JP2009074147A - Method for preventing problems associated with microporous plating - Google Patents

Method for preventing problems associated with microporous plating Download PDF

Info

Publication number
JP2009074147A
JP2009074147A JP2007245837A JP2007245837A JP2009074147A JP 2009074147 A JP2009074147 A JP 2009074147A JP 2007245837 A JP2007245837 A JP 2007245837A JP 2007245837 A JP2007245837 A JP 2007245837A JP 2009074147 A JP2009074147 A JP 2009074147A
Authority
JP
Japan
Prior art keywords
plating
microporous
nickel
layer
flash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007245837A
Other languages
Japanese (ja)
Other versions
JP4911622B2 (en
Inventor
Kunihiro Kakihara
邦博 柿原
Yoshinori Noda
義則 野田
Takashi Oro
貴史 王路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kakihara Kogyo Co Ltd
Original Assignee
Kakihara Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kakihara Kogyo Co Ltd filed Critical Kakihara Kogyo Co Ltd
Priority to JP2007245837A priority Critical patent/JP4911622B2/en
Publication of JP2009074147A publication Critical patent/JP2009074147A/en
Application granted granted Critical
Publication of JP4911622B2 publication Critical patent/JP4911622B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent problems associated with plating, such as stains and blurs formed on a microporous plating, to improve corrosion resistance of the plating, to enable continuous filtration of a plating liquid, and to enable easy maintenance and control of the plating liquid and electric potential. <P>SOLUTION: A method for preventing problems comprises: a nickel-plating step S5 of forming a nickel-plating layer on a material to be plated, such as a resin molded product or a metal product; a microporous-plating step S7 of forming a microporous-plating layer on the nickel-plating layer; a flash-plating step S8 of forming a flash-plating layer on the microporous-plating layer; and a finish-plating step S10 of forming a finish-plating layer on the flash-plating layer. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、めっき製品に微細な穴が均一に分散したマイクロポーラスめっき技術に係り、特にマイクロポーラスめっきに関わる腐食、シミ、暈け等の不具合を防止する効果があり、更にフラッシュめっきの電位管理により耐食性の良好な外観を得ることができ、そのめっき液を容易に維持管理することができるマイクロポーラスめっきに関わる不具合防止方法に関する。   The present invention relates to a microporous plating technology in which fine holes are uniformly dispersed in a plated product, and in particular, has an effect of preventing defects such as corrosion, blemishes, and burns associated with microporous plating, and further controls the potential of flash plating. The present invention relates to a defect prevention method related to microporous plating, which can obtain an appearance with good corrosion resistance and can easily maintain and manage the plating solution.

一般に高耐食性クロムめっきといわれているめっきは、図4の工程図と図5の断面図に示すように、銅めっきなどの下地めっき、または金属素材(stめっき)上に、二層ニッケルめっき(半光沢ニッケルめっき+光沢ニッケルめっき)や三層ニッケルめっき(半光沢ニッケルめっき+トリニッケルめっき+光沢ニッケルめっき)を行い、更に主に不溶性珪酸塩微粒子等の不導体粉体を分散させためっき液を用いて、不導体粉体を共析めっきし、最上層にクロムめっきを施すことでマイクロポーラスめっき(微孔クロムめっき)を得るめっき方法である。   As shown in the process diagram of FIG. 4 and the cross-sectional view of FIG. 5, the plating generally referred to as high corrosion resistance chromium plating is a double-layer nickel plating (base plating such as copper plating) or a metal material (st plating) ( Plating solution in which semi-bright nickel plating + bright nickel plating) or three-layer nickel plating (semi-bright nickel plating + trinickel plating + bright nickel plating) is performed, and further non-conductive powder such as insoluble silicate fine particles is dispersed. Is a plating method in which non-conductive powder is co-deposited and chromium plating is applied to the uppermost layer to obtain microporous plating (microporous chromium plating).

このマイクロポーラスめっきは、最表面の非常にさびにくいめっきにわざと無めっき状態の微孔欠陥を作ることにより、腐食電流を分散させて局部的な腐食進行を遅延させる技術である。例えば、完全に無欠陥なクロムめっきを施して、様々な使用状況下あって長期にわたり無欠陥であり続けることは事実上不可能である。必ず無秩序な欠陥が発生する。この無秩序な欠陥は、まわりを非常に錆びにくいクロムめっきに囲まれているので、腐食が集中する。そこで、マイクロポーラスめっきのように、制御された小さい微孔欠陥は、表面全体をくまなく覆っているため、腐食はすべての欠陥から進行することとなり、1つ1つの欠陥の腐食はごく小さいものとすることができる。即ち、めっき製品の耐食性を向上させることができる。   This microporous plating is a technique that delays the progress of local corrosion by distributing corrosion current by intentionally creating a fine hole defect in an unplated state on the very rust-resistant plating on the outermost surface. For example, it is virtually impossible to apply a completely defect-free chrome plating and remain defect-free for a long time under various usage conditions. There will always be disordered defects. This disordered defect is surrounded by chrome plating which is very difficult to rust, so that corrosion is concentrated. Therefore, as in the case of microporous plating, small micropore defects that are controlled cover the entire surface, so that corrosion proceeds from all defects, and the corrosion of each defect is extremely small. It can be. That is, the corrosion resistance of the plated product can be improved.

このマイクロポーラスめっきの電位はめっき膜の耐食性の観点から、下地の光沢ニッケルめっきの電位よりも貴であることが望ましいとされている。   From the viewpoint of corrosion resistance of the plating film, the potential of the microporous plating is desirably more noble than the potential of the underlying bright nickel plating.

光沢ニッケルめっきの耐腐食性能を向上させる技術が種々提案されている。例えば特許文献1の特開平5−230699号公報「シールNiと光沢Niを同じめっき槽で施すめっき方法」のように、光沢ニッケルめっきで付加電流密度を変えて、電位差を光沢ニッケルめっき1層で電位差を得る方法が提案されている。
特開平5−230699号公報
Various techniques for improving the corrosion resistance of bright nickel plating have been proposed. For example, as disclosed in Japanese Patent Application Laid-Open No. 5-230699 of Patent Document 1, “additional current density is changed by bright nickel plating and the potential difference is changed by one bright nickel plating layer” A method for obtaining a potential difference has been proposed.
Japanese Patent Application Laid-Open No. 5-230699

しかし、このマイクロポーラスめっきを実施するニッケルめっき液には、不導体微粒子(粉体)が含まれているため、このめっき液の連続濾過ができなかった。このように連続濾過ができないため、他のめっき液のように濾過器において活性炭プレコートや活性炭フィルターを使い、このめっき液を連続的に浄化することができなかった。また、この不導体微粒子をめっき液に分散させるための添加剤や、微粒子にプラス電荷を与える添加剤等を光沢剤以外にも添加する必要があり、めっき製品のシミや暈けといった不具合になる要因を増加させるという問題を有していた。   However, since the nickel plating solution for performing the microporous plating contains non-conductive fine particles (powder), the plating solution cannot be continuously filtered. Since continuous filtration is not possible in this way, activated carbon precoat or activated carbon filter was used in the filter like other plating solutions, and this plating solution could not be purified continuously. In addition, it is necessary to add an additive for dispersing the non-conductive fine particles in the plating solution and an additive for imparting a positive charge to the fine particles in addition to the brightener. Had the problem of increasing the factor.

めっき液に微粒子量が多く含まれているとめっき品の光沢感が減少しやすくなる。めっき製品の一部や全面が半光沢になり、全体的に光沢斑が発生しやすかった。不導体微粒子も光沢剤の分解物を蓄積したり、凝集してめっき不良を増加させる要因となるので定期的に微粒子を濾過して除去交換する必要がある。   If the plating solution contains a large amount of fine particles, the gloss of the plated product tends to decrease. A part or the whole of the plated product became semi-glossy, and gloss spots were easily generated on the whole. Non-conductive fine particles also accumulate brightener decomposition products or cause aggregation to increase plating defects. Therefore, it is necessary to periodically remove and replace the fine particles.

めっき液を維持管理する際に、めっき液に微粒子が含まれていると、めっき液の定期浄化処理(活性炭処理)の障害となりやすかった。即ち、不導体粒子が濾過フィルターを詰らせることがあった。めっき液の常時液浄化ができないので、めっき液中の光沢剤分解物が蓄積し、光沢ニッケルめっきより貴な電位を維持するために定期浄化頻度(回数)を他のめっき液槽より増やす必要があるという問題を有していた。   When maintaining the plating solution, if the plating solution contains fine particles, it tends to be an obstacle to the regular purification treatment (activated carbon treatment) of the plating solution. That is, the nonconductive particles may clog the filtration filter. Since the plating solution cannot be purified at all times, the brightener decomposition products in the plating solution accumulate, and it is necessary to increase the periodic cleaning frequency (number of times) over other plating solution tanks in order to maintain a more noble potential than bright nickel plating. Had the problem of being.

また、特許文献1の「シールNiと光沢Niを同じめっき槽で施すめっき方法」は、光沢ニッケルめっきの耐腐食性能を上げようとする方法であるが、マイクロポーラスニッケルめっきとの電位差を維持することが困難であるという問題を有していた。   In addition, the “plating method in which seal Ni and bright Ni are applied in the same plating tank” in Patent Document 1 is a method for improving the corrosion resistance performance of bright nickel plating, but maintains the potential difference from microporous nickel plating. Had the problem of being difficult.

本発明は、かかる問題点を解決するために創案されたものである。すなわち、本発明の目的は、マイクロポーラスめっきと最上層の仕上めっきとの問に、更にめっき処理を施すことで、マイクロポーラスめっきに生じるシミや暈けといっためっきに関わる不具合を防止し、めっきの耐食性を向上させ、更にめっき液の連続濾過が可能になり、このめっき液を容易に維持管理できると共に、電位も容易に維持管理できるマイクロポーラスめっきに関わる不具合防止方法を提供することにある。   The present invention has been developed to solve such problems. That is, the object of the present invention is to further prevent plating-related defects such as stains and blurring caused by microporous plating by further plating the problem of microporous plating and top layer finish plating. An object of the present invention is to provide a method for preventing a problem associated with microporous plating that can improve corrosion resistance and further allow continuous filtration of the plating solution, and can easily maintain and manage the plating solution and also can easily maintain and manage the potential.

本発明によれば、樹脂成形品又は金属製品等の被めっき素材に、ニッケルめっき工程(S5)によりニッケルめっき層を形成し、前記ニッケルめっき層に、マイクロポーラスめっき工程(S7)によりマイクロポーラスめっき層を形成し、前記マイクロポーラスめっき層に、フラッシュめっき工程(S8)によりフラッシュめっき層を形成し、前記フラッシュめっき層に、仕上めっき工程(S10)により仕上めっき層を形成する、ことを特徴とするマイクロポーラスめっきに関わる不具合防止方法が提供される。   According to the present invention, a nickel plating layer is formed on a material to be plated such as a resin molded product or a metal product by a nickel plating step (S5), and microporous plating is performed on the nickel plating layer by a microporous plating step (S7). Forming a layer, forming a flash plating layer on the microporous plating layer by a flash plating step (S8), and forming a finish plating layer on the flash plating layer by a finish plating step (S10). A failure prevention method related to microporous plating is provided.

例えば、前記仕上めっき層は、クロムめっき、錫めっき又はニッケル合金めっき等の外観色めっきである。
前記フラッシュめっき工程(S8)では、前記マイクロポーラスめっき工程(S7)において共析した微粒子部分が埋まらない程度の厚みにめっきすることが好ましい。
前記フラッシュめっき層の膜厚が0.1〜0.5μmになるようにめっき処理を施すことが好ましい。
前記フラッシュめっき工程(S8)では、めっき液を容易にろ過できるように、前記マイクロポーラスめっき工程(S7)で使用しためっき液とは異なり、パウダー分、パウダー分散剤、プラス電荷付与剤の成分を除去しためっき液を使用してめっき処理を施すことが好ましい。
For example, the finish plating layer is appearance color plating such as chromium plating, tin plating, or nickel alloy plating.
In the flash plating step (S8), it is preferable to perform plating to a thickness that does not bury the fine particle portion that is co-deposited in the microporous plating step (S7).
Plating is preferably performed so that the flash plating layer has a thickness of 0.1 to 0.5 μm.
Unlike the plating solution used in the microporous plating step (S7), in the flash plating step (S8), the components of the powder component, the powder dispersant, and the positive charge imparting agent are different from those used in the microporous plating step (S7). Plating treatment is preferably performed using the removed plating solution.

前記ニッケルめっき(S)は二層又は三層の複数層のニッケルめっきである。
前記被めっき素材が樹脂成形品のときには、該被めっき素材上に、化学めっき、stめっき(金属素材めっき)、銅めっきを更に施す。
The nickel plating (S) is a nickel plating of two or three layers.
When the material to be plated is a resin molded product, chemical plating, st plating (metal material plating), and copper plating are further performed on the material to be plated.

上述したように、本発明の方法では、マイクロポーラスめっき工程(S7)における不導体微粒子を含むめっき液で微粒子をめっきに共析させた後に、微粒子を含まない同種のめっき液に投入するので、過剰に付着した不導体微粒子は、フラッシュめっき工程(S8)におけるめっき液に持ち込まれるが、このめっき液は常時濾過(活性炭濾過を含む)ができるため、持ち込まれるだけの少量の不導体微粒子は濾過によって取り除かれる。また、光沢剤分解物も常時一定量除去が可能になる。   As described above, in the method of the present invention, the fine particles are co-deposited in the plating with the plating solution containing the nonconductive fine particles in the microporous plating step (S7), and then charged into the same kind of plating solution containing no fine particles. Excessive non-conductive fine particles are brought into the plating solution in the flash plating step (S8), but since this plating solution can always be filtered (including activated carbon filtration), only a small amount of non-conductive fine particles that are brought in are filtered. Removed by. Further, a certain amount of the brightener decomposition product can be removed at any time.

また、フラッシュめっき工程(S8)におけるめっき液は、ニッケルめっき組成に限らず、めっき膜の耐食性を向上するためのあらゆる組成のめっき膜をクロムめっきの下地として使用することができる。そこで、例えば寒冷地における凍結防止剤(融雪塩)や海岸の塩成分が付着した自動車部品などのような過酷な腐食環境に耐え得るめっき製品を提供することが可能となる。   In addition, the plating solution in the flash plating step (S8) is not limited to the nickel plating composition, and a plating film having any composition for improving the corrosion resistance of the plating film can be used as a base for chromium plating. Therefore, for example, it is possible to provide a plated product that can withstand a severe corrosive environment such as an antifreezing agent (snow melting salt) in a cold region or an automobile part to which a salt component on the coast is attached.

フラッシュめっき工程(S8)におけるめっき液には、粉体の添加剤は入っていないので、常時活性炭濾過でめっき液の浄化が行えるため、シミ不良の発生を抑制することができる。また、粉成分に光沢剤や光沢剤分解物が吸着しておきる流れシミ不良も抑制することができる。   Since the plating solution in the flash plating step (S8) does not contain a powder additive, the plating solution can be constantly purified by activated carbon filtration, so that the occurrence of spot defects can be suppressed. Further, it is possible to suppress a flow stain defect in which a brightener or a brightener decomposition product is adsorbed to the powder component.

本発明のマイクロポーラスめっきに関わる不具合防止方法は、マイクロポーラスニッケルめっきと最上層の仕上めっきとの問に、もう一層のフラッシュめっきを追加することによってマイクロポーラスニッケルめっきに関わる不具合を防止し、更にめっきの耐食性を向上させることができるめっき方法である。   The method for preventing defects related to microporous plating according to the present invention prevents the problems related to microporous nickel plating by adding another flash plating to the question of microporous nickel plating and finish plating of the uppermost layer. This is a plating method capable of improving the corrosion resistance of plating.

以下、本発明の好ましい実施の形態を図面を参照して説明する。
図1は実施例1のマイクロポーラスめっきに関わる不具合防止方法を示す工程図である。図2は実施例1のマイクロポーラスめっきに関わる不具合防止方法によるめっき製品のめっき被膜の拡大断面図である。
本発明の実施例1のマイクロポーラスめっきに関わる不具合防止方法は、図1の左側の工程図に示すように、被めっき素材が樹脂成形品のときは、先ず、この樹脂成形品に、エッチング処理S1、エッチング中和処理S2、触媒付与処理S3及び導電化処理S4の各処理を施す。いわゆる前処理が必要である。
なお、被めっき素材が金属成形品のときは、このような前処理は不要である。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a process diagram showing a failure prevention method related to microporous plating in Example 1. FIG. FIG. 2 is an enlarged cross-sectional view of a plating film of a plated product obtained by the failure prevention method related to microporous plating in Example 1.
As shown in the process diagram on the left side of FIG. 1, the failure prevention method related to microporous plating according to Example 1 of the present invention is such that when the material to be plated is a resin molded product, the resin molded product is first etched. Each process of S1, etching neutralization process S2, catalyst provision process S3, and conductive process S4 is performed. So-called pretreatment is necessary.
When the material to be plated is a metal molded product, such pretreatment is not necessary.

次に、樹脂成形品に電気めっきを施すために、図1の右側の工程図に示すように、銅めっきなどの下地めっき、または金属素材(stめっき)上に、二層ニッケルめっき(半光沢ニッケルめっき+光沢ニッケルめっき)や三層ニッケルめっき(半光沢ニッケルめっき+トリニッケルめっき+光沢ニッケルめっき)のニッケルめっきS5を行う。その水洗処理S6の後に、更にマイクロポーラスめっき工程S7により、主に珪酸塩微粒子等の不導体粉体を分散させためっき液を用いて、不導体粉体を共析めっきし、最上層の仕上めっき層にクロムめっきを施すことでクロムめっきを施すことができる。
このニッケルめっきS5の電位はめっき膜の耐食性の観点から、下地の光沢ニッケルめっきS5の電位よりも貴であることが望ましい。
Next, in order to perform electroplating on the resin molded product, as shown in the process diagram on the right side of FIG. 1, double-layer nickel plating (semi-gloss) on a base plating such as copper plating or a metal material (st plating) Nickel plating S5 of nickel plating + bright nickel plating) or three-layer nickel plating (semi-bright nickel plating + trinickel plating + bright nickel plating) is performed. After the washing step S6, the non-conductive powder is eutectoidally plated by using a plating solution in which non-conductive powder such as silicate fine particles are dispersed mainly in the microporous plating step S7, and finishing the top layer. Chrome plating can be performed by applying chromium plating to the plating layer.
The potential of the nickel plating S5 is desirably nobler than the potential of the underlying bright nickel plating S5 from the viewpoint of the corrosion resistance of the plating film.

本発明では、従来の最上層の仕上めっき層を形成する仕上めっき工程S10の前に、マイクロポーラスめっき層に、フラッシュめっき工程S8によりフラッシュめっき層を形成する。図示例では、フラッシュニッケルめっき層を形成している。このフラッシュめっき工程S8の後に水洗処理S9してから仕上めっき工程S10に行く。その後、水洗処理S11してから乾燥処理S12してめっきが終了する。   In the present invention, the flash plating layer is formed on the microporous plating layer by the flash plating step S8 before the conventional finish plating step S10 for forming the uppermost finish plating layer. In the illustrated example, a flash nickel plating layer is formed. After this flash plating step S8, the water washing treatment S9 is followed by the finish plating step S10. Then, after washing process S11 and drying process S12, plating is completed.

最上層の仕上めっき層としては、クロムめっきいわゆる外観色めっき処理を施す。このクロムめっきに代えて、錫めっき又はニッケル合金めっきを施すことも可能である。   As the uppermost finish plating layer, chrome plating, so-called appearance color plating treatment is performed. Instead of the chromium plating, tin plating or nickel alloy plating can be applied.

フラッシュめっき工程S8では、マイクロポーラスめっき工程S7において共析した微粒子部分が埋まらない程度の厚みにめっきをする。後述する表3に示すように、このフラッシュめっき層の膜厚が0.1〜1.0μmになるようにめっき処理を施すことが好ましい。特に、0.1〜0.5μmが適していた。これ以上の例えば1.5μm以上の膜厚にすると微孔数が極端に減少し、マイクロポーラスめっきとしての機能を発揮することができなくなるからである。   In the flash plating step S8, the plating is performed to a thickness that does not fill the fine particles that have been eutectoid in the microporous plating step S7. As shown in Table 3 to be described later, it is preferable to perform plating so that the thickness of the flash plating layer is 0.1 to 1.0 μm. In particular, 0.1 to 0.5 μm was suitable. This is because if the film thickness is greater than, for example, 1.5 μm or more, the number of micropores is extremely reduced, and the function as microporous plating cannot be exhibited.

フラッシュめっき工程S8では、めっき液を容易にろ過できるように、マイクロポーラスめっき工程S7で使用しためっき液とは異なり、パウダー分、パウダー分散剤、プラス電荷付与剤の成分を除去しためっき液を使用してめっきを施すことが好ましい。   Unlike the plating solution used in the microporous plating step S7, in the flash plating step S8, a plating solution from which the components of the powder, the powder dispersant, and the positive charge imparting agent are removed is used. It is preferable to apply plating.

次に、本発明の不具合防止方法の具体的なめっき方法を説明する。この不具合防止方法のめっき浴に用いるめっき液の一例を表1に示す。このときは勿論電位管理が必要である。   Next, a specific plating method of the defect prevention method of the present invention will be described. An example of the plating solution used for the plating bath of this defect prevention method is shown in Table 1. In this case, of course, potential management is necessary.

Figure 2009074147
Figure 2009074147

本発明のめっき処理に用いためっき液の基本組成は、硫酸ニッケル、塩化ニッケル、ホウ酸を主成分とするワット浴組成に準じる。他のニッケルめっき浴も基本的にワット浴組成であるが、前工程のめっき浴のくみ込みやめっき浴の特性を考慮して多少管理濃度を変えた。   The basic composition of the plating solution used in the plating treatment of the present invention conforms to the Watt bath composition mainly composed of nickel sulfate, nickel chloride, and boric acid. Other nickel plating baths also basically have Watt bath composition, but the control concentration was slightly changed in consideration of the penetration of the plating bath in the previous step and the characteristics of the plating bath.

半光沢ニッケルめっき(SB−Ni)は、ニッケルめっき浴の中では最も電位が高く、耐食性の良いめっきである。即ち、めっき膜に共析する硫黄成分が低いめっきである。反面、引っ張り応力が最も高いので、光沢剤の過剰添加や光沢剤分解物の蓄積はめっきクラック(割れ)の要因になるので管理には十分注意が必要である。   Semi-bright nickel plating (SB-Ni) is a plating having the highest potential and good corrosion resistance in a nickel plating bath. That is, it is plating with a low sulfur component that is eutectoid on the plating film. On the other hand, since the tensile stress is the highest, excessive addition of brighteners and accumulation of brightener decomposition products cause plating cracks, so careful management is required.

半光沢ニッケルめっきは、その名の通り高電部には光沢が得られず、低電部の半分だけに光沢感があるめっきが得られた。レベリング作用、即ち素地の微視的な凹凸や、研磨の条こんなどを平滑化するめっき浴の能力は、ニッケルめっき浴の中で最も良いが、光沢硫酸銅には及ばなかった。   As the name suggests, the semi-bright nickel plating did not give a gloss to the high electric part, and a plating having a glossy feeling only on half of the low electric part was obtained. The leveling action, that is, the ability of the plating bath to smooth the microscopic unevenness of the substrate and the polishing strip, is the best among the nickel plating baths, but it did not reach that of bright copper sulfate.

レベラー比率が高く、強烈なレベラーを使用しているので成膜されためっき膜の活性度が高くニッケルシミ不良(もやのようなシミ)の要因となった。即ち、めっき又はめっき後の仕上げた表面上に斑点や汚点が、時間画が経過してから遅れて出現する原因となった。めっき後の空中製品移動時に製品が乾燥しないように、素早く次工程に水没させる必要があった。浴温や気温、水洗水温度にも依存する。ピット防止剤で水切りと乾きを改善することも有効であった。   Since the leveler ratio is high and an intense leveler is used, the activity of the plated film is high, which causes nickel stain defects (spots like haze). In other words, spots or smudges appear on the surface after plating or after plating after the time image has elapsed. In order to prevent the product from drying when the aerial product was moved after plating, it was necessary to quickly submerge it in the next process. It also depends on the bath temperature, air temperature, and washing water temperature. It was also effective to improve drainage and drying with a pit inhibitor.

強烈なレベラーには糸状の白カビが生じやすいので、水洗も含めたカビ対策が必要である。Butine−diol系誘導体に、糸状のカビが発生しやすかった。   Intense levelers are prone to filamentous white mold, so it is necessary to take measures against mold, including washing with water. A filamentous mold was likely to occur in the Butine-diol type derivative.

[高耐食性ニッケルめっきおよびクロムめっき]
めっき製品の耐食性を向上する目的で、半光沢ニッケルめっきを先ず銅めっきの上へ付け、更にその上に光沢ニッケルめっきを行う(WNiめっき法)等、多層ニッケルめっきを行った。ニッケルめっき膜中に混入する硫黄成分や酸素、炭素などによってニッケルめっき膜の腐食電位・耐食性が変化することを利用し、犠牲防食によって腐食の進行がめっき膜深部へ及ばないように考慮しためっき膜構成にしている。
[High corrosion resistance nickel plating and chromium plating]
For the purpose of improving the corrosion resistance of the plated product, semi-bright nickel plating was first applied on the copper plating, and then the nickel plating was further performed thereon (WNi plating method). A plating film that takes advantage of the fact that the corrosion potential and corrosion resistance of the nickel plating film change depending on the sulfur component, oxygen, carbon, etc. mixed in the nickel plating film, and that the progress of corrosion does not reach the deep part of the plating film by sacrificial protection It has a configuration.

現在は、上記の二層ニッケルめっき及び三層ニッケルめっきが行われ、さらに後述のMPNi(ジュールニッケル、シールニッケル)やポストニッケルストライクめっき(PNS)を1.0〜2.0μmめっきした上にクロムめっきを0.15〜0.5μmめっきして得られるマイクロポーラスクロムめっきやマイクロクラッククロムめっきを施し、装飾クロムめっきの耐食性を向上させる方法を利用することができる。   Currently, the above two-layer nickel plating and three-layer nickel plating are performed, and MPNi (joule nickel, seal nickel) and post nickel strike plating (PNS) described later are plated on 1.0 to 2.0 μm and chromium. A method of applying microporous chrome plating or microcrack chrome plating obtained by plating 0.15-0.5 μm to improve the corrosion resistance of the decorative chrome plating can be used.

従来の三層ニッケルめっきは半光沢ニッケルめっきと光沢ニッケルめっきの間に三層ニッケルめっきというS含有量が最も多く、最も電位の低いめっきを1.0〜2.0μm程度めっきすることで更に耐食性を向上させることができる。   Conventional three-layer nickel plating has the highest S content of three-layer nickel plating between the semi-bright nickel plating and the bright nickel plating, and further corrosion resistance by plating the lowest potential plating about 1.0-2.0 μm Can be improved.

図3はニッケルめっきの腐食の進行状態の説明図であり、(a)は単層ニッケルめっき、(b)は二層ニッケルめっき、(c)は三層ニッケルめっきである。
以下に単層ニッケルめっき(シングルニッケルめっき)(図3(a)参照)、二層ニッケルめっき(二重ニッケルめっき)(図3(b)参照)、及び三層ニッケルめっき(三重ニッケルめっき)(図3(c)参照)との腐食の進行の違いについては電位差が正常であれば下図のようになる。図3に示すめっき製品は、すべてマイクロポーラスクロム仕上げによるものである。
FIG. 3 is an explanatory view of the progress of corrosion of nickel plating. (A) is single-layer nickel plating, (b) is double-layer nickel plating, and (c) is triple-layer nickel plating.
Single layer nickel plating (single nickel plating) (see FIG. 3A), double layer nickel plating (double nickel plating) (see FIG. 3B), and three layer nickel plating (triple nickel plating) ( The difference in the progress of corrosion from that shown in FIG. 3C is as shown below if the potential difference is normal. All the plated products shown in FIG. 3 have a microporous chrome finish.

Figure 2009074147
Figure 2009074147

いずれにしてもクロムに開いた微孔やマイクロクラックなどのニッケルめっき露出部分から腐食が始まり銅まで腐食が進んで銅の青錆が出た時を錆と判定する(青錆判定)。ニッケルの腐食によるクロムの脱落は、サーフィピットとして判定する(白錆判定)。この青錆判定と白錆判定の2種類の腐食判定方法が明確に分けられていない自動車メーカーもあり、メーカーごとに判定に差があるので注意が必要である。   In any case, when the corrosion starts from the exposed part of the nickel plating such as micro-holes or micro cracks opened in the chrome, and the corrosion progresses to the copper and the blue rust of the copper comes out, it is determined as rust (blue rust determination). Decline of chromium due to nickel corrosion is determined as a surfi pit (white rust determination). There are some automobile manufacturers in which the two types of corrosion determination methods of blue rust determination and white rust determination are not clearly divided, and there is a difference in determination for each manufacturer, so care must be taken.

単層ニッケルの場合、ニッケルの腐食は一気に銅まで到達する。二層ニッケルの場合、腐食が半光沢ニッケル層に達したとき光沢ニッケル層と半光沢ニッケル層との電位差により、半光沢ニッケル層は電気防食され、光沢ニッケル層がある程度腐食するまで半光沢ニッケル層の腐食は抑制される。その結果、銅錆発生までの時間は単層ニッケルめっき品より延びる。即ち、耐食性が向上する。   In the case of single layer nickel, nickel corrosion reaches copper at once. In the case of double-layer nickel, when the corrosion reaches the semi-bright nickel layer, the semi-bright nickel layer is electro-corrosive due to the potential difference between the bright nickel layer and the semi-bright nickel layer, until the bright nickel layer corrodes to some extent. Corrosion of is suppressed. As a result, the time until the occurrence of copper rust extends from the single-layer nickel-plated product. That is, the corrosion resistance is improved.

さらに三層ニッケルでは光沢ニッケル層の腐食が三層ニッケル層に到達したとき、光沢ニッケル層と三層ニッケル層との電位差により光沢ニッケル層が電気防食され、三層ニッケル層が先に腐食される。三層ニッケル層の腐食が半光沢ニッケ層ルに達したとき、三層ニッケル層と半光沢ニッケル層との間に電位差が生じるが、光沢ニッケル層と半光沢ニッケル層との電位差(二層ニッケルの場合)より電位差が大きいため、半光沢ニッケル層の電気防食効果は二層ニッケルの場合より優れている。   Further, in the case of the three-layer nickel, when the corrosion of the bright nickel layer reaches the three-layer nickel layer, the bright nickel layer is electrically protected by the potential difference between the bright nickel layer and the three-layer nickel layer, and the three-layer nickel layer is corroded first. . When the corrosion of the three-layer nickel layer reaches the semi-bright nickel layer, a potential difference occurs between the three-layer nickel layer and the semi-bright nickel layer, but the potential difference between the bright nickel layer and the semi-bright nickel layer (two-layer nickel layer) In this case, since the potential difference is larger, the anticorrosion effect of the semi-bright nickel layer is superior to that of the double-layer nickel.

三層ニッケルは光沢ニッケルと一体となってアノード的挙動を示すため、三層ニッケルのみトンネル状に腐食して抜けることはない。三層ニッケルと光沢ニッケルめっきとの電位差は最近10〜20mVとあまり電位差を付けすぎない管理がされている。なお、三層ニッケル/光沢ニッケル間は密着不良を起こしやすいので、水洗はしないで光沢ニッケルめっき槽へ投入する。   Since the three-layer nickel is integrated with the bright nickel and exhibits an anodic behavior, only the three-layer nickel corrodes in a tunnel shape and does not escape. Recently, the potential difference between the three-layer nickel and the bright nickel plating is 10 to 20 mV, so that the potential difference is not excessively controlled. In addition, since it is easy to raise | generate adhesion failure between three-layer nickel / bright nickel, it puts into a bright nickel plating tank without washing with water.

多層ニッケルめっきの腐食時の挙動であるが、ここに生じる電位はニッケルに含まれるS分及び不純物に影響を受ける。半光沢ニッケルめっきの前工程は銅めっきであり、銅イオンの蓄積などが考えられる。光沢剤の分解生成物の蓄積もある。
めっき浴の管理、特に光沢剤の管理が重要である。電位差が大きすぎるのも腐食を早める。特に光沢Ni/半光沢Ni電位に注意する。表面のめっき面に生成される巨視的な穴、いわゆるサーファイス・ピットが発生しやすい。
電位列順は、SBNi>MPNi>BrNi>TrNi になる。
Although it is the behavior at the time of corrosion of multilayer nickel plating, the electric potential produced here is influenced by S content and impurities contained in nickel. The pre-process of semi-bright nickel plating is copper plating, and accumulation of copper ions can be considered. There is also an accumulation of brightener decomposition products.
The management of the plating bath, especially the management of the brightener, is important. A potential difference that is too large also accelerates corrosion. Pay particular attention to the bright Ni / semi-gloss Ni potential. Macroscopic holes generated on the plated surface of the surface, so-called surface pits, are likely to occur.
The potential sequence is SBNi>MPNi>BrNi> TrNi.

めっき製品でNi電位差を測定すると、ラインで使用しているめっき液状態の相対的な電位差しか測定できない。またマイクロポーラスニッケルめっきの膜厚が薄すぎるため正確な数値がつかみにくい。新たなめっき液の半光沢ニッケルめっき液をベースにして、ハルセル板、いわゆる種々の電流密度における電極表面の状況を観察する特殊な形の電解槽へ各ニッケルめっきを重ねためっきを行なって比較管理をすることが望ましい。
半光沢ニッケルめっきにはレベリング性、内部応力(めっき応力)ができるだけ小さいこと、Sを含まないこと、即ち電位が高いことが求められる。
When the Ni potential difference is measured with a plated product, only the relative potential difference of the plating solution state used in the line can be measured. Moreover, since the film thickness of microporous nickel plating is too thin, an accurate numerical value is difficult to grasp. Based on the new plating solution, semi-bright nickel plating solution, comparatively controlled by plating each nickel plating on a hull cell plate, a special type electrolytic cell that observes the state of the electrode surface at various current densities It is desirable to do.
Semi-bright nickel plating is required to have leveling properties and internal stress (plating stress) as small as possible, not containing S, that is, high potential.

[本発明の方法によるめっきの適正膜厚の確認]
本発明の不具合防止方法を実施するにあたり、マイクロポーラスめっき(微孔ニッケル)めっきで得られる程度の微孔数が確保される必要がある。従って、本発明の不具合防止方法によるマイクロポーラスめっきの適正な膜厚、即ち微孔数の減少が最低限に抑制できる膜厚の確認が必要であり、その確認試験を行なった。
[Confirmation of appropriate film thickness of plating by the method of the present invention]
In carrying out the defect prevention method of the present invention, it is necessary to secure the number of micropores that can be obtained by microporous plating (microporous nickel) plating. Therefore, it is necessary to confirm the appropriate film thickness of the microporous plating by the defect prevention method of the present invention, that is, the film thickness that can suppress the decrease in the number of micropores to the minimum, and the confirmation test was performed.

[試験方法]
銅めっきからマイクロポーラスニッケルめっきまで行なっためっき製品の上にフラッシュめっきの膜厚を0μm〜2μmまで0.5μm単位で変化させて最上層のクロムめっきを0.3μmめっきしためっき製品を使ってフラッシュめっき膜厚の増加とポアー数(微孔数)の減少の関連性を測定した。
なお、フラッシュめっきには、ワット浴にマイクロポーラスニッケル用の光沢剤を標準量添加しためっき液を使用した。浴温は50℃ 3A/dImでめっき時間:0sec〜3min40secまで変化させた。
また、マイクロポーラスニッケルめっきは標準濃度のめっき液を用い、50℃/2min3A/dmの条件でめっきした。めっき膜厚と微孔数の関係を表3に示す。
[Test method]
Flash using a plated product obtained by changing the film thickness of the flash plating from 0 μm to 2 μm in 0.5 μm increments on the plated product from copper plating to microporous nickel plating by 0.3 μm. The relationship between the increase in the plating film thickness and the decrease in the number of pores (number of micropores) was measured.
For the flash plating, a plating solution in which a standard amount of a brightening agent for microporous nickel was added to a watt bath was used. The bath temperature was 50 ° C. 3 A / dIm 2 and the plating time was changed from 0 sec to 3 min 40 sec.
Microporous nickel plating was performed using a standard concentration plating solution under the conditions of 50 ° C./2 min 3 A / dm 2 . Table 3 shows the relationship between the plating film thickness and the number of micropores.

Figure 2009074147
Figure 2009074147

[実施例と評価]
電気銅めっきは20μm、半光沢ニッケルめっきは12μm、光沢ニッケルは7μmとし、その上にマイクロポーラスニッケルめっき 50℃/2min 3A/dm の条件でめっきした製品にフラッシュめっきを0.5μmめっきし、クロムめっき0.3μmめっきした製品をつくり、マイクロポーラスニッケルめっきの有無でめっき品の耐食性がどのように違うかを評価した。
[Examples and evaluation]
Electro-copper plating is 20 μm, semi-bright nickel plating is 12 μm, bright nickel is 7 μm, and microporous nickel plating is plated on the condition of 50 ° C./2 min 3 A / dm 2 with flash plating of 0.5 μm, A product plated with 0.3 μm of chrome plating was prepared, and it was evaluated how the corrosion resistance of the plated product was different depending on the presence or absence of microporous nickel plating.

本発明のフラッシュめっき処理を実施しないめっき品は、マイクロポーラスめっきの時間をフラッシュめっき分延長し、マイクロポーラスめっき+フラッシュめっきの製品とめっき膜厚が同じになるように調整した。   In the plated product not subjected to the flash plating treatment of the present invention, the microporous plating time was extended by the flash plating, and the plating film thickness was adjusted to be the same as that of the product of microporous plating + flash plating.

フラッシュめっきには、ワット浴ベースのニッケルめっき液にマイクロポーラスニッケルめっき用の光沢剤を標準量添加した液を使用した。   For flash plating, a solution obtained by adding a standard amount of a brightening agent for microporous nickel plating to a Watt bath-based nickel plating solution was used.

耐食性評価は、キャス試験(CASStest (Copper Accelerated Acetic Acid Salt Spray test))80時間実施後、レイティングNo.とサーフィスピットNo.で腐食を評価した。即ち、銅塩の添加で腐食作用を促進した酢酸酸性の塩水を噴霧し、皮膜の耐食性を調べた。   Corrosion resistance evaluation was conducted after a cast test (CASStest (Copper Accelerated Acid Salt Spray Test)) for 80 hours, and then with Rating No. And surface pit no. Was evaluated for corrosion. That is, acetic acid salt water whose corrosion action was accelerated by addition of copper salt was sprayed to examine the corrosion resistance of the film.

マイクロポーラスニッケルめっきに関わる不具合(主にシミ不良)については、マイクロポーラスニッケルめっき液中の2次系光沢剤量を薬品管理範囲より多く添加(1次系光沢剤標準量10ml/L 試験品15ml/L+ 二次系光沢剤標準3ml/L試験品5ml/L)してシミ不良が出やすい状況下で、不良率に違いがあるかを検証した。耐食性の評価を比較した結果を表2に示し、不良率変化確認試験を表3に示す。   For defects related to microporous nickel plating (mainly stain defects), the amount of secondary brightener in the microporous nickel plating solution is greater than the chemical control range (primary brightener standard amount 10ml / L test product 15ml) / L + secondary brightener standard 3 ml / L test product 5 ml / L), and verified whether there is a difference in the defect rate under the condition that stain defects are likely to occur. The results of comparing the corrosion resistance evaluations are shown in Table 2, and the failure rate change confirmation test is shown in Table 3.

Figure 2009074147
Figure 2009074147

Figure 2009074147
Figure 2009074147

微孔数(個/cm)はフラッシュめっきが、0.5μmでは製品垂直面では変化しなかった。製品で10°受け面では、微孔ニッケルめっき上に微粒子が残留しやすいので、フラッシュめっきが、0.5μmでは逆に増加した。
1.0μmめっきすると、製品垂直面では1/3に微孔数は減少した。10°受け面でも2/3に減少した。
下地の微孔ニッケルの微孔数を30、000(個/cm)確保すれば、フラッシュめっき膜厚を1.0μm(微孔ニッケルめっき1.0μm時)までめっきしても、最終めっき微孔数を10、000(個/cm)以上確保できることを確認した。表3に示したように、フラッシュめっきのめっき膜厚使用範囲は、1.0μm以下、好ましくは0.5μmとすることが望ましい。仕上めっき層の膜厚は0.1〜0.5μmが適していた。なお、1.5μm以上の膜厚にすると微孔数が極端に減少した。これは、マイクロポーラスめっきとしての機能を発揮できないことを意味している。
The number of micropores (pieces / cm 2 ) was not changed on the vertical surface of the product by flash plating at 0.5 μm. On the 10 ° receiving surface of the product, since fine particles are likely to remain on the microporous nickel plating, the flash plating increased conversely at 0.5 μm.
When 1.0 μm was plated, the number of micropores decreased to 1/3 on the vertical surface of the product. Even at the 10 ° receiving surface, it decreased to 2/3.
If the number of micropores in the ground microporous nickel is ensured to be 30,000 (pieces / cm 2 ), even if the plating thickness of the flash plating is 1.0 μm (when microporous nickel plating is 1.0 μm), the final plating micro It was confirmed that the number of holes could be secured 10,000 (pieces / cm 2 ) or more. As shown in Table 3, the plating film thickness usage range of flash plating is 1.0 μm or less, preferably 0.5 μm. The film thickness of the finish plating layer was suitably 0.1 to 0.5 μm. When the film thickness was 1.5 μm or more, the number of micropores was extremely reduced. This means that the function as microporous plating cannot be exhibited.

今回のキャス試験による耐食性評価では、耐食性に差は見られなかった。但し、マイクロポーラスめっき工程S7のめっき液が老化液である場合は、わずかに耐食性に差が見られた。   In the corrosion resistance evaluation by the cast test, no difference was found in the corrosion resistance. However, when the plating solution in the microporous plating step S7 was an aging solution, a slight difference in corrosion resistance was observed.

なお、本発明は上述した発明の実施の形態に限定されず、マイクロポーラスめっきに生じるシミや暈けといっためっきに関わる不具合を防止し、めっきの耐食性を向上させ、更にめっき液の連続濾過が可能になり、このめっき液を容易に維持管理できると共に、電位も容易に維持管理できるめっき方法であれば、図示したような方法に限定されず、本発明の要旨を逸脱しない範囲で種々変更できることは勿論である。   In addition, this invention is not limited to embodiment of the invention mentioned above, The trouble which concerns on plating, such as a stain and a blurring which arise in microporous plating, is prevented, corrosion resistance of plating is improved, and also continuous filtration of plating solution is possible As long as the plating method can easily maintain and manage this plating solution and can easily maintain and manage the potential, the plating solution is not limited to the illustrated method, and various modifications can be made without departing from the scope of the present invention. Of course.

本発明のマイクロポーラスめっきに関わる不具合防止方法は、樹脂成型品に適しているが、金属成型品についても利用することができる。   The method for preventing defects related to microporous plating of the present invention is suitable for resin molded products, but can also be used for metal molded products.

実施例1のマイクロポーラスめっきに関わる不具合防止方法を示す工程図である。FIG. 3 is a process diagram illustrating a failure prevention method related to microporous plating in Example 1; 実施例1のマイクロポーラスめっきに関わる不具合防止方法によるめっき製品のめっき被膜の拡大断面図である。It is an expanded sectional view of the plating film of the plating product by the malfunction prevention method regarding the microporous plating of Example 1. ニッケルめっきの腐食の進行状態の説明図であり、(a)は単層ニッケルめっき、(b)は二層ニッケルめっき、(c)は三層ニッケルめっきである。It is explanatory drawing of the progress state of corrosion of nickel plating, (a) is single layer nickel plating, (b) is double layer nickel plating, (c) is triple layer nickel plating. 従来のマイクロポーラスめっき方法を示す工程図である。It is process drawing which shows the conventional microporous plating method. 従来のマイクロポーラスめっき方法によるめっき製品のめっき被膜の拡大断面図である。It is an expanded sectional view of the plating film of the plating product by the conventional microporous plating method.

符号の説明Explanation of symbols

S5 ニッケルめっき工程
S7 マイクロポーラスめっき工程
S8 フラッシュめっき工程
S9 仕上めっき工程
S5 Nickel plating process S7 Microporous plating process S8 Flash plating process S9 Finish plating process

Claims (7)

樹脂成形品又は金属製品等の被めっき素材に、ニッケルめっき工程(S5)によりニッケルめっき層を形成し、
前記ニッケルめっき層に、マイクロポーラスめっき工程(S7)によりマイクロポーラスめっき層を形成し、
前記マイクロポーラスめっき層に、フラッシュめっき工程(S8)によりフラッシュめっき層を形成し、
前記フラッシュめっき層に、仕上めっき工程(S10)により仕上めっき層を形成する、ことを特徴とするマイクロポーラスめっきに関わる不具合防止方法。
A nickel plating layer is formed by a nickel plating process (S5) on a material to be plated such as a resin molded product or a metal product,
A microporous plating layer is formed on the nickel plating layer by a microporous plating step (S7),
A flash plating layer is formed on the microporous plating layer by a flash plating step (S8),
A method for preventing a problem associated with microporous plating, wherein a finish plating layer is formed on the flash plating layer by a finish plating step (S10).
前記仕上めっき層は、クロムめっき、錫めっき又はニッケル合金めっき等の外観色めっきである、ことを特徴とする請求項1のマイクロポーラスめっきに関わる不具合防止方法。 2. The method for preventing a failure associated with microporous plating according to claim 1, wherein the finish plating layer is appearance color plating such as chromium plating, tin plating or nickel alloy plating. 前記フラッシュめっき工程(S8)では、前記マイクロポーラスめっき工程(S7)において共析した微粒子部分が埋まらない程度の厚みにめっきする、ことを特徴とする請求項1のマイクロポーラスめっきに関わる不具合防止方法。 The method for preventing a problem associated with microporous plating according to claim 1, wherein in the flash plating step (S 8), the microporous plating step (S 7) is plated to a thickness that does not bury the fine particles that have co-deposited in the microporous plating step (S 7). . 前記フラッシュめっき層の膜厚が0.1〜0.5μmになるようにめっき処理を施す、ことを特徴とする請求項3のマイクロポーラスめっきに関わる不具合防止方法。 4. The method according to claim 3, wherein the plating treatment is performed so that the thickness of the flash plating layer is 0.1 to 0.5 [mu] m. 前記フラッシュめっき工程(S8)では、めっき液を容易にろ過できるように、前記マイクロポーラスめっき工程(S7)で使用しためっき液とは異なり、パウダー分、パウダー分散剤、プラス電荷付与剤の成分を除去しためっき液を使用してめっき処理を施す、ことを特徴とする請求項1のマイクロポーラスめっきに関わる不具合防止方法。 Unlike the plating solution used in the microporous plating step (S7), in the flash plating step (S8), the components of the powder component, the powder dispersant, and the positive charge imparting agent are different from those used in the microporous plating step (S7). 2. The method for preventing defects associated with microporous plating according to claim 1, wherein the plating treatment is performed using the removed plating solution. 前記ニッケルめっき(S5)は二層又は三層の複数層のニッケルめっきである、ことを特徴とする請求項1のマイクロポーラスめっきに関わる不具合防止方法。 2. The method for preventing a problem associated with microporous plating according to claim 1, wherein the nickel plating (S5) is a two-layer or three-layer nickel plating. 前記被めっき素材が樹脂成形品のときには、
該被めっき素材上に、化学めっき、stめっき(金属素材めっき)、銅めっきを更に施す、ことを特徴とする請求項1のマイクロポーラスめっきに関わる不具合防止方法。
When the material to be plated is a resin molded product,
2. The method of preventing defects associated with microporous plating according to claim 1, wherein chemical plating, st plating (metal material plating), and copper plating are further performed on the material to be plated.
JP2007245837A 2007-09-21 2007-09-21 Defect prevention method for microporous plating Active JP4911622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007245837A JP4911622B2 (en) 2007-09-21 2007-09-21 Defect prevention method for microporous plating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007245837A JP4911622B2 (en) 2007-09-21 2007-09-21 Defect prevention method for microporous plating

Publications (2)

Publication Number Publication Date
JP2009074147A true JP2009074147A (en) 2009-04-09
JP4911622B2 JP4911622B2 (en) 2012-04-04

Family

ID=40609404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007245837A Active JP4911622B2 (en) 2007-09-21 2007-09-21 Defect prevention method for microporous plating

Country Status (1)

Country Link
JP (1) JP4911622B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103178371A (en) * 2011-12-22 2013-06-26 日本压着端子制造株式会社 Component
JP2013129882A (en) * 2011-12-22 2013-07-04 Jst Mfg Co Ltd Component
JP2014179492A (en) * 2013-03-15 2014-09-25 Nichia Chem Ind Ltd Lead frame or substrate for optical semiconductor device
JP2016169437A (en) * 2015-03-11 2016-09-23 嘉興敏惠汽車零部件有限公司 Nickel and/or chromium plated member and method for producing the same
JP7330349B1 (en) * 2022-11-11 2023-08-21 株式会社Jcu Chrome-plated parts and manufacturing method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5550488A (en) * 1978-10-05 1980-04-12 C Uyemura & Co Ltd Corrosion-resistant plating method
JPS5615471B2 (en) * 1972-10-30 1981-04-10
JPS5681695A (en) * 1979-12-05 1981-07-03 C Uyemura & Co Ltd Plating method to provide corrosion resistance
JPH03291395A (en) * 1990-04-09 1991-12-20 Ebara Yuujiraito Kk Nickel plating method ensuring high corrosion resistance
JPH05287579A (en) * 1992-04-10 1993-11-02 Toyoda Gosei Co Ltd Ornamental chrome plating film and its formation
JPH06146069A (en) * 1992-10-30 1994-05-27 Toyoda Gosei Co Ltd Formation of ornamental chromium plating film
JPH06146070A (en) * 1992-10-30 1994-05-27 Toyoda Gosei Co Ltd Formation of ornamental chrome plating film
JP2007039772A (en) * 2005-08-05 2007-02-15 Kakihara Kogyo Kk Method for forming copper-free plated film on resin
JP2007056282A (en) * 2005-08-22 2007-03-08 Toyota Auto Body Co Ltd Method of manufacturing chromium plated product

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5615471B2 (en) * 1972-10-30 1981-04-10
JPS5550488A (en) * 1978-10-05 1980-04-12 C Uyemura & Co Ltd Corrosion-resistant plating method
JPS5681695A (en) * 1979-12-05 1981-07-03 C Uyemura & Co Ltd Plating method to provide corrosion resistance
JPH03291395A (en) * 1990-04-09 1991-12-20 Ebara Yuujiraito Kk Nickel plating method ensuring high corrosion resistance
JPH05287579A (en) * 1992-04-10 1993-11-02 Toyoda Gosei Co Ltd Ornamental chrome plating film and its formation
JPH06146069A (en) * 1992-10-30 1994-05-27 Toyoda Gosei Co Ltd Formation of ornamental chromium plating film
JPH06146070A (en) * 1992-10-30 1994-05-27 Toyoda Gosei Co Ltd Formation of ornamental chrome plating film
JP2007039772A (en) * 2005-08-05 2007-02-15 Kakihara Kogyo Kk Method for forming copper-free plated film on resin
JP2007056282A (en) * 2005-08-22 2007-03-08 Toyota Auto Body Co Ltd Method of manufacturing chromium plated product

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103178371A (en) * 2011-12-22 2013-06-26 日本压着端子制造株式会社 Component
JP2013129882A (en) * 2011-12-22 2013-07-04 Jst Mfg Co Ltd Component
JP2013129881A (en) * 2011-12-22 2013-07-04 Jst Mfg Co Ltd Component
JP2014179492A (en) * 2013-03-15 2014-09-25 Nichia Chem Ind Ltd Lead frame or substrate for optical semiconductor device
JP2016169437A (en) * 2015-03-11 2016-09-23 嘉興敏惠汽車零部件有限公司 Nickel and/or chromium plated member and method for producing the same
JP7330349B1 (en) * 2022-11-11 2023-08-21 株式会社Jcu Chrome-plated parts and manufacturing method thereof

Also Published As

Publication number Publication date
JP4911622B2 (en) 2012-04-04

Similar Documents

Publication Publication Date Title
KR100629793B1 (en) Method for providing copper coating layer excellently contacted to magnesium alloy by electrolytic coating
Di Bari Electrodeposition of nickel
Kumar et al. Factor effecting electro-deposition process
JP4911622B2 (en) Defect prevention method for microporous plating
JPH0791667B2 (en) Mandrel for electroforming
CN104790004A (en) Nickel and/or chromium plated component and manufacturing method thereof
JP2022105544A (en) Method of generating thin functional coating on light alloy
US4411961A (en) Composite electroplated article and process
US3282810A (en) Method of electrodepositing a corrosion resistant nickel-chromium coating and products thereof
JPH0240756B2 (en)
GB2101162A (en) Composition and process for electro-depositing composite nickel layers
US3064337A (en) Composite metal article
US1651278A (en) Process of producing corrosion-resisting coating on iron and steel and products
JPS6318677B2 (en)
KR100227085B1 (en) Zn-fe flash steel plate manufacturing method for high formability and corrosion resistant
US8871077B2 (en) Corrosion-resistant plating system
Uttam et al. Phenomenon of Corrosion in Chrome Plated ABS Parts
Weisenberger et al. Copper plating
JPH06146070A (en) Formation of ornamental chrome plating film
Gamburg et al. Technologies for the electrodeposition of metals and alloys: electrolytes and processes
JPH06240490A (en) Corrosion resistant chromium plating
US11280005B2 (en) Method for producing relief image on a metal base
JP2010196100A (en) Black plated film and method for forming the same
Dennis Decorative Electrodeposited Metallic Coatings
JP2006206928A (en) Production method of electrogalvanized steel sheet having excellent plating appearance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091130

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120112

R150 Certificate of patent or registration of utility model

Ref document number: 4911622

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250