WO2019053883A1 - Power supply device - Google Patents

Power supply device Download PDF

Info

Publication number
WO2019053883A1
WO2019053883A1 PCT/JP2017/033485 JP2017033485W WO2019053883A1 WO 2019053883 A1 WO2019053883 A1 WO 2019053883A1 JP 2017033485 W JP2017033485 W JP 2017033485W WO 2019053883 A1 WO2019053883 A1 WO 2019053883A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
power
power supply
load
voltage
Prior art date
Application number
PCT/JP2017/033485
Other languages
French (fr)
Japanese (ja)
Inventor
俊秀 中野
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to PCT/JP2017/033485 priority Critical patent/WO2019053883A1/en
Publication of WO2019053883A1 publication Critical patent/WO2019053883A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems

Definitions

  • the present invention relates to a power supply device, and in particular, DC power is stored in a capacitor when AC voltage of a commercial AC power supply is normal, and rated time based on DC power of a capacitor when AC voltage of a commercial AC power supply is not normal.
  • the present invention relates to a power supply that drives only a load.
  • one terminal is connected to a commercial AC power supply, and the other terminal is connected between a switch connected to a load and the other terminal of the switch and a capacitor.
  • An uninterruptible power supply comprising a power converter is disclosed.
  • the switch When the AC voltage of the commercial AC power supply is normal, the switch is turned on, AC power is supplied from the commercial AC power supply to the load through the switch, and the load is driven.
  • the power converter converts AC power from a commercial AC power supply into DC power and stores the DC power. The voltage across the terminals of the capacitor is maintained at a constant value.
  • the switch When the AC voltage of the commercial AC power supply is not normal, the switch is turned off, and the power converter converts DC power of the capacitor into AC power and supplies it to the load. Therefore, even when the AC voltage of the commercial AC power supply is not normal, the operation of the load can be continued based on the DC power of the capacitor.
  • Such an uninterruptible power supply is required to be able to operate a load with a rated capacity (for example, 1000 kW) for a rated time (for example, 10 seconds) when a power failure occurs after a predetermined time from the start of use.
  • Ru is an expected life of the uninterruptible power supply (mainly a capacitor), and is set, for example, to 15 years.
  • the characteristics (capacitance value, internal resistance value, etc.) of a capacitor deteriorate depending on its use conditions (temperature, voltage between terminals, etc.) and its use time. For example, the capacitance value of the capacitor gradually decreases with use time.
  • the load of rated capacity for example, 1000 kW
  • time for example, 10 seconds
  • a capacitor with a capacitance value e.g., 1.5 C
  • the capacitance value C required for operation was used. For this reason, there existed a problem that a capacitor enlarged.
  • a main object of the present invention is to provide a power supply device capable of miniaturizing a capacitor.
  • a power supply device includes a power converter, a storage unit, a first detection unit, and an operation unit.
  • the power converter converts AC power from the commercial AC power supply into DC power and stores the DC power
  • the AC voltage of the commercial AC power supply is not normal.
  • the load is driven for a predetermined time based on the DC power of the capacitor.
  • the storage unit stores deterioration information indicating the relationship between the characteristics of the capacitor, the use condition thereof, and the use time thereof.
  • the first detection unit detects a use condition and a use time of the capacitor.
  • the calculation unit obtains the characteristic of the capacitor at the present time based on the deterioration information and the detection result of the first detection unit.
  • the calculation unit further obtains a target value of the voltage between the terminals of the capacitor, which is necessary to drive the load for a predetermined time, based on the characteristics of the capacitor and the load capacitance at the present time.
  • the power converter charges the capacitor such that the terminal voltage of the capacitor becomes a target value.
  • the characteristics of the capacitor at the present time are obtained based on the deterioration information indicating the relationship between the characteristics of the capacitor, the usage conditions thereof, and the usage hours thereof and the usage conditions of the capacitors and the detection values of the usage hours.
  • a target value of the terminal voltage of the capacitor necessary to drive the load for a predetermined time is determined.
  • the power supply device charges the capacitor so that the voltage across the capacitor becomes the target value. Therefore, compared with the case where the voltage between the terminals of the capacitor is maintained at a constant value, the voltage between the terminals of the capacitor can be lowered, the deterioration of the capacitor can be suppressed, and the capacitor can be miniaturized.
  • FIG. 1 is a circuit block diagram showing a configuration of an uninterruptible power supply according to Embodiment 1 of the present invention. It is a block diagram which shows the principal part of the control apparatus shown in FIG. It is a figure which shows the equivalent circuit of the capacitor
  • FIG. 1 is a circuit block diagram showing a configuration of an uninterruptible power supply according to Embodiment 1 of the present invention.
  • the uninterruptible power supply includes an input terminal 1, an output terminal 2 and a direct current terminal 3.
  • Input terminal 1 receives AC power of a commercial frequency from commercial AC power supply 21.
  • the instantaneous value of the AC voltage VI appearing at the input terminal 1 is detected by the controller 9.
  • the output terminal 2 is connected to a load 22.
  • the instantaneous value of the AC voltage VO appearing at the output terminal 2 is detected by the controller 9.
  • the load 22 is driven by AC power of commercial frequency supplied from the uninterruptible power supply.
  • the uninterruptible power supply actually receives three-phase AC power from the commercial AC power supply 21 and supplies the three-phase AC power to the load 22, for simplification of the drawings and description, in FIG. Only relevant parts are shown.
  • the DC terminal 3 is connected to the capacitor 23.
  • the instantaneous value of the DC voltage VDC appearing at the DC terminal 3 is detected by the controller 9.
  • the capacitor 23 stores DC power.
  • the capacitor 23 for example, an electrolytic capacitor, an electric double layer capacitor, a film capacitor or the like is used.
  • the uninterruptible power supply further includes a switch 4, an AC line 5, a current detector 6, a temperature detector 7, an AC / DC converter 8, and a controller 9.
  • One terminal of the switch 4 is connected to the input terminal 1, and the other terminal is connected to the output terminal 2 via the AC line 5.
  • the switch 4 is controlled by the controller 9.
  • the switch 4 When the AC voltage VI from the commercial AC power supply 21 is normal (that is, when the commercial AC power supply 21 is healthy), the switch 4 is turned on. When the AC voltage VI from the commercial AC power supply 21 is not normal (for example, when a power failure of the commercial AC power supply 21 occurs), the switch 4 is turned off.
  • the current detector 6 detects an instantaneous value of the load current IL flowing through the AC line 5, and provides the control device 9 with a signal ILf indicating the detected value.
  • the temperature detector 7 detects the temperature Tc of the capacitor 23 directly or indirectly, and provides the controller 9 with a signal DT indicating the detected value.
  • the AC side terminal 8 a of the AC / DC converter 8 is connected to the other terminal of the switch 4, and the DC side terminal 8 b is connected to the DC terminal 3.
  • the AC / DC converter 8 is controlled by a controller 9.
  • the AC / DC converter 8 converts AC power supplied from the commercial AC power supply 21 via the switch 4 into DC power and outputs the DC power to the capacitor 23. store. At that time, the AC / DC converter 23 charges the capacitor 3 so that the voltage VDC across the terminals of the capacitor 23 becomes the target value VDCT.
  • the AC / DC converter 8 converts the DC power of the capacitor 3 into AC power of a commercial frequency and applies the same to the load 22. At that time, the AC / DC converter 8 maintains the AC output voltage VO at the rated value VOC.
  • the controller 9 controls the switch 4 and the AC / DC converter 8 based on the AC input voltage VI, the AC output voltage VO, the load current IL, the voltage VDC between the terminals of the capacitor 23, and the temperature Tc of the capacitor 23.
  • control device 9 determines whether AC voltage VI is within the normal range. For example, when a power failure of the commercial AC power supply 21 occurs, the level of the AC voltage VI falls below the lower limit value VIL. When the level of AC voltage VI is lower than lower limit value VIL, control device 9 determines that AC voltage VI is not normal.
  • the controller 9 When the AC input voltage VI is normal, the controller 9 turns on the switch 4 and controls the AC / DC converter 8 to charge the capacitor 23. At this time, the controller 9 controls the AC / DC converter 8 so that the voltage VDC across the terminals of the capacitor 23 becomes the target value V.sub.DCT.
  • the control device 9 turns off the switch 4 and controls the AC / DC converter 8 to convert DC power of the capacitor 23 into AC power of commercial frequency, AC power is supplied from the DC converter 8 to the load 22. At that time, the controller 9 controls the AC / DC converter 8 so that the AC output voltage VO becomes the rated voltage VOC.
  • control device 9 determines the characteristics (electrostatic capacitance C, internal resistance value R) of the capacitor 23 at the present time based on the use condition (temperature Tc, voltage between terminals VDC) of the capacitor 23 and the use time TU. Based on the AC output voltage VO and the load current IL, the load capacity P at the present time is determined. Then, the control device 9 obtains a target value VDCT of the voltage VDC between the terminals of the capacitor 23 based on the characteristics of the capacitor 23 at the current point in time, the load capacitance P, and the rated time Tr.
  • FIG. 2 is a block diagram showing a portion of control device 9 related to control of AC / DC converter 8.
  • the control device 9 includes a storage unit 11, an operation unit 12, a control unit 13, and a clock unit 14.
  • the storage unit 11 the relationship between the characteristics (capacitance value C, internal resistance value R) of the capacitor 23, the use conditions (temperature Tc, voltage between terminals VDC) of the capacitor 23, and the use time TU of the capacitor 23 Deterioration information to indicate is stored.
  • FIG. 3 is a diagram showing an equivalent circuit of the capacitor 23.
  • the capacitor 23 includes a resistive element 23a and a capacitive element 23b connected in series.
  • the resistive element 23 a has an internal resistance value R
  • the capacitive element 23 b has a capacitance value C.
  • FIGS. 4A and 4B show time-dependent changes of the characteristics of the capacitor 23.
  • FIG. 4A shows the change with time of the capacitance value C of the capacitor 23
  • FIG. 4B shows the change with time of the internal resistance value R of the capacitor 23.
  • the characteristics of the capacitor 23 gradually deteriorate with the passage of the operating time TU (h). That is, the capacitance value C gradually decreases with the elapse of the operating time TU of the capacitor 23, and the internal resistance value R of the capacitor 23 gradually increases with the elapse of the operating time TU (h) of the capacitor 23.
  • the degree of deterioration of the characteristics of the capacitor 23 changes in accordance with the temperature Tc of the capacitor 23 and the voltage VDC across the terminals. That is, as the temperature Tc of the capacitor 23 is higher, the capacitance value C decreases faster, and the internal resistance value R increases faster. Further, the higher the inter-terminal voltage VDC of the capacitor 23, the faster the capacitance value C decreases and the faster the internal resistance value R increases.
  • Deterioration information indicating the relationship between VDC) and the usage time TU of the capacitor 23 is stored in the form of a table or a formula. Such degradation information may be obtained from the manufacturer of the capacitor 23 or may be obtained by experiment.
  • the capacitance of the capacitor 23 at the present time is obtained based on the detected values and the deterioration information stored in the storage unit 11.
  • the value C and the internal resistance value R can be determined.
  • the operation unit 12 receives the temperature Tc of the capacitor 23 indicated by the output signal DT of the temperature detector 7 (FIG. 1), the voltage VDC across the terminals of the capacitor 23, and the output signal CT of the timing unit 14. Based on the shown use time TU of the capacitor 23 and the deterioration information stored in the storage unit 11, the capacitance value C and the internal resistance value R of the capacitor 23 at the present time are obtained.
  • the operation unit 12 obtains the load capacitance P based on the AC output voltage VO and the load current IL indicated by the output signal ILf of the current detector 6. Further, operation unit 12 determines target value VDCT of voltage VDC across terminals of capacitor 23 based on load capacitance P, rated time Tr, and electrostatic capacitance value C and internal resistance value R of capacitor 23 at the present time. .
  • FIG. 5 is a diagram showing an equivalent circuit of the uninterruptible power supply when the power failure of the commercial AC power supply 21 occurs.
  • the switch 25 and the DC load 26 are connected in series between the terminals of the capacitor 23.
  • the switch 25 and the DC load 26 correspond to the AC / DC converter 8 and the load 22.
  • Capacitor 23 includes a resistive element 23a and a capacitive element 23b connected in series.
  • the DC load 26 consumes a constant power P.
  • the switch 25 When a power failure of the commercial AC power supply 21 occurs, the switch 25 is turned on, and a direct current i (t) flows from the capacitor 23 to the direct current load 26 via the switch 25.
  • This operation corresponds to an operation in which the AC / DC converter 8 converts DC power of the capacitor 23 into AC power and supplies the AC power to the load 22 when a power failure of the commercial AC power supply 21 occurs.
  • the switch 25 When a power failure of the commercial AC power supply 21 occurs at a certain time t1, the switch 25 is turned on. In other words, the switch 4 (FIG. 1) is turned off, and the DC power of the capacitor 23 is converted into AC power by the AC / DC converter 8 and supplied to the load 22.
  • a direct current i (t) flows from the capacitive element 23 b to the direct current load 26 through the resistor 23 a and the switch 25, and a constant power P is consumed in the direct current load 26.
  • the direct current i (t1) at time t1 is i1
  • a voltage drop (R ⁇ i1) occurs in the resistive element 23a
  • the voltage VDC (t1) between terminals of the capacitor 23 becomes V1-R ⁇ i1.
  • the switch 25 is turned off.
  • the direct current i (t) becomes zero and the power P (t) also becomes zero.
  • the direct current i (t) becomes 0, the voltage drop across the resistive element 23a becomes 0, and the voltage VDC across the terminals of the capacitor 23 rises from V2 by the voltage drop (R ⁇ i2).
  • the voltage VDC V2 across the terminals of the capacitor 23 immediately before the time t2 is AC / DC conversion. It is necessary to be more than the lower limit value VDCL of the voltage VDC between the terminals of the capacitor 23 necessary to drive the converter 8 and the load 22.
  • the equation (3) which is an integral equation may be solved to obtain VDC (t), V1 may be obtained based on the VDC (t), and V1 may be set as the target value V DCT.
  • VDC (t) is obtained using a waveform L1 obtained by linearly approximating the waveform of the linear current i (t) shown in FIG. 6 (B), and V1 is determined based on the VDC (t). It is also possible to obtain V1 as the target value VDCT. In this case, the amount of charge Q discharged by the capacitor 23 when the DC power P is discharged from the time t1 for the rated time Tr can be approximated by the following equation (4).
  • control unit 13 determines whether the AC voltage VI is within the normal range based on the instantaneous value of the AC voltage VI appearing at the input terminal 1 (FIG. 1). For example, when a power failure of the commercial AC power supply 21 occurs, the level of the AC voltage VI falls below the lower limit value VIL. When the level of AC voltage VI is lower than lower limit value VIL, control unit 13 determines that AC voltage VI is not normal.
  • the control unit 13 controls the AC / DC converter 8 to charge the capacitor 23. At this time, the control unit 13 controls the AC / DC converter 8 so that the voltage VDC across the terminals of the capacitor 23 becomes the target value V.sub.DCT. Further, the control unit 13 supplies the clock signal CLK to the clocking unit 14 during a period in which the charge is stored in the capacitor 23.
  • the control unit 13 controls the AC / DC converter 8 to convert DC power of the capacitor 23 into AC power of commercial frequency, and the AC / DC converter 8 converts the AC power into a load 22. Supply AC power. At this time, the control unit 13 controls the AC / DC converter 8 such that the AC output voltage VO becomes equal to the rated voltage VOC.
  • the clocking unit 14 obtains the use time TU of the capacitor 23 based on the clock signal CLK from the control unit 13, and provides the signal CT indicating the use time TU to the calculation unit 12.
  • AC power is supplied from the commercial AC power supply 21 to the AC / DC converter 8 through the switch 4.
  • the AC / DC converter 8 converts AC power from the commercial AC power supply 21 into DC power and stores the DC power in the capacitor 23.
  • the temperature detector 7 detects the temperature Tc of the capacitor 23, and the timer unit 14 detects the operating time TU of the capacitor 23. Based on the temperature Tc of the capacitor 23, the voltage VDC between the terminals of the capacitor 23, the usage time TU of the capacitor 23, and the deterioration information stored in the storage unit 11, the control device 9 The capacitance value C and the internal resistance value R are determined.
  • control device 9 determines load capacitance P based on AC output voltage VO and load current IL, and the voltage VDC across terminals of capacitor 23 necessary for driving load 22 of the load capacitance P for the rated time Tr That is, the target value VDCT) is determined.
  • the AC / DC converter 8 charges the capacitor 23 such that the terminal voltage VDC of the capacitor 23 becomes the target value V DCT.
  • the switch 4 When the commercial AC power supply 21 returns to normal during the time from the occurrence of the power failure until the rated time Tr elapses, the switch 4 is turned on, and AC power is supplied from the commercial AC power supply 21 to the load 22 via the switch 4 Be done. Further, the capacitor 23 is charged by the AC / DC converter 8 so that the terminal voltage VDC of the capacitor 23 becomes the target value VTCT.
  • the characteristic of the capacitor 23 at the present time is obtained based on the deterioration information of the capacitor 23 stored in the storage unit 11, the use condition of the capacitor 23, and the use time TU. Then, based on the determined characteristics of the capacitor 23 and the load capacitance P, a target value V DCT required to drive the load 22 for the rated time Tr is determined, and the inter-terminal voltage VDC of the capacitor 23 becomes the target value V DCT To charge the capacitor 23. Therefore, as compared with the case where the voltage VDC across the terminals of the capacitor 23 is maintained at a constant value, the voltage VDC across the terminals of the capacitor 23 can be lowered, and deterioration of the capacitor 23 can be suppressed. Can be
  • Second Embodiment 8 is a circuit block diagram showing a configuration of an uninterruptible power supply according to a second embodiment of the present invention.
  • the uninterruptible power supply includes an input terminal 31, an output terminal 32, and a direct current terminal 33.
  • Input terminal 31 receives AC power of a commercial frequency from commercial AC power supply 21.
  • the instantaneous value of the AC voltage VI appearing at the input terminal 31 is detected by the controller 37.
  • the uninterruptible power supply receives three-phase AC power from the commercial AC power supply 21 in practice, only a portion related to one phase is shown in FIG. 7 for the sake of simplification of the drawings and the description.
  • the output terminal 32 is connected to the DC load 40.
  • the instantaneous value of the DC voltage VO appearing at the output terminal 32 is detected by the controller 37.
  • the DC load 40 is driven by DC power supplied from the uninterruptible power supply.
  • the direct current terminal 33 is connected to the capacitor 23.
  • the instantaneous value of DC voltage VDC appearing at DC terminal 33 is detected by controller 37.
  • the capacitor 23 stores DC power.
  • an electrolytic capacitor, an electric double layer capacitor, a film capacitor or the like is used as the capacitor 23.
  • the uninterruptible power supply further includes an AC / DC converter 34, a DC line 35, a current detector 6, a temperature detector 7, a DC / DC converter 36, and a controller 37.
  • the AC side terminal 34 a of the AC / DC converter 34 is connected to the input terminal 31, and the DC side terminal 34 b is connected to the output terminal 32 via the DC line 35.
  • the AC / DC converter 34 is controlled by the controller 37.
  • the AC / DC converter 34 converts the AC power from the commercial AC power supply 21 into DC power. Convert to load 40.
  • the AC voltage VI from the commercial AC power supply 21 is not normal (for example, when a power failure of the commercial AC power supply 21 occurs)
  • the operation of the AC / DC converter 34 is stopped.
  • the current detector 6 detects an instantaneous value of the load current IL flowing through the DC line 35, and provides the controller 9 with a signal ILf indicating the detected value.
  • the temperature detector 7 detects the temperature Tc of the capacitor 23 directly or indirectly, and provides the controller 37 with a signal DT indicating the detected value.
  • One terminal 36 a of the DC / DC converter 36 is connected to the DC side terminal 34 b of the AC / DC converter 34, and the other terminal 36 b is connected to the DC terminal 33.
  • the DC / DC converter 36 is controlled by the controller 37.
  • the DC / DC converter 36 stores DC power supplied from the commercial AC power supply 21 via the AC / DC converter 34 in the capacitor 23. At this time, the DC / DC converter 36 charges the capacitor 3 so that the voltage VDC across the terminals of the capacitor 23 becomes the target value VDCT.
  • the DC / DC converter 36 applies DC power of the capacitor 3 to the DC load 40. At this time, the DC / DC converter 36 maintains the DC output voltage VO at the rated value VOC.
  • Controller 37 controls AC / DC converter 34 and DC / DC converter 36 based on AC input voltage VI, DC output voltage VO, load current IL, terminal voltage VDC of capacitor 23, and temperature Tc of capacitor 23. Control.
  • control device 37 determines whether AC voltage VI is within the normal range. For example, when a power failure of the commercial AC power supply 21 occurs, the level of the AC voltage VI falls below the lower limit value VIL. When the level of AC voltage VI is lower than lower limit value VIL, control device 37 determines that AC voltage VI is not normal.
  • control device 37 controls the AC / DC converter 34 to convert AC power from the commercial AC power supply 21 into DC power to be supplied to the DC load 40,
  • the DC / DC converter 36 is controlled to store DC power from the AC / DC converter 34 in the capacitor 23.
  • control device 37 controls the AC / DC converter 8 so that the DC output voltage VO becomes the rated value VOT, and the DC / DC converter so that the voltage VDC between the terminals of the capacitor 23 becomes the target value VDCT.
  • the controller 37 stops the operation of the AC / DC converter 34 and controls the DC / DC converter 36 to supply DC power of the capacitor 23 to the DC load 40. Let At that time, the controller 37 controls the DC / DC converter 36 such that the DC output voltage VO becomes the rated value VOT.
  • control device 37 determines the characteristics (electrostatic capacitance value C, internal resistance value R) of the capacitor 23 at the present time based on the use condition (temperature Tc, voltage between terminals VDC) of the capacitor 23 and the use time TU. Based on the DC output voltage VO and the load current IL, the load capacity P at the present time is determined. Then, the control device 37 obtains a target value VDCT of the voltage VDC between the terminals of the capacitor 23 based on the characteristics of the capacitor 23 at the current point in time, the load capacitance P, and the rated time Tr.
  • FIG. 9 is a block diagram showing a portion of control device 37 related to control of DC / DC converter 36.
  • the control device 37 includes a storage unit 11, an operation unit 41, a control unit 42, and a clock unit 14.
  • the storage unit 11 has the characteristics (capacitance value C, internal resistance value R) of the capacitor 23, use conditions (temperature Tc, voltage between terminals VDC) of the capacitor 23, and the capacitor Deterioration information indicating the relationship with the usage time TU of 23 is stored.
  • the equivalent circuit of the capacitor 23 is as described in FIG.
  • the change with time of the characteristics of the capacitor 23 is as described in FIGS. 4 (A) and 4 (B).
  • the calculation unit 41 uses the temperature Tc of the capacitor 23 indicated by the output signal DT of the temperature detector 7 (FIG. 7), the voltage VDC between the terminals of the capacitor 23, and the use of the capacitor 23 indicated by the output signal CT of the timing unit 14 Based on the time TU and the deterioration information stored in the storage unit 11, the capacitance value C and the internal resistance value R of the capacitor 23 at the present time are obtained.
  • the arithmetic unit 41 obtains the load capacitance P based on the DC output voltage VO and the load current IL indicated by the output signal ILf of the current detector 6. Further, the calculation unit 41 obtains a target value V DCT of the inter-terminal voltage VDC of the capacitor 23 necessary to drive the DC load 40 (FIG. 8) of the load capacity P for the rated time Tr.
  • the method of obtaining the target value V.sub.DCT is as described in FIG. 5 and FIGS. 6 (A), (B) and (C). However, the switch 25 and the DC load 26 in FIG. 5 correspond to the DC / DC converter 36 and the DC load 40.
  • Control unit 42 determines whether or not AC voltage VI is within the normal range based on the instantaneous value of AC voltage VI appearing at input terminal 31 (FIG. 8). For example, when a power failure of the commercial AC power supply 21 occurs, the level of the AC voltage VI falls below the lower limit value VIL. When the level of AC voltage VI is lower than lower limit value VIL, control unit 42 determines that AC voltage VI is not normal.
  • the control unit 42 controls the DC / DC converter 36 to charge the capacitor 23. At this time, the control unit 42 controls the DC / DC converter 36 such that the voltage VDC across the terminals of the capacitor 23 becomes the target value V.sub.DCT.
  • the control unit 42 also supplies the clock signal CLK to the clock unit 14 during a period in which the charge is stored in the capacitor 23.
  • the control unit 42 controls the DC / DC converter 36 to convert DC power of the capacitor 23 into AC power of commercial frequency, and the DC load from the DC / DC converter 36 Supply 40 AC power. At this time, the control unit 42 controls the DC / DC converter 36 such that the DC output voltage VO becomes equal to the rated voltage VOC.
  • the clock unit 14 obtains the use time TU of the capacitor 23 based on the clock signal CLK from the control unit 42, and gives the signal CT indicating the use time TU to the calculation unit 41.
  • the temperature detector 7 detects the temperature Tc of the capacitor 23, and the timer unit 14 detects the operating time TU of the capacitor 23. Based on temperature Tc of capacitor 23, voltage VDC across terminals of capacitor 23, usage time TU of capacitor 23, and deterioration information stored in storage unit 11, controller 37 determines the static condition of capacitor 23 at the present time. The capacitance value C and the internal resistance value R are determined.
  • control device 37 determines load capacitance P based on AC output voltage VO and load current IL, and the voltage VDC across terminals of capacitor 23 necessary to drive DC load 40 of load capacitance P for the rated time Tr. (Ie, a target value VDCT) is determined.
  • the DC / DC converter 36 charges the capacitor 23 such that the terminal voltage VDC of the capacitor 23 becomes the target value VDCT.
  • the operation of the AC / DC converter 34 is resumed, and the AC power from the commercial AC power supply 21 is DC power. And is supplied to the DC load 40 and the DC / DC converter 36. Further, the capacitor 23 is charged by the DC / DC converter 36 such that the terminal voltage VDC of the capacitor 23 becomes the target value V DCT.
  • the same effect as the first embodiment can be obtained.
  • the capacity P of the DC load 40 is a fixed value and is known in advance, it is not necessary to obtain the capacity P based on the DC output voltage VO and the load current IL. Therefore, in this case, the current detector 6 is unnecessary.

Abstract

This uninterruptible power supply device: obtains the present capacitor characteristics on the basis of deterioration information indicating the relationship among the characteristics (C, R) of a capacitor (23), the use condition (Tc, VDC) thereof, and the use time (TU) thereof, and on the basis of the detected values of the use conditions and the use time of the capacitor; obtains a target value (VDCT) of the inter-terminal voltage (VDC) of the capacitor on the basis of the characteristics, a load capacity (P), and a rated time (Tr); and charges the capacitor such that the inter-terminal voltage of the capacitor becomes equal to the target value.

Description

電源装置Power supply
 この発明は電源装置に関し、特に、商用交流電源の交流電圧が正常である場合にはコンデンサに直流電力を蓄え、商用交流電源の交流電圧が正常でない場合にはコンデンサの直流電力に基づいて定格時間だけ負荷を駆動させる電源装置に関する。 The present invention relates to a power supply device, and in particular, DC power is stored in a capacitor when AC voltage of a commercial AC power supply is normal, and rated time based on DC power of a capacitor when AC voltage of a commercial AC power supply is not normal. The present invention relates to a power supply that drives only a load.
 たとえば特開2009-177901号公報(特許文献1)には、一方端子が商用交流電源に接続され、他方端子が負荷に接続されたスイッチと、スイッチの他方端子とコンデンサとの間に接続された電力変換器とを備えた無停電電源装置が開示されている。 For example, according to JP 2009-177901 A (Patent Document 1), one terminal is connected to a commercial AC power supply, and the other terminal is connected between a switch connected to a load and the other terminal of the switch and a capacitor. An uninterruptible power supply comprising a power converter is disclosed.
 商用交流電源の交流電圧が正常である場合には、スイッチがオンし、商用交流電源からスイッチを介して負荷に交流電力が供給され、負荷が駆動される。電力変換器は、商用交流電源からの交流電力を直流電力に変換してコンデンサに蓄える。コンデンサの端子間電圧は、一定値に維持される。 When the AC voltage of the commercial AC power supply is normal, the switch is turned on, AC power is supplied from the commercial AC power supply to the load through the switch, and the load is driven. The power converter converts AC power from a commercial AC power supply into DC power and stores the DC power. The voltage across the terminals of the capacitor is maintained at a constant value.
 商用交流電源の交流電圧が正常でない場合には、スイッチがオフされるとともに、電力変換器がコンデンサの直流電力を交流電力に変換して負荷に供給する。したがって、商用交流電源の交流電圧が正常でない場合でも、コンデンサの直流電力に基づいて負荷の運転を継続することができる。 When the AC voltage of the commercial AC power supply is not normal, the switch is turned off, and the power converter converts DC power of the capacitor into AC power and supplies it to the load. Therefore, even when the AC voltage of the commercial AC power supply is not normal, the operation of the load can be continued based on the DC power of the capacitor.
特開2009-177901号公報JP, 2009-177901, A
 このような無停電電源装置では、使用開始から所定時間の経過後に停電が発生した場合に定格容量(たとえば1000kW)の負荷を定格時間(たとえば10秒間)運転させることが可能であることが要求される。なお、所定時間は、無停電電源装置(主にコンデンサ)の期待寿命であって、たとえば15年に設定されている。 Such an uninterruptible power supply is required to be able to operate a load with a rated capacity (for example, 1000 kW) for a rated time (for example, 10 seconds) when a power failure occurs after a predetermined time from the start of use. Ru. The predetermined time is an expected life of the uninterruptible power supply (mainly a capacitor), and is set, for example, to 15 years.
 しかし、コンデンサの特性(静電容量値、内部抵抗値など)は、その使用条件(温度、端子間電圧など)およびその使用時間に応じて劣化する。たとえばコンデンサの静電容量値は、使用時間に応じて徐々に減少する。 However, the characteristics (capacitance value, internal resistance value, etc.) of a capacitor deteriorate depending on its use conditions (temperature, voltage between terminals, etc.) and its use time. For example, the capacitance value of the capacitor gradually decreases with use time.
 そこで、従来の無停電電源装置では、所定時間(たとえば15年)の使用に伴うコンデンサの静電容量値の減少分を考慮し、定格容量(たとえば1000kW)の負荷を定格時間(たとえば10秒間)運転させるために必要な静電容量値Cよりも十分に大きな静電容量値(たとえば1.5C)のコンデンサを使用していた。このため、コンデンサが大型化するという問題があった。 Therefore, in the conventional uninterruptible power supply, the load of rated capacity (for example, 1000 kW) is rated for time (for example, 10 seconds) in consideration of a decrease in capacitance value of the capacitor accompanying use for a predetermined time (for example, 15 years). A capacitor with a capacitance value (e.g., 1.5 C) sufficiently larger than the capacitance value C required for operation was used. For this reason, there existed a problem that a capacitor enlarged.
 それゆえに、この発明の主たる目的は、コンデンサの小型化を図ることが可能な電源装置を提供することである。 Therefore, a main object of the present invention is to provide a power supply device capable of miniaturizing a capacitor.
 この発明に係る電源装置は、電力変換器と、記憶部と、第1の検出部と、演算部とを備える。電力変換器は、商用交流電源の交流電圧が正常である第1の場合は、商用交流電源からの交流電力を直流電力に変換してコンデンサに蓄え、商用交流電源の交流電圧が正常でない第2の場合は、コンデンサの直流電力に基づいて予め定められた時間だけ負荷を駆動させるように構成される。記憶部は、コンデンサの特性、その使用条件、およびその使用時間の関係を示す劣化情報が格納される。第1の検出部は、コンデンサの使用条件および使用時間を検出する。演算部は、劣化情報と第1の検出部の検出結果とに基づいて、現時点におけるコンデンサの特性を求める。演算部は、さらに、現時点におけるコンデンサの特性と負荷容量とに基づいて、予め定められた時間だけ負荷を駆動させるために必要な、コンデンサの端子間電圧の目標値を求める。電力変換器は、第1の場合には、コンデンサの端子間電圧が目標値になるようにコンデンサを充電する。 A power supply device according to the present invention includes a power converter, a storage unit, a first detection unit, and an operation unit. In the first case where the AC voltage of the commercial AC power supply is normal, the power converter converts AC power from the commercial AC power supply into DC power and stores the DC power, and the AC voltage of the commercial AC power supply is not normal. In this case, the load is driven for a predetermined time based on the DC power of the capacitor. The storage unit stores deterioration information indicating the relationship between the characteristics of the capacitor, the use condition thereof, and the use time thereof. The first detection unit detects a use condition and a use time of the capacitor. The calculation unit obtains the characteristic of the capacitor at the present time based on the deterioration information and the detection result of the first detection unit. The calculation unit further obtains a target value of the voltage between the terminals of the capacitor, which is necessary to drive the load for a predetermined time, based on the characteristics of the capacitor and the load capacitance at the present time. In the first case, the power converter charges the capacitor such that the terminal voltage of the capacitor becomes a target value.
 この発明に係る電源装置では、コンデンサの特性、その使用条件、およびその使用時間の関係を示す劣化情報と、コンデンサの使用条件および使用時間の検出値とに基づいて現時点におけるコンデンサの特性を求め、その特性および負荷容量に基づいて、予め定められた時間だけ負荷を駆動させるために必要なコンデンサの端子間電圧の目標値を求める。電源装置は、第1の場合にはコンデンサの端子間電圧が目標値になるようにコンデンサを充電する。したがって、コンデンサの端子間電圧を一定値に維持する場合に比べ、コンデンサの端子間電圧を低くすることができ、コンデンサの劣化を抑制することができ、ひいてはコンデンサの小型化を図ることができる。 In the power supply device according to the present invention, the characteristics of the capacitor at the present time are obtained based on the deterioration information indicating the relationship between the characteristics of the capacitor, the usage conditions thereof, and the usage hours thereof and the usage conditions of the capacitors and the detection values of the usage hours. Based on the characteristics and the load capacitance, a target value of the terminal voltage of the capacitor necessary to drive the load for a predetermined time is determined. In the first case, the power supply device charges the capacitor so that the voltage across the capacitor becomes the target value. Therefore, compared with the case where the voltage between the terminals of the capacitor is maintained at a constant value, the voltage between the terminals of the capacitor can be lowered, the deterioration of the capacitor can be suppressed, and the capacitor can be miniaturized.
この発明の実施の形態1による無停電電源装置の構成を示す回路ブロック図である。FIG. 1 is a circuit block diagram showing a configuration of an uninterruptible power supply according to Embodiment 1 of the present invention. 図1に示した制御装置の要部を示すブロック図である。It is a block diagram which shows the principal part of the control apparatus shown in FIG. 図1に示したコンデンサの等価回路を示す図である。It is a figure which shows the equivalent circuit of the capacitor | condenser shown in FIG. 図3に示したコンデンサの特性の経時変化を示す図である。It is a figure which shows a time-dependent change of the characteristic of the capacitor | condenser shown in FIG. 停電発生時における無停電電源装置の等価回路を示す図である。It is a figure which shows the equivalent circuit of the uninterruptible power supply at the time of a power failure generation. 図5に示した無停電電源装置の動作を示すタイムチャートである。It is a time chart which shows operation | movement of the uninterruptible power supply shown in FIG. コンデンサの端子間電圧の目標値の求め方の一例を説明するための図である。It is a figure for demonstrating an example of how to obtain | require the target value of the voltage between terminals of a capacitor. この発明の実施の形態2による無停電電源装置の構成を示す回路ブロック図である。It is a circuit block diagram which shows the structure of the uninterruptible power supply by Embodiment 2 of this invention. 図8に示した制御装置の要部を示すブロック図である。It is a block diagram which shows the principal part of the control apparatus shown in FIG.
 [実施の形態1]
 図1は、この発明の実施の形態1による無停電電源装置の構成を示す回路ブロック図である。図1において、この無停電電源装置は、入力端子1、出力端子2、および直流端子3を備える。入力端子1は、商用交流電源21から商用周波数の交流電力を受ける。入力端子1に現れる交流電圧VIの瞬時値は、制御装置9によって検出される。
First Embodiment
FIG. 1 is a circuit block diagram showing a configuration of an uninterruptible power supply according to Embodiment 1 of the present invention. In FIG. 1, the uninterruptible power supply includes an input terminal 1, an output terminal 2 and a direct current terminal 3. Input terminal 1 receives AC power of a commercial frequency from commercial AC power supply 21. The instantaneous value of the AC voltage VI appearing at the input terminal 1 is detected by the controller 9.
 出力端子2は、負荷22に接続される。出力端子2に現れる交流電圧VOの瞬時値は、制御装置9によって検出される。負荷22は、無停電電源装置から供給される商用周波数の交流電力によって駆動される。 The output terminal 2 is connected to a load 22. The instantaneous value of the AC voltage VO appearing at the output terminal 2 is detected by the controller 9. The load 22 is driven by AC power of commercial frequency supplied from the uninterruptible power supply.
 なお、実際には無停電電源装置は商用交流電源21から三相交流電力を受け、負荷22に三相交流電力を供給するが、図面および説明の簡単化のため、図1では、一相に関連する部分のみが示されている。 Although the uninterruptible power supply actually receives three-phase AC power from the commercial AC power supply 21 and supplies the three-phase AC power to the load 22, for simplification of the drawings and description, in FIG. Only relevant parts are shown.
 直流端子3は、コンデンサ23に接続される。直流端子3に現れる直流電圧VDCの瞬時値は、制御装置9によって検出される。コンデンサ23は、直流電力を蓄える。コンデンサ23としては、たとえば、電解コンデンサ、電気二重層コンデンサ、フィルムコンデンサなどが使用される。 The DC terminal 3 is connected to the capacitor 23. The instantaneous value of the DC voltage VDC appearing at the DC terminal 3 is detected by the controller 9. The capacitor 23 stores DC power. As the capacitor 23, for example, an electrolytic capacitor, an electric double layer capacitor, a film capacitor or the like is used.
 この無停電電源装置は、さらに、スイッチ4、交流ライン5、電流検出器6、温度検出器7、AC/DC変換器8、および制御装置9を備える。スイッチ4の一方端子は入力端子1に接続され、その他方端子は交流ライン5を介して出力端子2に接続される。スイッチ4は、制御装置9によって制御される。 The uninterruptible power supply further includes a switch 4, an AC line 5, a current detector 6, a temperature detector 7, an AC / DC converter 8, and a controller 9. One terminal of the switch 4 is connected to the input terminal 1, and the other terminal is connected to the output terminal 2 via the AC line 5. The switch 4 is controlled by the controller 9.
 商用交流電源21からの交流電圧VIが正常である場合(すなわち、商用交流電源21が健全である場合)には、スイッチ4はオンされる。商用交流電源21からの交流電圧VIが正常でない場合(たとえば、商用交流電源21の停電が発生した場合)には、スイッチ4はオフされる。 When the AC voltage VI from the commercial AC power supply 21 is normal (that is, when the commercial AC power supply 21 is healthy), the switch 4 is turned on. When the AC voltage VI from the commercial AC power supply 21 is not normal (for example, when a power failure of the commercial AC power supply 21 occurs), the switch 4 is turned off.
 電流検出器6は、交流ライン5に流れる負荷電流ILの瞬時値を検出し、その検出値を示す信号ILfを制御装置9に与える。温度検出器7は、コンデンサ23の温度Tcを直接または間接的に検出し、その検出値を示す信号DTを制御装置9に与える。 The current detector 6 detects an instantaneous value of the load current IL flowing through the AC line 5, and provides the control device 9 with a signal ILf indicating the detected value. The temperature detector 7 detects the temperature Tc of the capacitor 23 directly or indirectly, and provides the controller 9 with a signal DT indicating the detected value.
 AC/DC変換器8の交流側端子8aはスイッチ4の他方端子に接続され、その直流側端子8bは直流端子3に接続される。AC/DC変換器8は、制御装置9によって制御される。 The AC side terminal 8 a of the AC / DC converter 8 is connected to the other terminal of the switch 4, and the DC side terminal 8 b is connected to the DC terminal 3. The AC / DC converter 8 is controlled by a controller 9.
 商用交流電源21からの交流電圧VIが正常である場合には、AC/DC変換器8は、商用交流電源21からスイッチ4を介して供給される交流電力を直流電力に変換してコンデンサ23に蓄える。そのときAC/DC変換器23は、コンデンサ23の端子間電圧VDCが目標値VDCTになるように、コンデンサ3を充電する。 When the AC voltage VI from the commercial AC power supply 21 is normal, the AC / DC converter 8 converts AC power supplied from the commercial AC power supply 21 via the switch 4 into DC power and outputs the DC power to the capacitor 23. store. At that time, the AC / DC converter 23 charges the capacitor 3 so that the voltage VDC across the terminals of the capacitor 23 becomes the target value VDCT.
 商用交流電源21からの交流電圧VIが正常でない場合には、AC/DC変換器8は、コンデンサ3の直流電力を商用周波数の交流電力に変換して負荷22に与える。そのときAC/DC変換器8は、交流出力電圧VOを定格値VOCに維持する。 When the AC voltage VI from the commercial AC power supply 21 is not normal, the AC / DC converter 8 converts the DC power of the capacitor 3 into AC power of a commercial frequency and applies the same to the load 22. At that time, the AC / DC converter 8 maintains the AC output voltage VO at the rated value VOC.
 制御装置9は、交流入力電圧VI、交流出力電圧VO、負荷電流IL、コンデンサ23の端子間電圧VDC、およびコンデンサ23の温度Tcに基づいて、スイッチ4およびAC/DC変換器8を制御する。 The controller 9 controls the switch 4 and the AC / DC converter 8 based on the AC input voltage VI, the AC output voltage VO, the load current IL, the voltage VDC between the terminals of the capacitor 23, and the temperature Tc of the capacitor 23.
 すなわち、制御装置9は、入力端子1に現れる交流電圧VIの瞬時値に基づいて、交流電圧VIが正常範囲内であるか否かを判別する。たとえば、商用交流電源21の停電が発生した場合には、交流電圧VIのレベルが下限値VILよりも低下する。制御装置9は、交流電圧VIのレベルが下限値VILよりも低下した場合は、交流電圧VIは正常でないと判別する。 That is, based on the instantaneous value of AC voltage VI appearing at input terminal 1, control device 9 determines whether AC voltage VI is within the normal range. For example, when a power failure of the commercial AC power supply 21 occurs, the level of the AC voltage VI falls below the lower limit value VIL. When the level of AC voltage VI is lower than lower limit value VIL, control device 9 determines that AC voltage VI is not normal.
 交流入力電圧VIが正常である場合には、制御装置9は、スイッチ4をオンさせるとともに、AC/DC変換器8を制御してコンデンサ23を充電させる。そのとき制御装置9は、コンデンサ23の端子間電圧VDCが目標値VDCTになるようにAC/DC変換器8を制御する。 When the AC input voltage VI is normal, the controller 9 turns on the switch 4 and controls the AC / DC converter 8 to charge the capacitor 23. At this time, the controller 9 controls the AC / DC converter 8 so that the voltage VDC across the terminals of the capacitor 23 becomes the target value V.sub.DCT.
 交流入力電圧VIが正常でない場合には、制御装置9は、スイッチ4をオフさせるとともに、AC/DC変換器8を制御してコンデンサ23の直流電力を商用周波数の交流電力に変換させ、AC/DC変換器8から負荷22に交流電力を供給させる。そのとき制御装置9は、交流出力電圧VOが定格電圧VOCになるようにAC/DC変換器8を制御する。 If the AC input voltage VI is not normal, the control device 9 turns off the switch 4 and controls the AC / DC converter 8 to convert DC power of the capacitor 23 into AC power of commercial frequency, AC power is supplied from the DC converter 8 to the load 22. At that time, the controller 9 controls the AC / DC converter 8 so that the AC output voltage VO becomes the rated voltage VOC.
 また制御装置9は、コンデンサ23の使用条件(温度Tc、端子間電圧VDC)および使用時間TUに基づいて、現時点におけるコンデンサ23の特性(静電容量値C、内部抵抗値R)を求めるとともに、交流出力電圧VOおよび負荷電流ILに基づいて、現時点における負荷容量Pを求める。そして、制御装置9は、現時点におけるコンデンサ23の特性、負荷容量P、および定格時間Trに基づいて、コンデンサ23の端子間電圧VDCの目標値VDCTを求める。 Further, the control device 9 determines the characteristics (electrostatic capacitance C, internal resistance value R) of the capacitor 23 at the present time based on the use condition (temperature Tc, voltage between terminals VDC) of the capacitor 23 and the use time TU. Based on the AC output voltage VO and the load current IL, the load capacity P at the present time is determined. Then, the control device 9 obtains a target value VDCT of the voltage VDC between the terminals of the capacitor 23 based on the characteristics of the capacitor 23 at the current point in time, the load capacitance P, and the rated time Tr.
 図2は、制御装置9のうちのAC/DC変換器8の制御に関連する部分を示すブロック図である。図2において、制御装置9は、記憶部11、演算部12、制御部13、および計時部14を含む。記憶部11には、コンデンサ23の特性(静電容量値C、内部抵抗値R)と、コンデンサ23の使用条件(温度Tc、端子間電圧VDC)と、コンデンサ23の使用時間TUとの関係を示す劣化情報が記憶されている。 FIG. 2 is a block diagram showing a portion of control device 9 related to control of AC / DC converter 8. In FIG. 2, the control device 9 includes a storage unit 11, an operation unit 12, a control unit 13, and a clock unit 14. In the storage unit 11, the relationship between the characteristics (capacitance value C, internal resistance value R) of the capacitor 23, the use conditions (temperature Tc, voltage between terminals VDC) of the capacitor 23, and the use time TU of the capacitor 23 Deterioration information to indicate is stored.
 図3は、コンデンサ23の等価回路を示す図である。図3において、コンデンサ23は、直列接続された抵抗素子23aおよび容量素子23bを含む。抵抗素子23aは内部抵抗値Rを有し、容量素子23bは静電容量値Cを有する。 FIG. 3 is a diagram showing an equivalent circuit of the capacitor 23. In FIG. 3, the capacitor 23 includes a resistive element 23a and a capacitive element 23b connected in series. The resistive element 23 a has an internal resistance value R, and the capacitive element 23 b has a capacitance value C.
 図4(A)(B)はコンデンサ23の特性の経時変化を示す図である。特に、図4(A)はコンデンサ23の静電容量値Cの経時変化を示し、図4(B)はコンデンサ23の内部抵抗値Rの経時変化を示している。 FIGS. 4A and 4B show time-dependent changes of the characteristics of the capacitor 23. FIG. In particular, FIG. 4A shows the change with time of the capacitance value C of the capacitor 23, and FIG. 4B shows the change with time of the internal resistance value R of the capacitor 23.
 図4(A)(B)において、コンデンサ23の特性は使用時間TU(h)の経過とともに徐々に劣化する。すなわち、静電容量値Cはコンデンサ23の使用時間TUの経過とともに徐々に減少し、コンデンサ23の内部抵抗値Rはコンデンサ23の使用時間TU(h)の経過とともに徐々に増大する。 In FIGS. 4A and 4B, the characteristics of the capacitor 23 gradually deteriorate with the passage of the operating time TU (h). That is, the capacitance value C gradually decreases with the elapse of the operating time TU of the capacitor 23, and the internal resistance value R of the capacitor 23 gradually increases with the elapse of the operating time TU (h) of the capacitor 23.
 さらに、コンデンサ23の特性の劣化の程度は、コンデンサ23の温度Tcおよび端子間電圧VDCに応じて変化する。すなわち、コンデンサ23の温度Tcが高いほど、静電容量値Cは速く減少し、内部抵抗値Rは速く増大する。また、コンデンサ23の端子間電圧VDCが高いほど、静電容量値Cは速く減少し、内部抵抗値Rは速く増大する。 Furthermore, the degree of deterioration of the characteristics of the capacitor 23 changes in accordance with the temperature Tc of the capacitor 23 and the voltage VDC across the terminals. That is, as the temperature Tc of the capacitor 23 is higher, the capacitance value C decreases faster, and the internal resistance value R increases faster. Further, the higher the inter-terminal voltage VDC of the capacitor 23, the faster the capacitance value C decreases and the faster the internal resistance value R increases.
 記憶部11には、図4(A)(B)で示したような、コンデンサ23の特性(静電容量値C、内部抵抗値R)と、コンデンサ23の使用条件(温度Tc、端子間電圧VDC)と、コンデンサ23の使用時間TUとの関係を示す劣化情報がテーブルあるいは数式の状態で格納されている。そのような劣化情報は、コンデンサ23のメーカーから取得してもよいし、実験により取得してもよい。 In the storage unit 11, characteristics (capacitance value C, internal resistance value R) of the capacitor 23 as shown in FIGS. 4A and 4B, and use conditions of the capacitor 23 (temperature Tc, voltage between terminals) Deterioration information indicating the relationship between VDC) and the usage time TU of the capacitor 23 is stored in the form of a table or a formula. Such degradation information may be obtained from the manufacturer of the capacitor 23 or may be obtained by experiment.
 したがって、コンデンサ23の温度Tc、端子間電圧VDC、および使用時間TUを検出すれば、それらの検出値と記憶部11に格納されている劣化情報とに基づいて、現時点におけるコンデンサ23の静電容量値Cおよび内部抵抗値Rを求めることができる。 Therefore, if the temperature Tc of the capacitor 23, the voltage VDC between the terminals, and the operating time TU are detected, the capacitance of the capacitor 23 at the present time is obtained based on the detected values and the deterioration information stored in the storage unit 11. The value C and the internal resistance value R can be determined.
 図2に戻って、演算部12は、温度検出器7(図1)の出力信号DTによって示されるコンデンサ23の温度Tcと、コンデンサ23の端子間電圧VDCと、計時部14の出力信号CTによって示されるコンデンサ23の使用時間TUと、記憶部11に格納されている劣化情報とに基づいて、現時点におけるコンデンサ23の静電容量値Cおよび内部抵抗値Rを求める。 Returning to FIG. 2, the operation unit 12 receives the temperature Tc of the capacitor 23 indicated by the output signal DT of the temperature detector 7 (FIG. 1), the voltage VDC across the terminals of the capacitor 23, and the output signal CT of the timing unit 14. Based on the shown use time TU of the capacitor 23 and the deterioration information stored in the storage unit 11, the capacitance value C and the internal resistance value R of the capacitor 23 at the present time are obtained.
 また、演算部12は、交流出力電圧VOと、電流検出器6の出力信号ILfによって示される負荷電流ILとに基づいて、負荷容量Pを求める。さらに演算部12は、その負荷容量Pと、定格時間Trと、現時点におけるコンデンサ23の静電容量値Cおよび内部抵抗値Rとに基づいて、コンデンサ23の端子間電圧VDCの目標値VDCTを求める。 Further, the operation unit 12 obtains the load capacitance P based on the AC output voltage VO and the load current IL indicated by the output signal ILf of the current detector 6. Further, operation unit 12 determines target value VDCT of voltage VDC across terminals of capacitor 23 based on load capacitance P, rated time Tr, and electrostatic capacitance value C and internal resistance value R of capacitor 23 at the present time. .
 次に、目標値VDCTを求める方法について説明する。図5は、商用交流電源21の停電が発生した場合における無停電電源装置の等価回路を示す図である。図5において、この等価回路では、コンデンサ23の端子間にスイッチ25および直流負荷26が直列接続されている。スイッチ25および直流負荷26は、AC/DC変換器8および負荷22に対応している。コンデンサ23は、直列接続された抵抗素子23aおよび容量素子23bを含む。直流負荷26は、一定の電力Pを消費する。 Next, a method of obtaining the target value VDCT will be described. FIG. 5 is a diagram showing an equivalent circuit of the uninterruptible power supply when the power failure of the commercial AC power supply 21 occurs. In FIG. 5, in this equivalent circuit, the switch 25 and the DC load 26 are connected in series between the terminals of the capacitor 23. The switch 25 and the DC load 26 correspond to the AC / DC converter 8 and the load 22. Capacitor 23 includes a resistive element 23a and a capacitive element 23b connected in series. The DC load 26 consumes a constant power P.
 商用交流電源21の停電が発生した場合、スイッチ25がオンされ、コンデンサ23からスイッチ25を介して直流負荷26に直流電流i(t)が流れる。この動作は、商用交流電源21の停電が発生した場合に、AC/DC変換器8がコンデンサ23の直流電力を交流電力に変換して負荷22に供給する動作に対応している。 When a power failure of the commercial AC power supply 21 occurs, the switch 25 is turned on, and a direct current i (t) flows from the capacitor 23 to the direct current load 26 via the switch 25. This operation corresponds to an operation in which the AC / DC converter 8 converts DC power of the capacitor 23 into AC power and supplies the AC power to the load 22 when a power failure of the commercial AC power supply 21 occurs.
 図6(A)(B)(C)は、コンデンサ23の端子間電圧VDC(t)、直流電流i(t)、および消費電力P(t)=VDC(t)×i(t)をそれぞれ示すタイムチャートである。 6A, 6B and 6C show the voltage VDC (t) between the terminals of the capacitor 23, the direct current i (t), and the power consumption P (t) = VDC (t) × i (t), respectively. It is a time chart which shows.
 図6(A)(B)(C)において、商用交流電源21の交流電圧VIが正常である場合(時刻t0)、スイッチ25はオフされ、コンデンサ23の端子間電圧VDC(t)は直流電圧V1に設定されている。換言すると、コンデンサ23の端子間電圧VDC(t)は、AC/DC変換器8によって目標値VDCT=V1に調整されている。 In FIGS. 6A, 6B and 6C, when the AC voltage VI of the commercial AC power supply 21 is normal (time t0), the switch 25 is turned off and the voltage VDC (t) between the terminals of the capacitor 23 is a DC voltage. It is set to V1. In other words, the inter-terminal voltage VDC (t) of the capacitor 23 is adjusted by the AC / DC converter 8 to the target value VDCT = V1.
 ある時刻t1において、商用交流電源21の停電が発生すると、スイッチ25がオンされる。換言すると、スイッチ4(図1)がオフされ、コンデンサ23の直流電力がAC/DC変換器8によって交流電力に変換されて負荷22に供給される。 When a power failure of the commercial AC power supply 21 occurs at a certain time t1, the switch 25 is turned on. In other words, the switch 4 (FIG. 1) is turned off, and the DC power of the capacitor 23 is converted into AC power by the AC / DC converter 8 and supplied to the load 22.
 スイッチ25がオンされると、容量素子23bから抵抗素子23aおよびスイッチ25を介して直流負荷26に直流電流i(t)が流れ、直流負荷26において一定の電力Pが消費される。時刻t1における直流電流i(t1)をi1とすると、抵抗素子23aにおいて電圧降下(R×i1)が発生し、コンデンサ23の端子間電圧VDC(t1)はV1-R×i1となる。 When the switch 25 is turned on, a direct current i (t) flows from the capacitive element 23 b to the direct current load 26 through the resistor 23 a and the switch 25, and a constant power P is consumed in the direct current load 26. Assuming that the direct current i (t1) at time t1 is i1, a voltage drop (R × i1) occurs in the resistive element 23a, and the voltage VDC (t1) between terminals of the capacitor 23 becomes V1-R × i1.
 コンデンサ23から直流負荷26に直流電流i(t)が流れると、コンデンサ23の端子間電圧VDC(t)は徐々に低下する。また、P=VDC(t)×i(t)は一定であるので、直流電流i(t)は徐々に増大する。商用交流電源21の停電が発生した時刻t1から定格時間Trだけ経過したとき、コンデンサ23の端子間電圧VDC(t)がV2まで低下し、直流電流i(t)がi2まで増大したものとする。このとき、抵抗素子23aにおける電圧降下はR×i2となっている。 When a direct current i (t) flows from the capacitor 23 to the DC load 26, the voltage VDC (t) between the terminals of the capacitor 23 gradually decreases. Also, since P = VDC (t) × i (t) is constant, the direct current i (t) gradually increases. When a rated time Tr has elapsed from time t1 at which the commercial AC power supply 21 fails, the inter-terminal voltage VDC (t) of the capacitor 23 decreases to V2, and the direct current i (t) increases to i2. . At this time, the voltage drop in the resistive element 23a is R × i2.
 時刻t2において、定格時間Trが経過したので、スイッチ25がオフされる。スイッチ25がオフされると、直流電流i(t)は0となり、電力P(t)も0となる。直流電流i(t)が0になると、抵抗素子23aにおける電圧降下が0となり、コンデンサ23の端子間電圧VDCはV2から電圧降下(R×i2)の分だけ上昇する。 At time t2, since the rated time Tr has elapsed, the switch 25 is turned off. When the switch 25 is turned off, the direct current i (t) becomes zero and the power P (t) also becomes zero. When the direct current i (t) becomes 0, the voltage drop across the resistive element 23a becomes 0, and the voltage VDC across the terminals of the capacitor 23 rises from V2 by the voltage drop (R × i2).
 ここで、商用交流電源21の停電が発生した時刻t1から定格時間Trだけ負荷22の運転を継続するためには、時刻t2の直前におけるコンデンサ23の端子間電圧VDC=V2が、AC/DC変換器8および負荷22を駆動させるために必要なコンデンサ23の端子間電圧VDCの下限値VDCL以上である必要がある。 Here, in order to continue the operation of the load 22 for only the rated time Tr from the time t1 at which the commercial AC power supply 21 fails, the voltage VDC = V2 across the terminals of the capacitor 23 immediately before the time t2 is AC / DC conversion. It is necessary to be more than the lower limit value VDCL of the voltage VDC between the terminals of the capacitor 23 necessary to drive the converter 8 and the load 22.
 換言すると、直流電力Pを定格時間Trだけ放電した後におけるコンデンサ23の端子間電圧VDCが下限値VDCLになるように、現時点におけるコンデンサ23の端子間電圧VDCを調整すれば、停電が発生しても定格時間Trだけ負荷22の運転を継続することが可能となる。スイッチ25(図5)がオンしている期間(時刻t1~t2)では次式(1)(2)が成立する。ただし、t1=0とする。 In other words, if the inter-terminal voltage VDC of the capacitor 23 at the present time is adjusted so that the inter-terminal voltage VDC of the capacitor 23 becomes the lower limit value VDCL after discharging the DC power P for the rated time Tr, a power failure occurs. Also, it is possible to continue the operation of the load 22 for the rated time Tr. The following equations (1) and (2) hold in a period (time t1 to t2) in which the switch 25 (FIG. 5) is on. However, t1 = 0.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 数式(1)を数式(2)に代入すると、次式(3)が得られる。 Substituting equation (1) into equation (2), the following equation (3) is obtained.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 この数式(3)を用いて、停電発生から定格時間Tr経過後におけるコンデンサ23の端子間電圧VDC(Tr)が下限値VDCLになるように、コンデンサ23の端子間電圧VDC(0)=V1を求める。 Using equation (3), the voltage VDC (0) = V1 of the terminals of capacitor 23 is set so that the voltage VDC (Tr) of terminals of capacitor 23 becomes lower limit value VDCL after rated time Tr elapses from the occurrence of a power failure. Ask.
 具体的には、プログラミング処理を実行してVDC(t)を1サンプルずつ計算していく。たとえば、1kHzの処理を実行する場合は、t=1msのときのVDC(t)、t=2msのときのVDC(t)、t=3msのときのVDC(t)、…と順次計算してゆき、t=TrのときのVDC(t)を計算する。t=TrのときのVDC(t)が下限値VDCLになるように、V1を求め、そのV1を目標値VDCTとする。 Specifically, the programming process is executed to calculate VDC (t) one sample at a time. For example, when processing at 1 kHz is performed, VDC (t) when t = 1 ms, VDC (t) when t = 2 ms, VDC (t) when t = 3 ms, ... Then, calculate VDC (t) when t = Tr. V1 is determined so that VDC (t) when t = Tr is the lower limit value VDCL, and V1 is set as the target value V DCT.
 例えば、VDCL=500V、V1=530V、P=1000kW、R=0.01Ω、Tr=10sである場合、t=t1のとき(すなわち、放電直後)のVDC(0)は511.1Vとなる。この場合、時刻t1から0.1s経過した時刻t(0.1s)では、VDC(t)=509.2Vとなり、時刻t1から0.2s経過した時刻t(0.2s)では、VDC(t)=507.2Vとなる。この計算を、時刻t1から定格時間Tr経過する時刻t(10s)まで繰り返す。時刻t(10s)でのVDC(t)が下限値VDCL(=500V)以上となる条件を満足するときのV1を求め、求めたV1の最小値を目標値VDCTとする。 For example, when VDCL = 500 V, V1 = 530 V, P = 1000 kW, R = 0.01 Ω, Tr = 10 s, VDC (0) at t = t1 (that is, immediately after discharge) is 511.1 V. In this case, VDC (t) = 509.2 V at time t (0.1 s) when 0.1 s has elapsed from time t1, and at time t (0.2 s) when 0.2 s has elapsed from time t1, VDC (t) ) = 507.2V. This calculation is repeated until time t (10 s) at which rated time Tr elapses from time t1. V1 is determined when the condition that VDC (t) at time t (10 s) is equal to or higher than the lower limit VDCL (= 500 V) is obtained, and the minimum value of V1 is determined as the target value VDCT.
 なお、プログラミング処理を行なう代わりに、積分方程式である数式(3)を解いてVDC(t)を求め、そのVDC(t)に基づいてV1を求め、そのV1を目標値VDCTとしてもよい。 Instead of performing the programming process, the equation (3) which is an integral equation may be solved to obtain VDC (t), V1 may be obtained based on the VDC (t), and V1 may be set as the target value V DCT.
 あるいは、図7に示すように、図6(B)に示す直線電流i(t)の波形を直線近似した波形L1を用いてVDC(t)を求め、そのVDC(t)に基づいてV1を求め、そのV1を目標値VDCTとしてもよい。この場合、時刻t1から定格時間Trだけ直流電力Pを放電したときにコンデンサ23が放電する電荷量Qは、次式(4)で近似することができる。 Alternatively, as shown in FIG. 7, VDC (t) is obtained using a waveform L1 obtained by linearly approximating the waveform of the linear current i (t) shown in FIG. 6 (B), and V1 is determined based on the VDC (t). It is also possible to obtain V1 as the target value VDCT. In this case, the amount of charge Q discharged by the capacitor 23 when the DC power P is discharged from the time t1 for the rated time Tr can be approximated by the following equation (4).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ここで、時刻t1における直流電流i1=P/V1、時刻t2における直流電流i2=P/V2であることから、電荷量Qの放電によるコンデンサ23の端子間電圧VDCの低下分をΔVDCとすると、ΔVDCは次式(5)で与えられる。よって、時刻t2の直前におけるコンデンサ23の端子間電圧VDC=V2は次式(6)で与えられる。この数式(6)を用いることで、V2がVDCL以上となるための目標値VDCT=V1を求めることができる。 Here, since the direct current i1 = P / V1 at time t1 and the direct current i2 = P / V2 at time t2, assuming that a drop in the voltage VDC across the capacitor 23 due to the discharge of the charge amount Q is ΔVDC, ΔVDC is given by the following equation (5). Therefore, the voltage VDC = V2 between the terminals of the capacitor 23 immediately before time t2 is given by the following equation (6). By using this equation (6), it is possible to obtain the target value VDCT = V1 for V2 to be equal to or greater than VDCL.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 図2に戻って、制御部13は、入力端子1(図1)に現れる交流電圧VIの瞬時値に基づいて、交流電圧VIが正常範囲内であるか否かを判別する。たとえば、商用交流電源21の停電が発生した場合には、交流電圧VIのレベルが下限値VILよりも低下する。制御部13は、交流電圧VIのレベルが下限値VILよりも低下した場合は、交流電圧VIは正常でないと判別する。 Returning to FIG. 2, the control unit 13 determines whether the AC voltage VI is within the normal range based on the instantaneous value of the AC voltage VI appearing at the input terminal 1 (FIG. 1). For example, when a power failure of the commercial AC power supply 21 occurs, the level of the AC voltage VI falls below the lower limit value VIL. When the level of AC voltage VI is lower than lower limit value VIL, control unit 13 determines that AC voltage VI is not normal.
 交流入力電圧VIが正常である場合には、制御部13は、AC/DC変換器8を制御してコンデンサ23を充電させる。そのとき制御部13は、コンデンサ23の端子間電圧VDCが目標値VDCTになるようにAC/DC変換器8を制御する。また制御部13は、コンデンサ23に電荷が蓄えられている期間は、クロック信号CLKを計時部14に与える。 When the AC input voltage VI is normal, the control unit 13 controls the AC / DC converter 8 to charge the capacitor 23. At this time, the control unit 13 controls the AC / DC converter 8 so that the voltage VDC across the terminals of the capacitor 23 becomes the target value V.sub.DCT. Further, the control unit 13 supplies the clock signal CLK to the clocking unit 14 during a period in which the charge is stored in the capacitor 23.
 交流入力電圧VIが正常でない場合には、制御部13は、AC/DC変換器8を制御してコンデンサ23の直流電力を商用周波数の交流電力に変換させ、AC/DC変換器8から負荷22に交流電力を供給させる。そのとき制御部13は、交流出力電圧VOが定格電圧VOCになるようにAC/DC変換器8を制御する。 When the AC input voltage VI is not normal, the control unit 13 controls the AC / DC converter 8 to convert DC power of the capacitor 23 into AC power of commercial frequency, and the AC / DC converter 8 converts the AC power into a load 22. Supply AC power. At this time, the control unit 13 controls the AC / DC converter 8 such that the AC output voltage VO becomes equal to the rated voltage VOC.
 計時部14は、制御部13からのクロック信号CLKに基づいて、コンデンサ23の使用時間TUを求め、その使用時間TUを示す信号CTを演算部12に与える。 The clocking unit 14 obtains the use time TU of the capacitor 23 based on the clock signal CLK from the control unit 13, and provides the signal CT indicating the use time TU to the calculation unit 12.
 次に、この無停電電源装置の動作について説明する。商用交流電源21からの交流電圧VIが正常である場合は、スイッチ4(図1)がオンされ、商用交流電源21からスイッチ4を介して負荷22に交流電力が供給され、負荷22が駆動される。 Next, the operation of this uninterruptible power supply will be described. When the AC voltage VI from the commercial AC power supply 21 is normal, the switch 4 (FIG. 1) is turned on, AC power is supplied from the commercial AC power supply 21 to the load 22 via the switch 4, and the load 22 is driven. Ru.
 また、商用交流電源21からスイッチ4を介してAC/DC変換器8に交流電力が供給される。AC/DC変換器8は、商用交流電源21からの交流電力を直流電力に変換してコンデンサ23に蓄える。 Further, AC power is supplied from the commercial AC power supply 21 to the AC / DC converter 8 through the switch 4. The AC / DC converter 8 converts AC power from the commercial AC power supply 21 into DC power and stores the DC power in the capacitor 23.
 温度検出器7によってコンデンサ23の温度Tcが検出されるとともに、計時部14によってコンデンサ23の使用時間TUが検出される。制御装置9は、コンデンサ23の温度Tcと、コンデンサ23の端子間電圧VDCと、コンデンサ23の使用時間TUと、記憶部11に格納されている劣化情報とに基づいて、現時点におけるコンデンサ23の静電容量値Cおよび内部抵抗値Rを求める。 The temperature detector 7 detects the temperature Tc of the capacitor 23, and the timer unit 14 detects the operating time TU of the capacitor 23. Based on the temperature Tc of the capacitor 23, the voltage VDC between the terminals of the capacitor 23, the usage time TU of the capacitor 23, and the deterioration information stored in the storage unit 11, the control device 9 The capacitance value C and the internal resistance value R are determined.
 また、制御装置9は、交流出力電圧VOおよび負荷電流ILに基づいて負荷容量Pを求め、その負荷容量Pの負荷22を定格時間Trだけ駆動させるために必要なコンデンサ23の端子間電圧VDC(すなわち目標値VDCT)を求める。AC/DC変換器8は、コンデンサ23の端子間電圧VDCが目標値VDCTになるように、コンデンサ23を充電する。 Further, control device 9 determines load capacitance P based on AC output voltage VO and load current IL, and the voltage VDC across terminals of capacitor 23 necessary for driving load 22 of the load capacitance P for the rated time Tr That is, the target value VDCT) is determined. The AC / DC converter 8 charges the capacitor 23 such that the terminal voltage VDC of the capacitor 23 becomes the target value V DCT.
 商用交流電源21の交流電圧VIが正常でなくなった場合(たとえば停電が発生した場合)には、スイッチ4がオフされ、コンデンサ23の直流電力がAC/DC変換器8によって商用周波数の交流電力に変換されて負荷22に供給される。AC/DC変換器8から負荷22への交流電力の供給は定格時間Trだけ継続される。したがって、停電が発生した場合でも、負荷22の運転は定格時間Trだけ継続される。 When AC voltage VI of commercial AC power supply 21 is not normal (for example, when a power failure occurs), switch 4 is turned off, and DC power of capacitor 23 is converted to AC power of commercial frequency by AC / DC converter 8. It is converted and supplied to the load 22. The supply of AC power from the AC / DC converter 8 to the load 22 is continued for the rated time Tr. Therefore, even if a power failure occurs, the operation of the load 22 is continued for the rated time Tr.
 停電の発生から定格時間Trが経過するまでの間に商用交流電源21が正常に復帰した場合には、スイッチ4がオンされ、商用交流電源21からスイッチ4を介して負荷22に交流電力が供給される。また、コンデンサ23の端子間電圧VDCが目標値VDCTになるように、AC/DC変換器8によってコンデンサ23が充電される。 When the commercial AC power supply 21 returns to normal during the time from the occurrence of the power failure until the rated time Tr elapses, the switch 4 is turned on, and AC power is supplied from the commercial AC power supply 21 to the load 22 via the switch 4 Be done. Further, the capacitor 23 is charged by the AC / DC converter 8 so that the terminal voltage VDC of the capacitor 23 becomes the target value VTCT.
 以上のように、この実施の形態1では、記憶部11に格納されたコンデンサ23の劣化情報と、コンデンサ23の使用条件および使用時間TUとに基づいて、現時点におけるコンデンサ23の特性を求める。そして、求めたコンデンサ23の特性と負荷容量Pとに基づいて、負荷22を定格時間Trだけ駆動させるために必要な目標値VDCTを求め、コンデンサ23の端子間電圧VDCが目標値VDCTになるようにコンデンサ23を充電する。したがって、コンデンサ23の端子間電圧VDCを一定値に維持する場合に比べ、コンデンサ23の端子間電圧VDCを低くすることができ、コンデンサ23の劣化を抑制することができ、ひいてはコンデンサ23の小型化を図ることができる。 As described above, in the first embodiment, the characteristic of the capacitor 23 at the present time is obtained based on the deterioration information of the capacitor 23 stored in the storage unit 11, the use condition of the capacitor 23, and the use time TU. Then, based on the determined characteristics of the capacitor 23 and the load capacitance P, a target value V DCT required to drive the load 22 for the rated time Tr is determined, and the inter-terminal voltage VDC of the capacitor 23 becomes the target value V DCT To charge the capacitor 23. Therefore, as compared with the case where the voltage VDC across the terminals of the capacitor 23 is maintained at a constant value, the voltage VDC across the terminals of the capacitor 23 can be lowered, and deterioration of the capacitor 23 can be suppressed. Can be
 なお、負荷22の容量Pが一定値であり、予め分かっている場合には、交流出力電圧VOおよび負荷電流ILに基づいて容量Pを求める必要がない。したがって、この場合には、電流検出器6は不要である。 When the capacity P of the load 22 is a constant value and is known in advance, it is not necessary to obtain the capacity P based on the AC output voltage VO and the load current IL. Therefore, in this case, the current detector 6 is unnecessary.
 [実施の形態2]
 図8は、この発明の実施の形態2による無停電電源装置の構成を示す回路ブロック図である。図7において、この無停電電源装置は、入力端子31、出力端子32、および直流端子33を備える。
Second Embodiment
8 is a circuit block diagram showing a configuration of an uninterruptible power supply according to a second embodiment of the present invention. In FIG. 7, the uninterruptible power supply includes an input terminal 31, an output terminal 32, and a direct current terminal 33.
 入力端子31は、商用交流電源21から商用周波数の交流電力を受ける。入力端子31に現れる交流電圧VIの瞬時値は、制御装置37によって検出される。なお、実際には無停電電源装置は商用交流電源21から三相交流電力を受けるが、図面および説明の簡単化のため、図7では、一相に関連する部分のみが示されている。 Input terminal 31 receives AC power of a commercial frequency from commercial AC power supply 21. The instantaneous value of the AC voltage VI appearing at the input terminal 31 is detected by the controller 37. Although the uninterruptible power supply receives three-phase AC power from the commercial AC power supply 21 in practice, only a portion related to one phase is shown in FIG. 7 for the sake of simplification of the drawings and the description.
 出力端子32は、直流負荷40に接続される。出力端子32に現れる直流電圧VOの瞬時値は、制御装置37によって検出される。直流負荷40は、無停電電源装置から供給される直流電力によって駆動される。 The output terminal 32 is connected to the DC load 40. The instantaneous value of the DC voltage VO appearing at the output terminal 32 is detected by the controller 37. The DC load 40 is driven by DC power supplied from the uninterruptible power supply.
 直流端子33は、コンデンサ23に接続される。直流端子33に現れる直流電圧VDCの瞬時値は、制御装置37によって検出される。コンデンサ23は、直流電力を蓄える。コンデンサ23としては、たとえば、電解コンデンサ、電気二重層コンデンサ、フィルムコンデンサなどが使用される。 The direct current terminal 33 is connected to the capacitor 23. The instantaneous value of DC voltage VDC appearing at DC terminal 33 is detected by controller 37. The capacitor 23 stores DC power. As the capacitor 23, for example, an electrolytic capacitor, an electric double layer capacitor, a film capacitor or the like is used.
 この無停電電源装置は、さらに、AC/DC変換器34、直流ライン35、電流検出器6、温度検出器7、DC/DC変換器36、および制御装置37を備える。AC/DC変換器34の交流側端子34aは入力端子31に接続され、その直流側端子34bは直流ライン35を介して出力端子32に接続される。AC/DC変換器34は、制御装置37によって制御される。 The uninterruptible power supply further includes an AC / DC converter 34, a DC line 35, a current detector 6, a temperature detector 7, a DC / DC converter 36, and a controller 37. The AC side terminal 34 a of the AC / DC converter 34 is connected to the input terminal 31, and the DC side terminal 34 b is connected to the output terminal 32 via the DC line 35. The AC / DC converter 34 is controlled by the controller 37.
 商用交流電源21からの交流電圧VIが正常である場合(すなわち、商用交流電源21が健全である場合)には、AC/DC変換器34は、商用交流電源21からの交流電力を直流電力に変換して負荷40に与える。商用交流電源21からの交流電圧VIが正常でない場合(たとえば、商用交流電源21の停電が発生した場合)には、AC/DC変換器34の運転は停止される。 When the AC voltage VI from the commercial AC power supply 21 is normal (that is, when the commercial AC power supply 21 is healthy), the AC / DC converter 34 converts the AC power from the commercial AC power supply 21 into DC power. Convert to load 40. When the AC voltage VI from the commercial AC power supply 21 is not normal (for example, when a power failure of the commercial AC power supply 21 occurs), the operation of the AC / DC converter 34 is stopped.
 電流検出器6は、直流ライン35に流れる負荷電流ILの瞬時値を検出し、その検出値を示す信号ILfを制御装置9に与える。温度検出器7は、コンデンサ23の温度Tcを直接または間接的に検出し、その検出値を示す信号DTを制御装置37に与える。 The current detector 6 detects an instantaneous value of the load current IL flowing through the DC line 35, and provides the controller 9 with a signal ILf indicating the detected value. The temperature detector 7 detects the temperature Tc of the capacitor 23 directly or indirectly, and provides the controller 37 with a signal DT indicating the detected value.
 DC/DC変換器36の一方端子36aはAC/DC変換器34の直流側端子34bに接続され、その他方端子36bは直流端子33に接続される。DC/DC変換器36は、制御装置37によって制御される。 One terminal 36 a of the DC / DC converter 36 is connected to the DC side terminal 34 b of the AC / DC converter 34, and the other terminal 36 b is connected to the DC terminal 33. The DC / DC converter 36 is controlled by the controller 37.
 商用交流電源21からの交流電圧VIが正常である場合には、DC/DC変換器36は、商用交流電源21からAC/DC変換器34を介して供給される直流電力をコンデンサ23に蓄える。そのときDC/DC変換器36は、コンデンサ23の端子間電圧VDCが目標値VDCTになるように、コンデンサ3を充電する。 When the AC voltage VI from the commercial AC power supply 21 is normal, the DC / DC converter 36 stores DC power supplied from the commercial AC power supply 21 via the AC / DC converter 34 in the capacitor 23. At this time, the DC / DC converter 36 charges the capacitor 3 so that the voltage VDC across the terminals of the capacitor 23 becomes the target value VDCT.
 商用交流電源21からの交流電圧VIが正常でない場合には、DC/DC変換器36は、コンデンサ3の直流電力を直流負荷40に与える。そのときDC/DC変換器36は、直流出力電圧VOを定格値VOCに維持する。 If the AC voltage VI from the commercial AC power supply 21 is not normal, the DC / DC converter 36 applies DC power of the capacitor 3 to the DC load 40. At this time, the DC / DC converter 36 maintains the DC output voltage VO at the rated value VOC.
 制御装置37は、交流入力電圧VI、直流出力電圧VO、負荷電流IL、コンデンサ23の端子間電圧VDC、およびコンデンサ23の温度Tcに基づいて、AC/DC変換器34およびDC/DC変換器36を制御する。 Controller 37 controls AC / DC converter 34 and DC / DC converter 36 based on AC input voltage VI, DC output voltage VO, load current IL, terminal voltage VDC of capacitor 23, and temperature Tc of capacitor 23. Control.
 すなわち、制御装置37は、入力端子31に現れる交流電圧VIの瞬時値に基づいて、交流電圧VIが正常範囲内であるか否かを判別する。たとえば、商用交流電源21の停電が発生した場合には、交流電圧VIのレベルが下限値VILよりも低下する。制御装置37は、交流電圧VIのレベルが下限値VILよりも低下した場合は、交流電圧VIは正常でないと判別する。 That is, based on the instantaneous value of AC voltage VI appearing at input terminal 31, control device 37 determines whether AC voltage VI is within the normal range. For example, when a power failure of the commercial AC power supply 21 occurs, the level of the AC voltage VI falls below the lower limit value VIL. When the level of AC voltage VI is lower than lower limit value VIL, control device 37 determines that AC voltage VI is not normal.
 交流入力電圧VIが正常である場合には、制御装置37は、AC/DC変換器34を制御し、商用交流電源21からの交流電力を直流電力に変換して直流負荷40に供給させるとともに、DC/DC変換器36を制御し、AC/DC変換器34からの直流電力をコンデンサ23に蓄えさせる。 When the AC input voltage VI is normal, the control device 37 controls the AC / DC converter 34 to convert AC power from the commercial AC power supply 21 into DC power to be supplied to the DC load 40, The DC / DC converter 36 is controlled to store DC power from the AC / DC converter 34 in the capacitor 23.
 そのとき制御装置37は、直流出力電圧VOが定格値VOTになるようにAC/DC変換器8を制御するとともに、コンデンサ23の端子間電圧VDCが目標値VDCTになるようにDC/DC変換器36を制御する。 At that time, the control device 37 controls the AC / DC converter 8 so that the DC output voltage VO becomes the rated value VOT, and the DC / DC converter so that the voltage VDC between the terminals of the capacitor 23 becomes the target value VDCT. Control 36
 交流入力電圧VIが正常でない場合には、制御装置37は、AC/DC変換器34の運転を停止させるとともに、DC/DC変換器36を制御してコンデンサ23の直流電力を直流負荷40に供給させる。そのとき制御装置37は、直流出力電圧VOが定格値VOTになるようにDC/DC変換器36を制御する。 When the AC input voltage VI is not normal, the controller 37 stops the operation of the AC / DC converter 34 and controls the DC / DC converter 36 to supply DC power of the capacitor 23 to the DC load 40. Let At that time, the controller 37 controls the DC / DC converter 36 such that the DC output voltage VO becomes the rated value VOT.
 また制御装置37は、コンデンサ23の使用条件(温度Tc、端子間電圧VDC)および使用時間TUに基づいて、現時点におけるコンデンサ23の特性(静電容量値C、内部抵抗値R)を求めるとともに、直流出力電圧VOおよび負荷電流ILに基づいて、現時点における負荷容量Pを求める。そして、制御装置37は、現時点におけるコンデンサ23の特性、負荷容量P、および定格時間Trに基づいて、コンデンサ23の端子間電圧VDCの目標値VDCTを求める。 Further, the control device 37 determines the characteristics (electrostatic capacitance value C, internal resistance value R) of the capacitor 23 at the present time based on the use condition (temperature Tc, voltage between terminals VDC) of the capacitor 23 and the use time TU. Based on the DC output voltage VO and the load current IL, the load capacity P at the present time is determined. Then, the control device 37 obtains a target value VDCT of the voltage VDC between the terminals of the capacitor 23 based on the characteristics of the capacitor 23 at the current point in time, the load capacitance P, and the rated time Tr.
 図9は、制御装置37のうちのDC/DC変換器36の制御に関連する部分を示すブロック図である。図9において、制御装置37は、記憶部11、演算部41、制御部42、および計時部14を含む。記憶部11には、実施の形態1で説明した通り、コンデンサ23の特性(静電容量値C、内部抵抗値R)と、コンデンサ23の使用条件(温度Tc、端子間電圧VDC)と、コンデンサ23の使用時間TUとの関係を示す劣化情報が格納されている。コンデンサ23の等価回路は、図3で説明した通りである。コンデンサ23の特性の経時変化は、図4(A)(B)で説明した通りである。 FIG. 9 is a block diagram showing a portion of control device 37 related to control of DC / DC converter 36. Referring to FIG. In FIG. 9, the control device 37 includes a storage unit 11, an operation unit 41, a control unit 42, and a clock unit 14. As described in the first embodiment, the storage unit 11 has the characteristics (capacitance value C, internal resistance value R) of the capacitor 23, use conditions (temperature Tc, voltage between terminals VDC) of the capacitor 23, and the capacitor Deterioration information indicating the relationship with the usage time TU of 23 is stored. The equivalent circuit of the capacitor 23 is as described in FIG. The change with time of the characteristics of the capacitor 23 is as described in FIGS. 4 (A) and 4 (B).
 演算部41は、温度検出器7(図7)の出力信号DTによって示されるコンデンサ23の温度Tcと、コンデンサ23の端子間電圧VDCと、計時部14の出力信号CTによって示されるコンデンサ23の使用時間TUと、記憶部11に格納されている劣化情報とに基づいて、現時点におけるコンデンサ23の静電容量値Cおよび内部抵抗値Rを求める。 The calculation unit 41 uses the temperature Tc of the capacitor 23 indicated by the output signal DT of the temperature detector 7 (FIG. 7), the voltage VDC between the terminals of the capacitor 23, and the use of the capacitor 23 indicated by the output signal CT of the timing unit 14 Based on the time TU and the deterioration information stored in the storage unit 11, the capacitance value C and the internal resistance value R of the capacitor 23 at the present time are obtained.
 また、演算部41は、直流出力電圧VOと、電流検出器6の出力信号ILfによって示される負荷電流ILとに基づいて、負荷容量Pを求める。さらに演算部41は、その負荷容量Pの直流負荷40(図8)を定格時間Trだけ駆動させるために必要なコンデンサ23の端子間電圧VDCの目標値VDCTを求める。 Further, the arithmetic unit 41 obtains the load capacitance P based on the DC output voltage VO and the load current IL indicated by the output signal ILf of the current detector 6. Further, the calculation unit 41 obtains a target value V DCT of the inter-terminal voltage VDC of the capacitor 23 necessary to drive the DC load 40 (FIG. 8) of the load capacity P for the rated time Tr.
 目標値VDCTを求める方法は、図5および図6(A)(B)(C)で説明した通りである。ただし、図5のスイッチ25および直流負荷26は、DC/DC変換器36および直流負荷40に対応している。 The method of obtaining the target value V.sub.DCT is as described in FIG. 5 and FIGS. 6 (A), (B) and (C). However, the switch 25 and the DC load 26 in FIG. 5 correspond to the DC / DC converter 36 and the DC load 40.
 制御部42は、入力端子31(図8)に現れる交流電圧VIの瞬時値に基づいて、交流電圧VIが正常範囲内であるか否かを判別する。たとえば、商用交流電源21の停電が発生した場合には、交流電圧VIのレベルが下限値VILよりも低下する。制御部42は、交流電圧VIのレベルが下限値VILよりも低下した場合は、交流電圧VIは正常でないと判別する。 Control unit 42 determines whether or not AC voltage VI is within the normal range based on the instantaneous value of AC voltage VI appearing at input terminal 31 (FIG. 8). For example, when a power failure of the commercial AC power supply 21 occurs, the level of the AC voltage VI falls below the lower limit value VIL. When the level of AC voltage VI is lower than lower limit value VIL, control unit 42 determines that AC voltage VI is not normal.
 交流入力電圧VIが正常である場合には、制御部42は、DC/DC変換器36を制御してコンデンサ23を充電させる。そのとき制御部42は、コンデンサ23の端子間電圧VDCが目標値VDCTになるようにDC/DC変換器36を制御する。また制御部42は、コンデンサ23に電荷が蓄えられている期間は、クロック信号CLKを計時部14に与える。 When the AC input voltage VI is normal, the control unit 42 controls the DC / DC converter 36 to charge the capacitor 23. At this time, the control unit 42 controls the DC / DC converter 36 such that the voltage VDC across the terminals of the capacitor 23 becomes the target value V.sub.DCT. The control unit 42 also supplies the clock signal CLK to the clock unit 14 during a period in which the charge is stored in the capacitor 23.
 交流入力電圧VIが正常でない場合には、制御部42は、DC/DC変換器36を制御してコンデンサ23の直流電力を商用周波数の交流電力に変換させ、DC/DC変換器36から直流負荷40に交流電力を供給させる。そのとき制御部42は、直流出力電圧VOが定格電圧VOCになるようにDC/DC変換器36を制御する。 When the AC input voltage VI is not normal, the control unit 42 controls the DC / DC converter 36 to convert DC power of the capacitor 23 into AC power of commercial frequency, and the DC load from the DC / DC converter 36 Supply 40 AC power. At this time, the control unit 42 controls the DC / DC converter 36 such that the DC output voltage VO becomes equal to the rated voltage VOC.
 計時部14は、制御部42からのクロック信号CLKに基づいて、コンデンサ23の使用時間TUを求め、その使用時間TUを示す信号CTを演算部41に与える。 The clock unit 14 obtains the use time TU of the capacitor 23 based on the clock signal CLK from the control unit 42, and gives the signal CT indicating the use time TU to the calculation unit 41.
 次に、この無停電電源装置の動作について説明する。商用交流電源21からの交流電圧VIが正常である場合は、AC/DC変換器34が運転され、商用交流電源21からの交流電力が直流電力に変換されて直流負荷40に供給され、直流負荷40が駆動される。また、AC/DC変換器34によって生成された直流電力がDC/DC変換器36に供給される。DC/DC変換器36は、AC/DC変換器34からの直流電力をコンデンサ23に蓄える。 Next, the operation of this uninterruptible power supply will be described. When the AC voltage VI from the commercial AC power supply 21 is normal, the AC / DC converter 34 is operated, AC power from the commercial AC power supply 21 is converted to DC power, and is supplied to the DC load 40, DC load 40 are driven. Also, DC power generated by the AC / DC converter 34 is supplied to the DC / DC converter 36. The DC / DC converter 36 stores DC power from the AC / DC converter 34 in the capacitor 23.
 温度検出器7によってコンデンサ23の温度Tcが検出されるとともに、計時部14によってコンデンサ23の使用時間TUが検出される。制御装置37は、コンデンサ23の温度Tcと、コンデンサ23の端子間電圧VDCと、コンデンサ23の使用時間TUと、記憶部11に格納されている劣化情報とに基づいて、現時点におけるコンデンサ23の静電容量値Cおよび内部抵抗値Rを求める。 The temperature detector 7 detects the temperature Tc of the capacitor 23, and the timer unit 14 detects the operating time TU of the capacitor 23. Based on temperature Tc of capacitor 23, voltage VDC across terminals of capacitor 23, usage time TU of capacitor 23, and deterioration information stored in storage unit 11, controller 37 determines the static condition of capacitor 23 at the present time. The capacitance value C and the internal resistance value R are determined.
 また、制御装置37は、交流出力電圧VOおよび負荷電流ILに基づいて負荷容量Pを求め、その負荷容量Pの直流負荷40を定格時間Trだけ駆動させるために必要なコンデンサ23の端子間電圧VDC(すなわち目標値VDCT)を求める。DC/DC変換器36は、コンデンサ23の端子間電圧VDCが目標値VDCTになるように、コンデンサ23を充電する。 Further, control device 37 determines load capacitance P based on AC output voltage VO and load current IL, and the voltage VDC across terminals of capacitor 23 necessary to drive DC load 40 of load capacitance P for the rated time Tr. (Ie, a target value VDCT) is determined. The DC / DC converter 36 charges the capacitor 23 such that the terminal voltage VDC of the capacitor 23 becomes the target value VDCT.
 商用交流電源21の交流電圧VIが正常でなくなった場合(たとえば停電が発生した場合)には、AC/DC変換器34の運転が停止され、コンデンサ23の直流電力がDC/DC変換器36によって直流負荷40に供給される。DC/DC変換器36から直流負荷40への直流電力の供給は定格時間Trだけ継続される。したがって、停電が発生した場合でも、直流負荷40の運転は定格時間Trだけ継続される。 When the AC voltage VI of the commercial AC power supply 21 is not normal (for example, when a power failure occurs), the operation of the AC / DC converter 34 is stopped, and the DC power of the capacitor 23 is reduced by the DC / DC converter 36. The DC load 40 is supplied. The supply of DC power from the DC / DC converter 36 to the DC load 40 is continued for the rated time Tr. Therefore, even when a power failure occurs, the operation of the DC load 40 is continued for the rated time Tr.
 停電の発生から定格時間Trが経過するまでの間に商用交流電源21が正常になった場合には、AC/DC変換器34の運転が再開され、商用交流電源21からの交流電力が直流電力に変換されて直流負荷40およびDC/DC変換器36に供給される。また、コンデンサ23の端子間電圧VDCが目標値VDCTになるように、DC/DC変換器36によってコンデンサ23が充電される。 If the commercial AC power supply 21 becomes normal before the rated time Tr passes from the occurrence of the power failure, the operation of the AC / DC converter 34 is resumed, and the AC power from the commercial AC power supply 21 is DC power. And is supplied to the DC load 40 and the DC / DC converter 36. Further, the capacitor 23 is charged by the DC / DC converter 36 such that the terminal voltage VDC of the capacitor 23 becomes the target value V DCT.
 この実施の形態2でも、実施の形態1と同じ効果が得られる。
 なお、直流負荷40の容量Pが一定値であり、予め分かっている場合には、直流出力電圧VOおよび負荷電流ILに基づいて容量Pを求める必要がない。したがって、この場合には、電流検出器6は不要である。
Also in the second embodiment, the same effect as the first embodiment can be obtained.
When the capacity P of the DC load 40 is a fixed value and is known in advance, it is not necessary to obtain the capacity P based on the DC output voltage VO and the load current IL. Therefore, in this case, the current detector 6 is unnecessary.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be understood that the embodiments disclosed herein are illustrative and non-restrictive in every respect. The present invention is shown not by the above description but by the claims, and is intended to include all modifications within the scope and meaning equivalent to the claims.
 1,31 入力端子、2,32 出力端子、3,33 直流端子、4,25 スイッチ、5 交流ライン、 6 電流検出器、7 温度検出器、8,34 AC/DC変換器、9,37 制御装置、11 記憶部、12,41 演算部、13,42 制御部、14 計時部、21 商用交流電源、22 負荷、23 コンデンサ、23a 抵抗素子、23b 容量素子、26,40 直流負荷、36 DC/DC変換器。 1, 31 input terminals, 2, 32 output terminals, 3, 33 DC terminals, 4, 25 switches, 5 AC lines, 6 current detectors, 7 temperature detectors, 8, 34 AC / DC converters, 9, 37 controls Device, 11 storage unit, 12, 41 operation unit, 13, 42 control unit, 14 clock unit, 21 commercial AC power source, 22 load, 23 capacitor, 23a resistance element, 23b capacity element, 26, 40 DC load, 36 DC / DC converter.

Claims (6)

  1.  商用交流電源の交流電圧が正常である第1の場合は、前記商用交流電源からの交流電力を直流電力に変換してコンデンサに蓄え、前記商用交流電源の交流電圧が正常でない第2の場合は、前記コンデンサの直流電力に基づいて予め定められた時間だけ負荷を駆動させる電力変換器と、
     前記コンデンサの特性、その使用条件、およびその使用時間の関係を示す劣化情報が格納された記憶部と、
     前記コンデンサの使用条件および使用時間を検出する第1の検出部と、
     前記劣化情報と前記第1の検出部の検出結果とに基づいて、現時点における前記コンデンサの特性を求め、かつ、現時点における前記コンデンサの特性と負荷容量とに基づいて、前記予め定められた時間だけ前記負荷を駆動させるために必要な、前記コンデンサの端子間電圧の目標値を求める演算部とを備え、
     前記電力変換器は、前記第1の場合には、前記コンデンサの端子間電圧が前記目標値になるように前記コンデンサを充電する、電源装置。
    In the first case where the AC voltage of the commercial AC power supply is normal, AC power from the commercial AC power supply is converted to DC power and stored in a capacitor, and in the second case where the AC voltage of the commercial AC power supply is not normal A power converter for driving a load for a predetermined time based on DC power of the capacitor;
    A storage unit in which deterioration information indicating the relationship between the characteristics of the capacitor, the use condition thereof, and the use time thereof is stored;
    A first detection unit that detects a use condition and a use time of the capacitor;
    The characteristic of the capacitor at the present time is determined based on the deterioration information and the detection result of the first detection unit, and only the predetermined time is determined based on the characteristic of the capacitor at the current time and the load capacity. And a calculation unit for obtaining a target value of the voltage between the terminals of the capacitor, which is necessary to drive the load.
    In the first case, the power converter charges the capacitor such that a voltage across terminals of the capacitor becomes the target value.
  2.  前記コンデンサの特性は、前記コンデンサの静電容量値および内部抵抗値を含む、請求項1に記載の電源装置。 The power supply device according to claim 1, wherein the characteristics of the capacitor include a capacitance value and an internal resistance value of the capacitor.
  3.  前記コンデンサの使用条件は、前記コンデンサの温度および端子間電圧を含む、請求項1または2に記載の電源装置。 The power supply device according to claim 1, wherein a use condition of the capacitor includes a temperature of the capacitor and a voltage between terminals.
  4.  さらに、負荷容量を検出する第2の検出部を備え、
     前記演算部は、現時点における前記コンデンサの特性と、前記第2の検出部によって検出された負荷容量とに基づいて、前記目標値を求める、請求項1から3のいずれか1項に記載の電源装置。
    Furthermore, a second detection unit for detecting a load capacity is provided,
    The power supply according to any one of claims 1 to 3, wherein the calculation unit obtains the target value based on a characteristic of the capacitor at a current time point and a load capacitance detected by the second detection unit. apparatus.
  5.  前記負荷は交流電力によって駆動され、
     前記電力変換器は、
     一方端子が前記商用交流電源からの交流電力を受け、他方端子が前記負荷に接続され、前記第1の場合は導通し、前記第2の場合は非導通になるスイッチと、
     前記スイッチの他方端子と前記コンデンサとの間に設けられ、前記第1の場合は、前記商用交流電源から前記スイッチを介して供給される交流電力を直流電力に変換して前記コンデンサに蓄え、前記第2の場合は、前記コンデンサの直流電力を交流電力に変換して前記負荷に供給するAC/DC変換器とを含み、
     前記AC/DC変換器は、前記第1の場合には、前記コンデンサの端子間電圧が前記目標値になるように前記コンデンサを充電する、請求項1から4のいずれか1項に記載の電源装置。
    The load is driven by AC power,
    The power converter
    A switch in which one terminal receives alternating current power from the commercial alternating current power supply, the other terminal is connected to the load, the first case is conductive, and the second case is nonconductive;
    It is provided between the other terminal of the switch and the capacitor, and in the first case, AC power supplied from the commercial AC power supply through the switch is converted into DC power and stored in the capacitor; The second case includes an AC / DC converter which converts DC power of the capacitor into AC power and supplies the AC power to the load.
    The power supply according to any one of claims 1 to 4, wherein the AC / DC converter charges the capacitor such that a voltage across terminals of the capacitor becomes the target value in the first case. apparatus.
  6.  前記負荷は直流電力によって駆動され、
     前記電力変換器は、
     一方端子が前記商用交流電源からの交流電力を受け、他方端子が前記負荷に接続され、前記第1の場合は前記商用交流電源からの交流電力を直流電力に変換して前記負荷に供給し、前記第2の場合は運転が停止されるAC/DC変換器と、
     前記AC/DC変換器の他方端子と前記コンデンサとの間に設けられ、前記第1の場合は、前記AC/DC変換器によって生成された直流電力を前記コンデンサに蓄え、前記第2の場合は、前記コンデンサの直流電力を前記負荷に供給するDC/DC変換器とを含み、
     前記DC/DC変換器は、前記第1の場合には、前記コンデンサの端子間電圧が前記目標値になるように前記コンデンサを充電する、請求項1から4のいずれか1項に記載の電源装置。
    The load is driven by DC power,
    The power converter
    One terminal receives AC power from the commercial AC power supply, the other terminal is connected to the load, and in the first case, AC power from the commercial AC power supply is converted to DC power and supplied to the load; In the second case, an AC / DC converter whose operation is stopped;
    The capacitor is provided between the other terminal of the AC / DC converter and the capacitor, and in the first case, DC power generated by the AC / DC converter is stored in the capacitor; A DC / DC converter for supplying DC power of the capacitor to the load;
    The power supply according to any one of claims 1 to 4, wherein the DC / DC converter charges the capacitor such that a voltage across terminals of the capacitor becomes the target value in the first case. apparatus.
PCT/JP2017/033485 2017-09-15 2017-09-15 Power supply device WO2019053883A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/033485 WO2019053883A1 (en) 2017-09-15 2017-09-15 Power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/033485 WO2019053883A1 (en) 2017-09-15 2017-09-15 Power supply device

Publications (1)

Publication Number Publication Date
WO2019053883A1 true WO2019053883A1 (en) 2019-03-21

Family

ID=65722648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033485 WO2019053883A1 (en) 2017-09-15 2017-09-15 Power supply device

Country Status (1)

Country Link
WO (1) WO2019053883A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008029064A (en) * 2006-07-19 2008-02-07 Meidensha Corp Apparatus and method of charging electric double-layer capacitor
JP2009065751A (en) * 2007-09-05 2009-03-26 Meidensha Corp Method for compensating dc standby voltage of momentary voltage drop compensator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008029064A (en) * 2006-07-19 2008-02-07 Meidensha Corp Apparatus and method of charging electric double-layer capacitor
JP2009065751A (en) * 2007-09-05 2009-03-26 Meidensha Corp Method for compensating dc standby voltage of momentary voltage drop compensator

Similar Documents

Publication Publication Date Title
JP5486604B2 (en) Uninterruptible power system
JP4151651B2 (en) Inverter device
US8488339B2 (en) Switching power supply
US20090153100A1 (en) Charging control apparatus controlling charging current and control method therefore
JP6410554B2 (en) Switching converter and its control circuit, AC / DC converter, power adapter and electronic device
KR20090029266A (en) Switching regulator and operations control method thereof
JP4845613B2 (en) Battery charger with power capacitor life diagnosis function
JP5822304B2 (en) Charger
TWI545880B (en) Dc/dc converter
JP2010259165A (en) Power supply device, electronic device, and capacitor capacitance estimation method
JP5733931B2 (en) Power supply device and lighting device
KR20200109129A (en) Apparatus And Method For Detecting Fault Of Pre-Charging Relay Of Inverter
CN110677056A (en) Power supply device with electrolytic capacitor
JP5597363B2 (en) Life prediction apparatus, power supply apparatus and life prediction method
JP2011036046A (en) Power supply backup device
JP6880865B2 (en) AC / DC converter control circuit
JP2007057368A (en) Charging apparatus with life diagnostic function of capacitor for electric power
JP5547665B2 (en) Power supply
JP2014117045A (en) Charge pump circuit
WO2019053883A1 (en) Power supply device
JP6178676B2 (en) Control circuit for inverter circuit, inverter device provided with this control circuit, induction heating device provided with this inverter device, and control method
JP2017173306A (en) Electrolytic capacitor capacity diagnostic device
JP2011106987A (en) Electricity source and method for determining useful life of capacitor
JP2001231253A (en) Life predicting circuit and power device
JP2011050120A (en) Power conversion apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17925069

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17925069

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP