JP2008061469A - Energy storage device using electric double-layer capacitor - Google Patents

Energy storage device using electric double-layer capacitor Download PDF

Info

Publication number
JP2008061469A
JP2008061469A JP2006238586A JP2006238586A JP2008061469A JP 2008061469 A JP2008061469 A JP 2008061469A JP 2006238586 A JP2006238586 A JP 2006238586A JP 2006238586 A JP2006238586 A JP 2006238586A JP 2008061469 A JP2008061469 A JP 2008061469A
Authority
JP
Japan
Prior art keywords
voltage
electric double
capacitor
capacitor bank
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006238586A
Other languages
Japanese (ja)
Inventor
Yasuhiro Nakai
靖博 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2006238586A priority Critical patent/JP2008061469A/en
Publication of JP2008061469A publication Critical patent/JP2008061469A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an energy storage device that uses an electric double-layer capacitor, capable of completely and safely performing equalizing charge, using a relatively simple circuit configuration. <P>SOLUTION: The device includes a capacitor bank 1 which is formed by connecting m units of electric double-layer capacitors in parallel and connecting them in series in n stages, an energy conversion device 2 which is connected to an AC power supply and can control rapid charging/discharging of the capacitor bank 1, an equalizing charge assist device 3 which applies anequalizing voltage to each series stage of the capacitor bank 1, and a voltage detecting device 5 which detects the voltage in each series stage of the capacitor bank 1. The capacitor bank 1 is charged by the energy conversion device 2, when all the detected values of the voltage detecting device 5 are a predetermined value or lower; and the capacitor bank 1 is charged by the equalizing charge assist device 3, when at least one of the detected values of the voltage detecting device 5 exceeds the predetermined voltage value. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、複数個の電気2重層コンデンサを直列接続したコンデンサバンクを備えた電気2重層コンデンサを用いたエネルギー貯蔵装置に関する。   The present invention relates to an energy storage device using an electric double layer capacitor having a capacitor bank in which a plurality of electric double layer capacitors are connected in series.

電気2重層コンデンサ単体では、その容量が数μF、また定格電圧が2.5V程度と小容量・低電圧である。このためエネルギー貯蔵装置用等に数kVA以上の容量を適用する場合、定格容量・定格電圧が同等な電気2重層コンデンサを多数並列・直列接続してコンデンサバンクを構築するようにしている。   A single electric double layer capacitor has a small capacity and low voltage of several μF and a rated voltage of about 2.5V. For this reason, when a capacity of several kVA or more is applied to an energy storage device or the like, a capacitor bank is constructed by connecting a large number of electric double layer capacitors having the same rated capacity and rated voltage in parallel and in series.

一方、この電気2重層コンデンサは、その容量や内部インピーダンスの許容値が大きいため、コンデンサバンクを一括して充電を行うとき、あるいは急速大電流充電/放電を繰り返すと、コンデンサ個々間で充電電圧不均等が発生するという問題があった。   On the other hand, since this electric double layer capacitor has a large capacity and internal impedance tolerance, when charging a capacitor bank all at once, or when rapid high-current charging / discharging is repeated, the charging voltage between capacitors does not increase. There was a problem that equality occurred.

コンデンサ個々間で充電電圧が不均等になると、コンデンサバンク全体で満充電が出来ず、エネルギー貯蔵効率が低下する。コンデンサの貯蔵エネルギーは充電電圧の二乗に比例するため、極力コンデンサの充電電圧を均等に満充電させることが望ましい。また一部のコンデンサが定格電圧以上に充電されると、コンデンサの液漏れ・破損等、故障の原因にもなり、エネルギー貯蔵装置としての信頼性を低下させるという問題があった。   If the charging voltage is uneven among the individual capacitors, the entire capacitor bank cannot be fully charged, and the energy storage efficiency decreases. Since the stored energy of the capacitor is proportional to the square of the charging voltage, it is desirable to fully charge the charging voltage of the capacitor as much as possible. In addition, if some capacitors are charged to a voltage higher than the rated voltage, it may cause malfunctions such as leakage and damage of the capacitors, resulting in a problem that reliability as an energy storage device is lowered.

上記問題を解決するために、コンデンサバンクの直列段ごとに均等充電用の制御ユニットを設け、個々の直列段が所定の電圧となるように制御する提案が為されている(例えば、特許文献1参照。)。
特開2003−235173号公報(第3−4頁、図4)
In order to solve the above problem, a proposal has been made to provide a control unit for equal charge for each series stage of the capacitor bank and control each series stage to have a predetermined voltage (for example, Patent Document 1). reference.).
Japanese Patent Laying-Open No. 2003-235173 (page 3-4, FIG. 4)

特許文献1に示された手法は、コンデンサバンク全体が所定の電圧値になるまでは主充電回路で一括充電を行い、それ以降は、各直列段に設けられた補助充電制御回路によって各直列段の電圧が所望の値となるように直列段ごとに充電制御するようにしている。   In the method disclosed in Patent Document 1, the main charging circuit performs batch charging until the entire capacitor bank reaches a predetermined voltage value, and thereafter, each series stage is operated by an auxiliary charging control circuit provided in each series stage. The charging control is performed for each series stage so that the voltage of the above becomes a desired value.

しかしながら、この手法によれば、主充電回路から補助充電制御回路へ切替るタイミングを決める切替電圧をコンデンサバンク全体の電圧によって検出していたため、場合によっては、特定の直列段のコンデンサ電圧が過大になる恐れがあった。また補助充電制御回路が個別に充電制御を行うため、回路構成が複雑になるという問題があった。   However, according to this method, since the switching voltage that determines the timing for switching from the main charging circuit to the auxiliary charging control circuit is detected by the voltage across the capacitor bank, the capacitor voltage of a specific series stage may be excessive in some cases. There was a fear. Further, since the auxiliary charging control circuit individually controls charging, there is a problem that the circuit configuration becomes complicated.

本発明は上記問題点に鑑みて為されたものであり、比較的簡単な回路構成で且つ安全に均等充電を行うことが可能な電気2重層コンデンサを用いたエネルギー貯蔵装置を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide an energy storage device using an electric double layer capacitor that can be charged uniformly and safely with a relatively simple circuit configuration. And

上記目的を達成するために、本発明の電気2重層コンデンサを用いたエネルギー貯蔵装置は、単位電気2重層コンデンサをm(mは1以上の整数)個並列接続したものをn(nは2以上の整数)段直列接続したコンデンサバンクと、交流電源に接続され前記コンデンサバンクの急速充放電を制御することができるエネルギー変換装置と、前記コンデンサバンクの各々の直列段に均等電圧を印加する均等充電補助装置と、前記コンデンサバンクの各々の直列段の電圧を検出する電圧検出手段とを具備し、前記電圧検出手段の検出値全てが所定値以下のときは前記エネルギー変換装置によって前記コンデンサバンクを充電し、前記電圧検出手段の検出値のうちの少なくとも1つが所定電圧値を超えたとき、前記均等充電補助装置によって前記コンデンサバンクを充電するようにしたことを特徴としている。   In order to achieve the above object, an energy storage device using an electric double layer capacitor according to the present invention includes n (n is 2 or more) units m (m is an integer of 1 or more) connected in parallel. Integer) stages of capacitor banks connected in series, an energy converter connected to an AC power source and capable of controlling rapid charging / discharging of the capacitor banks, and equal charging for applying an equal voltage to each series stage of the capacitor banks An auxiliary device; and voltage detection means for detecting the voltage of each series stage of the capacitor bank. When all the detected values of the voltage detection means are below a predetermined value, the energy conversion device charges the capacitor bank. Then, when at least one of the detection values of the voltage detection means exceeds a predetermined voltage value, the controller It is characterized in that so as to charge the Nsabanku.

本発明によれば、比較的簡単な回路構成で且つ安全に均等充電を行うことが可能な電気2重層コンデンサを用いたエネルギー貯蔵装置を提供することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the energy storage apparatus using the electric double layer capacitor which can perform equal charge safely with a comparatively simple circuit structure.

以下、図面を参照して本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

以下、本発明の実施例1に係る電気2重層コンデンサを用いたエネルギー貯蔵装置を図1乃至図4を参照して説明する。図1は本発明の電気2重層コンデンサを用いたエネルギー貯蔵装置のブロック構成図である。   Hereinafter, an energy storage device using an electric double layer capacitor according to Embodiment 1 of the present invention will be described with reference to FIGS. FIG. 1 is a block diagram of an energy storage device using an electric double layer capacitor of the present invention.

コンデンサバンク1はm(mは1以上の整数)個並列で且つn(nは2以上の整数)段直列の電気2重層コンデンサ111、112、・・・11m、・・・1nmから構成されている。そしてこのコンデンサバンク1の両端はエネルギー変換装置2の直流端子に接続され、エネルギー変換装置2の交流端子は交流系統に接続されている。コンデンサバンク1の充電時には交流系統の交流電力をエネルギー変換装置2によって直流に変換して定電流で充電し、コンデンサバンク1の放電時にはコンデンサバンク1に蓄えられた直流電力をエネルギー変換装置2によって交流に変換して交流系統に回生する。   The capacitor bank 1 is composed of m (m is an integer of 1 or more) parallel and n (n is an integer of 2 or more) stage series electric double layer capacitors 111, 112,... 11m,. Yes. Both ends of the capacitor bank 1 are connected to the DC terminal of the energy conversion device 2, and the AC terminal of the energy conversion device 2 is connected to the AC system. When the capacitor bank 1 is charged, the AC power of the AC system is converted to DC by the energy conversion device 2 and charged with a constant current. When the capacitor bank 1 is discharged, the DC power stored in the capacitor bank 1 is AC converted by the energy conversion device 2. It is converted into an AC system and regenerated.

コンデンサバンク1の各直列段には、直列段ごとに均等充電補償装置3の直流出力が夫々接続されている。均等充電補償装置3の入力は交流系統に接続されており、交流入力からの交流電力を上記各々の直流出力に変換している。   Each series stage of the capacitor bank 1 is connected to the DC output of the equal charge compensator 3 for each series stage. The input of the equal charge compensator 3 is connected to an AC system, and AC power from the AC input is converted to each DC output.

上記のエネルギー変換装置2の運転と均等充電補償装置3の運転は、充電切替制御装置4の出力によって自動的に切替られるようになっている。この切替動作を行うため、充電過電圧検出回路5がコンデンサバンク1の各直列段の各々の電圧を検出し、いずれかの直列段の電圧が所定電圧を超えたとき、充電過電圧検出回路5は充電切替制御装置4に切替指令を出力する。この切替指令に基づいて充電切替制御装置4はエネルギー変換装置2による一括充電運転から均等充電補償装置3による個別均等充電運転に切替える。   The operation of the energy conversion device 2 and the operation of the equal charge compensation device 3 are automatically switched by the output of the charge switching control device 4. In order to perform this switching operation, the charge overvoltage detection circuit 5 detects the voltage of each series stage of the capacitor bank 1, and the charge overvoltage detection circuit 5 is charged when the voltage of any series stage exceeds a predetermined voltage. A switching command is output to the switching control device 4. Based on this switching command, the charging switching control device 4 switches from the collective charging operation by the energy conversion device 2 to the individual uniform charging operation by the uniform charging compensator 3.

以上における充電動作を図2に示す充電時の動作フローチャートによって説明する。   The charging operation in the above will be described with reference to an operation flowchart at the time of charging shown in FIG.

まず、全体システムからの指令等によってコンデンサバンク6の充電を開始する(ST1)。そして、充電切替制御装置4はエネルギー変換装置2を選択し、エネルギー変換装置2による定電流充電運転が行われる(ST2)。この状態で、充電過電圧検出回路5はコンデンサバンク1の各直列段の各々の電圧を監視し、いずれかの直列段の電圧か所定電圧を超えたとき、充電過電圧検出回路5は充電切替制御装置4に切替指令を出力する(ST3)。   First, charging of the capacitor bank 6 is started by a command from the entire system (ST1). Then, the charge switching control device 4 selects the energy conversion device 2, and the constant current charging operation by the energy conversion device 2 is performed (ST2). In this state, the charge overvoltage detection circuit 5 monitors the voltage of each series stage of the capacitor bank 1, and when the voltage of any series stage exceeds a predetermined voltage, the charge overvoltage detection circuit 5 detects the charge switching control device. A switching command is output to 4 (ST3).

この切替指令に基づいて充電切替制御装置4はエネルギー変換装置2による一括充電運転から均等充電補償装置3による個別均等充電運転に切替えて個別均等充電が行われる(ST5)。そして、上記充電過電圧検出回路5の検出電圧の加算値が所定の定格電圧に到達したとき、満充電が完了する(ST6)。   Based on this switching command, the charge switching control device 4 is switched from the collective charging operation by the energy conversion device 2 to the individual equal charging operation by the equal charge compensator 3 to perform individual equal charging (ST5). When the added value of the detection voltages of the charge overvoltage detection circuit 5 reaches a predetermined rated voltage, full charge is completed (ST6).

上記において、コンデンサの充電電圧不均等発生バラツキが±5%の場合、上記充電過電圧検出回路5の所定電圧を電気2重層コンデンサの定格電圧の90%と設定する。このようにすれば、充電過電圧を防止し、且つ全体の充電時間を最短にすることが可能となる。また、均等充電補償装置3の設備容量を最小化することも可能となる。   In the above description, when the uneven charging voltage variation of the capacitors is ± 5%, the predetermined voltage of the charging overvoltage detection circuit 5 is set to 90% of the rated voltage of the electric double layer capacitor. In this way, charging overvoltage can be prevented and the entire charging time can be minimized. It is also possible to minimize the equipment capacity of the equal charge compensator 3.

図3は均等充電補償装置の1例を示す回路構成図である。交流系統からの交流入力を高速スイッチング電源31によって高周波の交流に変換して高周波トランス32の1次巻線に供給する。高周波トランス32はコンデンサバンク1の直列段数であるn個以上の絶縁された2次巻線を有しており、各々の2次巻線出力をダイオード33によって整流してコンデンサバンク1の各々の直列段の電気2重層コンデンサに供給する。   FIG. 3 is a circuit configuration diagram showing an example of a uniform charge compensator. An AC input from the AC system is converted into a high-frequency AC by a high-speed switching power supply 31 and supplied to the primary winding of the high-frequency transformer 32. The high-frequency transformer 32 has n or more insulated secondary windings which are the number of series stages of the capacitor bank 1, and each secondary winding output is rectified by a diode 33 to each of the capacitor banks 1 in series. Supply to stage electric double layer capacitor.

この構成において、高周波トランス32の2次巻線の出力電圧はダイオード33の順電圧降下特性と、電気2重層コンデンサの定格充電電圧を考慮した出力電圧とする。均等充電補償装置3による均等充電開始時に充電電流が大きい場合は、ダイオード33の順電圧降下が大きく、高周波トランス32の2次巻線の出力電圧からダイオード33の順電圧降下分を差し引いた電圧各電気2重層コンデンサに印加される。しかし満充電に達すると充電電流がほぼゼロアンペアとなり、従ってダイオード33の順電圧降下がほぼゼロボルトとなり、コンデンサには定格充電電圧が印加される。このような作用によりエネルギー貯蔵装置のエネルギー貯蔵効率を高めることができる。   In this configuration, the output voltage of the secondary winding of the high-frequency transformer 32 is an output voltage that takes into account the forward voltage drop characteristics of the diode 33 and the rated charging voltage of the electric double layer capacitor. When the charging current is large at the start of uniform charging by the uniform charging compensator 3, the forward voltage drop of the diode 33 is large, and each voltage obtained by subtracting the forward voltage drop of the diode 33 from the output voltage of the secondary winding of the high frequency transformer 32. Applied to an electric double layer capacitor. However, when full charge is reached, the charging current becomes almost zero ampere, and therefore the forward voltage drop of the diode 33 becomes almost zero volts, and the rated charging voltage is applied to the capacitor. By such an action, the energy storage efficiency of the energy storage device can be increased.

図4は充電過電圧検出回路5の1例を示す回路構成図である。コンデンサバンク1の各々の直列段の電圧は、各々基準電圧設定器51a、51b、・・・51nで設定された所定の基準電圧と比較器52a、52b、・・・、52nによって比較され、各々の直列段の電圧がこの基準電圧より高いときに比較器52a、52b、・・・、52nは各々1を出力する。比較器52a、52b、・・・、52nの各々の出力はOR回路53に与えられているので、OR回路53は何れかの直列段の電圧が所定値を超えると1を出力する。   FIG. 4 is a circuit configuration diagram showing an example of the charge overvoltage detection circuit 5. The voltage of each series stage of the capacitor bank 1 is compared by the comparators 52a, 52b,..., 52n with the predetermined reference voltages set by the reference voltage setting devices 51a, 51b,. The comparators 52a, 52b,..., 52n each output 1 when the voltage of the series stage is higher than the reference voltage. Since the outputs of the comparators 52a, 52b,..., 52n are supplied to the OR circuit 53, the OR circuit 53 outputs 1 when the voltage of any series stage exceeds a predetermined value.

以上の説明においてはエネルギー貯蔵装置においてコンデンサバンクを充電する場合について説明したが、充電後、前述した放電運転に移行する前に各電気2重層コンデンサの自然放電によってコンデンサバンクの電圧が低下することが考えられる。   In the above description, the case where the capacitor bank is charged in the energy storage device has been described. However, after the charging, the voltage of the capacitor bank may be reduced by the natural discharge of each electric double layer capacitor before shifting to the above-described discharge operation. Conceivable.

上記の場合には、充電過電圧検出回路5による全ての直列段の検出電圧が所定電圧以下となったとき、充電切替制御装置4が均等充電補償装置3を作動させて、再び均等充電を行うようにすれば良い。   In the above case, when the detection voltage of all the series stages by the charge overvoltage detection circuit 5 becomes equal to or lower than the predetermined voltage, the charge switching control device 4 operates the equal charge compensator 3 to perform equal charge again. You can do it.

以下本発明の実施例2に係る電気2重層コンデンサを用いたエネルギー貯蔵装置を図5及び図6を参照して説明する。   Hereinafter, an energy storage device using an electric double layer capacitor according to Embodiment 2 of the present invention will be described with reference to FIGS.

図5は充電過電圧検出回路5に適用可能な実施例1とは異なる電圧検出方法を示す回路構成図である。電気2重層コンデンサ1nmの正極は抵抗54を介してシャントレギュレータ55のREF端子に接続され、電気2重層コンデンサ1nmの負極はシャントレギュレータ55のアノード端子に接続されている。そして、シャントレギュレータ55のアノード端子とカソード端子間には、カソード側に直列接続された抵抗56及びフォトカプラ57を介して制御電圧P5が印加されている。   FIG. 5 is a circuit configuration diagram showing a voltage detection method different from that of the first embodiment applicable to the charge overvoltage detection circuit 5. The positive electrode of the electric double layer capacitor 1 nm is connected to the REF terminal of the shunt regulator 55 via the resistor 54, and the negative electrode of the electric double layer capacitor 1 nm is connected to the anode terminal of the shunt regulator 55. A control voltage P5 is applied between the anode terminal and the cathode terminal of the shunt regulator 55 via a resistor 56 and a photocoupler 57 connected in series on the cathode side.

上記回路構成において、前述の基準電圧がシャントレギュレータ55のREF基準電圧となるようにシャントレギュレータ55を選定し、制御電圧P5をこのREF基準電圧を超える電圧に選定する。このようにすれば、電気2重層コンデンサ1nmの電圧がシャントレギュレータ55のREF基準電圧を超えたとき、フォトカプラ57を作動させることができる。シャントレギュレータの電圧検出特性は温度変動の影響を受けにくく、またカソード電流の影響を本質的に受けないので、図5に示した回路構成によれば、高精度の電圧検出を行うことが可能となる。   In the above circuit configuration, the shunt regulator 55 is selected so that the reference voltage becomes the REF reference voltage of the shunt regulator 55, and the control voltage P5 is selected to be a voltage exceeding the REF reference voltage. In this way, when the voltage of the electric double layer capacitor 1 nm exceeds the REF reference voltage of the shunt regulator 55, the photocoupler 57 can be operated. The voltage detection characteristics of the shunt regulator are not easily affected by temperature fluctuations and are essentially unaffected by the cathode current. Therefore, the circuit configuration shown in FIG. 5 enables high-accuracy voltage detection. Become.

尚、上記において、抵抗56はフォトカプラ57の1次側電流及び2次側検出感度が適切となるようにその抵抗値を選定する。また、抵抗54はシャントレギュレータ55のREF端子に流れ込む電流が適切となるようにその抵抗値を選定する。   In the above, the resistance value of the resistor 56 is selected so that the primary side current and the secondary side detection sensitivity of the photocoupler 57 are appropriate. The resistance value of the resistor 54 is selected so that the current flowing into the REF terminal of the shunt regulator 55 is appropriate.

図6は、図5に示した電圧検出方法を応用した充電過電圧検出回路5Aの回路構成図である。電気2重層コンデンサ1nmは直列段における最も電位の高い最上段に位置し、電気2重層コンデンサ1(n−1)mはそのひとつ下の段に位置している。電気2重層コンデンサ1(n−1)mより更に低い電圧となる段の電気2重層コンデンサの図示は省略している。   FIG. 6 is a circuit configuration diagram of a charge overvoltage detection circuit 5A to which the voltage detection method shown in FIG. 5 is applied. The electric double layer capacitor 1 nm is located at the uppermost stage having the highest potential in the series stage, and the electric double layer capacitor 1 (n−1) m is located one stage below. The illustration of the electric double layer capacitor at a stage where the voltage is lower than that of the electric double layer capacitor 1 (n-1) m is omitted.

電気2重層コンデンサ1nmの正極は抵抗54aを介してシャントレギュレータ55aのREF端子に接続され、電気2重層コンデンサ1nmの負極はシャントレギュレータ55aのアノード端子に接続されている。そして、シャントレギュレータ55aのアノード端子とカソード端子間には、カソード側に直列接続された抵抗56a及びフォトカプラ57aを介して制御電圧P5が印加されている。この最上段の構成は図5に示した回路構成と基本的に同一である。以下最上段より下段の回路構成について説明する。   The positive electrode of the electric double layer capacitor 1 nm is connected to the REF terminal of the shunt regulator 55a through the resistor 54a, and the negative electrode of the electric double layer capacitor 1nm is connected to the anode terminal of the shunt regulator 55a. A control voltage P5 is applied between the anode terminal and the cathode terminal of the shunt regulator 55a via a resistor 56a and a photocoupler 57a connected in series on the cathode side. The uppermost configuration is basically the same as the circuit configuration shown in FIG. The circuit configuration below the uppermost stage will be described below.

電気2重層コンデンサ1(n−1)mの正極は抵抗54bを介してシャントレギュレータ55bのREF端子に接続され、電気2重層コンデンサ1nmの負極はシャントレギュレータ55bのアノード端子に接続されている。そして、シャントレギュレータ55bのカソード端子は、直列接続された抵抗56b及びフォトカプラ57bを介して電気2重層コンデンサ1nmの正極に接続されている。   The positive electrode of the electric double layer capacitor 1 (n-1) m is connected to the REF terminal of the shunt regulator 55b via the resistor 54b, and the negative electrode of the electric double layer capacitor 1nm is connected to the anode terminal of the shunt regulator 55b. The cathode terminal of the shunt regulator 55b is connected to the positive electrode of the electric double layer capacitor 1nm via a resistor 56b and a photocoupler 57b connected in series.

同様にして、電気2重層コンデンサ1(n−1)mより1段下段の電気2重層コンデンサの正極は抵抗54cを介してシャントレギュレータ55cのREF端子に接続され、図示しない負極はシャントレギュレータ55cのアノード端子に接続されている。そして、シャントレギュレータ55cのカソード端子は、直列接続された抵抗56c及びフォトカプラ57cを介して電気2重層コンデンサ1(n−1)mの正極に接続されている。   Similarly, the positive electrode of the electric double layer capacitor one stage lower than the electric double layer capacitor 1 (n-1) m is connected to the REF terminal of the shunt regulator 55c through the resistor 54c, and the negative electrode not shown is connected to the shunt regulator 55c. Connected to the anode terminal. The cathode terminal of the shunt regulator 55c is connected to the positive electrode of the electric double layer capacitor 1 (n-1) m via a resistor 56c and a photocoupler 57c connected in series.

そしてフォトカプラ57a、57b、57c、・・・の出力は互いに並列に接続されて出力点を形成し、この出力点には抵抗58を介して制御電圧P5aが印加されている。   The outputs of the photocouplers 57a, 57b, 57c,... Are connected in parallel to form an output point, and a control voltage P5a is applied to the output point via a resistor 58.

以上のように構成すれば、最上段の電気2重層コンデンサ1nm用の電圧検出のために別の制御電源P5が必要となるが、これ以外の電気2重層コンデンサの電圧検出用の電源は1段上位の電気2重層コンデンサの電圧を用いているため制御電源は不要となり、従って回路構成が簡略化される。   If configured as described above, another control power supply P5 is required for voltage detection for the uppermost electric double layer capacitor 1 nm, but the voltage detection power supply for other electric double layer capacitors is one stage. Since the voltage of the upper electric double layer capacitor is used, a control power supply is not required, and therefore the circuit configuration is simplified.

電気2重層コンデンサの内1個でも基準電圧を超えると、対応するシャントレギュレータのカソード極からアノード極へカソード電流が流れ、フォトカプラの2次側が導通となり、出力点である所謂ワイヤードOR回路の電位がHからLへ変化する。このようにフォトカプラの2次出力を並列接続してワイヤードOR回路を形成しているので、出力回路も簡略化することが可能となる。   If even one of the electric double layer capacitors exceeds the reference voltage, the cathode current flows from the cathode to the anode of the corresponding shunt regulator, the secondary side of the photocoupler becomes conductive, and the potential of the so-called wired OR circuit, which is the output point. Changes from H to L. Since the wired OR circuit is formed by connecting the secondary outputs of the photocouplers in parallel as described above, the output circuit can be simplified.

本発明の電気2重層コンデンサを用いたエネルギー貯蔵装置のブロック構成図。The block block diagram of the energy storage apparatus using the electric double layer capacitor of this invention. 充電時の動作フローチャート。The operation | movement flowchart at the time of charge. 均等充電補償装置の1例を示す回路構成図。The circuit block diagram which shows one example of a uniform charge compensation apparatus. 充電過電圧検出回路の1例を示す回路構成図。The circuit block diagram which shows one example of a charge overvoltage detection circuit. 充電過電圧検出回路に適用可能な電圧検出方法の1例を示す回路構成図。The circuit block diagram which shows an example of the voltage detection method applicable to a charge overvoltage detection circuit. 本発明の実施例2における充電過電圧検出回路の回路構成図。The circuit block diagram of the charge overvoltage detection circuit in Example 2 of this invention.

符号の説明Explanation of symbols

1 コンデンサバンク
111、11m、1n1、1(n−1)m、1nm 電気2重層コンデンサ

2 エネルギー変換装置
3 均等充電補償装置
31 高周波スイッチング電源
32 高周波トランス
33 ダイオード

4 充電切替制御装置
5 充電過電圧検出回路
51a、51b、51c 基準電圧設定器
52a、52b、52c 比較器
53 OR回路
54、54a、54b、54c 抵抗
55、55a、55b、55c シャントレギュレータ
56、56a、56b、56c 抵抗
57、57a、57b、57c フォトカプラ
1 capacitor bank 111, 11m, 1n1, 1 (n-1) m, 1nm electric double layer capacitor

2 Energy Converter 3 Equal Charge Compensator 31 High Frequency Switching Power Supply 32 High Frequency Transformer 33 Diode

4 Charge switching control device 5 Charge overvoltage detection circuit 51a, 51b, 51c Reference voltage setting device 52a, 52b, 52c Comparator 53 OR circuit 54, 54a, 54b, 54c Resistor 55, 55a, 55b, 55c Shunt regulator 56, 56a, 56b, 56c Resistors 57, 57a, 57b, 57c Photocoupler

Claims (6)

単位電気2重層コンデンサをm(mは1以上の整数)個並列接続したものをn(nは2以上の整数)段直列接続したコンデンサバンクと、
交流電源に接続され、前記コンデンサバンクの急速充放電を制御することができるエネルギー変換装置と、
前記コンデンサバンクの各々の直列段に均等電圧を印加する均等充電補助装置と、
前記コンデンサバンクの各々の直列段の電圧を検出する電圧検出手段と
を具備し、
前記電圧検出手段の検出値全てが所定値以下のときは前記エネルギー変換装置によって前記コンデンサバンクを充電し、
前記電圧検出手段の検出値のうちの少なくとも1つが所定電圧値を超えたとき、前記均等充電補助装置によって前記コンデンサバンクを充電するようにしたことを特徴とする電気2重層コンデンサを用いたエネルギー貯蔵装置。
A capacitor bank in which m (m is an integer of 1 or more) unit-connected double-layer capacitors connected in parallel with n (n is an integer of 2 or more) stages connected in series;
An energy conversion device connected to an AC power source and capable of controlling rapid charge / discharge of the capacitor bank;
An equal charge auxiliary device for applying an equal voltage to each series stage of the capacitor bank;
Voltage detecting means for detecting the voltage of each series stage of the capacitor bank;
When all the detection values of the voltage detection means are below a predetermined value, the capacitor bank is charged by the energy conversion device,
Energy storage using an electric double-layer capacitor, wherein the capacitor bank is charged by the equal charge auxiliary device when at least one of detection values of the voltage detection means exceeds a predetermined voltage value apparatus.
前記コンデンサバンクが自然放電して前記電圧検出手段の検出値全てが所定値以下となったとき、前記均等充電補助装置によって前記コンデンサバンクを充電するようにしたことを特徴とする請求項1に記載の電気2重層コンデンサを用いたエネルギー貯蔵装置。   2. The capacitor bank according to claim 1, wherein the capacitor bank is charged by the equal charge assisting device when the capacitor bank is naturally discharged and all the detected values of the voltage detecting means are equal to or less than a predetermined value. Energy storage device using an electric double layer capacitor. 前記均等充電補助装置は、
交流または直流入力を高周波交流出力に変換する高周波スイッチング電源と、
この高周波スイッチング電源の出力を1次巻線の入力とし、
少なくともn個の2次巻線を有する高周波トランスと、
前記各々の2次巻線の交流出力を整流する整流手段と
から成ることを特徴とする請求項1または請求項2に記載の電気2重層コンデンサを用いたエネルギー貯蔵装置。
The equal charge assist device is:
A high-frequency switching power supply that converts AC or DC input to high-frequency AC output;
The output of this high frequency switching power supply is used as the primary winding input.
A high-frequency transformer having at least n secondary windings;
The energy storage device using an electric double layer capacitor according to claim 1 or 2, comprising rectifying means for rectifying the AC output of each secondary winding.
前記電圧検出手段は、
前記各々のコンデンサの直列段に対応してシャントレギュレータを設け、
前記各々のシャントレギュレータのアノードとカソード間に電圧印加手段により前記所定電圧値を超える電圧を印加し、
前記各々の直列段のコンデンサ電圧を、前記各々の対応するシャントレギュレータのアノード端子とREF端子間に加え、
このシャントレギュレータのカソード電流の変化を直接または間接的に検出して行うことを特徴とする請求項1乃至請求項3のいずれか1項に記載の電気2重層コンデンサを用いたエネルギー貯蔵装置。
The voltage detection means includes
A shunt regulator is provided corresponding to the series stage of each of the capacitors,
Applying a voltage exceeding the predetermined voltage value by voltage applying means between the anode and cathode of each shunt regulator,
Applying the capacitor voltage of each series stage between the anode terminal and the REF terminal of each corresponding shunt regulator;
The energy storage device using an electric double layer capacitor according to any one of claims 1 to 3, wherein a change in cathode current of the shunt regulator is detected directly or indirectly.
前記電圧印加手段は、
前記直列段のうち最も電圧の高い段においては、別に設けられた制御電源によって電圧を印加し、
その他の段においては、当該電圧を検出する段のコンデンサの負電極と当該電圧を検出する段よりひとつ電圧が高い段のコンデンサの正電極間の電圧を印加するようにしたことを特徴とする請求項4に記載の電気2重層コンデンサを用いたエネルギー貯蔵装置。
The voltage applying means includes
In the stage having the highest voltage among the series stages, a voltage is applied by a control power source provided separately,
In the other stage, a voltage is applied between the negative electrode of the capacitor in the stage for detecting the voltage and the positive electrode of the capacitor in a stage whose voltage is one higher than that in the stage for detecting the voltage. Item 5. An energy storage device using the electric double layer capacitor according to Item 4.
前記電圧検出手段は、
各々の前記シャントレギュレータのカソード電流をフォトカプラで受け、
各々の前記フォトカプラの2次出力を並列に接続して、ワイヤードOR回路を形成して行うようにしたことを特徴とする請求項4に記載の電気2重層コンデンサを用いたエネルギー貯蔵装置。
The voltage detection means includes
The cathode current of each shunt regulator is received by a photocoupler,
5. The energy storage device using an electric double layer capacitor according to claim 4, wherein the secondary outputs of the respective photocouplers are connected in parallel to form a wired OR circuit.
JP2006238586A 2006-09-04 2006-09-04 Energy storage device using electric double-layer capacitor Pending JP2008061469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006238586A JP2008061469A (en) 2006-09-04 2006-09-04 Energy storage device using electric double-layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006238586A JP2008061469A (en) 2006-09-04 2006-09-04 Energy storage device using electric double-layer capacitor

Publications (1)

Publication Number Publication Date
JP2008061469A true JP2008061469A (en) 2008-03-13

Family

ID=39243581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006238586A Pending JP2008061469A (en) 2006-09-04 2006-09-04 Energy storage device using electric double-layer capacitor

Country Status (1)

Country Link
JP (1) JP2008061469A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010088221A (en) * 2008-09-30 2010-04-15 Nippon Chemicon Corp Capacitor device
JP2012130691A (en) * 2010-12-20 2012-07-12 Ivoclar Vivadent Ag Hand-held dental device and the application
JP2012533145A (en) * 2009-07-08 2012-12-20 コミサリア ア レネルジ アトミク エ オウ エネルジ アルタナティヴ Low loss battery
US9339443B2 (en) 2011-02-15 2016-05-17 Ivoclar Vivadent Ag Dental restorative material based on an antimicrobially active compound
US10004668B2 (en) 2013-06-27 2018-06-26 Ivoclar Vivadent, Inc. Nanocrystalline zirconia and methods of processing thereof
US10377554B2 (en) 2013-05-07 2019-08-13 Ivoclar Vivadent Ag Syringe

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5659237A (en) * 1995-09-28 1997-08-19 Wisconsin Alumni Research Foundation Battery charging using a transformer with a single primary winding and plural secondary windings
JP2000217250A (en) * 1999-01-19 2000-08-04 Okamura Kenkyusho:Kk Device for storing electricity in capacitor and parallel monitor having initializing function and method for controlling initialization
JP2003157908A (en) * 2001-09-10 2003-05-30 Ntt Power & Building Facilities Inc Charging device for lithium ion secondary cell, and charging method of the same
JP2003289629A (en) * 2002-03-27 2003-10-10 Mitsubishi Heavy Ind Ltd Voltage equalizer in capacitor and power storage system equipped with the device
JP2003324855A (en) * 2002-04-25 2003-11-14 Nisshinbo Ind Inc Charging apparatus for electric double-layer capacitor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5659237A (en) * 1995-09-28 1997-08-19 Wisconsin Alumni Research Foundation Battery charging using a transformer with a single primary winding and plural secondary windings
JP2000217250A (en) * 1999-01-19 2000-08-04 Okamura Kenkyusho:Kk Device for storing electricity in capacitor and parallel monitor having initializing function and method for controlling initialization
JP2003157908A (en) * 2001-09-10 2003-05-30 Ntt Power & Building Facilities Inc Charging device for lithium ion secondary cell, and charging method of the same
JP2003289629A (en) * 2002-03-27 2003-10-10 Mitsubishi Heavy Ind Ltd Voltage equalizer in capacitor and power storage system equipped with the device
JP2003324855A (en) * 2002-04-25 2003-11-14 Nisshinbo Ind Inc Charging apparatus for electric double-layer capacitor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010088221A (en) * 2008-09-30 2010-04-15 Nippon Chemicon Corp Capacitor device
JP2012533145A (en) * 2009-07-08 2012-12-20 コミサリア ア レネルジ アトミク エ オウ エネルジ アルタナティヴ Low loss battery
US9172077B2 (en) 2009-07-08 2015-10-27 Commissariat à l'énergie atomique et aux energies alternatives Low-loss storage battery
JP2012130691A (en) * 2010-12-20 2012-07-12 Ivoclar Vivadent Ag Hand-held dental device and the application
US9179990B2 (en) 2010-12-20 2015-11-10 Ivoclar Vivadent Ag Hand-held dental device
US9339443B2 (en) 2011-02-15 2016-05-17 Ivoclar Vivadent Ag Dental restorative material based on an antimicrobially active compound
US10377554B2 (en) 2013-05-07 2019-08-13 Ivoclar Vivadent Ag Syringe
US10004668B2 (en) 2013-06-27 2018-06-26 Ivoclar Vivadent, Inc. Nanocrystalline zirconia and methods of processing thereof

Similar Documents

Publication Publication Date Title
EP2302757B1 (en) Method and system for balancing electrical energy storage cells
CN111771326B (en) AC-to-DC converter comprising parallel converters
EP3614553B1 (en) Power conversion device
KR101360667B1 (en) Voltage conversion circuit and electronic equipment
WO2011107555A1 (en) Power inverter with multi-fed on-board power supply
JP2004194408A (en) Uninterruptible power source
US9444380B2 (en) Power converter and control method for power converter
US20180062498A1 (en) Power conversion device
EP3399634B1 (en) Isolated bidirectional dc-dc converter
CN108649792B (en) Boost circuit, switching power supply, power supply system and control method
JP2008061469A (en) Energy storage device using electric double-layer capacitor
KR101356277B1 (en) Alternating current motor drive device
US11273315B2 (en) Method and device for defibrillation
US20190372382A1 (en) Dc charging system for storage battery of electric vehicle
EP3565101A1 (en) Switching control method for isolated bidirectional dc-dc converter
JP4859932B2 (en) Control device and control method for power conversion system having instantaneous voltage drop / power failure countermeasure function
JP5050742B2 (en) DC standby voltage compensation method for instantaneous voltage drop compensator
US11101738B2 (en) Power converter and control method thereof and power supply system
JP2011067087A (en) Uninterruptible power supply device
JP5285322B2 (en) Voltage equalizing device, charging device, battery assembly, and charging system
CN107069914B (en) Rail vehicle charging device and charging control method
EP3591801B1 (en) Adaptive charger
JP2017192297A (en) Multilevel power conversion device and method for controlling multilevel power conversion device
CN216290693U (en) Conversion device and controller
JP6922784B2 (en) Power converter and power conversion system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100902