ポリアミドイミド(熱可塑性樹脂)を素材とする中間部材342pと、フェノール樹脂(熱硬化性樹脂)を素材とする中間部材342pとに対して、加熱された工具60の下端部60aを押し付けて、その上面に凹部342aを形成したときの、中間部材342pに対する工具60の押圧力と、形成された凹部342aの深さとの関係を示したグラフである。図25の例では、ポリアミドイミドを素材とする中間部材342pを使用するときには、工具60の温度を100℃とし、フェノール樹脂を素材とする中間部材342pを使用するときには、工具60の温度を150℃とした。
図25の結果を参照すると、ポリアミドイミドを素材とする中間部材342pを使用した場合にも、フェノール樹脂を素材とする中間部材342pを使用した場合にも、中間部材342pに対する工具60の押圧力を上げるにつれて、中間部材342p上に形成される凹部342aの深さが深くなることが分かる。
すなわち、図24および図25の結果から、フェノール樹脂等の熱硬化性樹脂を素材とする中間部材342pに対しても、上記の実施形態と同等の製造方法を適用可能であることが分かる。また、熱可塑性樹脂と熱硬化性樹脂とのいずれを使用する場合にも、工具60の温度と、中間部材342pに対する工具60の押圧力とを調節することにより、中間部材342pの上面に形成される凹部342aの深さを制御できることが分かる。
<4−8.隆起部の形成について>
中間部材342pの上面にある程度の深さまで凹部60aを形成すると、図26に示したように、凹部342aの周囲に隆起部342bが形成される。凹部342aの周囲にこのような隆起部342bを形成しておけば(すなわち、隆起部342bが形成される程度の深さの凹部342aを形成しておけば)、シャフト41の下端部41bが凹部342aに当接したときに、シャフト41の下端部41bの周囲が隆起部342bにより包囲された状態となる。このため、シャフト41とスラストプレート342との径方向についての相対移動が規制され、スラストプレート342がシャフト41の下端部41bから脱落してしまうことを防止することができる。
<4−9.その他>
上記の実施形態では、スリーブ341の内周面とシャフト41の外周面とを潤滑オイル51を介して対向させることによりラジアル軸受部を構成していたが、ラジアル軸受部については、シャフトとスリーブとを接触させるすべり軸受であってもよい。また、上記の実施形態では、軸回転型のアウターロータモータについて説明したが、本発明は、軸固定型のモータや、インナーロータモータにも適用することができる。また、上記のスピンドルモータ1は、磁気ディスク22を回転させるためのものであったが、本発明は、光ディスク等の他の記録ディスクを回転させるためのモータにも適用することができる。また、本発明は、上記の実施形態および複数の変形例に記載された技術を任意に組み合わせたものであってもよい。
ディスク駆動装置の縦断面図である。 スピンドルモータの縦断面図である。 流体動圧軸受装置の縦断面図である。 スラストプレートの製造手順を示したフローチャートである。 工具、加熱機構、および中間部材を示した図である。 中間部材に工具を押し付ける様子を示した図である。 中間部材から工具を引き離した様子を示した図である。 流体動圧軸受装置の製造手順を示したフローチャートである。 支持部材が固着された中間部材と工具とを示した図である。 支持部材が固着された中間部材と工具とを示した図である。 保護膜が形成された中間部材と工具とを示した図である。 保護膜が形成された中間部材と工具とを示した図である。 中間部材と軸受ハウジングの円筒部とが単一部材から構成されている軸受装置の縦断面図である。 変形例に係る流体動圧軸受装置の製造手順を示したフローチャートである。 軸受ハウジングの内部で中間部材に凹部を形成する様子を示した図である。 圧縮気体の静圧によりスリーブと工具とを調芯する様子を示した図である。 弾性体の接触によりスリーブと工具とを調芯する様子を示した図である。 工具を回転させつつ中間部材の上面に押し付ける様子を示した図である。 変形例に係る流体動圧軸受装置の製造手順を示したフローチャートである。 凹部の形成と同時にシャフトとスリーブとの間に隙間を形成する様子を示した図である。 凹部の形成と同時にシャフトとスリーブとの間に隙間を形成する様子を示した図である。 凹部の形成と同時にシャフトとシール部材との間に隙間を形成する様子を示した図である。 凹部の形成と同時にシャフトとシール部材との間に隙間を形成する様子を示した図である。 工具の温度と凹部の深さとの関係を示したグラフである。 中間部材に対する工具の押圧力と凹部の深さとの関係を示したグラフである。 凹部の周囲に隆起部が形成されたスラストプレートの縦断面図である。
符号の説明
1 スピンドルモータ
2 ディスク駆動装置
3 ステータ部
4 ロータ部
5,6,7 流体動圧軸受装置
21 装置ハウジング
22 ディスク
23 アクセス部
31 ベース部材
32 ステータコア
33 コイル
34 固定軸受ユニット
41 シャフト
41b 下端部
42 ハブ部材
43 ロータマグネット
60 工具
60a 下端部
60b 蓄熱部
60c 開口部
61 弾性体
71,72 加熱機構
341 スリーブ
342 スラストプレート
342a 凹部
342b 隆起部
342p 中間部材
342q 支持部材
342r 保護膜
343 シール部材
344 軸受ハウジング
D 隙間
L 中心軸

Claims (30)

  1. 軸受装置に用いられ、先端部に凸型曲面を有し中心軸を中心として回転するシャフトとの間でスラスト軸受部を形成すると共に、その軸方向一方側の面が前記シャフトの前記先端部に当接するスラストプレートの製造方法であって、
    工程a)熱可塑性樹脂又は熱硬化性樹脂を素材とする板状の中間部材を軸方向一方側から加熱しつつ、凸型曲面を有する部材を前記中間部材の前記一方側の面に押し付けて、前記中間部材上に凹形曲面を形成する工程
    を含むことを特徴とするスラストプレートの製造方法。
  2. 前記部材の前記凸型曲面は、前記シャフトの前記先端部よりも曲率半径が大きいことを特徴とする請求項1記載のスラストプレートの製造方法。
  3. 前記工程a)では、前記シャフトの前記先端部を前記部材として用いることを特徴とする請求項1記載のスラストプレートの製造方法。
  4. 前記工程a)では、加熱された前記部材を前記中間部材の前記一方側の面に押し付けることにより、前記中間部材を軸方向一方側から加熱することを特徴とする請求項1乃至3のいずれか記載のスラストプレートの製造方法。
  5. 前記中間部材を加熱する前に、
    前記中間部材の他方側の面に、前記中間部材を構成する樹脂よりも軟化温度が高い材料により構成された支持部材を固着する工程を更に含むことを特徴とする請求項1乃至4のいずれか記載のスラストプレートの製造方法。
  6. 前記工程a)より後に、
    前記中間部材の前記一方側の面に、前記中間部材を構成する樹脂よりも耐摩耗性の高い被膜層を形成する工程を更に含むことを特徴とする請求項1乃至5のいずれか記載のスラストプレートの製造方法。
  7. 前記工程a)では、前記部材を前記中心軸を中心として回転させつつ、前記中間部材の前記一方側の面に前記部材を押し付けることを特徴とする請求項1乃至6のいずれか記載のスラストプレートの製造方法。
  8. 前記工程a)では、前記中間部材上に前記凹形曲面を形成すると同時に、前記凹形曲面の周囲に隆起部を形成することを特徴とする請求項1乃至7のいずれか記載のスラストプレートの製造方法。
  9. 請求項1乃至8のいずれか記載の製造方法で製造されたスラストプレートを備えたことを特徴とする軸受装置。
  10. 軸受装置に用いられ、先端部に凸型曲面を有し中心軸を中心として回転するシャフトとの間でスラスト軸受部を形成すると共に、その軸方向一方側の面が前記シャフトの前記先端部に当接するスラストプレートの製造方法であって、
    工程a)熱可塑性樹脂又は熱硬化性樹脂を素材とする板状の中間部材の軸方向他方側の面に、前記中間部材を構成する樹脂よりも軟化温度が高い材料により構成された支持部材を固着する工程と、
    工程b)前記中間部材を加熱しつつ、凸型曲面を有する部材を前記中間部材の前記一方側の面に押し付けて、前記中間部材上に凹形曲面を形成する工程と、
    を含むことを特徴とするスラストプレートの製造方法。
  11. 前記部材の前記凸型曲面は、前記シャフトの前記先端部よりも曲率半径が大きいことを特徴とする請求項10記載のスラストプレートの製造方法。
  12. 前記工程b)では、前記シャフトの前記先端部を前記部材として用いることを特徴とする請求項10記載のスラストプレートの製造方法。
  13. 前記工程b)では、加熱された前記部材を前記中間部材の前記一方側の面に押し付けることにより、前記中間部材を軸方向一方側から加熱することを特徴とする請求項10乃至12のいずれか記載のスラストプレートの製造方法。
  14. 前記工程b)では、前記支持部材を加熱することにより、前記支持部材の熱を前記支持部材から前記中間部材の前記他方側の面を介して前記中間部材の前記一方側の面に伝えることを特徴とする請求項10乃至13のいずれか記載のスラストプレートの製造方法。
  15. 前記工程b)では、前記部材を前記中心軸を中心として回転させつつ、前記中間部材の前記一方側の面に前記部材を押し付けることを特徴とする請求項10乃至14のいずれか記載のスラストプレートの製造方法。
  16. 前記工程b)では、前記中間部材上に前記凹形曲面を形成すると同時に、前記凹形曲面の周囲に隆起部を形成することを特徴とする請求項10乃至15のいずれか記載のスラストプレートの製造方法。
  17. 請求項10乃至16のいずれか記載の製造方法で製造されたスラストプレートを備えたことを特徴とする軸受装置。
  18. 先端部に凸型曲面を有し中心軸を中心として回転するシャフトを支持するスラスト軸受部を備えた軸受装置の製造方法であって、
    工程a)軸方向一方側が開口し他方側が閉塞され、前記他方側に位置すると共に熱可塑性樹脂又は熱硬化性樹脂を素材とする中間部材と、前記中間部材から軸方向一方側に延びる円筒部と、を備えるハウジングの内部に、軸受穴を有する円筒状のスリーブを配置する工程と、
    工程b)前記軸受穴に凸形曲面を有する部材を軸方向一方側から挿入する工程と、
    工程c)前記工程b)の後に、前記部材の中心軸と前記スリーブの中心軸とが一致するように、前記部材と前記スリーブとの間の相対位置を定める調芯を行う工程と、
    工程d)前記工程c)の状態で、前記中間部材を前記軸方向一方側から加熱しつつ、前記部材を前記中間部材の一方側の面に押し付けて、前記中間部材上に凹形曲面を形成する工程と、
    を含むことを特徴とする軸受装置の製造方法。
  19. 前記工程c)では、前記部材と前記スリーブとの間の微少間隙に圧縮気体を給送し前記微少間隙を昇圧させることにより、前記調芯を行うことを特徴とする請求項18記載の軸受装置の製造方法。
  20. 前記部材の外周面には、前記部材の径方向外方へ開口する開口部が形成されており、
    前記工程c)では、前記圧縮気体は、前記部材の前記開口部から前記微少間隙へ給送されることを特徴とする請求項19記載の軸受装置の製造方法。
  21. 前記部材の外周面は、前記スリーブの内周面よりも硬度の低い材料で構成されていることを特徴とする請求項18乃至20のいずれか記載の軸受装置の製造方法。
  22. 前記部材の外周面は、周方向に略均一な厚みを有する弾性体に被覆されており、
    前記工程c)では、前記工程b)において前記弾性体の外周面が前記スリーブの内周面に弾性変形した状態で当接することにより、前記部材と前記スリーブとの間の相対位置を定める調芯が行われることを特徴とする請求項18乃至21のいずれか記載の軸受装置の製造方法。
  23. 前記工程d)では、前記部材を前記中心軸を中心として回転させつつ、前記中間部材の前記一方側の面に前記部材を押し付けることを特徴とする請求項18乃至22のいずれか記載の軸受装置の製造方法。
  24. 前記工程d)では、加熱された前記部材を前記中間部材の前記一方側の面に押し付けることにより、前記中間部材を軸方向一方側から加熱すると共に、前記一方側の面に凹形曲面を形成することを特徴とする請求項18乃至23のいずれか記載の軸受装置の製造方法。
  25. 前記工程d)では、前記シャフトの前記先端部を前記部材として用いることを特徴とする請求項18乃至24のいずれか記載の軸受装置の製造方法。
  26. 前記工程d)では、前記シャフトの前記先端部を前記中間部材の前記一方側の面に押し付けると同時に、前記シャフトと前記シャフトの周囲の部材との間に前記軸方向の所定の隙間を形成することを特徴とする請求項25記載の軸受装置の製造方法。
  27. 前記ハウジングは、前記軸方向他方側に位置すると共に前記円筒部に固着された底部を備え、
    前記中間部材は、前記底部の軸方向一方側に配置されていることを特徴とする請求項18乃至26のいずれか記載の軸受装置の製造方法。
  28. 前記円筒部と前記中間部材とは熱可塑性樹脂又は熱硬化性樹脂を素材として継ぎ目のない単一部材から構成され、前記中間部材の前記一方側の面に凹型曲面を形成することを特徴とする請求項18乃至26のいずれか記載の軸受装置の製造方法。
  29. 前記工程d)では、前記中間部材上に前記凹形曲面を形成すると同時に、前記凹形曲面の周囲に隆起部を形成することを特徴とする請求項18乃至28のいずれか記載の軸受装置の製造方法。
  30. ディスクを回転させるディスク駆動用のスピンドルモータであって、
    請求項18乃至29のいずれか記載の製造方法により製造された軸受装置と、
    磁束発生部と、前記シャフトおよび前記スリーブの一方とを備えた静止部と、
    前記磁束発生部に対向するロータマグネットと、前記シャフトおよび前記スリーブの他方とを備えたロータ部と、
    を備えることを特徴とするスピンドルモータ。
JP2007331899A 2007-08-31 2007-12-25 スラストプレートの製造方法、軸受装置、軸受装置の製造方法、およびスピンドルモータ Withdrawn JP2009074678A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007331899A JP2009074678A (ja) 2007-08-31 2007-12-25 スラストプレートの製造方法、軸受装置、軸受装置の製造方法、およびスピンドルモータ
US12/197,342 US20090056136A1 (en) 2007-08-31 2008-08-25 Method of manufacturing thrust plate, bearing device, method of manufacturing bearing device, and spindle motor
CN2008102126988A CN101377213B (zh) 2007-08-31 2008-08-29 止推板的制造方法、轴承装置及其制造方法和主轴电机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007225827 2007-08-31
JP2007331899A JP2009074678A (ja) 2007-08-31 2007-12-25 スラストプレートの製造方法、軸受装置、軸受装置の製造方法、およびスピンドルモータ

Publications (1)

Publication Number Publication Date
JP2009074678A true JP2009074678A (ja) 2009-04-09

Family

ID=40420896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007331899A Withdrawn JP2009074678A (ja) 2007-08-31 2007-12-25 スラストプレートの製造方法、軸受装置、軸受装置の製造方法、およびスピンドルモータ

Country Status (2)

Country Link
JP (1) JP2009074678A (ja)
CN (1) CN101377213B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014038641A1 (ja) 2012-09-05 2014-03-13 中外製薬株式会社 アミノ酸およびステリル基が導入されたヒアルロン酸誘導体

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130057797A (ko) * 2011-11-24 2013-06-03 삼성전기주식회사 링형 러버 마그네트 및 이를 갖는 스핀들 모터
CN104563858B (zh) * 2014-11-28 2018-07-10 浙江歌瑞新材料有限公司 一种使用ptfe制作的螺杆钻具定子及应用于该定子的ptfe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014038641A1 (ja) 2012-09-05 2014-03-13 中外製薬株式会社 アミノ酸およびステリル基が導入されたヒアルロン酸誘導体

Also Published As

Publication number Publication date
CN101377213A (zh) 2009-03-04
CN101377213B (zh) 2011-12-14

Similar Documents

Publication Publication Date Title
US7866047B2 (en) Sleeve-unit manufacturing method
US6834996B2 (en) Motor with dynamic pressure bearing
JP5109690B2 (ja) 流体動圧軸受装置、スピンドルモータ、ディスク駆動装置、および軸受装置の製造方法
US20090160277A1 (en) Fluid Dynamic Pressure Bearing
JP2009079658A (ja) 軸受装置、スピンドルモータ、ディスク駆動装置、および軸受装置の製造方法
US20080158729A1 (en) Spindle motor
JP4811186B2 (ja) 動圧軸受装置
JP4808457B2 (ja) 流体軸受装置およびその製造方法
JP2008092612A (ja) モータの製造方法、並びに、モータおよび記録ディスク駆動装置
JP2007073164A (ja) スピンドルモータおよびその製造方法
JP2009268264A (ja) スピンドルモータおよびディスク駆動装置
US7893584B2 (en) Spindle motor
JP2009074678A (ja) スラストプレートの製造方法、軸受装置、軸受装置の製造方法、およびスピンドルモータ
JP2010054030A (ja) 軸受装置の製造方法、軸受装置および情報記録再生装置
US20090212646A1 (en) Balance member, motor, and disk drive apparatus
JP2010144778A (ja) 軸受装置、スピンドルモータ、及びディスク駆動装置
US20090056136A1 (en) Method of manufacturing thrust plate, bearing device, method of manufacturing bearing device, and spindle motor
JP2010054029A (ja) 軸受装置および情報記録再生装置
US20090196154A1 (en) Method for manufacturing a bearing mechanism, electric motor and storage disk drive apparatus
US20150340057A1 (en) Disk drive unit and method of manufacturing the same
JP5143435B2 (ja) 流体軸受装置用軸部材の製造方法、およびその方法により製造された軸部材
JP2008305471A (ja) ディスク駆動用スピンドルモータおよびディスク駆動装置
KR101474640B1 (ko) 스핀들 모터
JP4732262B2 (ja) 動圧軸受装置の製造方法
JP2007263225A (ja) 流体軸受装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101117

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120113