JP2008029064A - Apparatus and method of charging electric double-layer capacitor - Google Patents

Apparatus and method of charging electric double-layer capacitor Download PDF

Info

Publication number
JP2008029064A
JP2008029064A JP2006196331A JP2006196331A JP2008029064A JP 2008029064 A JP2008029064 A JP 2008029064A JP 2006196331 A JP2006196331 A JP 2006196331A JP 2006196331 A JP2006196331 A JP 2006196331A JP 2008029064 A JP2008029064 A JP 2008029064A
Authority
JP
Japan
Prior art keywords
voltage
capacitor
electric double
temperature
double layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006196331A
Other languages
Japanese (ja)
Inventor
Hiromichi Ito
裕通 伊藤
Yasuo Kataoka
康夫 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2006196331A priority Critical patent/JP2008029064A/en
Publication of JP2008029064A publication Critical patent/JP2008029064A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Stand-By Power Supply Arrangements (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To secure sufficient compensation time even for wide temperature change of a capacitor, and to extend the service life of the capacitor. <P>SOLUTION: A momentary-voltage-drop compensation device uses an electric double-layer capacitor 5, which is kept in a charged state by a step-up/step-down chopper 6, as a back-up power supply, and supplies electric power from an inverter 4 to a load 2 by short-time rating, if a momentary voltage drop occurs to a power source 1. In this device, a temperature detector 9 detects the present temperature of the capacitor, a temperature-voltage converter 10 converts the temperature into a voltage signal corresponding to the temperature detection value, and a function generator 11 obtains a voltage set value that satisfies the compensation time of short-time rating specification according to the temperature detection value of the capacitor. A charging control device 8 controls the charging voltage of the capacitor according to the voltage set value. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、充電装置によって予め充電しておく電気二重層キャパシタをバックアップ電源とし、必要に応じて負荷に短時間定格で電力を供給する電源装置における電気二重層キャパシタの充電装置および充電方法に関する。   The present invention relates to a charging device and a charging method for an electric double layer capacitor in a power supply device that uses, as a backup power source, an electric double layer capacitor that is charged in advance by a charging device and supplies power to a load for a short time as required.

電気二重層キャパシタ(以下キャパシタ)は、活性炭と電解液との界面に形成される電気二重層に蓄積される電気エネルギーを利用するもので、ファラッドオーダの電気容量を瞬時に充放電できる大容量コンデンサである。用途としてはメモリバックアップ用の小容量品から、電気自動車のパワーアシスト用としての中容量品、そして電力貯蔵用蓄電池の代替電源としての大容量品まで幅広く検討されている。   Electric double layer capacitors (hereinafter referred to as “capacitors”) use electric energy stored in the electric double layer formed at the interface between activated carbon and electrolyte, and are large-capacity capacitors that can instantaneously charge and discharge farad order electric capacity. It is. Applications range from small-capacity products for memory backup to medium-capacity products for power assist in electric vehicles, and large-capacity products as alternative power sources for power storage batteries.

単位キャパシタの耐電圧は、その構成要素である電解液(電解質、溶媒)の電気分解電圧で決まり、水溶液系電解液の場合は約1.2V、有機系電解液の場合は2〜3Vである。溶媒分解電圧以上の電圧を印加するとキャパシタは破壊されるため、高電圧を要求される用途には、単位キャパシタを複数個を直列接続した構成としている。   The withstand voltage of the unit capacitor is determined by the electrolysis voltage of the constituent electrolyte (electrolyte, solvent), and is about 1.2 V for an aqueous electrolyte and 2-3 V for an organic electrolyte. . Since a capacitor is destroyed when a voltage equal to or higher than the solvent decomposition voltage is applied, a plurality of unit capacitors are connected in series for applications requiring a high voltage.

キャパシタは、構造的には、電極とセパレータを渦巻き状に巻き、円筒形ケースに収納する捲回型と、電極セパレータが平板状の平板型があり、平板型は電極、セパレータ、電極、セパレータ、…と交互に積層するバイポーラ構造をとることができ、高電圧用途に適する。   In terms of structure, a capacitor has a wound type in which an electrode and a separator are wound in a spiral shape and accommodated in a cylindrical case, and a flat plate type in which the electrode separator is a flat plate. The flat plate type is an electrode, a separator, an electrode, a separator, A bipolar structure can be stacked alternately and is suitable for high voltage applications.

中容量、大容量の電力貯蔵用途では、ユニットを並列、直列に組み合わせたモジュールを適用させる。   For medium-capacity and large-capacity power storage applications, modules that combine units in parallel and in series are applied.

一方、キャパシタは鉛蓄電池と比較すると、長寿命、無保守、高入出力特性を有しており、電解コンデンサと比較すると、大容量の蓄電が可能であるため、瞬時電圧低下だけでなく、短時間停電のバックアップ電源として利用可能なデバイスとなる。このため、キャパシタの適用製品の一つとして、キャパシタ式瞬時電圧低下補償装置(以下瞬低補償装置と呼ぶ)が検討されている。   On the other hand, capacitors have a long life, no maintenance, and high input / output characteristics compared to lead-acid batteries, and can store large volumes of electricity compared to electrolytic capacitors. It becomes a device that can be used as a backup power source for time outages. For this reason, a capacitor-type instantaneous voltage drop compensator (hereinafter referred to as a voltage sag compensator) has been studied as one of the applied products of capacitors.

図4に瞬低補償装置の概要を示す。同図では、常時は系統(商用電源)1から負荷2に高速遮断スイッチ3を通して電力供給(常時商用給電方式)が行われており、瞬時電圧低下・瞬時停電が検知されたときに、瞬時に高速遮断スイッチ3を解離し、インバータ4を通してキャパシタ5に蓄電された電気エネルギーを供給することで瞬低補償を行う。   FIG. 4 shows an outline of the voltage sag compensator. In this figure, power is always supplied from the grid (commercial power source) 1 to the load 2 through the high-speed cutoff switch 3 (always commercial power supply method), and when an instantaneous voltage drop or instantaneous power failure is detected, it is instantaneous. Dissipation of the high-speed cutoff switch 3 and supply of electrical energy stored in the capacitor 5 through the inverter 4 make compensation for the sag.

この装置の補償時間はキャパシタ5の容量により、通常は1〜60秒までが考えられるが、殆どの瞬低は補償時間2秒以内でまかなうことができる。2秒程度の短時間に大電流を流すため、IRドロップを小さくすることが重要であり、内部抵抗は小さいことが望まれるが、実際の瞬低補償装置では複電後の同期引き入れ時間を含めた2〜3秒の放電能力をもつよう設計される。   The compensation time of this device is usually considered to be 1 to 60 seconds depending on the capacitance of the capacitor 5, but most of the voltage drop can be covered within 2 seconds of compensation time. It is important to reduce the IR drop in order to flow a large current in a short time of about 2 seconds, and it is desirable that the internal resistance be small. However, in the actual voltage sag compensator, the synchronous pull-in time after double current is included. It is designed to have a discharge capacity of 2 to 3 seconds.

キャパシタ5の充電制御は、従来は定電流、または定電力で定格電圧まで行い、その後一定電圧で充電を行っている。さらに、蓄電能力を高るために満充電に達した後も一定時間だけ充電を継続させる方法(例えば、特許文献1参照)、複数の直列接続したキャパシタセルを均等充電する方法なども提案されている。
特開2002−017051号公報
The charging control of the capacitor 5 is conventionally performed up to the rated voltage with a constant current or constant power, and then charged with a constant voltage. Furthermore, in order to increase the storage capacity, a method of continuing charging for a predetermined time after reaching full charge (for example, refer to Patent Document 1), a method of equally charging a plurality of capacitor cells connected in series, and the like have been proposed. Yes.
JP 2002-017051 A

前記のように、キャパシタの充電制御は、定電流、または定電力で定格電圧まで行い、その後一定電圧で充電を行っている。この一定電圧まで充電されたキャパシタをバックアップ電源として負荷に放電する場合、図5に瞬低補償時に定電力放電を行っているキャパシタの電圧および電流変化の例を示すように、キャパシタの電圧は充電時の一定電圧から、放電開始でそのIR(放電電流I×キャパシタの内部抵抗R)ドロップ分だけ低下し、この電圧から放電時間の経過と共に電圧が低下していき、バックアップ終了時(放電電流が零)にIRドロップ分だけ戻る。   As described above, the charging control of the capacitor is performed up to the rated voltage with a constant current or constant power, and then charged with a constant voltage. When a capacitor charged to a certain voltage is discharged to a load as a backup power source, the voltage of the capacitor is charged as shown in FIG. When the discharge starts, the voltage drops by the IR (discharge current I × capacitor internal resistance R) drop from the constant voltage at the beginning of the discharge. Return to zero) by the IR drop.

ところが、季節や昼夜の違いにより環境温度が変化し、これによってキャパシタに温度変化が生じると、低温時はキャパシタの内部抵抗が増大することにより、IRドロップが増加し、使用電圧範囲まで低下する時間(放電可能時間)が短くなる。逆に、高温時はIRドロップが小さくなることで放電可能時間は長くなり、温度によって補償時間が変わってしまう。キャパシタの温度変化にも十分な補償時間を確保するには、キャパシタ容量に余裕を持たせることが必要になるが、キャパシタの大型化、コストアップなどの問題が残る。   However, when the environmental temperature changes due to the difference in season or day and night, and this causes a change in temperature of the capacitor, the internal resistance of the capacitor increases at low temperatures, so that the IR drop increases and the time to drop to the operating voltage range (Dischargeable time) is shortened. On the contrary, when the temperature is high, the IR drop becomes small and the dischargeable time becomes long, and the compensation time changes depending on the temperature. In order to ensure a sufficient compensation time for the temperature change of the capacitor, it is necessary to provide a sufficient capacity for the capacitor, but problems such as an increase in the size of the capacitor and an increase in cost remain.

また、キャパシタは、高温課電状態に置かれると、その劣化の進み度合いが大きくなり、期待寿命到達前に機能低下を起こす問題があった。   Further, when the capacitor is placed in a high temperature applied state, the degree of progress of the deterioration becomes large, and there is a problem that the function is deteriorated before reaching the expected life.

これらの対策として、キャパシタを温度管理、すなわち、低温時にはヒータにより加温し、高温時にはエアコンやクーラにより冷却することが考えられる。しかし、これら対策には、大掛かりなヒータやエアコン設備を必要とし、ランニングコスト(電力消費量)の増大、設備増設による装置のコストアップおよび設置スペースの確保が問題になる。   As countermeasures, it is conceivable that the capacitor is temperature-controlled, that is, heated by a heater at a low temperature and cooled by an air conditioner or a cooler at a high temperature. However, these measures require large-scale heaters and air conditioner facilities, which increase the running cost (power consumption), increase the cost of the equipment due to the additional equipment, and secure the installation space.

本発明の目的は、上記の課題を解決した電気二重層キャパシタの充電装置および充電方法を提供することにある。   The objective of this invention is providing the charging device and charging method of an electric double layer capacitor which solved said subject.

本発明は、前記の課題を解決するため、電気二重層キャパシタの温度を検出し、このキャパシタの温度検出値に応じて短時間定格の仕様の補償時間を満たす電圧設定値でキャパシタを充電しておくようにしたもので、以下の装置および方法を特徴とする。   In order to solve the above problems, the present invention detects the temperature of an electric double layer capacitor and charges the capacitor with a voltage setting value that satisfies the compensation time of the short-time rated specification according to the temperature detection value of the capacitor. It is characterized by the following apparatus and method.

(1)充電装置によって予め充電しておく電気二重層キャパシタをバックアップ電源とし、必要に応じて負荷に短時間定格で電力を供給する電源装置において、
前記充電装置は、
前記電気二重層キャパシタの現在温度を検出する温度検出手段と、
前記温度検出手段による前記電気二重層キャパシタの温度検出値に応じて、前記短時間定格仕様の補償時間を満たす電圧設定値を得る関数発生手段と、
前記関数発生手段に得る前記電圧設定値に従って前記電気二重層キャパシタの充電電圧を制御する充電制御手段と、
を備えたことを特徴とする電気二重層キャパシタの充電装置。
(1) In a power supply apparatus that uses an electric double layer capacitor that is charged in advance by a charging apparatus as a backup power supply, and supplies power to a load at a short-time rating as required.
The charging device is:
Temperature detecting means for detecting a current temperature of the electric double layer capacitor;
Function generating means for obtaining a voltage setting value that satisfies the compensation time of the short-time rated specification according to the temperature detection value of the electric double layer capacitor by the temperature detection means;
Charging control means for controlling the charging voltage of the electric double layer capacitor according to the voltage setting value obtained in the function generating means;
A charging device for an electric double layer capacitor, comprising:

(2)前記関数発生手段は、前記電気二重層キャパシタの温度が低い場合にキャパシタの定格電圧を超える電圧設定値を得る手段を設け、
前記充電制御手段は、前記関数発生手段に得る前記電圧設定値に従って前記電気二重層キャパシタの充電電圧を制御する手段を設けたことを特徴とする電気二重層キャパシタの充電装置。
(2) The function generating means is provided with means for obtaining a voltage set value exceeding the rated voltage of the capacitor when the temperature of the electric double layer capacitor is low,
The charging device for an electric double layer capacitor, wherein the charging control means includes means for controlling a charging voltage of the electric double layer capacitor according to the voltage setting value obtained by the function generating means.

(3)充電装置によって予め充電しておく電気二重層キャパシタをバックアップ電源とし、必要に応じて負荷に短時間定格で電力を供給する電源装置において、
前記充電装置は、
前記電気二重層キャパシタの現在温度を検出する温度検出過程と、
前記温度検出過程による前記電気二重層キャパシタの温度検出値に応じて、前記短時間定格仕様の補償時間を満たす電圧設定値を得る関数発生過程と、
前記関数発生過程に得る前記電圧設定値に従って前記電気二重層キャパシタの充電電圧を制御する充電制御過程と、
を備えたことを特徴とする電気二重層キャパシタの充電方法。
(3) In a power supply apparatus that uses an electric double layer capacitor that is charged in advance by a charging apparatus as a backup power supply and supplies power to a load at a short-time rating as required.
The charging device is:
A temperature detecting process for detecting a current temperature of the electric double layer capacitor;
In accordance with the temperature detection value of the electric double layer capacitor by the temperature detection process, a function generation process for obtaining a voltage setting value that satisfies the compensation time of the short-time rated specification;
A charge control step of controlling a charge voltage of the electric double layer capacitor according to the voltage setting value obtained in the function generation step;
An electric double layer capacitor charging method comprising:

(4)前記関数発生過程は、前記電気二重層キャパシタの温度が低い場合にキャパシタの定格電圧を超える電圧設定値を得る過程を設け、
前記充電制御過程は、前記関数発生過程に得る前記電圧設定値に従って前記電気二重層キャパシタの充電電圧を制御する過程を設けたことを特徴とする電気二重層キャパシタの充電方法。
(4) The function generation process includes a process of obtaining a voltage setting value exceeding a rated voltage of the capacitor when the temperature of the electric double layer capacitor is low;
The method of charging an electric double layer capacitor, wherein the charge control step includes a step of controlling a charge voltage of the electric double layer capacitor according to the voltage setting value obtained in the function generation step.

以上のとおり、本発明によれば、電気二重層キャパシタの温度を検出し、このキャパシタの温度検出値に応じて短時間定格の仕様の補償時間を満たす電圧設定値でキャパシタを充電しておくようにしたため、以下の効果がある。   As described above, according to the present invention, the temperature of the electric double layer capacitor is detected, and the capacitor is charged with a voltage setting value that satisfies the compensation time of the short-time rated specification according to the temperature detection value of the capacitor. Therefore, the following effects are obtained.

・キャパシタは、高温時に内部抵抗が下がり、IRドロップが小さくなるため、印加電圧を下げることが可能になり、キャパシタの寿命が長くなり、瞬低補償装置の補償可能期間が延びる。   Since the internal resistance of the capacitor decreases and IR drop decreases at high temperatures, the applied voltage can be lowered, the life of the capacitor is extended, and the compensation period of the instantaneous voltage drop compensator is extended.

・キャパシタは、低温時にIRドロップが大きくなるが、劣化反応は抑えられることで印加電圧を上げることが可能になり、低温側の使用温度範囲が広がる。   ・ Although the IR drop of the capacitor increases at low temperatures, the applied voltage can be increased by suppressing the deterioration reaction, and the operating temperature range on the low temperature side is expanded.

・使用温度範囲が広がり、エアコン等の補機としてのキャパシタ温度制御装置が不要になり、装置の低コスト化、消費電力低減によるランニングコスト低減となる。   -The operating temperature range is widened, and a capacitor temperature control device as an auxiliary machine such as an air conditioner is no longer required.

図1は、本発明の実施形態を示す装置構成図である。本実施形態は、50kVA−2秒補償のキャパシタ式瞬低補償装置に適用した場合であり、図4と同等のものは同一符号で示す。   FIG. 1 is an apparatus configuration diagram showing an embodiment of the present invention. This embodiment is a case where the present invention is applied to a capacitor type voltage sag compensator of 50 kVA-2 seconds compensation, and the same components as those in FIG.

昇降圧チョッパ6は、その入出力端をインバータ4の直流側に接続し、キャパシタ5の低圧充電制御と高圧放電制御を可能にする。このうち、キャパシタ5の充電には、電源1からインバータ4の環流用ダイオードを通して充電される平滑コンデンサCを直流電源として、スイッチQ1のチョッピング制御によって、リアクトルLを通した充電とダイオードD2を通したフライホイール充電によりキャパシタ5を充電する。キャパシタ5からの放電には、スイッチQ2のチョッピング制御によって、キャパシタ5からリアクトルLとダイオードD1を通して平滑コンデンサCへの放電を得、インバータ4を通して負荷2への給電を可能にする。   The step-up / down chopper 6 has its input / output terminal connected to the DC side of the inverter 4 to enable low-voltage charge control and high-voltage discharge control of the capacitor 5. Among them, the capacitor 5 is charged by using the smoothing capacitor C charged from the power source 1 through the recirculation diode of the inverter 4 as a DC power source and charging through the reactor L and the diode D2 by chopping control of the switch Q1. The capacitor 5 is charged by flywheel charging. For discharging from the capacitor 5, the discharge from the capacitor 5 to the smoothing capacitor C is obtained through the reactor L and the diode D 1 by chopping control of the switch Q 2, and power supply to the load 2 is enabled through the inverter 4.

キャパシタ5の放電制御は、瞬低補償制御部7が負荷電圧低下を検出したときに、高速遮断スイッチ3を解離すると共に、スイッチQ2をチョッピング制御し、インバータ4に電源1と同期した周波数および同程度の電圧にした交流出力を得る。   When the voltage drop compensation controller 7 detects a drop in the load voltage, the capacitor 5 is controlled to dissociate the high-speed cutoff switch 3 and to chop the switch Q2 so that the inverter 4 is synchronized with the frequency synchronized with the power source 1. AC output with a moderate voltage is obtained.

キャパシタ5の充電制御は、充電制御部8によって、スイッチQ1のチョッピング制御でなされる。この充電制御には、キャパシタ5の温度を検出する温度検出手段になる温度検出器9および温度−電圧信号変換器10と、この温度検出値Tに応じた充電電圧設定値に変換する関数発生器11を設け、関数発生器11の出力とキャパシタ5の電圧検出値との比較によりキャパシタ5の充電を制御する。   The charging control of the capacitor 5 is performed by the charging control unit 8 by the chopping control of the switch Q1. In this charge control, a temperature detector 9 and a temperature-voltage signal converter 10 which are temperature detecting means for detecting the temperature of the capacitor 5, and a function generator for converting into a charge voltage set value corresponding to the temperature detection value T 11, and charging of the capacitor 5 is controlled by comparing the output of the function generator 11 with the voltage detection value of the capacitor 5.

温度検出器9は、温度センサをキャパシタ5のうちの代表的キャパシタユニットに貼り付けて温度信号Tを得る。温度−電圧信号変換器10は、この温度信号Tに対応する電圧信号Vtに変換する。関数発生器11は、図2に示す関数演算またはテーブルデータを有して充電電圧設定値V*を得る。   The temperature detector 9 obtains a temperature signal T by attaching a temperature sensor to a representative capacitor unit of the capacitors 5. The temperature-voltage signal converter 10 converts the temperature signal T into a voltage signal Vt corresponding to the temperature signal T. The function generator 11 has the function calculation or table data shown in FIG. 2 to obtain the charging voltage set value V *.

図2に示す充電設定電圧とキャパシタ温度の関数特性は、キャパシタ温度に応じた内部抵抗から、短時間定格仕様の電力で補償時間だけ放電したときの、電力変換装置(昇降圧チョッパ6とインバータ4)の使用可能下限電圧(例えば160V)を上回る最低充電設定電圧を予め求めておくもので、現在のキャパシタ5の温度が高いほどその充電設定電圧V*を低くする。   The function characteristic of the charge setting voltage and the capacitor temperature shown in FIG. 2 is that the power converter (the step-up / step-down chopper 6 and the inverter 4) is discharged from the internal resistance corresponding to the capacitor temperature with a short-time rated power for the compensation time. ), The minimum charge setting voltage exceeding the usable lower limit voltage (for example, 160V) is obtained in advance. The higher the current temperature of the capacitor 5, the lower the charge setting voltage V *.

なお、キャパシタ5の温度が昼夜間で大きく変化する場合など、その温度が閾値レベル以上に変化した場合には、その温度変化に応じて、充電制御部8が放電または充電制御を適宜実行し、現在の温度に応じた充電電圧にしておく。ただし、温度が高めに変化してキャパシタ5からの放電には、平滑コンデンサCでの直流電圧が過電圧になることが予想される場合、平滑コンデンサCに並列に放電抵抗の設置やインバータ4の運転で放電を行う。   In addition, when the temperature of the capacitor 5 changes greatly between day and night, when the temperature changes to a threshold level or higher, the charge control unit 8 appropriately executes discharge or charge control according to the temperature change, Set the charging voltage according to the current temperature. However, if the DC voltage at the smoothing capacitor C is expected to become an overvoltage for the discharge from the capacitor 5 due to the change in temperature, the discharge resistor is installed in parallel with the smoothing capacitor C or the inverter 4 is operated. Discharge with.

図3は、キャパシタ5の温度が10℃〜40℃の場合の上記充電設定電圧による、瞬低補償時にキャパシタ5が定格電力で放電を行った際の電圧特性を示す。ここで、キャパシタの定格電圧は、400Vであり、キャパシタ温度10℃では定格電圧で負荷の同期引き入れ時間を含めた3秒放電が可能であるが、20℃では充電設定電圧を361Vに、30℃では332Vに、40℃では305Vに低減させても仕様を満足することができた。   FIG. 3 shows voltage characteristics when the capacitor 5 is discharged at rated power during the sag compensation by the charge setting voltage when the temperature of the capacitor 5 is 10 ° C. to 40 ° C. Here, the rated voltage of the capacitor is 400V, and at the capacitor temperature of 10 ° C., the rated voltage can be discharged for 3 seconds including the synchronous pull-in time. However, at 20 ° C., the charge setting voltage is 361V and 30 ° C. However, the specifications could be satisfied even if the voltage was reduced to 332V and 305V at 40 ° C.

一般に、キャパシタは印加電圧が高いほど劣化が大きく、低いほど寿命は長くなり、温度に関しては高いほど劣化が大きく、低いほど寿命は長くなる。従来はどのような温度条件においてもキャパシタ5に定格電圧(上記の例では400V)を印加していたが、本実施形態の充電方式では温度が高いときは充電電圧を下げることにより瞬低補償装置としての寿命を格段に延ばすことが可能になる。   In general, the higher the applied voltage, the greater the degradation of the capacitor, the lower the lifetime, the longer the lifetime, the higher the temperature, the greater the degradation, and the lower, the longer the lifetime. Conventionally, the rated voltage (400 V in the above example) is applied to the capacitor 5 under any temperature condition. However, in the charging method of this embodiment, the voltage drop compensation device is lowered by lowering the charging voltage when the temperature is high. As a result, it is possible to significantly extend the service life.

また、従来では、瞬低補償装置の寿命を延ばすためにエアコンを取り付け、30℃以下に制御している例もあったが、本実施形態では温度が高いときには充電電圧を下げることで劣化を抑えることが可能になり、温度制御が不要になり、結果として装置の価格が下がり、温度調節装置の運転に伴う電力損失が無くなることで、ランニングコスト低減を図ることができる。また、温度調節装置の設置スペースの確保も不要になる。   In addition, in the past, there was an example in which an air conditioner was attached to extend the life of the voltage sag compensator and controlled to 30 ° C. or less, but in this embodiment, the deterioration is suppressed by lowering the charging voltage when the temperature is high. As a result, the temperature control becomes unnecessary, and as a result, the price of the apparatus is lowered, and the power loss associated with the operation of the temperature control apparatus is eliminated, so that the running cost can be reduced. In addition, it is not necessary to secure an installation space for the temperature control device.

さらに、上記の瞬低補償装置は、キャパシタ温度10℃以上で仕様を満たす装置であるが、本実施形態では、5℃の時に充電設定電圧を430Vにする制御を加えて装置を運転した。この結果、図3に示す5℃の放電電圧特性では、仕様の補償時間を満たすことができた。このときの充電設定電圧430Vはキャパシタ5の定格電圧を超える電圧ではあるが、キャパシタ温度が低いことによりその劣化が抑えられ、装置の寿命を短くさせることはないことが長期間の評価試験により確認された。本制御を採用することにより、キャパシタ式瞬低補償装置の使用温度範囲を低温側に拡大させることができる。   Further, the above sag compensator is a device that satisfies the specifications at a capacitor temperature of 10 ° C. or higher. In this embodiment, the device was operated with a control for setting the charge setting voltage to 430 V at 5 ° C. As a result, the discharge time characteristic at 5 ° C. shown in FIG. The charge setting voltage 430V at this time is a voltage exceeding the rated voltage of the capacitor 5, but it is confirmed by a long-term evaluation test that the deterioration is suppressed by the low capacitor temperature and the life of the device is not shortened. It was done. By adopting this control, the operating temperature range of the capacitor type voltage sag compensator can be expanded to the low temperature side.

なお、以上の実施形態では、電気二重層キャパシタを瞬時電圧低下補償装置に適用した場合について説明したが、本発明の制御方式および方法は、瞬低補償装置に限られるものでなく、電気二重層キャパシタをバックアップ電源とし、必要に応じて負荷に短時間定格で電力を供給する電源装置、例えば充放電時間が1分以内の急速な動作を求められるハイブリッド自動車、電気鉄道分野におけるき電線の電圧低下対策や回生電車の回生失効を防止する回生電力吸収装置等にも適用して同等の作用効果を得ることができる。   In the above embodiment, the case where the electric double layer capacitor is applied to the instantaneous voltage drop compensator has been described. However, the control method and method of the present invention are not limited to the instantaneous voltage compensator, and the electric double layer is used. A power supply device that uses a capacitor as a backup power source and supplies power to the load for a short time as required, such as a hybrid vehicle that requires rapid operation with a charge / discharge time of less than 1 minute, or a voltage drop in the feeder in the electric railway field It can be applied to countermeasures and regenerative power absorption devices that prevent regenerative trains from being revoked, and the same effects can be obtained.

瞬低補償装置へ適用した本発明の実施形態を示すキャパシタの充電装置の例。The example of the charging device of the capacitor which shows embodiment of this invention applied to the sag compensator. 実施形態における充電設定電圧とキャパシタ温度の関数特性。The function characteristic of the charge setting voltage and capacitor temperature in embodiment. 各温度条件における設定電圧と瞬低補償時のキャパシタ電圧特性。Capacitor voltage characteristics when compensating for the set voltage and sag drop under each temperature condition. 瞬低補償装置の概要を示す図。The figure which shows the outline | summary of a voltage drop compensation apparatus. 瞬低補償時の電圧・電流特性の例。An example of voltage / current characteristics during sag compensation.

符号の説明Explanation of symbols

1 商用電源
2 負荷
3 高速遮断スイッチ
4 インバータ
5 電気二重層キャパシタ
6 昇降圧チョッパ
7 瞬低補償制御部
8 充電制御部
9 温度検出器
10 温度−電圧変換器
11 関数発生器
DESCRIPTION OF SYMBOLS 1 Commercial power supply 2 Load 3 High speed interruption | blocking switch 4 Inverter 5 Electric double layer capacitor 6 Buck-boost chopper 7 Voltage drop compensation control part 8 Charge control part 9 Temperature detector 10 Temperature-voltage converter 11 Function generator

Claims (4)

充電装置によって予め充電しておく電気二重層キャパシタをバックアップ電源とし、必要に応じて負荷に短時間定格で電力を供給する電源装置において、
前記充電装置は、
前記電気二重層キャパシタの現在温度を検出する温度検出手段と、
前記温度検出手段による前記電気二重層キャパシタの温度検出値に応じて、前記短時間定格仕様の補償時間を満たす電圧設定値を得る関数発生手段と、
前記関数発生手段に得る前記電圧設定値に従って前記電気二重層キャパシタの充電電圧を制御する充電制御手段と、
を備えたことを特徴とする電気二重層キャパシタの充電装置。
In a power supply device that uses an electric double layer capacitor that is charged in advance by a charging device as a backup power source, and supplies power to the load at a short time as required,
The charging device is:
Temperature detecting means for detecting a current temperature of the electric double layer capacitor;
Function generating means for obtaining a voltage setting value that satisfies the compensation time of the short-time rated specification according to the temperature detection value of the electric double layer capacitor by the temperature detection means;
Charging control means for controlling the charging voltage of the electric double layer capacitor according to the voltage setting value obtained in the function generating means;
A charging device for an electric double layer capacitor, comprising:
前記関数発生手段は、前記電気二重層キャパシタの温度が低い場合にキャパシタの定格電圧を超える電圧設定値を得る手段を設け、
前記充電制御手段は、前記関数発生手段に得る前記電圧設定値に従って前記電気二重層キャパシタの充電電圧を制御する手段を設けたことを特徴とする請求項1に記載の電気二重層キャパシタの充電装置。
The function generating means is provided with means for obtaining a voltage set value exceeding the rated voltage of the capacitor when the temperature of the electric double layer capacitor is low,
2. The electric double layer capacitor charging device according to claim 1, wherein the charge control means includes means for controlling a charge voltage of the electric double layer capacitor in accordance with the voltage setting value obtained by the function generating means. .
充電装置によって予め充電しておく電気二重層キャパシタをバックアップ電源とし、必要に応じて負荷に短時間定格で電力を供給する電源装置において、
前記充電装置は、
前記電気二重層キャパシタの現在温度を検出する温度検出過程と、
前記温度検出過程による前記電気二重層キャパシタの温度検出値に応じて、前記短時間定格仕様の補償時間を満たす電圧設定値を得る関数発生過程と、
前記関数発生過程に得る前記電圧設定値に従って前記電気二重層キャパシタの充電電圧を制御する充電制御過程と、
を備えたことを特徴とする電気二重層キャパシタの充電方法。
In a power supply device that uses an electric double layer capacitor that is charged in advance by a charging device as a backup power source, and supplies power to the load at a short time as required,
The charging device is:
A temperature detecting process for detecting a current temperature of the electric double layer capacitor;
In accordance with the temperature detection value of the electric double layer capacitor by the temperature detection process, a function generation process for obtaining a voltage setting value that satisfies the compensation time of the short-time rated specification;
A charge control step of controlling a charge voltage of the electric double layer capacitor according to the voltage setting value obtained in the function generation step;
An electric double layer capacitor charging method comprising:
前記関数発生過程は、前記電気二重層キャパシタの温度が低い場合にキャパシタの定格電圧を超える電圧設定値を得る過程を設け、
前記充電制御過程は、前記関数発生過程に得る前記電圧設定値に従って前記電気二重層キャパシタの充電電圧を制御する過程を設けたことを特徴とする請求項3に記載の電気二重層キャパシタの充電方法。
The function generation process includes a process of obtaining a voltage setting value exceeding a rated voltage of the capacitor when the temperature of the electric double layer capacitor is low,
4. The method of charging an electric double layer capacitor according to claim 3, wherein the charge control step includes a step of controlling a charge voltage of the electric double layer capacitor according to the voltage setting value obtained in the function generation step. .
JP2006196331A 2006-07-19 2006-07-19 Apparatus and method of charging electric double-layer capacitor Pending JP2008029064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006196331A JP2008029064A (en) 2006-07-19 2006-07-19 Apparatus and method of charging electric double-layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006196331A JP2008029064A (en) 2006-07-19 2006-07-19 Apparatus and method of charging electric double-layer capacitor

Publications (1)

Publication Number Publication Date
JP2008029064A true JP2008029064A (en) 2008-02-07

Family

ID=39119160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006196331A Pending JP2008029064A (en) 2006-07-19 2006-07-19 Apparatus and method of charging electric double-layer capacitor

Country Status (1)

Country Link
JP (1) JP2008029064A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011030397A (en) * 2009-07-29 2011-02-10 Shinmaywa Industries Ltd Motor-driven system having power storage device
JP2012091629A (en) * 2010-10-26 2012-05-17 Nissan Motor Co Ltd Backup power source system
US8400026B2 (en) 2009-08-07 2013-03-19 Samsung Electronics Co., Ltd. Circuits and methods for controlling supercapacitors and kits for providing the same
JP2013106393A (en) * 2011-11-11 2013-05-30 Shizuki Electric Co Inc Instantaneous voltage drop compensation device
JP2013126313A (en) * 2011-12-15 2013-06-24 Panasonic Corp Capacitor device
JP2016508363A (en) * 2012-12-24 2016-03-17 マグナ クロージャーズ インコーポレイテッド Backup energy source and associated control method for automotive systems
WO2019053883A1 (en) * 2017-09-15 2019-03-21 東芝三菱電機産業システム株式会社 Power supply device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011030397A (en) * 2009-07-29 2011-02-10 Shinmaywa Industries Ltd Motor-driven system having power storage device
US8400026B2 (en) 2009-08-07 2013-03-19 Samsung Electronics Co., Ltd. Circuits and methods for controlling supercapacitors and kits for providing the same
JP2012091629A (en) * 2010-10-26 2012-05-17 Nissan Motor Co Ltd Backup power source system
JP2013106393A (en) * 2011-11-11 2013-05-30 Shizuki Electric Co Inc Instantaneous voltage drop compensation device
JP2013126313A (en) * 2011-12-15 2013-06-24 Panasonic Corp Capacitor device
JP2016508363A (en) * 2012-12-24 2016-03-17 マグナ クロージャーズ インコーポレイテッド Backup energy source and associated control method for automotive systems
JP2018191513A (en) * 2012-12-24 2018-11-29 マグナ クロージャーズ インコーポレイテッド Backup energy source for vehicle system and related control method
US10174527B2 (en) 2012-12-24 2019-01-08 Magna Closures Inc. Backup energy source for automotive systems and related control method
US10378251B2 (en) 2012-12-24 2019-08-13 Magna Closures Inc. Electronic latch of a motor-vehicle closure device, provided with an improved backup energy source
WO2019053883A1 (en) * 2017-09-15 2019-03-21 東芝三菱電機産業システム株式会社 Power supply device

Similar Documents

Publication Publication Date Title
US8907522B2 (en) Grid-connected power storage system and method for controlling grid-connected power storage system
JP5028517B2 (en) DC power supply system
US8716891B2 (en) Energy storage system connected to a grid and multiple power generation modules and method of controlling the same
JP5798887B2 (en) Power storage system
CN106170902B (en) Power-supply system
JP2008029064A (en) Apparatus and method of charging electric double-layer capacitor
KR102196639B1 (en) Energy storage device using lithium battery and supercapacitor and method of output stabilizing thereof
JP2021152551A (en) Load test system
Fahmi et al. The performance of a solar PV system using supercapacitor and varying loads
KR101688485B1 (en) Energy storage apparatus
Zhou et al. Degradation effect on reliability evaluation of aluminum electrolytic capacitor in backup power converter
US10576835B2 (en) Energy storage device, transport apparatus, and control method
JP5050742B2 (en) DC standby voltage compensation method for instantaneous voltage drop compensator
JP4583112B2 (en) Voltage sag compensator and electric double layer capacitor charging method
Al Sakka et al. Characterization of supercapacitors matrix
KR102331300B1 (en) Power converter for controlling power flow of hydrogen generating system based on renewable energy
Sehil et al. Effective power management in a stand-alone PV system
Choudhury et al. Robust State vector controller design for energy management scheme of a hybrid power system based on more-electric aircraft
RU2666523C1 (en) Uninterrupted power supply source for on-board equipment
Ziaeinejad et al. Design of a fuel cell-based battery extender auxiliary power unit for a vehicular microgrid
Lücken et al. Integration scenarios to improve fuel cell dynamics for modern aircraft application
JP5135064B2 (en) Hybrid power supply and power unit using the same
JP2009225516A (en) Capacitor charging/discharging monitoring control device
CN106301208B (en) Solar energy storage system and control method thereof
Ishibashi et al. Control method of energy storage system to increase output power from power conditioning systems (PCS)