JP2009065751A - Method for compensating dc standby voltage of momentary voltage drop compensator - Google Patents

Method for compensating dc standby voltage of momentary voltage drop compensator Download PDF

Info

Publication number
JP2009065751A
JP2009065751A JP2007229902A JP2007229902A JP2009065751A JP 2009065751 A JP2009065751 A JP 2009065751A JP 2007229902 A JP2007229902 A JP 2007229902A JP 2007229902 A JP2007229902 A JP 2007229902A JP 2009065751 A JP2009065751 A JP 2009065751A
Authority
JP
Japan
Prior art keywords
voltage
capacitor
standby
internal resistance
capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007229902A
Other languages
Japanese (ja)
Other versions
JP5050742B2 (en
Inventor
Hiroshi Zaitsu
寛 材津
Masakazu Muneshima
正和 宗島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2007229902A priority Critical patent/JP5050742B2/en
Publication of JP2009065751A publication Critical patent/JP2009065751A/en
Application granted granted Critical
Publication of JP5050742B2 publication Critical patent/JP5050742B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Stand-By Power Supply Arrangements (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a matter that the lifetime is short because the discharge time of an electric double layer capacitor used in a momentary voltage drop compensator becomes more than a specified momentary voltage drop operation time owing to the values of the capacitance and the internal resistance after elapsing the lifetime of the compensator. <P>SOLUTION: When the DC voltage and the recharge start voltage of an electric double layer capacitor during stand-by of momentary voltage drop are set, the capacitance and the internal resistance after a predetermined period are determined from a change due to aging of the electric double layer capacitor, and the capacitor voltage during stand-by of momentary voltage drop is determined by substituting the capacitance and the internal resistance for a discharge time calculation formula. The capacitance and the internal resistance are determined every predetermined time and used. Alternatively, an effective power is determined by performing d-q conversion of the detected voltage and load current of a power system, and the effective power thus calculated is substituted for the discharge time calculation formula to determine the capacitor voltage during stand-by of momentary voltage drop thus compensating for the set value. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は瞬時電圧低下補償装置(以下瞬低補償装置という)の直流待機電圧補償方法に係り、特に、エネルギー貯蔵装置として電気二重層キャパシタを用いた場合の直流待機電圧補償方法に関するものである。   The present invention relates to a direct current standby voltage compensation method for an instantaneous voltage drop compensator (hereinafter referred to as an instantaneous voltage drop compensator), and more particularly to a direct current standby voltage compensation method when an electric double layer capacitor is used as an energy storage device.

エネルギー貯蔵装置として電気二重層キャパシタを用いた瞬低補償装置としては、特許文献1などによって公知となっている。図3はその概略構成図を示したもので、電源系統5と負荷間に高速スイッチ3を設け、この高速スイッチ3と負荷間に電圧貯蔵装置としての電気二重層キャパシタ1、及び交直変換装置4を接続して構成される。このシステムは、平常時には、高速スイッチ3を介して負荷2に電力を供給する。系統電圧に停電を含む電圧低下が発生すると、高速スイッチ3を系統から切り離し、電気二重層キャパシタ1に蓄積された直流電圧を交直変換装置4により交流に変換し、負荷2へ無瞬断で電力を供給する。   A voltage sag compensator using an electric double layer capacitor as an energy storage device is known from Patent Document 1 and the like. FIG. 3 shows a schematic configuration diagram thereof. A high-speed switch 3 is provided between a power supply system 5 and a load. The electric double layer capacitor 1 as a voltage storage device and the AC / DC converter 4 are provided between the high-speed switch 3 and the load. Connected. This system supplies power to the load 2 via the high-speed switch 3 in normal times. When a voltage drop including a power failure occurs in the system voltage, the high-speed switch 3 is disconnected from the system, the DC voltage stored in the electric double layer capacitor 1 is converted into AC by the AC / DC converter 4, and power is supplied to the load 2 without interruption. Supply.

電気二重層キャパシタに蓄積されたエネルギーEは、キャパシタの直流電圧VによりE=1/2・CV2 で計算できる。
平常時における電気二重層キャパシタへの充電のための直流電圧制御方法としては、(1)交直変換装置を停止する、(2)交直変換装置を浮動充電動作させる、の2通りがある。
The energy E stored in the electric double layer capacitor can be calculated by E = 1/2 · CV 2 from the DC voltage V of the capacitor.
There are two DC voltage control methods for charging the electric double layer capacitor in normal times: (1) stopping the AC / DC converter, and (2) operating the AC / DC converter in a floating charge operation.

(1)の方法は、キャパシタ電圧を定格電圧まで充電した後、交直変換装置4を停止させる。交直変換装置4を停止させると、漏れ電流や電気二重層キャパシタ用分圧抵抗により、キャパシタ電圧は低下する。キャパシタ電圧がある電圧値より小さくなったとき交直変換装置4を動作させ、再びキャパシタ電圧を定格電圧にまで充電する。図4はその状態を示したもので、キャパシタ電圧を定格電圧のV1まで充電した後、時刻t1で交直変換装置4を停止させる。時刻t2となり、予め設定された電圧V2にまで低下したとき、再び交直変換装置4を定格電圧V1にまで充電する。そのときの交直変換装置4における制御は電圧一定制御となっている。   In the method (1), the AC / DC converter 4 is stopped after charging the capacitor voltage to the rated voltage. When the AC / DC converter 4 is stopped, the capacitor voltage decreases due to the leakage current or the voltage dividing resistor for the electric double layer capacitor. When the capacitor voltage becomes smaller than a certain voltage value, the AC / DC converter 4 is operated to charge the capacitor voltage to the rated voltage again. FIG. 4 shows this state. After charging the capacitor voltage to the rated voltage V1, the AC / DC converter 4 is stopped at time t1. When the time t2 is reached and the voltage drops to the preset voltage V2, the AC / DC converter 4 is charged again to the rated voltage V1. Control in the AC / DC converter 4 at that time is constant voltage control.

(2)の方法は、図5で示すように常に交直変換装置4を動作させ、キャパシタ電圧が定格電圧V1になるよう制御される。
すなわち、(1)の方法と(2)の方法ともに電圧一定制御の指令値、及び交直変換装置4が電圧一定制御を開始する電圧は固定となっている。
特開2006−74903
In the method (2), the AC / DC converter 4 is always operated as shown in FIG. 5, and the capacitor voltage is controlled to be the rated voltage V1.
That is, in both the methods (1) and (2), the command value for the constant voltage control and the voltage at which the AC / DC converter 4 starts the constant voltage control are fixed.
JP 2006-74903 A

(1)の方法と(2)の方法ともに電圧一定制御の指令値、及び交直変換装置4が電圧一定制御を開始する電圧は固定となっている。このため、電気二重層キャパシタに余裕があっても、寿命を延ばすことが出来ない問題を有している。 In both the methods (1) and (2), the command value for the constant voltage control and the voltage at which the AC / DC converter 4 starts the constant voltage control are fixed. For this reason, even if there is room in the electric double layer capacitor, there is a problem that the life cannot be extended.

本発明が目的とするとこは、寿命延長が可能となる電気二重層キャパシタの直流待機電圧補償方法を提供することにある。   An object of the present invention is to provide a method for compensating a DC standby voltage of an electric double layer capacitor that can extend the life.

本発明の請求項1は、電力系統に交直変換装置を接続し、電力系統の電圧低下時に電気二重層キャパシタを電源とした交直変換装置を介して負荷に電力を供給する瞬時低下電圧補償装置であって、電気二重層キャパシタの瞬低待機中の直流電圧、再充電開始電圧を設定するものにおいて、
前記電気二重層キャパシタの経年変化から所定期間後における静電容量と内部抵抗を求め、この静電容量と内部抵抗を放電時間算出式に代入して瞬低待機中のキャパシタ電圧とすることを特徴としたものである。
Claim 1 of the present invention is an instantaneous voltage drop compensator that connects an AC / DC converter to an electric power system and supplies electric power to a load via the AC / DC converter using an electric double layer capacitor as a power source when the voltage of the electric power system drops. In order to set the DC voltage during the low voltage standby of the electric double layer capacitor and the recharge start voltage,
Capacitance and internal resistance after a predetermined period are obtained from the secular change of the electric double layer capacitor, and the electrostatic capacity and internal resistance are substituted into a discharge time calculation formula to obtain a capacitor voltage during standby for a short time. It is what.

本発明の請求項2は、前記電気二重層キャパシタの静電容量と内部抵抗は、所定時間毎に求め、求めた静電容量,内部抵抗を用いて所定時間毎に瞬低待機中のキャパシタ電圧を変更することを特徴としたものである。   According to a second aspect of the present invention, the capacitance and the internal resistance of the electric double layer capacitor are determined every predetermined time, and the voltage of the capacitor that is waiting for a sag during the predetermined time using the calculated capacitance and internal resistance is determined. It is characterized by changing.

本発明の請求項3は、前記電気二重層キャパシタの静電容量と内部抵抗は、瞬時低下電圧補償装置の瞬低動作補償後の充電電流とキャパシタ電圧を検出し、内部抵抗Rはキャパシタを定電力充電状態から電流ゼロとしたときの直流電圧低下分ΔVから、R=ΔV/I(ただし、Iは定電力充電前のキャパシタ充電電流)で求め、静電容量はキャパシタ電圧の充電カーブから求めることを特徴としたものである。   According to a third aspect of the present invention, the electrostatic capacitance and the internal resistance of the electric double layer capacitor detect the charging current and the capacitor voltage after the instantaneous drop compensation of the instantaneous drop voltage compensator, and the internal resistance R determines the capacitor. R = ΔV / I (where I is the capacitor charging current before constant power charging) from the DC voltage drop ΔV when the current is zero from the power charging state, and the capacitance is determined from the charging curve of the capacitor voltage. It is characterized by that.

本発明の請求項4は、前記電気二重層キャパシタの静電容量と内部抵抗は、所定時間毎にキャパシタの特性診断を実行し、キャパシタを定電力放電した後に定電力充電行って求めることを特徴としたものである。   According to a fourth aspect of the present invention, the capacitance and internal resistance of the electric double layer capacitor are obtained by performing a characteristic diagnosis of the capacitor every predetermined time, and performing a constant power charge after discharging the capacitor at a constant power. It is what.

本発明の請求項5は、電力系統に交直変換装置を接続し、電力系統の電圧低下時に電気二重層キャパシタを電源とした交直変換装置を介して負荷に電力を供給する瞬時低下電圧補償装置であって、電気二重層キャパシタの瞬低待機中の直流電圧、再充電開始電圧を設定するものにおいて、
検出された電力系統の電圧と負荷電流をd−q変換して有効電力を求め、算出された有効電力を放電時間算出式に代入して瞬低待機中のキャパシタ電圧とすることを特徴としたものである。
Claim 5 of the present invention is an instantaneous voltage drop compensator that connects an AC / DC converter to a power system and supplies power to a load via the AC / DC converter using an electric double layer capacitor as a power source when the voltage of the power system drops. In order to set the DC voltage during the low voltage standby of the electric double layer capacitor and the recharge start voltage,
The detected power system voltage and load current are dq converted to obtain active power, and the calculated active power is substituted into a discharge time calculation formula to obtain a capacitor voltage during standby for a sag. Is.

本発明の請求項6は、前記請求項1乃至5の何れかによって算出された瞬低待機中のキャパシタ電圧は、平常時に交直変換装置を停止させる制御方式に適用したことを特徴としたものである。   A sixth aspect of the present invention is characterized in that the capacitor voltage during the low voltage standby calculated by any one of the first to fifth aspects is applied to a control system for stopping the AC / DC converter in normal times. is there.

以上のとおり、本発明によれば、瞬低待機中のキャパシタ電圧を定格値以下にすることでキャパシタの寿命を延ばすことが可能となる。また、経年劣化が遅くなることによって、装置に使用するキャパシタの個数を削減することができるものである。   As described above, according to the present invention, it is possible to extend the life of a capacitor by setting the capacitor voltage during standby for a short time to a rated value or less. In addition, the number of capacitors used in the device can be reduced due to the slow deterioration over time.

本発明の実施例の説明に先立って、その基本的な考えについて説明する。
図6は電気二重層キャパシタ1の構成図を示したもので、電気二重層キャパシタユニット10をn個直列に接続し、この直列接続されたアームがm個並列に接続されて構成される。このように構成された電気二重層キャパシタ1の放電時間は以下のように計算できる。また、計算に使用するパラメータを表1に示す。
Prior to the description of the embodiments of the present invention, the basic idea will be described.
FIG. 6 shows a configuration diagram of the electric double layer capacitor 1, and n electric double layer capacitor units 10 are connected in series and m arms connected in series are connected in parallel. The discharge time of the electric double layer capacitor 1 configured in this way can be calculated as follows. Table 1 shows parameters used for the calculation.

Figure 2009065751
Figure 2009065751

電気二重層キャパシタに蓄積されたエネルギーEは、キャパシタの直流電圧VによりE=1/2・CV2で計算できる。電気二重層キャパシタユニット単位での放電時間の計算では、先ず、(1)式に基づいて出力電力を求める。総負荷電力及びユニット数、変換効率から The energy E stored in the electric double layer capacitor can be calculated by E = 1/2 · CV 2 from the DC voltage V of the capacitor. In the calculation of the discharge time in units of electric double layer capacitor units, first, the output power is obtained based on equation (1). From total load power, number of units, and conversion efficiency

Figure 2009065751
Figure 2009065751

となる。
放電開始時に、最大電圧Vmaxまで充電されているものと仮定する。図7で示すように、放電開始とともに放電電流I及び内部抵抗による電圧低下により、端子電圧は最大電圧から低下する。このときの端子電圧Vsは(2)式となる。
It becomes.
It is assumed that the battery is charged up to the maximum voltage Vmax at the start of discharge. As shown in FIG. 7, the terminal voltage drops from the maximum voltage due to the voltage drop due to the discharge current I and the internal resistance as the discharge starts. The terminal voltage Vs at this time is expressed by equation (2).

Figure 2009065751
Figure 2009065751

また、放電中の端子電圧Vと内部抵抗V0との関係は(3)式である。 Further, the relationship between the terminal voltage V during discharge and the internal resistance V0 is expressed by equation (3).

Figure 2009065751
Figure 2009065751

また、キャパシタ蓄えられるエネルギーは、放電によって減少するため、(4)式となる。ここで、Aは積分定数である。t=0のとき、V=Vsであるから(5)式となる。 Moreover, since the energy stored in the capacitor is reduced by the discharge, the equation (4) is obtained. Here, A is an integral constant. When t = 0, since V = Vs, the equation (5) is obtained.

Figure 2009065751
Figure 2009065751

したがって、V=Vminとなる放電時間tmaxは(6)式となる。 Therefore, the discharge time tmax when V = Vmin is given by equation (6).

Figure 2009065751
Figure 2009065751

ここで、Vr=Vmin/Vmaxを用いて整理すると(7)式となる。 Here, when arranging using Vr = Vmin / Vmax, equation (7) is obtained.

Figure 2009065751
Figure 2009065751

よって、放電時間tmaxは(7)式で計算できる。
放電時間tmaxは、装置寿命時間経過した後の静電容量・内部抵抗の値で、瞬低動作時間の仕様以上になるようにしている。これにより、初期状態ではキャパシタ電圧を定格まで上げなくとも、瞬低動作時間の使用を満たすことができる。
Therefore, the discharge time tmax can be calculated by equation (7).
The discharge time tmax is a value of the capacitance and internal resistance after the device lifetime has elapsed, and is set to be equal to or greater than the specification of the instantaneously low operating time. Thereby, it is possible to satisfy the use of the instantaneously low operating time without raising the capacitor voltage to the rated value in the initial state.

例として、表2の仕様において15年後の静電容量が−24%、内部抵抗が+24%になる条件で、キャパシタの容量設計をすると表3のような結果となる。なお、設計例は、キャパシタを280セル直列接続した場合である。   As an example, if the capacitance of the capacitor is designed under the condition that the capacitance after 15 years is -24% and the internal resistance is + 24% in the specification of Table 2, the result shown in Table 3 is obtained. In the design example, 280 cells are connected in series.

Figure 2009065751
Figure 2009065751

Figure 2009065751
Figure 2009065751

一般的に、電気二重層キャパシタの1セル当たりの印加電圧を0.3V下げると、キャパシタの劣化速度は1/2倍になると言われている。
本発明でのキャパシタの設計結果によると、表3で示すように15年後において2.5(s)瞬低補償するように設計されたキャパシタで、初期は4.3(s)の補償が可能であり、キャパシタ電圧を定格V1の640Vにまで上げなくとも、2.5(s)の瞬低補償は可能となる。本発明は(7)式をVmaxについて解き、その式を用いて瞬低待機中のキャパシタ電圧を決定する。放電時間tmaxには瞬低補償時間を代入する。
Generally, it is said that when the applied voltage per cell of an electric double layer capacitor is lowered by 0.3 V, the deterioration rate of the capacitor is halved.
According to the design result of the capacitor according to the present invention, as shown in Table 3, the capacitor was designed to compensate for an instantaneous drop of 2.5 (s) after 15 years, and initially compensated for 4.3 (s). Even if the capacitor voltage is not increased to 640 V, which is rated V1, 2.5 (s) sag compensation can be achieved. In the present invention, the equation (7) is solved for Vmax, and the capacitor voltage during the low voltage standby is determined using the equation. The voltage drop compensation time is substituted for the discharge time tmax.

図1は、本発明の実施例に基づくキャパシタ電圧設定値の推移図である。この実施例は、常時交直変換装置を動作させる浮動充電方式に適用するもので、一定期間後のキャパシタ電圧設定値を予め計算し、当該期間経過後毎に計算されたキャパシタ電圧設定値を読み込むものである。瞬低待機中のキャパシタ電圧を決定するためには、ユニット静電容量Cとユニット内部抵抗Rは(8)式により求める。   FIG. 1 is a transition diagram of capacitor voltage setting values according to an embodiment of the present invention. This embodiment is applied to the floating charging method in which the AC / DC converter is operated at all times. The capacitor voltage setting value after a certain period is calculated in advance, and the capacitor voltage setting value calculated after the lapse of the period is read. It is. In order to determine the capacitor voltage during the low voltage standby, the unit capacitance C and the unit internal resistance R are obtained by the equation (8).

Figure 2009065751
Figure 2009065751

キャパシタの経年変化は、√(時間)に比例して変化する。式(8)は、前述した例のように、キャパシタの経年変化により15年後の静電容量が−24%、内部抵抗が+24%(周囲温度25℃時)にその特性が変化するものとしてCとRを求めたものである。(8)式からCとRを求め、また、放電時間tmaxに瞬低補償時間を用いる。このC,R及びtmaxを式(7)に代入することで、瞬低待機中のキャパシタ電圧Vmaxを決定する。CとRの値は、例えば1ヶ月後ごとの値を求め、その値を用いて図1で示すように瞬低待機中のキャパシタ電圧を変更する。ここで、V1は装置の定格電圧、V2は充電開始設定電圧値である。 The aging of the capacitor changes in proportion to √ (time). Equation (8) assumes that the characteristics change to -24% after 15 years and the internal resistance to + 24% (at an ambient temperature of 25 ° C.) due to aging of the capacitor, as in the example described above. C and R are obtained. C and R are obtained from the equation (8), and the instantaneous drop compensation time is used as the discharge time tmax. By substituting C, R, and tmax into the equation (7), the capacitor voltage Vmax during standby for a sag is determined. As the values of C and R, for example, values obtained every one month are obtained, and the capacitor voltage during standby for a sag is changed as shown in FIG. Here, V1 is a rated voltage of the apparatus, and V2 is a charging start setting voltage value.

この実施例によれば、キャパシタの経年変化の予測式で求めたCとRから一定期間後のキャパシタ電圧設定値を求め、当該期間経過後毎に瞬低待機中のキャパシタ電圧を変更するようにしたものであるから、簡単に実施が可能となるものである。   According to this embodiment, the capacitor voltage setting value after a certain period is obtained from C and R obtained by the prediction formula of the secular change of the capacitor, and the capacitor voltage in the low voltage standby state is changed every time the period elapses. Therefore, it can be easily implemented.

電気二重層キャパシタの劣化特性は、周辺温度や瞬低補償動作回数により変化する。よって、この実施例2は、実施例1の演算値を補正するものである。
瞬低補償装置は、瞬低補償動作を行った後は、次の瞬低補償動作に備えるために充電を実行する。この実施例は、そのときの充電電流とキャパシタ電圧を利用して瞬低補償動作を行う度に静電容量・内部抵抗を補正し、キャパシタの劣化特性を補正するものである。
The deterioration characteristics of the electric double layer capacitor vary depending on the ambient temperature and the number of sag compensation operations. Therefore, the second embodiment corrects the calculation value of the first embodiment.
After performing the sag compensation operation, the sag compensation device performs charging to prepare for the next sag compensation operation. In this embodiment, the capacitance / internal resistance is corrected each time the voltage sag compensation operation is performed using the charging current and capacitor voltage at that time, and the deterioration characteristics of the capacitor are corrected.

キャパシタを定電力充電している状態から充電電流をゼロにすると、キャパシタの内部抵抗の影響で直流電圧が低下する。その低下分ΔVから内部抵抗Rを
R=ΔV/Iで求めることができる。(ただし、Iは定電圧充電直前のキャパシタ充電電流である。)
また、Cはキャパシタ電圧の充電カーブから求めることができる。
If the charging current is reduced to zero from the state where the capacitor is charged at a constant power, the DC voltage decreases due to the internal resistance of the capacitor. From the decrease ΔV, the internal resistance R can be obtained by R = ΔV / I. (Where I is the capacitor charging current immediately before constant voltage charging.)
C can be obtained from the charging curve of the capacitor voltage.

Figure 2009065751
Figure 2009065751

求めたCとRを実施例1と同様にして(7)式に代入することで、瞬低待機中のキャパシタ電圧Vmaxを決定することができる。 By substituting the calculated C and R into the equation (7) in the same manner as in the first embodiment, it is possible to determine the capacitor voltage Vmax during the standby for instantaneous drop.

なお、瞬低補償動作は定期的に行われるとは限らない。長期間において瞬低補償動作を実行しなかった場合、実際値との誤差が大きくなることが懸念される。そのような場合、定期的にキャパシタの特性診断を実施し、キャパシタを定電力放電した後に、定電力充電を行うことにより、CとRを求めるようにしてもよい。   Note that the instantaneous drop compensation operation is not always performed periodically. If the instantaneous drop compensation operation is not executed for a long period of time, there is a concern that an error from the actual value becomes large. In such a case, C and R may be obtained by conducting a characteristic diagnosis of the capacitor periodically and performing constant power charging after discharging the capacitor with constant power.

この実施例によれば、瞬低補償動作後の回復充電時の直流電圧・充電電流と(9)式から、或いは、定期的なキャパシタの経年変化診断を行い、診断時の直流電圧・充電電流と(9)式から求めた静電容量と内部抵抗から設定電圧を求めたものであるから、実施例1よりも精度よく、キャパシタ電圧設定値を求めることができる。   According to this embodiment, the DC voltage / charging current at the time of recovery charging after the sag compensation operation and the equation (9) or periodically aging diagnosis of the capacitor is performed, and the DC voltage / charging current at the time of diagnosis is determined. Since the set voltage is obtained from the capacitance obtained from the equation (9) and the internal resistance, the capacitor voltage set value can be obtained more accurately than in the first embodiment.

実施例1及び2では、キャパシタの放電電力は一定(定格)として考えている。実際は、負荷電力は定格よりも小さいことが多い。この実施例3は、負荷電力を監視して、キャパシタの放電電力Pを変更するようにしたものである。
キャパシタは有効電力を出力するので、放電電力Pを求めるためには負荷の有効電力を求めればよい。有効電力は、d−q変換した系統電圧・負荷電流から
(10)、(11)、及び(12)式によって求めることができる。
In Examples 1 and 2, the discharge power of the capacitor is considered to be constant (rated). In practice, the load power is often smaller than the rating. In the third embodiment, the load power is monitored and the discharge power P of the capacitor is changed.
Since the capacitor outputs active power, in order to obtain the discharge power P, the effective power of the load may be obtained. The effective power can be obtained from the system voltage / load current obtained by the dq conversion by the equations (10), (11), and (12).

Figure 2009065751
Figure 2009065751

Figure 2009065751
Figure 2009065751

Figure 2009065751
Figure 2009065751

(7)式のPに上記式を利用することで、キャパシタ電圧を求めることができる。 By using the above equation for P in equation (7), the capacitor voltage can be obtained.

この実施例によれば、負荷の有効電力を求め、負荷の有効電力に合わせてキャパシタの設定電圧を変更するものであるから、負荷が軽いときにはキャパシタ電圧を下げることが可能となり、上記各実施例と比較して、よりキャパシタの劣化速度を抑えることができる。   According to this embodiment, since the effective power of the load is obtained and the set voltage of the capacitor is changed in accordance with the effective power of the load, the capacitor voltage can be lowered when the load is light. As compared with, the deterioration rate of the capacitor can be further suppressed.

上記各実施例は、交直変換装置を常時動作させる浮動充電方式に適用するものであるが、この実施例4は、平常時、交直変換装置を停止する方式に適用するものである。図2はこの実施例に基づくキャパシタ電圧設定の状態図で、V1はキャパシタの定格電圧、V2は充電開始設定電圧値、V3は補正された充電開始設定電圧値であって、このV3は上記各実施例に基づいて算出された劣化特性補正されたキャパシタ電圧設定値である。   Each of the above embodiments is applied to a floating charging system in which the AC / DC converter is always operated. However, the fourth embodiment is applied to a system in which the AC / DC converter is normally stopped. FIG. 2 is a state diagram of capacitor voltage setting based on this embodiment, where V1 is a rated voltage of the capacitor, V2 is a charge start set voltage value, V3 is a corrected charge start set voltage value, It is a capacitor voltage setting value corrected for deterioration characteristics calculated based on the embodiment.

キャパシタ1の充電開始から時刻t1で定格電圧V1になると、交直変換装置4による充電動作を停止する。キャパシタ1の電圧は時刻t1から徐々に低下して時刻t2で充電開始設定電圧値V2にまで低下すると、交直変換装置4は充電モードで動作して充電を開始し、時刻t3で定格電圧になると再度交直変換装置4は停止する。
一方、交直変換装置4の制御回路は、一定期間後(図2では時刻t2後)のキャパシタの静電容量Cと内部抵抗Rを求め、求めたCRを(7)式に代入することでキャパシタ電圧を決定する。この算出電圧がV3として設定され、時刻t4の充電開始設定電圧値となる。以下同様にして交直変換装置4の停止、運転が繰返えされる。
When the rated voltage V1 is reached at time t1 from the start of charging of the capacitor 1, the charging operation by the AC / DC converter 4 is stopped. When the voltage of the capacitor 1 gradually decreases from the time t1 and decreases to the charging start set voltage value V2 at the time t2, the AC / DC converter 4 operates in the charging mode and starts charging, and reaches the rated voltage at the time t3. The AC / DC converter 4 stops again.
On the other hand, the control circuit of the AC / DC converter 4 obtains the capacitance C and the internal resistance R of the capacitor after a certain period (after time t2 in FIG. 2), and substitutes the obtained CR into the equation (7). Determine the voltage. This calculated voltage is set as V3, and becomes the charge start setting voltage value at time t4. Thereafter, the AC / DC converter 4 is repeatedly stopped and operated in the same manner.

この実施例によれば、上記各実施例と同様にキャパシタの劣化速度を抑えることが可能となると共に、交直変換装置の停止期間が長くなるため待機時の装置損失を小さくすることが可能となる。   According to this embodiment, it is possible to suppress the deterioration rate of the capacitor as in each of the above embodiments, and it is possible to reduce the apparatus loss during standby because the AC / DC converter stop period becomes longer. .

本発明の実施形態を示すキャパシタ電圧設定値の推移図。The transition figure of the capacitor voltage setting value which shows the embodiment of the present invention. 本発明の他の実施形態を示すキャパシタ電圧設定値の推移図。The transition figure of the capacitor voltage setting value which shows other embodiment of this invention. 瞬時低下電圧補償装置の構成図。The block diagram of an instantaneous voltage drop compensation apparatus. 交直変換装置を停止させる充電方式の説明図。Explanatory drawing of the charge system which stops an AC / DC converter. 交直変換装置の浮動充電方式の説明図。Explanatory drawing of the floating charge system of an AC / DC converter. キャパシタの構成概念図。FIG. 放電によるキャパシタ電圧・電流の時間変化図。The time change figure of the capacitor voltage and electric current by discharge.

符号の説明Explanation of symbols

1… 電気二重層キャパシタ
2… 負荷
3… 高速スイッチ
4… 交直変換装置
5… 系統電源
10… 電気二重層キャパシタユニット
DESCRIPTION OF SYMBOLS 1 ... Electric double layer capacitor 2 ... Load 3 ... High speed switch 4 ... AC / DC converter 5 ... System power supply 10 ... Electric double layer capacitor unit

Claims (6)

電力系統に交直変換装置を接続し、電力系統の電圧低下時に電気二重層キャパシタを電源とした交直変換装置を介して負荷に電力を供給する瞬時低下電圧補償装置であって、電気二重層キャパシタの瞬低待機中の直流電圧、再充電開始電圧を設定するものにおいて、
前記電気二重層キャパシタの経年変化から所定期間後における静電容量と内部抵抗を求め、この静電容量と内部抵抗を放電時間算出式に代入して瞬低待機中のキャパシタ電圧とすることを特徴とした瞬時低下電圧補償装置の直流待機電圧補償方法。
An instantaneous voltage drop compensator that connects an AC / DC converter to an electric power system and supplies power to a load via the AC / DC converter using the electric double layer capacitor as a power source when the voltage of the electric power system drops. For setting the DC voltage and recharge start voltage during standby for low voltage,
Capacitance and internal resistance after a predetermined period are obtained from the secular change of the electric double layer capacitor, and the electrostatic capacity and internal resistance are substituted into a discharge time calculation formula to obtain a capacitor voltage during standby for a short time. DC standby voltage compensation method for instantaneous voltage drop compensator.
前記電気二重層キャパシタの静電容量と内部抵抗は、所定時間毎に求め、求めた静電容量,内部抵抗を用いて所定時間毎に瞬低待機中のキャパシタ電圧を変更することを特徴とした請求項1記載の瞬時低下電圧補償装置の直流待機電圧補償方法。 Capacitance and internal resistance of the electric double layer capacitor are determined every predetermined time, and the capacitor voltage during the instantaneous drop standby is changed every predetermined time using the obtained capacitance and internal resistance. A method of compensating for a DC standby voltage of an instantaneous voltage drop compensator according to claim 1. 前記電気二重層キャパシタの静電容量と内部抵抗は、瞬時低下電圧補償装置の瞬低動作補償後の充電電流とキャパシタ電圧を検出し、内部抵抗Rはキャパシタを定電力充電状態から電流ゼロとしたときの直流電圧低下分ΔVから、R=ΔV/I(ただし、Iは定電力充電前のキャパシタ充電電流)で求め、静電容量はキャパシタ電圧の充電カーブから求めることを特徴とした請求項1又は2記載の瞬時低下電圧補償装置の直流待機電圧補償方法。 The electric capacitance and internal resistance of the electric double layer capacitor detect the charging current and capacitor voltage after compensation for the instantaneous drop operation of the instantaneous voltage drop compensator, and the internal resistance R sets the capacitor to zero current from the constant power charging state. 2. The DC voltage drop at the time ΔV is obtained by R = ΔV / I (where I is a capacitor charging current before constant power charging), and the capacitance is obtained from a charging curve of the capacitor voltage. Or the DC standby voltage compensation method for the instantaneous voltage drop compensator according to 2 above. 前記電気二重層キャパシタの静電容量と内部抵抗は、所定時間毎にキャパシタの特性診断を実行し、キャパシタを定電力放電した後に定電力充電行って求めることを特徴とした請求項3記載の瞬時低下電圧補償装置の直流待機電圧補償方法。 The instantaneous capacitance according to claim 3, wherein the capacitance and the internal resistance of the electric double layer capacitor are obtained by performing a characteristic diagnosis of the capacitor every predetermined time and performing a constant power charge after discharging the capacitor at a constant power. DC standby voltage compensation method for drop voltage compensator. 電力系統に交直変換装置を接続し、電力系統の電圧低下時に電気二重層キャパシタを電源とした交直変換装置を介して負荷に電力を供給する瞬時低下電圧補償装置であって、電気二重層キャパシタの瞬低待機中の直流電圧、再充電開始電圧を設定するものにおいて、
検出された電力系統の電圧と負荷電流をd−q変換して有効電力を求め、算出された有効電力を放電時間算出式に代入して瞬低待機中のキャパシタ電圧とすることを特徴とした瞬時低下電圧補償装置の直流待機電圧補償方法。
An instantaneous voltage drop compensator that connects an AC / DC converter to an electric power system and supplies power to a load via the AC / DC converter using the electric double layer capacitor as a power source when the voltage of the electric power system drops. For setting the DC voltage and recharge start voltage during standby for low voltage,
The detected power system voltage and load current are dq converted to obtain active power, and the calculated active power is substituted into a discharge time calculation formula to obtain a capacitor voltage during a sag standby. DC standby voltage compensation method for instantaneous voltage drop compensator.
前記請求項1乃至5の何れかによって算出された瞬低待機中のキャパシタ電圧は、平常時に交直変換装置を停止させる制御方式に適用したことを特徴とした請求項1乃至5の何れかの瞬時低下電圧補償装置の直流待機電圧補償方法。
6. The instantaneously low standby capacitor voltage calculated according to any one of claims 1 to 5 is applied to a control method for stopping the AC / DC converter in normal times. DC standby voltage compensation method for drop voltage compensator.
JP2007229902A 2007-09-05 2007-09-05 DC standby voltage compensation method for instantaneous voltage drop compensator Active JP5050742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007229902A JP5050742B2 (en) 2007-09-05 2007-09-05 DC standby voltage compensation method for instantaneous voltage drop compensator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007229902A JP5050742B2 (en) 2007-09-05 2007-09-05 DC standby voltage compensation method for instantaneous voltage drop compensator

Publications (2)

Publication Number Publication Date
JP2009065751A true JP2009065751A (en) 2009-03-26
JP5050742B2 JP5050742B2 (en) 2012-10-17

Family

ID=40559825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007229902A Active JP5050742B2 (en) 2007-09-05 2007-09-05 DC standby voltage compensation method for instantaneous voltage drop compensator

Country Status (1)

Country Link
JP (1) JP5050742B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012034534A (en) * 2010-08-02 2012-02-16 Mitsubishi Electric Corp Emergency power supply device
US9110649B2 (en) 2010-12-24 2015-08-18 Fujitsu Limited Storage apparatus, control apparatus and control method
CN109171695A (en) * 2018-07-25 2019-01-11 上海皇和信息科技有限公司 A kind of heart rate bracelet control system and control method
WO2019053883A1 (en) * 2017-09-15 2019-03-21 東芝三菱電機産業システム株式会社 Power supply device
CN110389252A (en) * 2019-08-16 2019-10-29 广西电网有限责任公司电力科学研究院 A kind of α β detection method for grid voltage sags
CN110389251A (en) * 2019-08-16 2019-10-29 广西电网有限责任公司电力科学研究院 A kind of instantaneous voltage dq decomposition method for grid voltage sags detection

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006074903A (en) * 2004-09-02 2006-03-16 Meidensha Corp Instantaneous voltage drop compensator and charging method for electric double layer capacitor
JP2009050094A (en) * 2007-08-21 2009-03-05 Meidensha Corp Output compensator of electric double layer capacitor
JP2009289271A (en) * 2009-07-14 2009-12-10 Panasonic Electric Works Co Ltd Fire alarm system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006074903A (en) * 2004-09-02 2006-03-16 Meidensha Corp Instantaneous voltage drop compensator and charging method for electric double layer capacitor
JP2009050094A (en) * 2007-08-21 2009-03-05 Meidensha Corp Output compensator of electric double layer capacitor
JP2009289271A (en) * 2009-07-14 2009-12-10 Panasonic Electric Works Co Ltd Fire alarm system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012034534A (en) * 2010-08-02 2012-02-16 Mitsubishi Electric Corp Emergency power supply device
US9110649B2 (en) 2010-12-24 2015-08-18 Fujitsu Limited Storage apparatus, control apparatus and control method
WO2019053883A1 (en) * 2017-09-15 2019-03-21 東芝三菱電機産業システム株式会社 Power supply device
CN109171695A (en) * 2018-07-25 2019-01-11 上海皇和信息科技有限公司 A kind of heart rate bracelet control system and control method
CN109171695B (en) * 2018-07-25 2021-09-07 上海皇和信息科技有限公司 Heart rate bracelet control system and control method
CN110389252A (en) * 2019-08-16 2019-10-29 广西电网有限责任公司电力科学研究院 A kind of α β detection method for grid voltage sags
CN110389251A (en) * 2019-08-16 2019-10-29 广西电网有限责任公司电力科学研究院 A kind of instantaneous voltage dq decomposition method for grid voltage sags detection
CN110389252B (en) * 2019-08-16 2021-07-16 广西电网有限责任公司电力科学研究院 Alpha beta detection method for power grid voltage drop
CN110389251B (en) * 2019-08-16 2021-07-16 广西电网有限责任公司电力科学研究院 Instantaneous voltage dq decomposition method for power grid voltage drop detection

Also Published As

Publication number Publication date
JP5050742B2 (en) 2012-10-17

Similar Documents

Publication Publication Date Title
US20120176095A1 (en) Electric power management system
US20180083527A1 (en) Power conversion device and method for controlling power conversion device
JP5050742B2 (en) DC standby voltage compensation method for instantaneous voltage drop compensator
JP5334566B2 (en) Voltage correction control method for power storage module
JP2013042627A (en) Dc power supply control device and dc power supply control method
JP2016010288A (en) Uninterruptible power supply
JP2013149471A (en) Secondary battery control device
JP2011188706A (en) Uninterruptible power supply apparatus
JP2008029064A (en) Apparatus and method of charging electric double-layer capacitor
JP2009207328A (en) Power device
JP6965770B2 (en) Lead-acid battery control device, lead-acid battery device, uninterruptible power supply, power supply system, and charge control method
JP5288954B2 (en) Uninterruptible power system
JP2015042067A (en) Device for charge/discharge control of electrical storage battery having bidirectional isolated dc-dc converter
JP2008061469A (en) Energy storage device using electric double-layer capacitor
JP4583112B2 (en) Voltage sag compensator and electric double layer capacitor charging method
JP2007282461A (en) Capacitor power accumulating device and control method therefor
JP4758788B2 (en) Power supply
JP2011229279A (en) Charging control device
JP2009232669A (en) Battery backup unit
JP2010178500A (en) Discharging device, method of discharging, and dc power supply system
WO2019102565A1 (en) Direct current power supply system
JP2016131458A (en) Power supply system with balance function for float charging
JP6344176B2 (en) Power supply equipment and operation method thereof
JP6056010B2 (en) Power supply
JP2019037089A (en) Power fluctuation mitigation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120611

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120709

R150 Certificate of patent or registration of utility model

Ref document number: 5050742

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3