JP2009067534A - Cylindrical body transfer carriage device - Google Patents

Cylindrical body transfer carriage device Download PDF

Info

Publication number
JP2009067534A
JP2009067534A JP2007238033A JP2007238033A JP2009067534A JP 2009067534 A JP2009067534 A JP 2009067534A JP 2007238033 A JP2007238033 A JP 2007238033A JP 2007238033 A JP2007238033 A JP 2007238033A JP 2009067534 A JP2009067534 A JP 2009067534A
Authority
JP
Japan
Prior art keywords
cylindrical body
cylindrical
mandrel
shaped magnet
chuck
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007238033A
Other languages
Japanese (ja)
Other versions
JP5169095B2 (en
Inventor
Kentaro Yajima
健太郎 矢島
Koshin Kenjo
康臣 見上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2007238033A priority Critical patent/JP5169095B2/en
Publication of JP2009067534A publication Critical patent/JP2009067534A/en
Application granted granted Critical
Publication of JP5169095B2 publication Critical patent/JP5169095B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Specific Conveyance Elements (AREA)
  • Fixing For Electrophotography (AREA)
  • Manipulator (AREA)
  • Load-Engaging Elements For Cranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cylindrical body transfer carriage device not causing a fail such as breakage or damage of a cylindrical body, even in transfer from a flexible cylindrical stocker to a mandrel or transfer from the mandrel to the stocker. <P>SOLUTION: The cylindrical body transfer carriage device transfers the cylindrical body on the stocker to a columnar mandrel part and then carries the cylindrical body placed on the mandrel part to a predetermined position, and transfers the cylindrical body placed on the mandrel part on the stocker again. The cylindrical body transfer carriage device has an arm part reciprocating between a horizontal direction between the stocker and the mandrel, and a vertical direction in an upper part of the stocker and an upper part of the columnar mandrel part. The arm part is provided with a columnar chuck part having a cylindrical part slipping in the cylindrical body from an end part of the cylindrical body, and an enlarged/reduced diameter part made of an elastic member. Mandrel gas blowoff parts are disposed to an upper side face of the mandrel. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、筒状体、特に無端状ベルト基材などに用いられる、フレキシブルな円筒体を、該円筒体をストックするためのストッカから塗装等の処理を施すために円筒状のマンドレルに移載し、所定位置に搬送するとともに、その搬送先で塗装等の処理が行われた円筒体をマンドレルに移載した場所まで再度搬送し、マンドレルから外して再度ストッカへ移載する筒状体移載搬送装置に関するものである。   The present invention transfers a cylindrical body, particularly a flexible cylindrical body used for an endless belt base material, etc., to a cylindrical mandrel in order to perform a process such as painting from a stocker for stocking the cylindrical body. Then, the cylindrical body transferred to the predetermined position, transported again to the place where the cylindrical body that has been subjected to the processing such as painting at the transport destination is transferred to the mandrel, removed from the mandrel and transferred to the stocker again. The present invention relates to a transport device.

電子写真の原理に基づく複写機及びプリンタにおいて、トナーを付着させた用紙を狭圧し、熱によりトナーを溶解し、用紙に定着させる定着プロセスが存在する。近年その定着プロセスで用いられる部品(定着ローラあるいは定着ベルト)には暑さが100〜300μm程度のシリコンゴムなどの耐熱ゴムによる弾性層を形成することにより、トナー定着時の圧力を均一にし、画像の粒状度を上げることが行われている。この弾性層の厚さは画像に影響を及ぼし、またゴムの熱伝導性の関係から定着ローラの立ち上がり時間(所定の温度に達する時間)などに影響を及ぼすことからある程度の範囲で均一にすることが求められる。   In a copying machine and a printer based on the principle of electrophotography, there is a fixing process in which a sheet to which toner is attached is narrowed and the toner is dissolved by heat and fixed on the sheet. In recent years, parts (fixing rollers or fixing belts) used in the fixing process are formed with an elastic layer made of heat-resistant rubber such as silicon rubber having a heat of about 100 to 300 μm, so that the pressure during toner fixing is made uniform. Increasing the degree of granularity. The thickness of this elastic layer affects the image, and since it affects the rise time of the fixing roller (time to reach a predetermined temperature) due to the thermal conductivity of rubber, make it uniform within a certain range. Is required.

弾性層を形成する際の耐熱ゴム塗装における従来技術としては、スプレー塗装、ディッピングがあるが、これらは塗液を溶剤で希釈し粘度を下げることによって膜厚を制御することから、環境への負荷が大きい。   Conventional techniques for heat-resistant rubber coating when forming an elastic layer include spray coating and dipping. These methods control the film thickness by diluting the coating liquid with a solvent and lowering the viscosity. Is big.

一方、溶剤レス塗装工法としてリングコート工法がある。この工法は無端状基材に円径上の塗装ノズルから塗料を直接供給しながら、塗装点を基材に対して軸方向に移動させることによって所定箇所全体に塗布を行うために、塗料の供給は毎回の被塗装物への塗着分だけで済むので無駄がなく、かつ、溶剤の必要性もない。しかしながら塗膜をむらなく均一なものにするためには、ベルト形状のようなフレキシブル性のある円筒基材に対しても、形状を真円に保って、塗料供給ノズル先端と被塗装物外周との間隔を均一に保持しながら塗装することが要求される。しかしながら、無端ベルトの基材は樹脂からなるものであるために、通常の保持では断面は真円には保たれない。そのため、高精度な円筒ないし円柱形状のマンドレルを内側から基材を保持する必要がある。このとき、基材の径寸法のばらつきを吸収するためにマンドレルの外径は基材の内径の設計値より数十μm大きくする必要がある。   On the other hand, there is a ring coat method as a solventless coating method. This method supplies paint to an endless base material by directly applying paint from a coating nozzle on a circular diameter while moving the coating point in the axial direction relative to the base material. Since there is no need to use a solvent since there is no waste because only the amount applied to the object to be coated is required. However, in order to make the coating film even and uniform, even for a flexible cylindrical base material such as a belt shape, the shape is kept in a perfect circle, the tip of the paint supply nozzle and the outer periphery of the object to be coated. It is required to paint while maintaining a uniform spacing. However, since the base material of the endless belt is made of a resin, the cross section is not kept in a perfect circle under normal holding. Therefore, it is necessary to hold the base material from the inside with a highly accurate cylindrical or columnar mandrel. At this time, the outer diameter of the mandrel needs to be several tens μm larger than the designed value of the inner diameter of the base material in order to absorb the variation in the diameter of the base material.

上記のような基材のマンドレルへの着脱方法としては、マンドレル側面の微小穴からエアを噴出させることで基材内面に生じるエア層により極低摩擦状態にしており、作業者がマンドレル上端のガイド部に沿って基材先端を揺動させ、エア噴出穴まで入れたあと押し込むという方法をとっている。また抜取り時はマンドレルからエアを噴出させ、特開2003−084461号公報(特許文献1)に記載されているようなチャック治具を用いて引き抜いている。しかしながら、定着ベルトの基材は薄膜であり(数十〜100μm)、上記のような従来の技術に係る手作業では、チャック治具の基材への挿入や基材のマンドレルへの着脱において折れ等のミスが生じ易い。   As a method for attaching and detaching the base material to the mandrel as described above, air is blown out from a minute hole on the side surface of the mandrel so that the air layer generated on the inner surface of the base material is in an extremely low friction state. The base material tip is swung along the part, and after pushing into the air ejection hole, it is pushed in. Moreover, at the time of extraction, air is ejected from the mandrel and extracted using a chuck jig as described in Japanese Patent Application Laid-Open No. 2003-084461 (Patent Document 1). However, the base material of the fixing belt is a thin film (several tens to 100 μm), and in the manual operation according to the conventional technique as described above, the chuck jig is bent when the base material is inserted into the base material or the base material is attached to or detached from the mandrel. Such mistakes are likely to occur.

また定着プロセスにおいては、今後は低熱容量化から定着ベルト方式が主流となると予想されるが、上記のような基材を利用する定着ベルトの生産量が増えると予想され、多品種高効率生産、ランニングコスト低減が可能である自動化を想定した場合、従来のチャック方式では基材の径のばらつきや形状のばらつきのため一定の形状で保持が行えず、マンドレルとの位置決めが困難なため挿入時に折れが発生する他、無理な着脱により基材に無用な負荷をかけてしまい、その結果、塗膜面の品質を悪化させることとなる。   In the fixing process, it is expected that the fixing belt method will become the mainstream in the future due to low heat capacity, but it is expected that the production volume of fixing belts using the above-mentioned base materials will increase, making high-mix high-efficiency production, Assuming automation that can reduce running costs, the conventional chuck method cannot be held in a fixed shape due to variations in the diameter and shape of the base material, and it is difficult to position the mandrel, so it breaks during insertion. In addition to the above-mentioned phenomenon, an unnecessary load is applied to the base material due to excessive attachment and detachment, and as a result, the quality of the coating film surface is deteriorated.

特開2003−084461号公報JP 2003-084461 A

本発明は、上記課題に鑑みてなされたものであり、フレキシブルな円筒体のストッカからのマンドレルへの移送、及び、該マンドレルからの該ストッカへの移送においても、該円筒体の折れや破損などの失敗が生じない筒状体移載搬送装置を提供することを目的とする。   The present invention has been made in view of the above problems, and in the transfer of the flexible cylindrical body from the stocker to the mandrel and the transfer from the mandrel to the stocker, the cylindrical body is broken or broken. An object of the present invention is to provide a cylindrical body transfer / conveyance apparatus that does not cause the failure.

本発明の筒状体移載搬送装置は上記課題を解決するため、請求項1に記載の通り、ストッカ上に軸が鉛直になるよう載置された筒状体を、筒状体移載位置にある軸が鉛直に保たれた円柱状のマンドレル部へ移載した後、前記円柱状のマンドレル部に載置された前記筒状体を所定位置へ搬送し、その後、前記筒状体が載置された前記円柱状のマンドレル部を前記所定位置から前記筒状体移載位置に搬送し、次いで、前記円柱状のマンドレル部に載置された前記筒状体を前記ストッカ上に軸が鉛直になるよう再度移載する筒状体移載搬送装置であって、(イ)前記ストッカと筒状体移載位置での前記円柱状のマンドレル部との間の水平方向と、前記ストッカの上方及び前記円柱状のマンドレル部の上方での垂直方向と、を往復動するアーム部が設けられ、(ロ)前記筒状体の端部から内側へ滑入する鉛直に保持された円筒部と、前記筒状体が前記円筒部に滑入する際には、変形して外径が小さくなり、滑入終了後には、復元して外径が拡径する弾性部材からなる前記円筒部の側面または下端に設けられた拡縮径部と、を有する前記筒状体を保持するための円柱状のチャック部が、前記アーム部に設けられ、かつ、(ハ)気体を吹き出すマンドレル気体吹出部が、前記円柱状のマンドレルの上部側面に設けられていることを特徴とする筒状体移載搬送装置である。   In order to solve the above-described problem, the cylindrical body transfer / conveyance apparatus according to the present invention provides a cylindrical body transfer position on the stocker so that the axis is vertical, as described in claim 1. The cylindrical body placed on the cylindrical mandrel part is transported to a predetermined position, and then the cylindrical body is placed on the cylindrical mandrel part. The placed cylindrical mandrel part is transported from the predetermined position to the cylindrical body transfer position, and then the cylindrical body placed on the cylindrical mandrel part has a vertical axis on the stocker. And (b) a horizontal direction between the stocker and the cylindrical mandrel portion at the cylindrical body transfer position, and above the stocker. And an arm part that reciprocates in the vertical direction above the cylindrical mandrel part. (B) a vertically held cylindrical portion that slides inward from the end of the cylindrical body, and when the cylindrical body slides into the cylindrical portion, the outer diameter is reduced by deformation. A cylindrical shape for holding the cylindrical body having an expanded / contracted diameter portion provided on a side surface or a lower end of the cylindrical portion which is made of an elastic member whose outer diameter is expanded after restoration. A cylindrical body transfer conveyance, wherein the chuck part is provided on the arm part, and (c) a mandrel gas blowing part for blowing gas is provided on an upper side surface of the columnar mandrel. Device.

また、本発明の筒状体移載搬送装置は、請求項2に記載の通り、請求項1に記載の筒状体移載搬送装置において、前記拡縮径部には空間と該空間に接続された吸排気手段とが設けられ、前記空間はその壁の少なくとも一部が前記弾性部材により構成され、そして、前記吸排気手段が、前記筒状体が前記円筒部に滑入する際に該空間内部の気体を排気して前記拡縮径部の外径を小さくし、前記筒状体が前記円筒部に滑入した後には該空間内部に気体を給気して拡縮径部の外径を大きくするものであることを特徴とする。   Moreover, the cylindrical body transfer conveyance apparatus of this invention is a cylindrical body transfer conveyance apparatus of Claim 1 as described in Claim 2, A space is connected to this expansion-contraction diameter part and this space. The space is configured such that at least a part of the wall is constituted by the elastic member, and when the cylindrical body slides into the cylindrical portion, the space is formed in the space. After exhausting the internal gas to reduce the outer diameter of the expansion / contraction diameter portion, and after the cylindrical body slides into the cylindrical portion, the gas is supplied into the space to increase the outer diameter of the expansion / contraction diameter portion. It is a thing to do.

また、本発明の筒状体移載搬送装置は、請求項3に記載の通り、請求項1または請求項2に記載の筒状体移載搬送装置において、前記円柱状のチャック部が軸部材と該軸部材にはめ込まれる円筒部材とからなり、かつ、該円筒部が交換可能となっていることを特徴とする。   Moreover, the cylindrical body transfer conveyance apparatus of this invention is a cylindrical body transfer conveyance apparatus of Claim 1 or Claim 2 as described in Claim 3, WHEREIN: The said cylindrical chuck part is a shaft member. And a cylindrical member fitted into the shaft member, and the cylindrical portion is replaceable.

また、本発明の筒状体移載搬送装置は、請求項4に記載の通り、請求項1ないし請求項3のいずれか1項に記載の筒状体移載搬送装置において、前記円柱状のチャック部の側面に気体を吹き出す円柱状のチャック部気体吹き出し部を備えていることを特徴とする。   Moreover, the cylindrical body transfer conveyance apparatus of this invention is a cylindrical body transfer conveyance apparatus as described in any one of Claim 1 thru | or 3 in the cylindrical body transfer conveyance apparatus as described in Claim 4. A cylindrical chuck part gas blowing part for blowing out gas on the side surface of the chuck part is provided.

また、本発明の筒状体移載搬送装置は、請求項5に記載の通り、請求項4に記載の筒状体移載搬送装置において、前記円柱状のチャック部気体吹き出し部が、円柱状のチャック部の側面の周方向等間隔に気体噴出孔を4つ以上備えていることを特徴とする。   Moreover, the cylindrical body transfer conveyance apparatus of this invention is a cylindrical body transfer conveyance apparatus of Claim 4 as described in Claim 5. WHEREIN: The said cylindrical chuck | zipper part gas blowing part is cylindrical. 4 or more gas jet holes are provided at equal intervals in the circumferential direction of the side surface of the chuck portion.

また、本発明の筒状体移載搬送装置は、請求項6に記載の通り、請求項4または請求項5に記載の筒状体移載搬送装置において、前記円柱状のチャック部気体吹き出し部が、複数の気体噴出孔を円柱状のチャック部の側面の周方向に配した気体噴出孔からなる列を、該円柱状のチャック部の軸方向に、2列以上備えていることを特徴とする。   Moreover, the cylindrical body transfer conveyance apparatus of this invention is the cylindrical body transfer conveyance apparatus of Claim 4 or Claim 5 as described in Claim 6, The said cylindrical chuck | zipper part gas blowing part Is provided with two or more rows in the axial direction of the cylindrical chuck portion, the gas jet holes having a plurality of gas ejection holes arranged in the circumferential direction of the side surface of the cylindrical chuck portion. To do.

また、本発明の筒状体移載搬送装置は、請求項7に記載の通り、請求項1ないし請求項6のいずれか1項に記載の筒状体移載搬送装置において、前記筒状体を前記円柱状のマンドレルへ移載する際に該筒状体、前記円柱状のチャック部及び前記円柱状のマンドレルから形成される空間の内部の空気を該空間の外部へ逃がすための空気孔を前記円柱状のチャック部に備え、かつ、該空気孔と前記空間の外部とを接続する空気経路に開閉弁を備えていることを特徴とする。   Moreover, the cylindrical body transfer conveyance apparatus of this invention is a cylindrical body transfer conveyance apparatus as described in any one of Claim 1 thru | or 6 in the cylindrical body transfer conveyance apparatus as described in Claim 7. An air hole for allowing the air inside the space formed by the cylindrical body, the cylindrical chuck portion and the cylindrical mandrel to escape to the outside of the cylindrical mandrel. It is provided in the columnar chuck part, and an on-off valve is provided in an air path connecting the air hole and the outside of the space.

また、本発明の筒状体移載搬送装置は、請求項8に記載の通り、請求項1ないし請求項7のいずれか1項に記載の筒状体移載搬送装置において、前記円柱状のチャック部の下端または該下端の付近に円錐形状または円錐台形状のガイド部を備えていることを特徴とする。   Moreover, the cylindrical body transfer conveyance apparatus of this invention is a cylindrical body transfer conveyance apparatus as described in any one of Claim 1 thru | or 7. A guide portion having a cone shape or a truncated cone shape is provided at or near the lower end of the chuck portion.

また、本発明の筒状体移載搬送装置は、請求項9に記載の通り、請求項8に記載の筒状体移載搬送装置において、前記ガイド部が前記円柱状のチャック部の下端に該円柱状のチャック部よりも細径の棒状部材を介して取り付けられていることを特徴とする。   Moreover, the cylindrical body transfer conveyance apparatus of this invention is a cylindrical body transfer conveyance apparatus of Claim 8, As for the cylindrical body transfer conveyance apparatus of this invention, the said guide part is set to the lower end of the said cylindrical chuck | zipper part. It is characterized by being attached via a rod-like member having a diameter smaller than that of the cylindrical chuck portion.

また、本発明の筒状体移載搬送装置は、請求項10に記載の通り、請求項1ないし請求項9のいずれか1項に記載の筒状体移載搬送装置において、前記円柱状のチャック部が前記アーム部にチャック支持手段を介して取り付けられ、前記チャック支持手段が、(a)前記円柱状のチャック部と同軸の支柱部、(b)該支柱部に同軸に接合され非磁性の筐体に収納された表裏で磁極が異なる円盤形状の磁石、(c)前記円盤形状の磁石側の磁極が対向する円盤形状の磁石の面と同磁極となるように前記非磁性の筐体の前記円盤形状の磁石の前記アーム部側面に前記円盤形状の磁石と平行に配された第1の平板形状の磁石、(d)該円盤形状の磁石側の磁極が対向する円盤形状の磁石の面と同磁極となるように前記非磁性の筐体の前記円柱状のチャック部側面でかつ前記第1の平板形状の磁石とともに前記円盤形状の磁石を離間して挟む位置に配された第2の平板形状の磁石、から構成され、かつ、前記第2の平板形状の磁石と前記筐体とを連通する貫通孔に前記支柱部が挿通されていることを特徴とする。   Moreover, the cylindrical body transfer conveyance apparatus of this invention is a cylindrical body transfer conveyance apparatus as described in any one of Claim 1 thru | or 9 in the cylindrical body transfer conveyance apparatus as described in Claim 10. A chuck part is attached to the arm part via a chuck support means, and the chuck support means is (a) a column part coaxial with the columnar chuck part, and (b) a non-magnetic joint coaxially joined to the column part. (C) the non-magnetic casing so that the magnetic poles on the disc-shaped magnet side have the same magnetic pole as the surface of the opposing disk-shaped magnet. A first plate-shaped magnet arranged in parallel with the disk-shaped magnet on the side of the arm portion of the disk-shaped magnet, and (d) a disk-shaped magnet opposed to the magnetic pole on the disk-shaped magnet side. The columnar chin of the non-magnetic housing so as to have the same magnetic pole as the surface. A second flat plate-shaped magnet disposed on a side surface of the hook portion and at a position sandwiching the disk-shaped magnet with the first flat plate-shaped magnet. The support column is inserted into a through hole that communicates the magnet with the housing.

また、本発明の筒状体移載搬送装置は、請求項11に記載の通り、請求項10に記載の筒状体移載搬送装置において、気体を吹き出す貫通孔気体吹き出し部が、前記貫通孔の内側面に設けられていることを特徴とする。   Moreover, the cylindrical body transfer conveyance apparatus of this invention is a cylindrical body transfer conveyance apparatus of Claim 10 as described in Claim 11, The through-hole gas blowing part which blows off gas is the said through-hole. It is provided in the inner surface of this.

また、本発明の筒状体移載搬送装置は、請求項12に記載の通り、請求項11に記載の筒状体移載搬送装置において、上記貫通孔気体吹き出し部が、前記貫通孔の内側面の周方向に4つ以上の気体噴出孔を配した列を、該貫通孔の軸方向に、2列以上備えていることを特徴とする。   Moreover, the cylindrical body transfer conveyance apparatus of this invention is a cylindrical body transfer conveyance apparatus of Claim 11, As for the cylindrical body transfer conveyance apparatus of this invention, the said through-hole gas blowing-out part is an inside of the said through-hole. Two or more rows of four or more gas ejection holes arranged in the circumferential direction of the side surface are provided in the axial direction of the through hole.

また、本発明の筒状体移載搬送装置は、請求項13に記載の通り、請求項10ないし請求項12のいずれか1項に記載の筒状体移載搬送装置において、前記第1の平板形状の磁石及び前記第2の平板形状の磁石のどちらか一方が電磁石であることを特徴とする。   Moreover, the cylindrical body transfer conveyance apparatus of this invention is a cylindrical body transfer conveyance apparatus as described in any one of Claims 10 thru | or 12 in the said 1st. One of the flat plate-shaped magnet and the second flat plate-shaped magnet is an electromagnet.

また、本発明の筒状体移載搬送装置は、請求項14に記載の通り、請求項10ないし請求項13のいずれか1項に記載の筒状体移載搬送装置において、電流の変化を計測する電流計測手段が、前記第1の平板形状の磁石及び前記第2の平板形状の磁石のどちらか一方の異なった2箇所に接続されていることを特徴とする。   Moreover, the cylindrical body transfer conveyance apparatus of this invention is a cylindrical body transfer conveyance apparatus as described in any one of Claims 10 thru | or 13. The current measuring means for measuring is connected to two different locations of either the first plate-shaped magnet or the second plate-shaped magnet.

また、本発明の筒状体移載搬送装置は、請求項15に記載の通り、請求項10ないし請求項13のいずれか1項に記載の筒状体移載搬送装置において、前記第1の平板形状の磁石及び前記第2の平板形状の磁石のどちらか一方が、4つ以上に等しい形状の分割体に分割され、そして、電流の変化を計測する電流計測手段がそれぞれの前記分割体の異なった2箇所に接続されていることを特徴とする。   Moreover, the cylindrical body transfer conveyance apparatus of this invention is a cylindrical body transfer conveyance apparatus as described in any one of Claims 10 thru | or 13, as described in Claim 15. Either one of the flat plate-shaped magnet and the second flat plate-shaped magnet is divided into four or more divided bodies, and current measuring means for measuring a change in current is provided for each of the divided bodies. It is connected to two different places.

また、本発明の筒状体移載搬送装置は、請求項16に記載の通り、請求項15に記載の筒状体移載搬送装置において、前記分割体が全部電磁石であり、それぞれの電磁石からなる前記分割体には、電流の変化を測定する電流計測手段と電流調整手段とが接続されており、前記電流調整手段が、前記電流計測手段により測定された電流変化とは逆向きの電流変化をそれぞれの電磁石からなる前記分割体に流れる電流に対して加えるように設定されている電源装置であることを特徴とする請求項15に記載の筒状体移載搬送装置。   Moreover, the cylindrical body transfer conveyance apparatus of this invention is a cylindrical body transfer conveyance apparatus of Claim 15 as described in Claim 16, All the said division bodies are electromagnets, From each electromagnet, The divided body is connected with a current measuring means for measuring a change in current and a current adjusting means, and the current adjusting means has a current change opposite to the current change measured by the current measuring means. The cylindrical body transfer / conveyance apparatus according to claim 15, wherein the power supply apparatus is set so as to be applied to a current flowing through the divided body composed of each electromagnet.

また、本発明の筒状体移載搬送装置は、請求項17に記載の通り、請求項14ないし請求項16のいずれか1項に記載の筒状体移載搬送装置において、前記円柱状のマンドレルから前記筒状体を抜く直前の前記電流計測手段による電流値と、前記円柱状のマンドレルから前記筒状体を抜いている際の前記電流計測手段による電流値と、を比較して、両電流値の差が小さくなるように前記アーム部の垂直方向の移動速度を制御するアーム部垂直速度制御手段を備えていることを特徴とする。   Moreover, the cylindrical body transfer conveyance apparatus of this invention is a cylindrical body transfer conveyance apparatus as described in any one of Claim 14 thru | or 16. The current value by the current measuring means immediately before the cylindrical body is pulled out from the mandrel and the current value by the current measuring means when the cylindrical body is pulled out from the columnar mandrel are compared. The arm unit vertical speed control means for controlling the moving speed of the arm unit in the vertical direction so as to reduce the difference in current value is provided.

本発明の筒状体移載搬送装置によれば、ストッカ上に軸が鉛直になるよう載置された筒状体を、筒状体移載位置にある軸が鉛直に保たれた円柱状のマンドレル部へ移載した後、前記円柱状のマンドレル部に載置された前記筒状体を所定位置へ搬送し、その後、前記筒状体が載置された前記円柱状のマンドレル部を前記所定位置から前記筒状体移載位置に搬送し、次いで、前記円柱状のマンドレル部に載置された前記筒状体を前記ストッカ上に軸が鉛直になるよう再度移載する筒状体移載搬送装置であって、前記ストッカと筒状体移載位置での前記円柱状のマンドレル部との間の水平方向と、前記ストッカの上方及び前記円柱状のマンドレル部の上方での垂直方向と、を往復動するアーム部が設けられ、前記筒状体の端部から内側へ滑入する鉛直に保持された円筒部と、前記筒状体が前記円筒部に滑入する際には、変形して外径が小さくなり、滑入終了後には、復元して外径が拡径する弾性部材からなる前記円筒部の側面または下端に設けられた拡縮径部と、を有する前記筒状体を保持するための円柱状のチャック部が、前記アーム部に設けられ、かつ、気体を吹き出すマンドレル気体吹出部が、前記円柱状のマンドレルの上部側面に設けられているために、筒状体はマンドレルに保持されるときと同様の極めて高い精度で、その軸と円柱状のチャック部の円筒部との軸が一致しかつ、これら軸が鉛直になるように保持されるので、円柱状のマンドレル部にセットされるときにも、また円柱状のマンドレル部から外されるときにも折れや過剰な力が掛かることなく確実に行うことができる上に、マンドレル気体吹出部からのエア噴出しにより、円筒体の内面とマンドレル部の側面との摩擦は極めて小さくなっているので、これら作業は迅速化されるとともに、自動化による無人化を行っても、問題なく、移載及び搬送を行うことができる。   According to the cylindrical body transfer / conveying apparatus of the present invention, the cylindrical body placed on the stocker so that the axis is vertical is formed into a cylindrical shape in which the axis at the cylindrical body transfer position is kept vertical. After the transfer to the mandrel part, the cylindrical body placed on the cylindrical mandrel part is transported to a predetermined position, and then the cylindrical mandrel part on which the cylindrical body is placed is moved to the predetermined part. The cylindrical body transfer is carried from the position to the cylindrical body transfer position and then transferred again on the stocker so that the axis is vertical on the stocker. A transport device, a horizontal direction between the stocker and the cylindrical mandrel portion at the cylindrical body transfer position; a vertical direction above the stocker and above the cylindrical mandrel portion; Lead that slides inward from the end of the cylindrical body When the cylindrical part held in the cylinder and the cylindrical body slide into the cylindrical part, the outer part is deformed to reduce the outer diameter, and after completion of the sliding, the elastic member is restored to increase the outer diameter. A cylindrical chuck part for holding the cylindrical body having an enlarged / reduced diameter part provided on a side surface or a lower end of the cylindrical part, and a mandrel gas that blows out a gas provided in the arm part Since the blow-out portion is provided on the upper side surface of the columnar mandrel, the cylindrical body has a shaft and a cylindrical portion of the columnar chuck portion with extremely high accuracy similar to that when being held by the mandrel. The axes of the two are aligned and are held so that they are vertical, so that when they are set on the cylindrical mandrel, or when they are detached from the cylindrical mandrel, Can be done without any effort. In addition, the air blown from the mandrel gas blowout part reduces the friction between the inner surface of the cylinder and the side surface of the mandrel part, so these operations are accelerated and unmanned by automation. However, transfer and conveyance can be performed without any problem.

請求項2記載の自動移載装置によれば、前記拡縮径部には空間と該空間に接続された吸排気手段とが設けられ、前記空間はその壁の少なくとも一部が前記弾性部材により構成され、そして、前記吸排気手段が、前記筒状体が前記円筒部に滑入する際に該空間内部の気体を排気して前記拡縮径部の外径を小さくし、前記筒状体が前記円筒部に滑入した後には該空間内部に気体を給気して拡縮径部の外径を大きくするものであるので、拡径によって容易に円筒体の保持が可能となると共に、縮径時に円柱状のチャック部の円筒部より小さくするようにすることが容易であり、そのとき、円筒部が保持対象の円筒体の端部から内部に挿入される挿入作業を妨げることがなく、基体端部の破損を防ぎ、品質を維持することができる。また、周方向に亘って均一な力で円筒体の保持が可能となるので、円筒体の品質を損なうおそれが未然に防止されている。   According to the automatic transfer device of claim 2, the expansion / contraction diameter portion is provided with a space and intake / exhaust means connected to the space, and at least a part of the wall of the space is constituted by the elastic member. And when the cylindrical body slides into the cylindrical portion, the intake / exhaust means exhausts the gas inside the space to reduce the outer diameter of the expansion / contraction diameter portion, and the cylindrical body is After sliding into the cylindrical part, gas is supplied into the space to increase the outer diameter of the enlarged / reduced diameter part, so that the cylindrical body can be easily held by the enlarged diameter, and at the time of the reduced diameter It is easy to make it smaller than the cylindrical portion of the columnar chuck portion, and at that time, the cylindrical portion does not hinder the insertion work inserted into the inside from the end of the cylindrical body to be held, and the end of the base The damage of the part can be prevented and the quality can be maintained. In addition, since the cylindrical body can be held with a uniform force in the circumferential direction, the possibility of impairing the quality of the cylindrical body is prevented.

請求項3記載の自動移載装置によれば、前記円柱状のチャック部が軸部材と該軸部材にはめ込まれる円筒部材とからなり、かつ、該円筒部が交換可能となっているために、円柱状のチャック部全体を交換する必要なしに様々な形状の円筒体に対応できるので、設備コストが低廉で済むと、同時に、異なる形状の円筒体に対応するために必要な時間が短くて済むと云う効果が得られる。   According to the automatic transfer device according to claim 3, the columnar chuck portion is composed of a shaft member and a cylindrical member fitted into the shaft member, and the cylindrical portion is replaceable. Since it is possible to deal with various shapes of cylinders without having to replace the entire cylindrical chuck portion, the equipment cost can be reduced, and at the same time, the time required to accommodate different shapes of cylinders can be shortened. The effect is obtained.

請求項4記載の自動移載装置によれば、前記円柱状のチャック部の側面に気体を吹き出す円柱状のチャック部気体吹き出し部を備えているために、円柱状のチャック部の円筒部と筒状体との間に気体による膜が形成されて円筒部が筒状体の端部から内側へ滑入する動作が容易かつ確実に行え、その結果、円筒部が筒状体の端部から内側へ滑入する際の、筒状体の磨耗や傷付きを防ぎ、品質が維持されると云う効果が得られる。   According to the automatic transfer device of claim 4, since the columnar chuck portion gas blowing portion for blowing gas to the side surface of the columnar chuck portion is provided, the cylindrical portion and the cylinder of the columnar chuck portion are provided. A film made of gas is formed between the cylindrical body and the cylindrical portion can be easily and reliably moved inwardly from the end of the cylindrical body. As a result, the cylindrical portion is inward from the end of the cylindrical body. The effect of preventing the cylindrical body from being worn or scratched when sliding into the body and maintaining the quality can be obtained.

請求項5記載の自動移載装置によれば、前記円柱状のチャック部気体吹き出し部が、円柱状のチャック部の側面の周方向等間隔に気体噴出孔を4つ以上備えているために、より均一で薄い気体膜が形成されるので、上記効果を維持しながら、筒状体の内径寸法により近い外径の円筒部を用いることができるので、このような円筒部による筒状体の保持時の両者の軸の一致の精度、すなわち保持精度をより高くすることができ、マンドレルへの移載時の筒状体の破損頻度を低減させるとともに、欠陥発生を低減させて品質を安定させると云う効果が得られる。   According to the automatic transfer device of claim 5, since the cylindrical chuck portion gas blowing portion has four or more gas ejection holes at equal intervals in the circumferential direction of the side surface of the cylindrical chuck portion, Since a more uniform and thin gas film is formed, a cylindrical portion having an outer diameter closer to the inner diameter of the cylindrical body can be used while maintaining the above-described effect, so that the cylindrical body is held by such a cylindrical portion. The accuracy of the coincidence of both axes at the time, that is, the holding accuracy can be increased, the frequency of breakage of the cylindrical body during transfer to the mandrel is reduced, and the occurrence of defects is reduced to stabilize the quality. This effect can be obtained.

請求項6記載の自動移載装置によれば、前記円柱状のチャック部気体吹き出し部が、複数の気体噴出孔を円柱状のチャック部の側面の周方向に配した気体噴出孔からなる列を、該円柱状のチャック部の軸方向に、2列以上備えているために、保持時の筒状体の軸方向を円柱状のチャック部の軸方向に対してより正確に矯正することができるのでより高い保持精度を得ることができる。   According to the automatic transfer device of claim 6, the columnar chuck portion gas blowing portion includes a row of gas ejection holes in which a plurality of gas ejection holes are arranged in the circumferential direction of the side surface of the columnar chuck portion. Since two or more rows are provided in the axial direction of the cylindrical chuck portion, the axial direction of the cylindrical body at the time of holding can be more accurately corrected with respect to the axial direction of the cylindrical chuck portion. Therefore, higher holding accuracy can be obtained.

請求項7記載の自動移載装置によれば、前記筒状体を前記円柱状のマンドレルへ移載する際に該筒状体、前記円柱状のチャック部及び前記円柱状のマンドレルから形成される空間の内部の空気を該空間の外部へ逃がすための空気孔を前記円柱状のチャック部に備え、かつ、該空気孔と前記空間の外部とを接続する空気経路に開閉弁を備えているために、円筒体を円柱状のマンドレルに移載するときの円筒体内部の空気を逃がすことができる。一方、円筒体から円柱状のマンドレルを抜取るときは、開閉弁を閉じることにより、前記空間はマンドレル上部のマンドレル気体吹出部からのエアにより正圧に保つことができるので、筒状体のつぶれによる破損や外側面に塗装を行った筒状体の場合であっても塗装面の品質を保つことができる。   According to the automatic transfer device of claim 7, the cylindrical body is formed from the cylindrical body, the cylindrical chuck portion, and the cylindrical mandrel when the cylindrical body is transferred to the cylindrical mandrel. An air hole for allowing air inside the space to escape to the outside of the space is provided in the cylindrical chuck portion, and an open / close valve is provided in an air path connecting the air hole and the outside of the space. In addition, air inside the cylinder can be released when the cylinder is transferred to the columnar mandrel. On the other hand, when pulling out the cylindrical mandrel from the cylindrical body, the space can be maintained at a positive pressure by the air from the mandrel gas blowing part at the upper part of the mandrel by closing the on-off valve. The quality of the painted surface can be maintained even in the case of damage due to or a cylindrical body with the outer surface painted.

請求項8記載の自動移載装置によれば、前記円柱状のチャック部の下端または該下端の付近に円錐形状または円錐台形状のガイド部を備えているために、円筒体端部から内部へ円柱状のチャック部を挿入する際に円柱状のチャック部がこのようなガイド部によって確実に円筒体端部から内部へ挿入でき、その結果、円筒体の破損が低減すると云う効果が得られる。   According to the automatic transfer device of claim 8, since the conical or frustoconical guide portion is provided at the lower end of the cylindrical chuck portion or in the vicinity of the lower end, the cylindrical end portion is inwardly provided. When the columnar chuck portion is inserted, the columnar chuck portion can be reliably inserted from the end of the cylindrical body into the inside by such a guide portion, and as a result, an effect that damage to the cylindrical body is reduced can be obtained.

請求項9記載の自動移載装置によれば、前記ガイド部が前記円柱状のチャック部の下端に該円柱状のチャック部よりも細径の棒状部材を介して取り付けられているために、円筒体の保持精度向上効果を得ながらも、円柱状のチャック部全体の重量の増加を抑制することができ、アーム部及びその動作制御の負担を大きくしないで済み、かつ、同時にコスト増大も防止することができると云う効果が得られる。   According to the automatic transfer device of claim 9, the guide portion is attached to the lower end of the columnar chuck portion via a rod-shaped member having a diameter smaller than that of the columnar chuck portion. While obtaining the effect of improving the body holding accuracy, it is possible to suppress an increase in the weight of the entire cylindrical chuck part, and it is not necessary to increase the burden of the arm part and its operation control, and at the same time prevent an increase in cost. The effect that it can be obtained.

請求項10記載の自動移載装置によれば、前記円柱状のチャック部が前記アーム部にチャック支持手段を介して取り付けられ、前記チャック支持手段が、前記円柱状のチャック部と同軸の支柱部、該支柱部に同軸に接合され非磁性の筐体に収納された表裏で磁極が異なる円盤形状の磁石、前記円盤形状の磁石側の磁極が対向する円盤形状の磁石の面と同磁極となるように前記非磁性の筐体の前記円盤形状の磁石の前記アーム部側面に前記円盤形状の磁石と平行に配された第1の平板形状の磁石、該円盤形状の磁石側の磁極が対向する円盤形状の磁石の面と同磁極となるように前記非磁性の筐体の前記円柱状のチャック部側面でかつ前記第1の平板形状の磁石とともに前記円盤形状の磁石を離間して挟む位置に配された第2の平板形状の磁石、から構成され、かつ、前記第2の平板形状の磁石と前記筐体とを連通する貫通孔に前記支柱部が挿通されているため、第1の平板形状の磁石及び第2の平板形状の磁石との反発により、円盤形状の磁石に支柱部を介して接合された円柱状のチャック部の水平方向の位置自由度が高くなって、円柱状のチャック部の円筒体端部からの挿入時での、円筒体端部位置への円柱状のチャック部の位置への追従が可能となり、挿入時での円柱状のチャック部による円筒体の破損を低減させると云う効果が得られる。   The automatic transfer device according to claim 10, wherein the cylindrical chuck portion is attached to the arm portion via chuck support means, and the chuck support means is a column portion coaxial with the columnar chuck portion. The disc-shaped magnets that are coaxially joined to the support column and housed in a non-magnetic casing have different magnetic poles on the front and back sides, and the surface of the disc-shaped magnet facing the disc-shaped magnet side has the same magnetic pole. Thus, the first flat plate-shaped magnet arranged in parallel with the disk-shaped magnet and the magnetic pole on the disk-shaped magnet side face the side surface of the arm portion of the disk-shaped magnet of the non-magnetic casing. On the side surface of the columnar chuck portion of the non-magnetic housing so as to have the same magnetic pole as the surface of the disk-shaped magnet, and at a position where the disk-shaped magnet is sandwiched apart from the first plate-shaped magnet. A second plate-shaped magnet arranged, And the column portion is inserted into a through hole that communicates the second flat plate-shaped magnet and the housing, so that the first flat plate-shaped magnet and the second flat plate-shaped magnet As a result, the horizontal position of the columnar chuck unit joined to the disk-shaped magnet via the support column is increased, and the columnar chuck unit is inserted from the end of the cylindrical body. Thus, it is possible to follow the position of the cylindrical chuck portion to the position of the cylindrical end portion, and the effect of reducing the damage of the cylindrical body due to the cylindrical chuck portion at the time of insertion can be obtained.

請求項11記載の自動移載装置によれば、気体を吹き出す貫通孔気体吹き出し部が、前記貫通孔の内側面に設けられているために、円柱状のチャック部の円筒体内部への挿入動作、あるいは、円柱状のチャック部の円筒体からの抜去動作においても貫通孔気体吹き出し部からの気体による気体膜による潤滑によって円柱状のチャック部に接合された支柱部が低摩擦状態で滑らかに上下動するために、支柱、及び、貫通孔部分の寿命を長くすると云う効果が得られる。   According to the automatic transfer device of claim 11, since the through-hole gas blowing portion for blowing out the gas is provided on the inner surface of the through-hole, the columnar chuck portion is inserted into the cylindrical body. Or, even when the cylindrical chuck part is removed from the cylindrical body, the column part joined to the cylindrical chuck part by the gas film with the gas from the through-hole gas blowing part smoothly moves up and down in a low friction state. In order to move, the effect that the life of a support | pillar and a through-hole part is lengthened is acquired.

請求項12記載の自動移載装置によれば、上記貫通孔気体吹き出し部が、前記貫通孔の内側面の周方向に4つ以上の気体噴出孔を配した列を、該貫通孔の軸方向に、2列以上備えているために、上記気体膜をより均一なものとすることができ、より安定した姿勢に円柱状のチャック部を維持することができ、保持された筒状体へのマンドレルの挿入時または基体へのチャック装置の挿入時の基体の破損を低減させ、品質を安定させると云う効果が得られる。   According to the automatic transfer device of claim 12, the through-hole gas blowing portion includes a row in which four or more gas ejection holes are arranged in the circumferential direction of the inner surface of the through-hole, and the axial direction of the through-hole. In addition, since it has two or more rows, the gas film can be made more uniform, the cylindrical chuck portion can be maintained in a more stable posture, and The effect of reducing the breakage of the substrate when inserting the mandrel or inserting the chuck device into the substrate and stabilizing the quality can be obtained.

請求項13記載の自動移載装置によれば、前記第1の平板形状の磁石及び前記第2の平板形状の磁石のどちらか一方が電磁石であるために、その電磁石へ供給する電流の極性を反転させることにより、円盤形状の磁石をその平板形状の電磁石に固定することができるために、水平方向への高速搬送時であっても円柱状のチャック部に保持された筒状体を安定して保持できると云う効果が得られる。   According to the automatic transfer device of claim 13, since one of the first plate-shaped magnet and the second plate-shaped magnet is an electromagnet, the polarity of the current supplied to the electromagnet is changed. By reversing, the disc-shaped magnet can be fixed to the plate-shaped electromagnet, so that the cylindrical body held by the cylindrical chuck portion can be stabilized even during high-speed conveyance in the horizontal direction. Can be obtained.

請求項14記載の自動移載装置によれば、電流の変化を計測する電流計測手段が、前記第1の平板形状の磁石及び前記第2の平板形状の磁石のどちらか一方の異なった2箇所に接続されているために、円盤形状の磁石の平板形状の磁石に対する相対的な変位により発生する誘導電流を計測することが可能となり、円柱状のチャック部または保持時の筒状体に必要以上に負荷がかかった場合を検知できるために、そのような負荷を検知したときに装置を止めることにより筒状体の破損を未然に防ぐと云う効果が得られる。   According to the automatic transfer device of claim 14, the current measuring means for measuring a change in current includes two different locations of either the first plate-shaped magnet or the second plate-shaped magnet. It is possible to measure the induced current generated by the relative displacement of the disk-shaped magnet with respect to the plate-shaped magnet, which is more than necessary for the cylindrical chuck part or the cylindrical body during holding. Since it is possible to detect a case where a load is applied, an effect of preventing the tubular body from being damaged can be obtained by stopping the apparatus when such a load is detected.

請求項15記載の自動移載装置によれば、前記第1の平板形状の磁石及び前記第2の平板形状の磁石のどちらか一方が、4つ以上に等しい形状の分割体に分割され、そして、電流の変化を計測する電流計測手段がそれぞれの前記分割体の異なった2箇所に接続されているために、これら分割体に対する円盤形状の磁石の相対的な変位により発生する誘導電流を計測することが可能となり、円柱状のチャック部または筒状体の傾きの方向も検出できるために、筒状体にかかる局所的な負荷を特に検知しやすくなっている。そして、異常負荷を検知したときに装置を止めることにより筒状体の破損を未然に防ぐと云う効果が得られる。   According to the automatic transfer device of claim 15, one of the first flat plate-shaped magnet and the second flat plate-shaped magnet is divided into divided bodies having a shape equal to four or more, and Since the current measuring means for measuring the change in current is connected to two different parts of each of the divided bodies, the induced current generated by the relative displacement of the disk-shaped magnet with respect to these divided bodies is measured. Since it is possible to detect the direction of the inclination of the cylindrical chuck portion or the cylindrical body, it is particularly easy to detect a local load applied to the cylindrical body. And the effect of preventing breakage of a cylindrical body beforehand is acquired by stopping an apparatus when abnormal load is detected.

請求項16記載の自動移載装置によれば、前記分割体が全部電磁石であり、それぞれの電磁石からなる前記分割体には、電流の変化を測定する電流計測手段と電流調整手段とが接続されており、前記電流調整手段が、前記電流計測手段により測定された電流変化とは逆向きの電流変化をそれぞれの電磁石からなる前記分割体に流れる電流に対して加えるように設定されている電源装置であるために、4つの各磁極での誘導電流を計測することが可能となり、円柱状のチャック部または筒状体の傾きの方向が検出でき、さらに各磁極に流す電流を制御することで筒状体にかかる負荷を逃がすことが可能となるため、筒状体が本来位置からずれた場合でも装置を止めないで作業を継続できるという効果が得られる。   According to the automatic transfer device of the sixteenth aspect, the divided bodies are all electromagnets, and current measuring means for measuring a change in current and current adjusting means are connected to the divided bodies made of the respective electromagnets. And the current adjusting means is set to apply a current change in a direction opposite to the current change measured by the current measuring means to the current flowing through the divided body composed of each electromagnet. Therefore, it is possible to measure the induced current at each of the four magnetic poles, detect the direction of the inclination of the cylindrical chuck portion or cylindrical body, and control the current flowing through each magnetic pole to control the cylinder. Since it is possible to release the load applied to the cylindrical body, it is possible to continue the operation without stopping the apparatus even when the cylindrical body is displaced from the original position.

請求項17記載の自動移載装置によれば、前記円柱状のマンドレルから前記筒状体を抜く直前の前記電流計測手段による電流値と、前記円柱状のマンドレルから前記筒状体を抜いている際の前記電流計測手段による電流値と、を比較して、両電流値の差が小さくなるように前記アーム部の垂直方向の移動速度を制御するアーム部垂直速度制御手段を備えているために、円柱状のマンドレルからの筒状体の抜取り時に筒状体内部の圧力が負圧にならないように筒状体の抜取り速度を制御することが可能となる。これにより筒状体が円柱状のマンドレルに触れずに抜き取れるため、例えば、塗装後の筒状体の場合、その塗装面の品質を維持しながら、抜き取ることが可能となるという効果が得られる。   According to the automatic transfer device of claim 17, the cylindrical body is pulled out from the current value by the current measuring means immediately before the cylindrical body is pulled out from the cylindrical mandrel, and the cylindrical mandrel. Compared with the current value by the current measuring means at the time, the arm portion vertical speed control means for controlling the moving speed of the arm portion in the vertical direction so as to reduce the difference between both current values is provided. It is possible to control the extraction speed of the cylindrical body so that the pressure inside the cylindrical body does not become negative when the cylindrical body is extracted from the cylindrical mandrel. As a result, the cylindrical body can be pulled out without touching the cylindrical mandrel. For example, in the case of a cylindrical body after painting, the effect of being able to be pulled out while maintaining the quality of the painted surface is obtained. .

以下に本発明の筒状体移載搬送装置を定着ベルトの樹脂性基体(筒状体)への塗装装置に付属する定着ベルトの自動移載搬送装置としたときの実施例について説明する。   An embodiment in which the cylindrical body transfer / conveyance apparatus of the present invention is an automatic transfer / conveyance apparatus for a fixing belt attached to a coating device for a resin base (cylindrical body) of a fixing belt will be described below.

図1は定着ベルトの自動移載搬送装置全体概要を示す外観図である。   FIG. 1 is an external view showing an outline of the entire automatic transfer / conveyance apparatus for a fixing belt.

符号1は定着ベルトの基体(筒状体)を表しており、その材質は主にポリイミド樹脂である。ただし、定着ベルトの基体は無形状であるので、ストッカ2を用いてストッカ上に軸が鉛直になるよう載置され、保持されている。符号3、4はそれぞれ移載装置の搬送アクチュエータであり、垂直及び水平の搬送を担っている。アクチュエータ3、4はアングル5で直交するように接続されており、架台6に固定され、ストッカ2と後述する筒状体移載位置での円柱状のマンドレル部との間の水平方向の往復動と、ストッカ2の上方及び円柱状のマンドレル部の上方での垂直方向の往復動と、が可能なアーム部を構成している。   Reference numeral 1 represents a base (cylindrical body) of the fixing belt, and the material thereof is mainly polyimide resin. However, since the base of the fixing belt is non-shaped, it is placed and held on the stocker using the stocker 2 so that the axis is vertical. Reference numerals 3 and 4 denote transport actuators of the transfer device, which are responsible for vertical and horizontal transport. The actuators 3 and 4 are connected so as to be orthogonal to each other at an angle 5, fixed to the gantry 6, and horizontally reciprocated between the stocker 2 and a cylindrical mandrel portion at a cylindrical body transfer position described later. And an arm portion capable of vertical reciprocation above the stocker 2 and above the cylindrical mandrel portion.

アクチュエータ3にブラケット7を介して円柱状のチャック部8が設置されている。円柱状のチャック部8上部にはこの例では、筒状体1が円柱状のチャック部の円筒部10に滑入する際には変形して外径が小さくなり、滑入終了後には復元して外径が拡径する弾性部材からなる拡縮径部としてゴムワッシャ9が取り付けられており円柱状のチャック部8の胴部のスリーブ10に固定されている。ストッカ2のアーム部に対しての反対側の筒状体移載位置に筒状体1を保持する円柱状のマンドレル11が配置されている。ストッカ2及び円柱状のマンドレル11はそれぞれ搬送コンベア12及び13上にあり、ストッパ14、15によってアクチュエータ4のストローク内のそれぞれの筒状体移載位置で位置決めされている。また、円柱状のマンドレル11はこの例では中空となっており、上端付近の側面には気体を吹き出すマンドレル気体吹出部として微小穴16が周方向に均等な位置に、この例では4つで開いており、レギュレータ17を介して任意の量のエアがこの微小穴16から噴出する構造となっている。   A cylindrical chuck portion 8 is installed on the actuator 3 via a bracket 7. In this example, the cylindrical body 1 is deformed when the cylindrical body 1 slides into the cylindrical portion 10 of the cylindrical chuck portion, and the outer diameter is reduced. A rubber washer 9 is attached as an expansion / contraction diameter portion made of an elastic member whose outer diameter increases, and is fixed to the sleeve 10 of the body portion of the cylindrical chuck portion 8. A cylindrical mandrel 11 that holds the cylindrical body 1 is disposed at the cylindrical body transfer position on the opposite side to the arm portion of the stocker 2. The stocker 2 and the cylindrical mandrel 11 are on the conveyors 12 and 13, respectively, and are positioned by the stoppers 14 and 15 at the respective cylindrical body transfer positions within the stroke of the actuator 4. In addition, the cylindrical mandrel 11 is hollow in this example, and micro holes 16 are opened at four positions in this example as mandrel gas blowing parts for blowing out gas on the side surface near the upper end in the circumferential direction. Thus, an arbitrary amount of air is ejected from the minute hole 16 through the regulator 17.

以下にその動作について説明する。ストッカ2上に軸が鉛直になるよう載置された筒状体1は前工程より搬送コンベア12によりストッパ14の位置(筒状体移載位置)まで運ばれる。一方、搬送アクチュエータ4により円柱状のチャック部8はスリーブ10がストッカ2と同軸となる位置で停止し、垂直アクチュエータ3により円筒形の円柱状のチャック部8が筒状体1の端部からその内部に挿入される。このとき、筒状体1の内径に比べ円筒形の円柱状のチャック部8の外径は若干小さいが両者はほぼ等しいために円柱状のチャック部8は筒状体1内面をすべりながら滑入する。   The operation will be described below. The cylindrical body 1 placed on the stocker 2 so that the axis is vertical is transported from the previous process to the position of the stopper 14 (cylindrical body transfer position) by the transport conveyor 12. On the other hand, the cylindrical chuck portion 8 is stopped at the position where the sleeve 10 is coaxial with the stocker 2 by the transport actuator 4, and the cylindrical columnar chuck portion 8 is moved from the end of the cylindrical body 1 by the vertical actuator 3. Inserted inside. At this time, the outer diameter of the cylindrical columnar chuck portion 8 is slightly smaller than the inner diameter of the cylindrical body 1, but both are substantially equal, so the cylindrical chuck portion 8 slides in while sliding the inner surface of the cylindrical body 1. To do.

その挿入の際、弾性部材であるゴムからなるゴムワッシャ9は筒状体1の内面によって押されて変形(弾性限界の変形)してその外径が小さくなり、滑入終了後には復元して外径が拡径する拡縮径部として機能し、その結果、滑入終了後にはゴムワッシャ9の弾性により筒状体1が円柱状のチャック部8に固定される。
次いで、垂直アクチュエータ3及び搬送アクチュエータ4により図1中の破線で示す位置まで移動する。
During the insertion, the rubber washer 9 made of rubber, which is an elastic member, is pushed by the inner surface of the cylindrical body 1 to be deformed (deformation of the elastic limit) and its outer diameter is reduced. As a result, the cylindrical body 1 is fixed to the cylindrical chuck portion 8 by the elasticity of the rubber washer 9 after the sliding operation is completed.
Next, the vertical actuator 3 and the transport actuator 4 move to a position indicated by a broken line in FIG.

ここで、円柱状のマンドレル11はストッパ15によって円柱状のチャック部8と同軸になる位置(筒状体移載位置)で固定されているが、垂直アクチュエータ3により円柱状のマンドレル11を下降させながら筒状体1に挿入させる。   Here, the cylindrical mandrel 11 is fixed at a position (cylindrical body transfer position) that is coaxial with the cylindrical chuck portion 8 by the stopper 15, but the vertical mandrel 11 is lowered by the vertical actuator 3. While being inserted into the cylindrical body 1.

図2は挿入時の様子を示している。筒状体1は塗装時に高精度保持が求められるため、筒状体1の内径Dpと円柱状のマンドレル11の外径Dmとは円柱状のマンドレル11の外径Dmに比べ、筒状体1の内径Dpが等しいか、わずかに小さい、Dm≧Dpを満足する関係となっている。そのため、微小穴16からエアを吹き出すことによって一時的に(柔軟な)筒状体1を膨張(拡径)させることにより円柱状のマンドレル11を筒状体1へ挿入可能となる。   FIG. 2 shows a state at the time of insertion. Since the cylindrical body 1 is required to have high accuracy during coating, the inner diameter Dp of the cylindrical body 1 and the outer diameter Dm of the cylindrical mandrel 11 are compared with the outer diameter Dm of the cylindrical mandrel 11. The inner diameter Dp is equal or slightly smaller, and the relationship satisfies Dm ≧ Dp. Therefore, the cylindrical mandrel 11 can be inserted into the cylindrical body 1 by temporarily expanding (expanding diameter) the cylindrical body 1 by blowing air from the minute holes 16.

円柱状のチャック部8の下降終了後に、微小穴16からのエアの噴出を止めることにより、円柱状のマンドレル11側面と筒状体1の内側面とが密着してこれらの面の間に摩擦力が働くようになるために、垂直アクチュエータ3を上昇させると、円柱状のチャック部8は筒状体1から抜け(離脱し)、筒状体1は円柱状のマンドレル11側面に残る。
その後、筒状体1がセットされた円柱状のマンドレル11は搬送アクチュエータ4によって図示しない塗装装置(所定位置)へ搬送され、そこで、筒状体の外側面が塗装される。
After the lowering of the cylindrical chuck portion 8 is finished, by stopping the ejection of air from the microhole 16, the side surface of the cylindrical mandrel 11 and the inner side surface of the cylindrical body 1 are brought into close contact with each other, and friction is generated between these surfaces. When the vertical actuator 3 is raised so that the force works, the cylindrical chuck portion 8 comes off (detaches) from the cylindrical body 1, and the cylindrical body 1 remains on the side surface of the cylindrical mandrel 11.
Thereafter, the cylindrical mandrel 11 on which the cylindrical body 1 is set is transported by a transport actuator 4 to a coating device (predetermined position) (not shown), where the outer surface of the cylindrical body is painted.

また塗装後の筒状体1は塗装装置(所定位置)から円柱状のマンドレル11にセットされた状態で筒状体移載位置へ搬送された後、その上方から円柱状のチャック部8を下降させ、筒状体1にその上端部から挿入させる。   The coated cylindrical body 1 is transported from the coating apparatus (predetermined position) to the cylindrical body transfer position while being set on the cylindrical mandrel 11, and then the cylindrical chuck portion 8 is lowered from above. And inserted into the cylindrical body 1 from its upper end.

その挿入の際も、弾性部材であるゴムからなるゴムワッシャ9は筒状体1の内面によって押されて変形してその外径が小さくなり、滑入終了後には復元して外径が拡径するからなる拡縮径部として機能し、その結果、滑入終了後にはゴムワッシャ9の弾性により筒状体1が円柱状のチャック部8に固定される。次いで、円柱状のチャック部8を上昇させるが、この際、微小穴16からのエアの噴出を行うことで、円柱状のマンドレル11と筒状体1との摩擦は極小となるために、筒状体1は円柱状のチャック部8に保持されたまま上昇し、円柱状のマンドレル11が抜ける。   During the insertion, the rubber washer 9 made of rubber, which is an elastic member, is pushed and deformed by the inner surface of the cylindrical body 1 to reduce its outer diameter, and after completion of sliding, the outer diameter is increased. As a result, the cylindrical body 1 is fixed to the cylindrical chuck portion 8 by the elasticity of the rubber washer 9 after the sliding operation is completed. Next, the cylindrical chuck portion 8 is raised. At this time, since air is ejected from the minute holes 16, the friction between the cylindrical mandrel 11 and the cylindrical body 1 is minimized. The body 1 rises while being held by the columnar chuck portion 8 and the columnar mandrel 11 comes out.

このような装置において、タイマ、各種スイッチ、位置センサ等の一般的な手段を用いることにより容易に自動化できる。   Such an apparatus can be easily automated by using general means such as a timer, various switches, and a position sensor.

図3にその他の例(例2)を示す。この実施例における円柱状のチャック部8にはスリーブ10にリング状のゴムチューブ18(弾性部材からなる部材が壁の一部を構成する空間が構成されている)が固定されており、レギュレータ19及びバルブ20により、筒状体1が円柱状のチャック部8の円筒部に滑入する際にリング状のゴムチューブ18内部の気体を排気して拡縮径部の外径を小さくし、筒状体1が円柱状のチャック部8の円筒部の円筒部に滑入した後にはリング状のゴムチューブ18内部に気体を給気して拡縮径部の外径を大きくする吸排気手段を構成している。   FIG. 3 shows another example (example 2). In this embodiment, a ring-shaped rubber tube 18 (a space in which a member made of an elastic member forms a part of a wall is formed) is fixed to a sleeve 10 with a cylindrical chuck portion 8. When the cylindrical body 1 slides into the cylindrical portion of the cylindrical chuck portion 8 by the valve 20, the gas inside the ring-shaped rubber tube 18 is exhausted to reduce the outer diameter of the expanded / reduced diameter portion, thereby forming a cylindrical shape. After the body 1 slides into the cylindrical portion of the cylindrical portion of the columnar chuck portion 8, an intake / exhaust means is configured to increase the outer diameter of the expansion / contraction diameter portion by supplying gas into the ring-shaped rubber tube 18. ing.

このように機能する円柱状のチャック部8の内部構造の例として図4に示す。   FIG. 4 shows an example of the internal structure of the cylindrical chuck portion 8 that functions in this manner.

リング状のゴムチューブ18が入れ子リング22、固定リング21及び中空スリーブ(円筒部材)10によって固定されており、固定リング21の両端は、Oリング24によって密閉されている。また、中空スリーブ10はその小内径部で芯部材23と同軸となるように位置決めされ、その大内径部のネジによりテーパ部でゴムチューブ18の上下の開放端を入れ子リング22に押しつけながら固定する。   A ring-shaped rubber tube 18 is fixed by a nested ring 22, a fixing ring 21 and a hollow sleeve (cylindrical member) 10, and both ends of the fixing ring 21 are sealed by O-rings 24. Further, the hollow sleeve 10 is positioned so as to be coaxial with the core member 23 at the small inner diameter portion thereof, and is fixed while pressing the upper and lower open ends of the rubber tube 18 against the nested ring 22 at the taper portion by the screw of the large inner diameter portion. .

筒状体1が円柱状のチャック部8の円筒部に滑入した後、ゴムチューブ18はその入れ子リング22側に導入されるエアにより膨張して筒状体1内面に密着してその把持を行う。導入されたエアを抜くとゴムチューブ18は弾性で収縮するために、筒状体1に触れることなく円柱状のチャック部8の抜き差しが可能となる。またゴムチューブ18は上記エアの圧を変えることにより膨張量が変わるため、この円柱状のチャック部8では、中空スリーブ10を他の径の中空スリーブに交換するだけで内径の異なる筒状体に対応可能となる。   After the cylindrical body 1 slides into the cylindrical portion of the columnar chuck portion 8, the rubber tube 18 expands by the air introduced to the side of the telescopic ring 22 and comes into close contact with the inner surface of the cylindrical body 1 to hold it. Do. When the introduced air is removed, the rubber tube 18 is elastically contracted, so that the cylindrical chuck portion 8 can be inserted and removed without touching the cylindrical body 1. Further, since the expansion amount of the rubber tube 18 is changed by changing the pressure of the air, the cylindrical chuck portion 8 can be changed to a cylindrical body having a different inner diameter by simply replacing the hollow sleeve 10 with a hollow sleeve of another diameter. It becomes possible to respond.

さらに、図5(a)での断面図で示すように円柱状のチャック部8の円筒部を構成する中空スリーブ(円筒部材)10に、円柱状のチャック部の側面に気体を吹き出す円柱状のチャック部気体吹き出し部として直径1mm程度の気体噴出孔25がその側面に放射状の経路によって開口されていて、この気体噴出孔25にはレギュレータ28からバルブ27を介して芯部材23内部の流路を通りエアが供給される。芯部材23と気体噴出孔25の接面には円周溝26があるため、中空スリーブ10を芯部材23嵌めたときに気体噴出孔25と流路の位置がずれていても確実にエアが供給される(断面A−A(図5(b)参照))。   Furthermore, as shown in the cross-sectional view of FIG. 5A, a hollow sleeve (cylindrical member) 10 constituting the cylindrical portion of the cylindrical chuck portion 8 is provided with a cylindrical shape that blows gas to the side surface of the cylindrical chuck portion. A gas ejection hole 25 having a diameter of about 1 mm is opened as a chuck part gas blowing part by a radial path on its side surface, and a flow path inside the core member 23 is connected to the gas ejection hole 25 from the regulator 28 via the valve 27. Street air is supplied. Since there is a circumferential groove 26 on the contact surface between the core member 23 and the gas ejection hole 25, the air is reliably supplied even when the position of the gas ejection hole 25 and the flow path is shifted when the hollow sleeve 10 is fitted into the core member 23. (Section AA (see FIG. 5B)).

このような円柱状のチャック部8の側面に気体を吹き出す円柱状のチャック部気体吹き出し部により、円柱状のチャック部8での筒状体1の着脱の際に、気体噴出孔25からエアを噴射することによって筒状体1と中空スリーブ10との間に薄層空気膜を形成することができ、極低摩擦状態での操作が可能となり、滑入する動作が容易かつ確実に行え、その結果、円筒部が筒状体1の端部から内側へ滑入する際の、円筒部の磨耗や傷付きを防ぎ、その結果、筒状体1の保持精度が維持されると云う効果が得られる。   When the cylindrical body 1 is attached to or detached from the cylindrical chuck portion 8 by the cylindrical chuck portion gas blowing portion that blows gas to the side surface of the cylindrical chuck portion 8, air is supplied from the gas ejection hole 25. By spraying, a thin-layer air film can be formed between the cylindrical body 1 and the hollow sleeve 10, operation in an extremely low friction state is possible, and the sliding operation can be easily and reliably performed. As a result, when the cylindrical portion slides inward from the end portion of the cylindrical body 1, the cylindrical portion is prevented from being worn or damaged, and as a result, the holding accuracy of the cylindrical body 1 is maintained. It is done.

さらに、図6(a)及びそのA−A断面図(図6(b))で示す例では、円柱状のチャック部気体吹き出し部が、円柱状のチャック部8の側面の周方向等間隔に気体噴出孔25を4つ備えている。この例でも芯部材23と気体噴出孔25の接面には円周溝26があるため、気体噴出孔25は周方向どの位置でも均等なエア噴出が可能となっている。気体噴出孔の数は周方向4個以上であることが好ましく、例えば、4、8あるいは12個であることが好ましい。気体噴出孔25の数を増やすことにより筒状体1と中空スリーブ10との間に形成される薄層空気膜がより均等な膜となるため、上記で示した、筒状体1の円柱状のマンドレル11への着脱と同様に、筒状体1の内径をスリーブ10の外径以下とした場合に、スリーブ10と筒状体1が隙間なく接触することができ、その結果、筒状体1のスリーブ10による把持部分の形状が高精度の真円形状が得られ、このような円筒部による筒状体の保持時の両者の軸の一致の精度、すなわち保持精度をより高くすることができて、マンドレルへの移載時の筒状体1の破損頻度を低減させるとともに、欠陥発生を低減させて品質を安定させると云う効果が得られる。   Furthermore, in the example shown in FIG. 6A and its AA sectional view (FIG. 6B), the cylindrical chuck portion gas blowing portions are arranged at equal intervals in the circumferential direction of the side surface of the cylindrical chuck portion 8. Four gas ejection holes 25 are provided. Also in this example, since the circumferential groove 26 is provided on the contact surface between the core member 23 and the gas ejection hole 25, the gas ejection hole 25 can be uniformly ejected at any position in the circumferential direction. The number of gas ejection holes is preferably 4 or more in the circumferential direction, and is preferably 4, 8, or 12, for example. Since the thin-layer air film formed between the cylindrical body 1 and the hollow sleeve 10 becomes a more uniform film by increasing the number of the gas ejection holes 25, the cylindrical shape of the cylindrical body 1 shown above is shown. Similarly to the attachment / detachment of the mandrel 11, when the inner diameter of the cylindrical body 1 is set to be equal to or smaller than the outer diameter of the sleeve 10, the sleeve 10 and the cylindrical body 1 can be in contact with each other without any gap. The shape of the gripping portion of the single sleeve 10 is a highly accurate circular shape, and when the cylindrical body is held by such a cylindrical portion, the accuracy of coincidence of both axes, that is, the holding accuracy can be further increased. Thus, it is possible to obtain an effect that the frequency of breakage of the cylindrical body 1 at the time of transfer to the mandrel is reduced and defects are reduced to stabilize the quality.

さらに、図7に示すように円柱状のチャック部気体吹き出し部が、複数の気体噴出孔25を円柱状のチャック部8のスリーブ10側面の周方向に配した気体噴出孔からなる列を、円柱状のチャック部8の軸方向に2列以上備えている。   Further, as shown in FIG. 7, the columnar chuck portion gas blowing portions are arranged in a circle composed of gas ejection holes in which a plurality of gas ejection holes 25 are arranged in the circumferential direction of the side surface of the sleeve 10 of the cylindrical chuck portion 8. Two or more rows are provided in the axial direction of the columnar chuck portion 8.

この例では、各列に対応するよう、芯部材23に複数の円周溝26が設けられ、各列ごとに周方向に均等なエアの噴出が可能となっている。このようにエアを噴射することで、中空スリーブ10の軸方向に対する筒状体1の軸方向の倒れを矯正しながら筒状体1への滑入が可能となり、より高い保持精度を得ることができる。   In this example, a plurality of circumferential grooves 26 are provided in the core member 23 so as to correspond to each row, and air can be uniformly ejected in the circumferential direction for each row. By injecting air in this manner, it is possible to slide into the cylindrical body 1 while correcting the axial collapse of the cylindrical body 1 with respect to the axial direction of the hollow sleeve 10, thereby obtaining higher holding accuracy. it can.

図8(a)及びそのA−A断面図(図8(b))に示す例では、円柱状のチャック部8の芯部材23の下方に貫通孔29が空気孔として設けられ外気との導通が可能となっており、貫通孔29にはバルブ30が接続され開閉を切り替えられる構造となっている。   In the example shown in FIG. 8A and its AA sectional view (FIG. 8B), a through hole 29 is provided as an air hole below the core member 23 of the cylindrical chuck portion 8, and is connected to the outside air. The valve 30 is connected to the through hole 29 so that opening and closing can be switched.

このように円柱状のチャック部8に、筒状体1を円柱状のマンドレル11へ移載する際に筒状体1、円柱状のチャック部8及び円柱状のマンドレル11から形成される空間の内部の空気をその空間の外部へ逃がす空気孔として貫通孔29を備え、かつ、貫通孔29とこの空間の外部とを接続する空気経路にバルブ30を備えているために、筒状体1への円柱状のマンドレル11への挿入時はバルブ30を開とすることで円柱状のマンドレル11と筒状体1及び円柱状のチャック部8で形成される空間の空気を逃がすことができるので、一定の圧力での挿入が可能となる。一方、円柱状のマンドレル11からの抜取り時にバルブ30を閉とすることでマンドレル気体吹出部からのエアにより上記空間内は正圧となるために筒状体1は膨張する(図9参照)。このとき、円柱状のマンドレル11に筒状体1が接触しないために、図のように円柱状のマンドレル11上部に設けたテーパ形状部と側面とがなす角の部分による悪影響を筒状体1の塗膜面に与えずに筒状体1を抜き取ることが可能となる。   Thus, when the cylindrical body 1 is transferred to the cylindrical mandrel 11 on the cylindrical chuck portion 8, the space formed by the cylindrical body 1, the cylindrical chuck portion 8, and the cylindrical mandrel 11. Since the through hole 29 is provided as an air hole for allowing the internal air to escape to the outside of the space, and the valve 30 is provided in the air path connecting the through hole 29 and the outside of the space, the cylindrical body 1 is provided. Since the valve 30 is opened at the time of insertion into the cylindrical mandrel 11, the air in the space formed by the cylindrical mandrel 11, the cylindrical body 1 and the cylindrical chuck portion 8 can be released. Insertion at a constant pressure is possible. On the other hand, when the valve 30 is closed at the time of extraction from the cylindrical mandrel 11, the inside of the space becomes positive pressure by the air from the mandrel gas blowing portion, so that the cylindrical body 1 expands (see FIG. 9). At this time, since the cylindrical body 1 does not come into contact with the cylindrical mandrel 11, the cylindrical body 1 is adversely affected by the corner portion formed by the tapered portion and the side surface provided on the cylindrical mandrel 11 as shown in the figure. It becomes possible to extract the cylindrical body 1 without giving to the coating film surface.

さらに図10で示す例では、円柱状のチャック部8の芯部材23下端に円錐台形状のガイド部31が同軸になるように取り付けられている。さらに、ガイド部31は貫通穴29と同軸となる位置に貫通穴31aが設けられていて、筒状体1、円柱状のチャック部8(及びガイド部31)及び円柱状のマンドレル11から形成される空間の内部の空気の排気の妨げにならないようになっている。このようなガイド部31によって円柱状のチャック部8を筒状体1端部に挿入(滑入)する際に、筒状体1端部がガイド31に沿うため、滑らかに挿入することができ、その結果、筒状体1やその塗膜の破損が低減すると云う効果が得られる。   Further, in the example shown in FIG. 10, a truncated cone-shaped guide portion 31 is attached to the lower end of the core member 23 of the cylindrical chuck portion 8 so as to be coaxial. Further, the guide portion 31 is provided with a through hole 31 a at a position coaxial with the through hole 29, and is formed from the cylindrical body 1, the cylindrical chuck portion 8 (and the guide portion 31), and the cylindrical mandrel 11. It does not interfere with the exhaust of air inside the space. When the cylindrical chuck portion 8 is inserted (slided) into the end portion of the cylindrical body 1 by such a guide portion 31, the end portion of the cylindrical body 1 runs along the guide 31, so that it can be inserted smoothly. As a result, the effect that damage to the cylindrical body 1 and its coating film is reduced can be obtained.

さらに図11で示す例では円筒形の円柱状のチャック部8とガイド部31が金属棒32を介して同軸に取り付けられている。ガイド部31は中空スリーブ10の外径と同じ外径である。加えてガイド部31側面には筒状体1に挿入しやすいように、エアを噴出する噴射穴33を設けてあり、金属棒32内部に設けられた図示しないエア経路を介してエアが供給される。これら構成により筒状体1にガイド31を滑らかに挿入(滑入)することが可能となり、さらにガイド部31をスリーブ10から離して固定することで、円柱状のチャック部8の全長の延長を行わなくても容易に筒状体1の先端の真円を高精度化することができ、円筒体の保持精度向上効果を得ながらも、円柱状のチャック部全体の重量の増加を抑制することができるのでアーム部及びその動作制御の負担を大きくしないで済み、かつ、同時にコスト増大も防止することができると云う効果が得られる。   Furthermore, in the example shown in FIG. 11, a cylindrical columnar chuck portion 8 and a guide portion 31 are coaxially attached via a metal rod 32. The guide portion 31 has the same outer diameter as the outer diameter of the hollow sleeve 10. In addition, an injection hole 33 for ejecting air is provided on the side surface of the guide portion 31 so as to be easily inserted into the cylindrical body 1, and air is supplied via an air path (not shown) provided in the metal rod 32. The With these configurations, the guide 31 can be smoothly inserted into (inserted into) the cylindrical body 1, and the guide portion 31 is fixed away from the sleeve 10, thereby extending the entire length of the cylindrical chuck portion 8. Even if it is not performed, it is possible to easily increase the accuracy of the perfect circle at the tip of the cylindrical body 1 and suppress the increase in the weight of the entire cylindrical chuck portion while obtaining the effect of improving the holding accuracy of the cylindrical body. As a result, it is not necessary to increase the burden of the arm portion and its operation control, and at the same time, an increase in cost can be prevented.

図12に示す例では、円柱状のチャック部8がアーム部のブラケット7にチャック支持手段を介して取り付けられ、チャック支持手段が、円柱状のチャック部8と同軸の支柱部34、支柱部34に同軸に接合され非磁性の筐体38に収納された、表裏で磁極が異なる円盤形状の磁石35、非磁性の筐体38の円盤形状の磁石35のブラケット7側面に円盤形状の磁石35と平行にかつ離間して、円盤形状の磁石35側の磁極が対向する円盤形状の磁石35の面と同磁極となるように配された第1の平板形状の磁石36、前記非磁性の筐体38の円盤形状の磁石35の円柱状のチャック部8側面であって、第1の平板形状の磁石36とともに円盤形状の磁石35を離間して挟む位置に、円盤形状の磁石35側の磁極が対向する円盤形状の磁石35の面と同磁極となるように配された第2の平板形状の磁石37、からなり、かつ、第2の平板形状の磁石37と前記筐体とを連通する貫通孔38aに支柱部34が挿通されている。   In the example shown in FIG. 12, the cylindrical chuck portion 8 is attached to the arm portion bracket 7 via chuck support means, and the chuck support means includes a column portion 34 that is coaxial with the columnar chuck portion 8, and a column portion 34. And a disc-shaped magnet 35 accommodated in a non-magnetic casing 38 and coaxially connected to each other, and a disc-shaped magnet 35 on the side of the bracket 7 of the disc-shaped magnet 35 of the non-magnetic casing 38. A first flat plate-shaped magnet 36 which is arranged in parallel and spaced apart so that the magnetic pole on the disk-shaped magnet 35 side is the same magnetic pole as the surface of the opposing disk-shaped magnet 35, the non-magnetic housing The magnetic pole on the disk-shaped magnet 35 side is located on the side surface of the cylindrical chuck portion 8 of the disk-shaped magnet 35 and the disk-shaped magnet 35 with the first plate-shaped magnet 36 spaced apart. Opposite disk-shaped magnet 3 The support 34 is formed in a through-hole 38a that includes a second flat plate-shaped magnet 37 that is arranged so as to have the same magnetic pole as the surface of the first plate, and that communicates the second flat plate-shaped magnet 37 with the casing. It is inserted.

各平板形状の磁石36、37はそれぞれ円盤形状の磁石35に向いた面が、円盤形状の磁石35に対して同極であるため反発力が働く。   The flat magnets 36 and 37 have a repulsive force because their surfaces facing the disc-shaped magnet 35 have the same polarity as the disc-shaped magnet 35.

ここで、円盤形状の磁石35の下方に配された第2の平板形状の磁石37の磁束密度を、円柱状のチャック部8の重さによって生じる重力、及び、第1の平板形状の磁石36と円盤形状の磁石35との間の反発力の和と吊り合うようにする。これにより筒状体1に円柱状のチャック部を挿入(滑入)する際の筒状体1先端にかかる負荷を緩衝することができ、同様に筒状体1を保持して円柱状のマンドレル11が挿入される時も筒状体1下端にかかる負荷を緩衝することができるので筒状体の損傷を防ぐことができる。   Here, the magnetic flux density of the second flat plate-shaped magnet 37 disposed below the disk-shaped magnet 35 is determined by the gravity generated by the weight of the cylindrical chuck portion 8 and the first flat plate-shaped magnet 36. And the sum of the repulsive force between the magnet and the disc-shaped magnet 35. As a result, the load applied to the tip of the cylindrical body 1 when the cylindrical chuck portion is inserted (slided) into the cylindrical body 1 can be buffered. Similarly, the cylindrical body 1 is held and the cylindrical mandrel is held. Even when 11 is inserted, the load applied to the lower end of the cylindrical body 1 can be buffered, so that the cylindrical body can be prevented from being damaged.

また、支柱部34は貫通孔38aに対し、その軸方向、すなわち、上下に対して自由微動可能であるようにすきま嵌めとなっている。また、支柱部34の外径が貫通孔38aの内径よりも若干細くなっているので、円柱状のチャック部の円筒体端部からの挿入時での、円筒体端部位置への円柱状のチャック部の位置への追従が可能となり、挿入時での円柱状のチャック部による円筒体の破損を低減させると云う効果が得られる。   Moreover, the support | pillar part 34 is clearance fit so that it can freely move with respect to the axial direction, ie, up and down, with respect to the through-hole 38a. Further, since the outer diameter of the column portion 34 is slightly smaller than the inner diameter of the through hole 38a, the columnar chuck portion to the cylindrical end portion position when the columnar chuck portion is inserted from the cylindrical end portion is also provided. It is possible to follow the position of the chuck portion, and the effect of reducing the damage of the cylindrical body by the columnar chuck portion at the time of insertion can be obtained.

さらに、図12に示す例では、第1の平板形状の磁石36または第2の平板形状の磁石37を電磁石とすることで、その電磁石へ供給する電流の極性を反転させることにより、円盤形状の磁石35をその平板形状の電磁石に固定することができるために、水平方向への高速搬送時であっても円柱状のチャック部に保持された筒状体を安定して保持できると云う効果が得られる。   Furthermore, in the example shown in FIG. 12, by using the first flat plate-shaped magnet 36 or the second flat plate-shaped magnet 37 as an electromagnet, and reversing the polarity of the current supplied to the electromagnet, Since the magnet 35 can be fixed to the plate-shaped electromagnet, the cylindrical body held by the cylindrical chuck portion can be stably held even during high-speed conveyance in the horizontal direction. can get.

さらに図13に示す例では、貫通孔38aの内側面に気体を吹き出す貫通孔気体吹き出し部として噴射穴39とこの噴射穴39にエアを供給するレギュレータ40とを備えているために、円柱状のチャック部の円筒体内部への挿入動作、あるいは、円柱状のチャック部の円筒体からの抜去動作においても貫通孔気体吹き出し部からの気体による気体膜による潤滑によって円柱状のチャック部に接合された支柱部34が低摩擦状態で、かじることなしに滑らかに上下動するために、支柱、及び、貫通孔部分の寿命を長くすると云う効果が得られる。   Further, in the example shown in FIG. 13, since the injection hole 39 and the regulator 40 that supplies air to the injection hole 39 are provided as a through-hole gas blowing portion for blowing gas to the inner surface of the through-hole 38 a, Even in the operation of inserting the chuck part into the cylindrical body or the operation of removing the cylindrical chuck part from the cylindrical body, the chuck part was joined to the cylindrical chuck part by lubrication with a gas film from the gas from the through-hole gas blowing part. Since the support column 34 moves smoothly up and down without galling in a low friction state, the effect of extending the life of the support column and the through-hole portion is obtained.

また、図14に示す例では、上記の、噴射穴39が列方向に2列、周方向に4方向設けられており、それらが接続された溝41によって均一なエアの噴射が可能となっている。より安定した姿勢に円柱状のチャック部を維持することができ、保持された筒状体へのマンドレルの挿入時または基体へのチャック装置の挿入時の基体の破損を低減させ、品質を安定させると云う効果が得られる。また、円柱状のチャック部8が傾きがなく、安定して保持される。   Further, in the example shown in FIG. 14, the injection holes 39 are provided in two rows in the row direction and four directions in the circumferential direction, and the groove 41 to which they are connected enables uniform air injection. Yes. The cylindrical chuck portion can be maintained in a more stable posture, and the quality of the base can be reduced by reducing breakage of the base body when the mandrel is inserted into the held cylindrical body or when the chuck device is inserted into the base body. The effect is obtained. Further, the cylindrical chuck portion 8 is not tilted and is stably held.

また、図15に示す例では、上側の第1の平板形状の磁石36の異なる2箇所に微小電流計42が、この2箇所の間に流れる電流の変化を計測する電流計測手段として接続されており、円盤形状の磁石35が変位したときに生じる磁束密度の変化による誘導電流を計測することができる。また発生する誘導電流の正負によって円盤形状の磁石35の上下の変位方向も判断することができる。これにより、円柱状のマンドレル11のストッパ15への突き当て不具合による筒状体移載位置への誘導失敗時などの要因によって、筒状体1にかかる瞬間的な負荷を検知し、筒状体1での不良発生検知や、または筒状体が不良となる前に装置を停止させることができる。   In the example shown in FIG. 15, a microammeter 42 is connected to two different places of the upper first plate-shaped magnet 36 as current measuring means for measuring a change in current flowing between the two places. Thus, it is possible to measure the induced current due to the change in magnetic flux density that occurs when the disc-shaped magnet 35 is displaced. Further, the upper and lower displacement directions of the disk-shaped magnet 35 can also be determined by the sign of the induced current generated. Thereby, an instantaneous load applied to the cylindrical body 1 is detected by a factor such as failure in guiding the cylindrical mandrel 11 to the stopper 15 due to a failure to abut the stopper, and the cylindrical body 1 is detected. It is possible to detect the occurrence of a failure at 1 or to stop the apparatus before the cylindrical body becomes defective.

但し、このとき、誘導電流の計測は円盤形状の磁石35の平均的な変位を見られるにとどまるが、図16に示すように、平板形状の磁石36または37のどちらか(この例では平板形状の磁石36)を回転対称な等しい形状(扇状)に等分割(この例では4分割)した分割体(この例では36a〜36d。各磁石は非磁性の絶縁体で区切られている)とし、それぞれの分割体36a〜36dの異なった2箇所にその2箇所の間に流れる電流の変化を計測する電流計測手段(電流計)42a〜42dを備えていると、4つの各磁極での誘導電流を計測することが可能となり、図16に示したように平板形状の磁石36(または37)を分割構造とすることによって円柱状のチャック部または筒状体の傾きの方向が検出でき、さらに各磁極に流す電流を制御することで筒状体にかかる負荷を逃がすことが可能となるため、筒状体が本来位置からずれた場合でも装置を止めないで作業を継続できるという効果が得られる。   However, at this time, the measurement of the induced current can only see the average displacement of the disc-shaped magnet 35, but as shown in FIG. 16, either the flat-plate magnet 36 or 37 (in this example, the flat-plate shape). The magnets 36) are equally divided (in this example, divided into four parts) into equal rotationally symmetric shapes (fans) (in this example, 36a to 36d. Each magnet is divided by a nonmagnetic insulator), When current measuring means (ammeters) 42a to 42d for measuring changes in current flowing between the two parts are provided at two different places of the respective divided bodies 36a to 36d, induced currents at the four magnetic poles. As shown in FIG. 16, the plate-shaped magnet 36 (or 37) has a divided structure, so that the direction of inclination of the cylindrical chuck portion or the cylindrical body can be detected. Flowing to the magnetic pole It becomes possible to release the load applied to the tubular body by controlling the flow, there is an advantage that it continues to work without stopping the apparatus even if the tubular member is displaced from the original position.

このように、平板形状の磁石36(あるいは37)の分割はより多く分割することでより局所的な変位をとらえることが可能となる。このような構造により、筒状体1への挿入前の円柱状のチャック部8の姿勢や、円柱状のマンドレル11への挿入時の筒状体1の傾きによる重心のずれ等を検知することができ、折れなどの不良の発生を未然に防止することができる。   As described above, by dividing the flat plate-shaped magnet 36 (or 37) more, it becomes possible to capture a more local displacement. With such a structure, it is possible to detect the posture of the cylindrical chuck portion 8 before insertion into the cylindrical body 1, the shift of the center of gravity due to the inclination of the cylindrical body 1 when inserted into the cylindrical mandrel 11, and the like. It is possible to prevent the occurrence of defects such as breakage.

ここで、前記分割体が全部電磁石であり、かつ、それぞれの電磁石からなる分割体に流れる電流の変化を測定する電流計測手段と、この電流計測手段により測定された電流変化とは逆向きの電流変化を前記それぞれの電磁石からなる分割体に流れる磁力維持用の電流に対して加えるように設定された電源装置などの電流調整手段と、を備えていることにより、図17に示すように円柱状のチャック部8または筒状体1が垂直軸に対して傾いた場合、傾いた方向の磁極の電流を変化させ磁束密度を大きくすることによって局所的に反発力が高まり姿勢を矯正させることができる。これにより、常時安定した円柱状のチャック部の姿勢の維持が可能となる。   Here, the divided bodies are all electromagnets, and current measuring means for measuring a change in the current flowing through the divided bodies made of the respective electromagnets, and a current in a direction opposite to the current change measured by the current measuring means. And a current adjusting means such as a power supply device set so as to apply a change to the current for maintaining the magnetic force flowing in the divided body composed of the respective electromagnets, as shown in FIG. When the chuck portion 8 or the cylindrical body 1 is tilted with respect to the vertical axis, the repulsive force is locally increased and the posture can be corrected by changing the current of the magnetic pole in the tilted direction and increasing the magnetic flux density. . Thereby, it is possible to maintain the posture of the cylindrical chuck portion that is always stable.

さらに、図18に示すように平板形状の磁石36が電磁石であり、その2箇所に電流計測手段として微小電流計42が接続されている。さらに微小電流計42には制御機器44が接続されており、電流計42の計測値の値に応じて垂直アクチュエータ3の速度を変化させる構成となっている。図18に示すように円柱状のマンドレル11から筒状体1を抜き取る際に、筒状体1、円柱状のマンドレル11及び円柱状のチャック部8とによって形成される空間には円柱状のマンドレル11の側面の微小穴16からエアが供給されるので、上記空間の体積増加量がそのエア供給量未満となるような速度で筒状体1を引き上げれば、筒状体1内面と円柱状のマンドレル11側面との間にエア層が形成されて、摩擦抵抗が事実上発生せずに引き上げることができ、そのとき筒状体1外側面の塗装面が損なわれることはない。しかしながら、上記空間の体積増加量がそのエア供給量未満の速度となるとエア層が充分に形成されず、引き上げ力に対して摩擦抵抗が生じる。   Further, as shown in FIG. 18, the plate-shaped magnet 36 is an electromagnet, and a minute ammeter 42 is connected as a current measuring means to two places thereof. Further, a control device 44 is connected to the minute ammeter 42, and the speed of the vertical actuator 3 is changed in accordance with the value of the measured value of the ammeter 42. As shown in FIG. 18, when the cylindrical body 1 is extracted from the cylindrical mandrel 11, a cylindrical mandrel is formed in the space formed by the cylindrical body 1, the cylindrical mandrel 11, and the cylindrical chuck portion 8. Since air is supplied from the minute holes 16 on the side surfaces of the cylinder 11, if the cylindrical body 1 is pulled up at such a speed that the volume increase amount of the space is less than the air supply quantity, the inner surface of the cylindrical body 1 and the cylindrical shape An air layer is formed between the side surfaces of the mandrel 11 and can be pulled up without causing any frictional resistance. At that time, the painted surface of the outer surface of the cylindrical body 1 is not damaged. However, when the volume increase amount of the space is less than the air supply amount, the air layer is not sufficiently formed, and frictional resistance is generated against the pulling force.

ここで、筒状体1からの円柱状のマンドレル11を抜き取る直前の電流計測手段による電流値と、移載、すなわち、筒状体1からの円柱状のマンドレル11抜き取り中の電流計測手段による電流値と、を比較して、両電流値の差が小さくなるように移載時の前記アーム部の垂直方向の移動速度を制御するアーム部垂直速度制御手段としてCPUなどの制御機器44を備えていることにより、この摩擦抵抗の発生を上記電流計測手段での電流変化として制御機器44で監視し、上記摩擦抵抗が生じない範囲となるよう、すなわち、円柱状のマンドレル11からの筒状体の抜取り時に筒状体内部の圧力が負圧にならないよう抜き取り速度を制御することが可能となる。このとき筒状体が円柱状のマンドレル11に触れずに抜き取れるために、例えば、塗装後の筒状体の場合、その塗装膜への悪影響を防止しながら、円柱形の円柱状のチャック部8を抜き取ることが可能となるという効果が得られる。   Here, the current value by the current measuring means immediately before extracting the cylindrical mandrel 11 from the cylindrical body 1 and the current by the current measuring means during transfer, that is, extraction of the cylindrical mandrel 11 from the cylindrical body 1. A control device 44 such as a CPU is provided as arm portion vertical speed control means for controlling the vertical movement speed of the arm portion at the time of transfer so that the difference between both current values becomes small. Therefore, the generation of the frictional resistance is monitored by the control device 44 as a current change in the current measuring means so that the frictional resistance does not occur, that is, the cylindrical body from the columnar mandrel 11 is removed. The extraction speed can be controlled so that the pressure inside the cylindrical body does not become a negative pressure during extraction. At this time, since the cylindrical body can be pulled out without touching the cylindrical mandrel 11, for example, in the case of a cylindrical body after painting, the cylindrical cylindrical chuck portion while preventing adverse effects on the coating film. The effect that 8 can be extracted is obtained.

本発明のかかる筒状体移載搬送装置の例を示す全体図である。It is a general view which shows the example of the cylindrical body transfer conveyance apparatus of this invention. 図1の装置の円柱状のチャック部8付近のモデル図である。It is a model figure of the column-shaped chuck | zipper part 8 vicinity of the apparatus of FIG. 図2の円柱状のチャック部8付近のモデル断面図である。FIG. 3 is a model cross-sectional view in the vicinity of a cylindrical chuck portion 8 in FIG. 2. 円柱状のチャック部気体吹き出し部が設けられた円柱状のチャック部8付近のモデル断面図である。It is model sectional drawing of the cylindrical chuck | zipper part 8 vicinity provided with the cylindrical chuck | zipper part gas blowing part. (a)円柱状のチャック部気体吹き出し部として気体噴出孔25が複数箇所に設けられた円柱状のチャック部8付近のモデル断面図である。(b)図5(a)のAAにおけるモデル断面図である。(A) It is model sectional drawing of the cylindrical chuck | zipper part 8 vicinity in which the gas ejection hole 25 was provided in multiple places as a cylindrical chuck | zipper part gas blowing part. (B) It is a model sectional view in AA of Drawing 5 (a). 円柱状のチャック部気体吹き出し部として気体噴出孔25が周方向の複数箇所に、複数列設けられた円柱状のチャック部8付近のモデル断面図である。(b)図6(a)のAAにおけるモデル断面図である。FIG. 5 is a model cross-sectional view of the vicinity of a cylindrical chuck portion 8 provided with a plurality of rows of gas ejection holes 25 at a plurality of locations in the circumferential direction as cylindrical chuck portion gas blowing portions. (B) It is model sectional drawing in AA of Fig.6 (a). 円柱状のチャック部気体吹き出し部が設けられた円柱状のチャック部8付近のモデル図である。It is a model figure of the column-shaped chuck | zipper part 8 vicinity provided with the column-shaped chuck | zipper part gas blowing part. (a)円柱状のチャック部8の芯部材23の下方に貫通孔29が設けられ外気との導通が可能となっている円柱状のチャック部8付近のモデル断面図である。(b)図8(a)のAAにおけるモデル断面図である。(A) It is model sectional drawing of the column-shaped chuck | zipper part vicinity in which the through-hole 29 was provided below the core member 23 of the column-shaped chuck | zipper part 8, and conduction | electrical_connection with external air is possible. (B) It is model sectional drawing in AA of Fig.8 (a). 筒状体1を円柱状のマンドレル11へ移載する際に筒状体1、円柱状のチャック部8及び円柱状のマンドレル11から形成される空間内部が正圧となっている状態を示すモデル図である。A model showing a state in which the space formed by the cylindrical body 1, the cylindrical chuck portion 8, and the cylindrical mandrel 11 is positive when the cylindrical body 1 is transferred to the cylindrical mandrel 11. FIG. (a)円柱状のチャック部8の芯部材23下端に円錐台形状のガイド部31が同軸になるように取り付けられている例を示すモデル断面図である。(b)図10(a)のAAにおけるモデル断面図である。(A) It is a model sectional view showing an example in which a truncated cone-shaped guide portion 31 is attached to the lower end of a core member 23 of a cylindrical chuck portion 8 so as to be coaxial. (B) It is a model sectional view in AA of Drawing 10 (a). (a)円筒形の円柱状のチャック部8とガイド部31が金属棒32を介して同軸に取り付けられている例を示すモデル断面図である。(b)図11(a)のAAにおけるモデル断面図である。(A) It is a model sectional view showing an example in which a cylindrical columnar chuck portion 8 and a guide portion 31 are attached coaxially via a metal rod 32. (B) It is model sectional drawing in AA of Fig.11 (a). 円柱状のチャック部8がアーム部のブラケット7にチャック支持手段を介して取り付けられている例を示すモデル断面図である。It is model sectional drawing which shows the example in which the column-shaped chuck | zipper part 8 is attached to the bracket 7 of an arm part via the chuck | zipper support means. 貫通孔38aの内側面に気体を吹き出す貫通孔気体吹き出し部として噴射穴39とこの噴射穴39にエアを供給するレギュレータ40とを備えている例を示すモデル断面図である。It is model sectional drawing which shows the example provided with the injection hole 39 and the regulator 40 which supplies air to this injection hole 39 as a through-hole gas blowing part which blows off gas to the inner surface of the through-hole 38a. 上記噴射穴39が列方向に2列、周方向に4方向設けられている例を示すモデル断面図である。It is a model sectional view showing an example in which the injection holes 39 are provided in two rows in the row direction and four directions in the circumferential direction. 上側の平板形状の磁石36の異なる2箇所に微小電流計42が、この2箇所の間に流れる電流の変化を計測する電流計測手段として接続されている例のモデル断面図である。It is model sectional drawing of the example in which the microammeter 42 is connected as a current measurement means which measures the change of the electric current which flows between these two places in two different places of the upper plate-shaped magnet 36. FIG. 上側の平板形状の磁石36を回転対称な等しい形状(扇状)に等分割(この例では4分割)した分割体とし、それぞれの分割体36a〜36dの異なった2箇所にその2箇所の間に流れる電流の変化を計測する電流計測手段(電流計)42a〜42dを備えている例を示したモデル上面図である。The upper flat plate-shaped magnet 36 is divided into equal parts (fan-shaped) that are rotationally symmetric and divided into four parts (in this example, four parts), and two different parts 36a to 36d are arranged between the two parts. It is the model top view which showed the example provided with the current measurement means (ammeter) 42a-42d which measures the change of the flowing electric current. 円柱状のチャック部8または筒状体1が垂直軸に対して傾いた場合を示すモデル図である。It is a model figure which shows the case where the column-shaped chuck | zipper part 8 or the cylindrical body 1 inclines with respect to the vertical axis. 平板形状の磁石36が電磁石であり、その2箇所に電流計測手段として電流計42が接続されて、さらに電流計42には制御機器44が接続されており、電流計42の計測値の値に応じて垂直アクチュエータ3の速度を変化させる構成を示す一例を示す図である。The plate-shaped magnet 36 is an electromagnet, and an ammeter 42 is connected to the two places as current measuring means, and a control device 44 is connected to the ammeter 42. It is a figure which shows an example which shows the structure which changes the speed of the vertical actuator 3 according to it.

符号の説明Explanation of symbols

1 筒状体(定着ベルトの基体)
2 ストッカ
3 垂直アクチュエータ
4 搬送アクチュエータ
5 アングル
6 架台
7 ブラケット
8 円柱状のチャック部
9 ゴムワッシャ
10 円筒部(スリーブ、中空スリーブ)
11 円柱状のマンドレル
12 搬送コンベア(塗装装置側)
13 搬送コンベア(供給側)
14 ストッパ(供給側)
15 ストッパ(塗装側)
16 微小穴
17 レギュレータ
18 ゴムチューブ
19 レギュレータ
20 バルブ
21 固定リング
22 入れ子リング
23 芯部材
24 Oリング
25 基体噴出穴
26 円周溝
27 バルブ
28 レギュレータ
29 貫通穴
30 バルブ
31 ガイド部
32 金属棒
33 噴射穴
34 支柱部
35 円盤形状の磁石
36 第1の平板形状の磁石
36a〜36d 平板形状の磁石(分割体)
37 第2の平板形状の磁石
38 非磁性筐体
38a 貫通孔
39 噴射穴
40 レギュレータ
41 溝
42a〜42d 微小電流計
44 制御機器
1 Cylindrical body (base of fixing belt)
2 Stocker 3 Vertical Actuator 4 Transport Actuator 5 Angle 6 Base 7 Bracket 8 Cylindrical Chuck Part 9 Rubber Washer 10 Cylindrical Part (Sleeve, Hollow Sleeve)
11 Cylindrical mandrel 12 Conveyor (coating equipment side)
13 Conveyor (supply side)
14 Stopper (supply side)
15 Stopper (paint side)
16 Micro hole 17 Regulator 18 Rubber tube 19 Regulator 20 Valve 21 Fixing ring 22 Nesting ring 23 Core member 24 O-ring 25 Base body ejection hole 26 Circumferential groove 27 Valve 28 Regulator 29 Through hole 30 Valve 31 Guide part 32 Metal rod 33 Injection hole 34 Column 35 Disc-shaped magnet 36 First plate-shaped magnets 36a to 36d Plate-shaped magnets (divided bodies)
37 Second plate-shaped magnet 38 Non-magnetic housing 38a Through hole 39 Injection hole 40 Regulator 41 Grooves 42a to 42d Microammeter 44 Control device

Claims (17)

ストッカ上に軸が鉛直になるよう載置された筒状体を、筒状体移載位置にある軸が鉛直に保たれた円柱状のマンドレル部へ移載した後、前記円柱状のマンドレル部に載置された前記筒状体を所定位置へ搬送し、その後、前記筒状体が載置された前記円柱状のマンドレル部を前記所定位置から前記筒状体移載位置に搬送し、次いで、前記円柱状のマンドレル部に載置された前記筒状体を前記ストッカ上に軸が鉛直になるよう再度移載する筒状体移載搬送装置であって、
(イ)前記ストッカと筒状体移載位置での前記円柱状のマンドレル部との間の水平方向と、前記ストッカの上方及び前記円柱状のマンドレル部の上方での垂直方向と、を往復動するアーム部が設けられ、
(ロ)前記筒状体の端部から内側へ滑入する鉛直に保持された円筒部と、前記筒状体が前記円筒部に滑入する際には、変形して外径が小さくなり、滑入終了後には、復元して外径が拡径する弾性部材からなる前記円筒部の側面または下端に設けられた拡縮径部と、を有する前記筒状体を保持するための円柱状のチャック部が、前記アーム部に設けられ、かつ、
(ハ)気体を吹き出すマンドレル気体吹出部が、前記円柱状のマンドレルの上部側面に設けられている
ことを特徴とする筒状体移載搬送装置。
After the cylindrical body placed on the stocker so that the axis is vertical is transferred to the cylindrical mandrel part where the axis at the cylindrical body transfer position is kept vertical, the cylindrical mandrel part The cylindrical body placed on the cylindrical body is transported to a predetermined position, and then the cylindrical mandrel portion on which the cylindrical body is placed is transported from the predetermined position to the cylindrical body transfer position. A cylindrical body transfer transport device that transfers the cylindrical body placed on the cylindrical mandrel part again on the stocker so that the axis is vertical;
(A) A reciprocating motion between a horizontal direction between the stocker and the cylindrical mandrel portion at the cylindrical body transfer position, and a vertical direction above the stocker and above the cylindrical mandrel portion. Arm part to be provided,
(B) When the cylindrical body slides inwardly from the end of the cylindrical body, and when the cylindrical body slides into the cylindrical section, the outer diameter decreases due to deformation, A cylindrical chuck for holding the cylindrical body having an expanded / reduced diameter portion provided on a side surface or a lower end of the cylindrical portion made of an elastic member whose outer diameter expands after restoration. A portion is provided on the arm portion, and
(C) A cylindrical body transfer / conveying apparatus, wherein a mandrel gas blowing part for blowing out gas is provided on an upper side surface of the cylindrical mandrel.
前記拡縮径部には空間と該空間に接続された吸排気手段とが設けられ、
前記空間はその壁の少なくとも一部が前記弾性部材により構成され、そして、
前記吸排気手段が、前記筒状体が前記円筒部に滑入する際に該空間内部の気体を排気して前記拡縮径部の外径を小さくするとともに、前記筒状体が前記円筒部に滑入した後には該空間内部に気体を給気して拡縮径部の外径を大きくするものである
ことを特徴とする請求項1に記載の筒状体移載搬送装置。
The expansion / contraction diameter portion is provided with a space and intake / exhaust means connected to the space,
The space has at least a part of its wall constituted by the elastic member, and
The intake / exhaust means exhausts the gas inside the space to reduce the outer diameter of the expansion / contraction diameter portion when the cylindrical body slides into the cylindrical portion, and the cylindrical body is attached to the cylindrical portion. The cylindrical body transfer / conveyance apparatus according to claim 1, wherein after sliding in, a gas is supplied into the space to increase an outer diameter of the expansion / contraction diameter portion.
前記円柱状のチャック部が軸部材と該軸部材にはめ込まれる円筒部材とからなり、かつ、該円筒部が交換可能となっていることを特徴とする請求項1または請求項2に記載の筒状体移載搬送装置。   The cylinder according to claim 1 or 2, wherein the columnar chuck portion includes a shaft member and a cylindrical member fitted into the shaft member, and the cylindrical portion is replaceable. Shaped transfer equipment. 前記円柱状のチャック部の側面に気体を吹き出す円柱状のチャック部気体吹き出し部を備えていることを特徴とする請求項1ないし請求項3のいずれか1項に記載の筒状体移載搬送装置。   The cylindrical body transfer conveyance according to any one of claims 1 to 3, further comprising a columnar chuck portion gas blowing portion for blowing gas to a side surface of the columnar chuck portion. apparatus. 前記円柱状のチャック部気体吹き出し部が、円柱状のチャック部の側面の周方向等間隔に気体噴出孔を4つ以上備えていることを特徴とする請求項4に記載の筒状体移載搬送装置。   5. The cylindrical body transfer according to claim 4, wherein the cylindrical chuck portion gas blowing portion has four or more gas ejection holes at equal intervals in the circumferential direction of the side surface of the cylindrical chuck portion. Conveying device. 前記円柱状のチャック部気体吹き出し部が、複数の気体噴出孔を円柱状のチャック部の側面の周方向に配した気体噴出孔からなる列を、該円柱状のチャック部の軸方向に、2列以上備えていることを特徴とする請求項4または請求項5に記載の筒状体移載搬送装置。   The columnar chuck portion gas blowing portion includes a row of gas ejection holes in which a plurality of gas ejection holes are arranged in the circumferential direction of the side surface of the columnar chuck portion in the axial direction of the columnar chuck portion. The cylindrical body transfer / conveying apparatus according to claim 4, wherein the cylindrical body transfer / conveying apparatus is provided with at least rows. 前記筒状体を前記円柱状のマンドレルへ移載する際に該筒状体、前記円柱状のチャック部及び前記円柱状のマンドレルから形成される空間の内部の空気を該空間の外部へ逃がすための空気孔を前記円柱状のチャック部に備え、かつ、該空気孔と前記空間の外部とを接続する空気経路に開閉弁を備えていることを特徴とする請求項1ないし請求項6のいずれか1項に記載の筒状体移載搬送装置。   When the cylindrical body is transferred to the cylindrical mandrel, air inside the space formed by the cylindrical body, the cylindrical chuck portion, and the cylindrical mandrel is released to the outside of the space. The air hole is provided in the cylindrical chuck portion, and an open / close valve is provided in an air path connecting the air hole and the outside of the space. The cylindrical body transfer conveyance apparatus of Claim 1. 前記円柱状のチャック部の下端または該下端の付近に円錐形状または円錐台形状のガイド部を備えていることを特徴とする請求項1ないし請求項7のいずれか1項に記載の筒状体移載搬送装置。   The cylindrical body according to any one of claims 1 to 7, wherein a guide portion having a conical shape or a truncated cone shape is provided at or near a lower end of the cylindrical chuck portion. Transfer transportation device. 前記ガイド部が前記円柱状のチャック部の下端に該円柱状のチャック部よりも細径の棒状部材を介して取り付けられていることを特徴とする請求項8に記載の筒状体移載搬送装置。   9. The cylindrical body transfer / conveyance according to claim 8, wherein the guide portion is attached to a lower end of the cylindrical chuck portion via a rod-like member having a diameter smaller than that of the cylindrical chuck portion. apparatus. 前記円柱状のチャック部が前記アーム部にチャック支持手段を介して取り付けられ、
前記チャック支持手段が、(a)前記円柱状のチャック部と同軸の支柱部、(b)該支柱部に同軸に接合され非磁性の筐体に収納された表裏で磁極が異なる円盤形状の磁石、(c)前記円盤形状の磁石側の磁極が対向する円盤形状の磁石の面と同磁極となるように前記非磁性の筐体の前記円盤形状の磁石の前記アーム部側面に前記円盤形状の磁石と平行に配された第1の平板形状の磁石、(d)該円盤形状の磁石側の磁極が対向する円盤形状の磁石の面と同磁極となるように前記非磁性の筐体の前記円柱状のチャック部側面でかつ前記第1の平板形状の磁石とともに前記円盤形状の磁石を離間して挟む位置に配された第2の平板形状の磁石、から構成され、かつ、
前記第2の平板形状の磁石と前記筐体とを連通する貫通孔に前記支柱部が挿通されていることを特徴とする請求項1ないし請求項9のいずれか1項に記載の筒状体移載搬送装置。
The cylindrical chuck portion is attached to the arm portion via chuck support means,
The chuck support means includes: (a) a columnar portion coaxial with the columnar chuck portion; and (b) a disk-shaped magnet having different magnetic poles on the front and back, which are coaxially joined to the columnar portion and housed in a nonmagnetic casing. (C) The disc-shaped magnet is formed on the side of the arm portion of the disc-shaped magnet of the non-magnetic casing so that the magnetic pole on the side of the disc-shaped magnet has the same magnetic pole as the surface of the opposing disc-shaped magnet. A first flat plate-shaped magnet arranged in parallel with the magnet; and (d) the non-magnetic housing of the non-magnetic housing so that the magnetic pole on the magnet side of the disc is the same as the surface of the opposing disc-shaped magnet. A second plate-shaped magnet disposed on a side surface of the cylindrical chuck portion and disposed at a position sandwiching the disk-shaped magnet with the first plate-shaped magnet; and
The cylindrical body according to any one of claims 1 to 9, wherein the support column is inserted into a through hole that communicates the second flat plate-shaped magnet and the housing. Transfer transportation device.
気体を吹き出す貫通孔気体吹き出し部が、前記貫通孔の内側面に設けられていることを特徴とする請求項10に記載の筒状体移載搬送装置。   The cylindrical body transfer / conveying apparatus according to claim 10, wherein a through-hole gas blowing portion that blows out gas is provided on an inner surface of the through-hole. 上記貫通孔気体吹き出し部が、前記貫通孔の内側面の周方向に4つ以上の気体噴出孔を配した列を、該貫通孔の軸方向に、2列以上備えていることを特徴とする請求項11に記載の筒状体移載搬送装置。   The through-hole gas blowing portion includes two or more rows in the axial direction of the through-holes, in which four or more gas ejection holes are arranged in the circumferential direction of the inner surface of the through-hole. The cylindrical body transfer conveyance apparatus of Claim 11. 前記第1の平板形状の磁石及び前記第2の平板形状の磁石のどちらか一方が電磁石であることを特徴とする請求項10ないし請求項12のいずれか1項に記載の筒状体移載搬送装置。   The cylindrical body transfer according to any one of claims 10 to 12, wherein one of the first flat plate-shaped magnet and the second flat plate-shaped magnet is an electromagnet. Conveying device. 電流の変化を計測する電流計測手段が、前記第1の平板形状の磁石及び前記第2の平板形状の磁石のどちらか一方の異なった2箇所に接続されていることを特徴とする請求項10ないし請求項13のいずれか1項に記載の筒状体移載搬送装置。   The current measuring means for measuring a change in current is connected to two different locations of either the first plate-shaped magnet or the second plate-shaped magnet. The cylindrical body transfer conveyance apparatus of any one of thru | or thru | or 13. 前記第1の平板形状の磁石及び前記第2の平板形状の磁石のどちらか一方が、4つ以上に等しい形状の分割体に分割され、そして、電流の変化を計測する電流計測手段がそれぞれの前記分割体の異なった2箇所に接続されていることを特徴とする請求項10ないし請求項13のいずれか1項に記載の筒状体移載搬送装置。   Either one of the first flat plate-shaped magnet and the second flat plate-shaped magnet is divided into four or more divided bodies, and current measuring means for measuring a change in current is provided for each of them. The cylindrical body transfer / conveying device according to any one of claims 10 to 13, wherein the cylindrical body is connected to two different portions of the divided body. 前記分割体が全部電磁石であり、それぞれの電磁石からなる前記分割体には、電流の変化を測定する電流計測手段と電流調整手段とが接続されており、
前記電流調整手段が、前記電流計測手段により測定された電流変化とは逆向きの電流変化をそれぞれの電磁石からなる前記分割体に流れる電流に対して加えるように設定されている電源装置であることを特徴とする請求項15に記載の筒状体移載搬送装置。
The divided bodies are all electromagnets, and current measuring means for measuring a change in current and current adjusting means are connected to the divided bodies made of the respective electromagnets,
The current adjusting means is a power supply device set so as to apply a current change in a direction opposite to the current change measured by the current measuring means to the current flowing through the divided body composed of each electromagnet. The cylindrical body transfer transport device according to claim 15.
前記円柱状のマンドレルから前記筒状体を抜く直前の前記電流計測手段による電流値と、前記円柱状のマンドレルから前記筒状体を抜いている際の前記電流計測手段による電流値と、を比較して、両電流値の差が小さくなるように前記アーム部の垂直方向の移動速度を制御するアーム部垂直速度制御手段を備えていることを特徴とする請求項14ないし請求項16のいずれか1項に記載の筒状体移載搬送装置。   A comparison is made between the current value by the current measuring means immediately before the cylindrical body is pulled out from the cylindrical mandrel and the current value by the current measuring means when the cylindrical body is pulled out from the cylindrical mandrel. The arm part vertical speed control means for controlling the moving speed of the arm part in the vertical direction so as to reduce the difference between the two current values is provided. The cylindrical body transfer conveyance apparatus of 1 item | term.
JP2007238033A 2007-09-13 2007-09-13 Cylindrical transfer equipment Expired - Fee Related JP5169095B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007238033A JP5169095B2 (en) 2007-09-13 2007-09-13 Cylindrical transfer equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007238033A JP5169095B2 (en) 2007-09-13 2007-09-13 Cylindrical transfer equipment

Publications (2)

Publication Number Publication Date
JP2009067534A true JP2009067534A (en) 2009-04-02
JP5169095B2 JP5169095B2 (en) 2013-03-27

Family

ID=40604212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007238033A Expired - Fee Related JP5169095B2 (en) 2007-09-13 2007-09-13 Cylindrical transfer equipment

Country Status (1)

Country Link
JP (1) JP5169095B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012058316A (en) * 2010-09-06 2012-03-22 Ricoh Co Ltd Coating film formation device, electrophotographic fixing member with coating film formed by the coating film formation device, and image forming apparatus having the electrophotographic fixing member
WO2019039616A1 (en) * 2017-08-25 2019-02-28 キヤノン株式会社 Method and device for manufacturing fixing member
CN109699617A (en) * 2018-12-29 2019-05-03 浙江云翠茶业发展有限公司 A kind of tea tree insect prevention equipment
CN110549014A (en) * 2019-09-20 2019-12-10 广东捷泰克智能装备有限公司 deslagging method, deslagging mechanism and applied pipe laser cutting machine
CN112110122A (en) * 2020-09-10 2020-12-22 格兰德电气有限公司 Iron core feeding mechanism
CN116495625A (en) * 2023-06-29 2023-07-28 石家庄常丰环境工程有限公司 Suspension device for port crane

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63191726A (en) * 1987-01-23 1988-08-09 株式会社 京都製作所 Method and device for extracting thin cylindrical body covered on mandrel
JPH0523991A (en) * 1991-07-16 1993-02-02 Nippon Steel Corp Handling device of film pipe and detachable method thereof
JPH06148907A (en) * 1992-11-09 1994-05-27 Mita Ind Co Ltd Drum chucking device
JP2005505436A (en) * 2001-03-19 2005-02-24 セバル エス.アー.エス. Manufacturing equipment for manufacturing plastic soft tubes while forming the head at the hem with a continuously operating machine tool

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63191726A (en) * 1987-01-23 1988-08-09 株式会社 京都製作所 Method and device for extracting thin cylindrical body covered on mandrel
JPH0523991A (en) * 1991-07-16 1993-02-02 Nippon Steel Corp Handling device of film pipe and detachable method thereof
JPH06148907A (en) * 1992-11-09 1994-05-27 Mita Ind Co Ltd Drum chucking device
JP2005505436A (en) * 2001-03-19 2005-02-24 セバル エス.アー.エス. Manufacturing equipment for manufacturing plastic soft tubes while forming the head at the hem with a continuously operating machine tool

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012058316A (en) * 2010-09-06 2012-03-22 Ricoh Co Ltd Coating film formation device, electrophotographic fixing member with coating film formed by the coating film formation device, and image forming apparatus having the electrophotographic fixing member
WO2019039616A1 (en) * 2017-08-25 2019-02-28 キヤノン株式会社 Method and device for manufacturing fixing member
JP2019040077A (en) * 2017-08-25 2019-03-14 キヤノン株式会社 Method and device for manufacturing fixing member
JP6991787B2 (en) 2017-08-25 2022-01-13 キヤノン株式会社 Manufacturing method of fixing member
CN109699617A (en) * 2018-12-29 2019-05-03 浙江云翠茶业发展有限公司 A kind of tea tree insect prevention equipment
CN109699617B (en) * 2018-12-29 2021-07-30 浙江云翠茶业发展有限公司 Tea tree protection against insects equipment
CN110549014A (en) * 2019-09-20 2019-12-10 广东捷泰克智能装备有限公司 deslagging method, deslagging mechanism and applied pipe laser cutting machine
CN112110122A (en) * 2020-09-10 2020-12-22 格兰德电气有限公司 Iron core feeding mechanism
CN116495625A (en) * 2023-06-29 2023-07-28 石家庄常丰环境工程有限公司 Suspension device for port crane
CN116495625B (en) * 2023-06-29 2023-08-25 石家庄常丰环境工程有限公司 Suspension device for port crane

Also Published As

Publication number Publication date
JP5169095B2 (en) 2013-03-27

Similar Documents

Publication Publication Date Title
JP5169095B2 (en) Cylindrical transfer equipment
JP6489112B2 (en) Core transport device and core transport method
JP4612023B2 (en) Individual support device for container with neck and equipment provided with transfer device using such support device
TWI639482B (en) Apparatus for supporting substrate and apparatus for processing substrate including the same
JP4927581B2 (en) Coating film forming device
JP6715445B2 (en) Clamping device and sheet work processing device
US20210037659A1 (en) Mechatronic curtain for a process chamber for carrying out thermal processes in the manufacture of electronic assemblies
JP2007044626A (en) Apparatus for forming coating film
JP2007298680A (en) Rubbing device and rubbing method
CN105986252A (en) Film forming device and film forming method
CN108291931B (en) Method and apparatus for measuring electrostatic charge of a substrate
TWI608189B (en) Gas purification device and gas purification method
JP2008249547A (en) Device for measuring moving amount of rolling object
JP3182013U (en) Substrate holding member
JP5315834B2 (en) Coating film forming apparatus, fixing means and image forming apparatus
JP2006137000A (en) Suction head
JP2007252976A (en) Coating head and coating film forming apparatus provided with the same
JP2007014879A (en) Coating film forming apparatus
JP2013166089A (en) Method for applying coating material and coating apparatus
JP2016016494A (en) Mounting device and mounting method of member to be mounted
KR101917037B1 (en) Magnetic drive transmission method
JP2001330422A (en) Outer diameter measuring method and apparatus
JP2015116547A (en) Coating equipment
JP2014076410A (en) Coating apparatus and coating method
JP2018061990A (en) Core gripping device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121217

R151 Written notification of patent or utility model registration

Ref document number: 5169095

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160111

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees