JP2009065206A - Method for manufacturing plate stack, more specifically method for manufacturing cooling unit or cooling unit element made of plate stacks - Google Patents

Method for manufacturing plate stack, more specifically method for manufacturing cooling unit or cooling unit element made of plate stacks Download PDF

Info

Publication number
JP2009065206A
JP2009065206A JP2008313227A JP2008313227A JP2009065206A JP 2009065206 A JP2009065206 A JP 2009065206A JP 2008313227 A JP2008313227 A JP 2008313227A JP 2008313227 A JP2008313227 A JP 2008313227A JP 2009065206 A JP2009065206 A JP 2009065206A
Authority
JP
Japan
Prior art keywords
plate
plates
bonding
joining
cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008313227A
Other languages
Japanese (ja)
Inventor
Harder Juergen Schulz
シュルツ−ハーダー ユルゲン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electrovac AG
Original Assignee
Electrovac AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electrovac AG filed Critical Electrovac AG
Publication of JP2009065206A publication Critical patent/JP2009065206A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0012Brazing heat exchangers

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an innovative method for manufacturing a plate stack. <P>SOLUTION: In the method for manufacturing a cooling unit, a cooling unit element, or a heat sink made of at least one plate stack that has at least two plate-shaped elements 1 to 4 made of a metal, e.g., of copper, and that is provided with passages or openings 5 to 7, the stacked elements are mutually jointed by being heated up to a processing temperature with jointing means on jointing surfaces formed on the surface side of the elements, to form a stack. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、プレートスタックを作製または製造する方法、詳細には、金属、例えば銅から作製された少なくとも2個のプレート状の要素を具備し、通路または開口を設けた、少なくとも1個のプレートスタックからなる冷却器または冷却器要素もしくはヒートシンクを製造または作成する方法に関し、積み重ねられた要素は、前記要素の表面に形成された結合表面上の接合手段を用い、スタックを形成する加工温度に加熱することによって互いに接合される。 The present invention relates to a method for making or manufacturing a plate stack, in particular at least one plate stack comprising at least two plate-like elements made of metal, for example copper, and provided with a passage or opening. A stack of elements is heated to a processing temperature to form a stack using bonding means on a bonding surface formed on the surface of the element Are joined together.

マイクロクーラーの別名でも知られる冷却器は当技術分野に知られており、電子素子または電子モジュール、特に高出力素子またはモジュールを冷却するために特に設計され、互いに接合されてスタックを形成する薄い金属(金属箔)プレートからなり、内部プレートは、プレートスタックまたは冷却器の内部に冷媒のための冷却チャンネルまたは流路を形成するように、開口または通路を備えて構成される。プレートを面結合するために、それらには結合表面、すなわちその表面側に結合手段が設けられる。次いで、プレートを結合または接続するために、プレートは互いにその上にスタック状に積み上げられ、次いで適切な加工温度に加熱され、結合手段によって結合表面上に溶融可能な金属領域(結合またはホットメルト層)が形成され、スタックの冷却の後、それらは互いに結合してプレートスタックを形成する。 Coolers, also known as microcoolers, are known in the art and are specifically designed to cool electronic elements or modules, especially high power elements or modules, and are thin metals that are joined together to form a stack. It consists of a (metal foil) plate, and the inner plate is configured with openings or passages so as to form cooling channels or channels for the refrigerant inside the plate stack or cooler. For surface bonding of the plates, they are provided with bonding means on the bonding surface, ie on the surface side. Then, to bond or connect the plates, the plates are stacked on top of each other and then heated to a suitable processing temperature and melted onto the bonding surface by the bonding means (bonded or hot melt layer). ) And after cooling the stack, they join together to form a plate stack.

既知の方法の欠点は、結合層またはホットメルト層が固化する間に、2個の隣接プレートの開口または通路の間の接合点で、収縮や望ましくない中空部、或いはデッドスペースがこのスタックの内部に形成されることであり、これ(デッドスペース)は、プレートスタックによって形成される冷却器を通って流れる冷媒に望ましくない乱流を生じさせる。 A disadvantage of the known method is that shrinkage, undesirable hollows, or dead space is present inside the stack at the junction between the openings or passages of two adjacent plates while the tie layer or hot melt layer solidifies. This (dead space) creates undesirable turbulence in the refrigerant flowing through the cooler formed by the plate stack.

本発明の目的は、この欠点を取り除く方法を提供することである。 The object of the present invention is to provide a method which eliminates this drawback.

この目的は、プレートスタックを製造する方法、詳細には、金属、例えば銅から作製された少なくとも2個のプレート状の要素を具備し、通路または開口を設けた、少なくとも1個のプレートスタックからなる冷却器または冷却器要素もしくはヒートシンクを製造する方法によって達成される。この中で、積み重ねられた要素は、前記要素の表面に形成された結合表面上の接合手段を用い、スタックを形成する加工温度に加熱することによって互いに接合され、このとき、前記接合手段は、接合の前に通路または開口の内側表面にも塗工される。 The object is a method of manufacturing a plate stack, in particular comprising at least one plate stack with at least two plate-like elements made of metal, for example copper, provided with a passage or opening. This is accomplished by a method of manufacturing a cooler or cooler element or heat sink. In this, the stacked elements are joined together by heating to the processing temperature that forms the stack, using joining means on the bonding surface formed on the surface of the elements, wherein the joining means are: It is also applied to the inner surface of the passage or opening prior to joining.

本発明のさらに別の、可能な実施形態は従属請求項の主題である。添付の図面を参照して、例示的な実施形態に基づき、本発明を以下に説明する。 Further possible embodiments of the invention are the subject of the dependent claims. The invention will be described below on the basis of exemplary embodiments with reference to the accompanying drawings.

図において、1〜4は金属(例えば銅または銅合金)から作製されたプレート状要素またはプレートであって、これらは互いに表面上に結合されてスタックを形成し、図示していない電子素子を冷却するための冷却器もしくはヒートシンク、または冷却器もしくはヒートシンクの一部を形成する。図示した実施形態中のプレート1〜4は、金属箔、例えば銅箔の同じサイズの四辺形素材である。プレート1〜3は、例えば液体冷媒が流れることのできる冷却器構造または冷却チャンネルを形成するように構成される。すなわち、プレート1には2個の対向する周辺側の近く、また、これらの周辺側の中心近くに通路または開口5が設けられる。プレート2は、対応する対向周辺側に各々1個のスリット状の開口6を有し、これ(スリット状開口)はそれぞれの周辺側に平行に展延し、プレート3は、複数のスリット状開口7を有し、これは互いに平行で、かつプレート1〜4の四辺形素材の他の2個の周辺側に平行に展延する。さらに、プレート1〜4が互いに結合されて冷却器を形成するとき、通路または開口5〜7は、各開口5が開口6と一致し、各開口6が開口7の一端と一致し、プレート2から遠ざかる側のプレート3の開口7はプレート4によって閉じられるように構成される。 In the figure, 1 to 4 are plate-like elements or plates made of metal (for example, copper or copper alloy), which are bonded to each other to form a stack and cool electronic devices not shown. A cooler or heat sink, or a part of the cooler or heat sink. The plates 1-4 in the illustrated embodiment are quadrilateral materials of the same size of metal foil, for example copper foil. The plates 1 to 3 are configured to form a cooler structure or cooling channel through which liquid refrigerant can flow, for example. That is, the plate 1 is provided with a passage or opening 5 near two opposing peripheral sides and near the center of these peripheral sides. The plate 2 has one slit-like opening 6 on the corresponding opposite peripheral side, each of which (slit-like opening) extends in parallel to each peripheral side, and the plate 3 has a plurality of slit-like openings. 7, which extend parallel to each other and parallel to the other two peripheral sides of the quadrilateral material of the plates 1-4. Further, when the plates 1-4 are joined together to form a cooler, the passages or openings 5-7 have each opening 5 coincident with the opening 6, each opening 6 coincides with one end of the opening 7, and the plate 2 The opening 7 of the plate 3 away from the plate 3 is configured to be closed by the plate 4.

このようにして、開口7は複数の平行な冷却チャンネルを形成し、その各々は1個の開口6によって形成された1個の分配チャンネルに両端で接続される。開口6によって形成された分配チャンネルは、開口5によって形成された接続部によって冷却回路に接続することができる。 In this way, the opening 7 forms a plurality of parallel cooling channels, each of which is connected at one end to a distribution channel formed by one opening 6. The distribution channel formed by the opening 6 can be connected to the cooling circuit by the connection formed by the opening 5.

プレート1〜4は、プレートスタック中で隣接するプレート1〜4の結合表面または表面側の、開口5〜7によって占められない表面側の領域に塗工された、接合媒体または手段(コーティング8)を用いて互いに表面上で結合または接合されて、冷却器を形成するプレートスタックを形成し、接合手段は、加工温度まで加熱して接合する際に、可溶性または溶融可能な金属領域(接合または溶融層)を形成し、冷却の後にプレート1〜4は互いに接合または結合し、プレートスタックまたは冷却器を形成する。先行技術の欠点は、図2に示したように、開口5と6の領域のプレート1と2の間の接合部の領域に、例えば、冷却中の接合層または溶融層もしくは接合層の縮退または収縮のため、および/または接合中の可溶性または溶融可能な金属での被覆が不十分なため、結合の後、開口領域において、2個のプレート間の接合部の結合層にデッドスペース9が形成されることである。 Plates 1 to 4 are bonded media or means (coating 8) applied to the surface area of the bonding surface or surface side of adjacent plates 1 to 4 in the plate stack that is not occupied by openings 5 to 7 Are joined or joined together on the surface to form a plate stack that forms a cooler, and the joining means is a soluble or meltable metal region (joined or melted) when joined by heating to the processing temperature. After cooling, the plates 1-4 are joined or bonded together to form a plate stack or cooler. The disadvantages of the prior art are that, as shown in FIG. 2, in the region of the joint between the plates 1 and 2 in the region of the openings 5 and 6, for example, the debonding of the bonding layer or the molten layer or the bonding layer during cooling or Due to shrinkage and / or insufficient coverage with soluble or meltable metal during bonding, after bonding, a dead space 9 is formed in the bonding layer at the junction between the two plates in the open area It is to be done.

これらのデッドスペース9は大きな欠点となる。すなわち、それらは冷却器または冷却チャンネル中を流れる冷媒に望ましくない乱流を招く。詳細には、これらのデッドスペース9は、特にデッドスペース9のために露出された開口5〜7の端部または縁部に望ましくない腐食を招く。 These dead spaces 9 are a major drawback. That is, they cause undesirable turbulence in the refrigerant flowing in the cooler or cooling channel. In particular, these dead spaces 9 lead to undesirable corrosion, especially at the ends or edges of the openings 5 to 7 exposed for the dead space 9.

図3は本発明の第1の可能な実施形態を示している。この実施形態において、プレート1〜4はプレートスタックまたは冷却器10を製造するために同様に使用されるが、プレート1〜4を結合する前に、接合手段としてのコーティング8は、冷却器10のプレート1〜4の少なくとも結合表面または隣接表面側を完全に被覆するだけではなく、図3の位置a〜dで示したように、通路または開口5〜7の側部または内部面が十分な厚さで被覆され、各々内部コーティング8.1を有するように、結合または接合手段が塗工される。 FIG. 3 shows a first possible embodiment of the invention. In this embodiment, plates 1-4 are similarly used to manufacture a plate stack or cooler 10, but before joining plates 1-4, the coating 8 as a joining means is applied to the cooler 10. Not only does it completely cover at least the binding surface or adjacent surface side of the plates 1-4, but also the sides or internal surfaces of the passages or openings 5-7 are of sufficient thickness, as indicated by positions ad in FIG. The bonding or joining means are applied so that they are covered with each other and each has an inner coating 8.1.

プレート1〜4を接合して冷却器を形成した後、接合プロセスの間の溶融金属の表面張力を考慮しても、従来技術で発生するデッドスペース9が取り除かれ、特に、開口の側部表面によって形成された冷却器10のチャンネルの表面および端部は、開口5、6、7の領域におけるプレート1〜4の結合部が図3の位置eに示されているように、接合手段で被覆されることになる。 After joining the plates 1 to 4 to form a cooler, the dead space 9 that occurs in the prior art is removed, even considering the surface tension of the molten metal during the joining process, in particular the side surface of the opening The surface and the end of the channel of the cooler 10 formed by the cover are covered with a joining means, as the joint of the plates 1 to 4 in the region of the openings 5, 6 and 7 is shown at position e in FIG. Will be.

図4は図3と類似した、さらに別の可能な本発明の実施形態を示している。この実施形態では、プレート2の通路または開口6だけがその内側表面に接合手段から作られたコーティング8.1を備え、プレート1、3、4は接合手段をその結合表面にのみ有する。いずれにしても、開口6の領域に十分な厚さのコーティング8.1を有することによって、すなわち、結合の間、十分な量の接合手段の容積を有することによって、少なくとも隣接する開口5と7の接合部が、接合手段によって形成された結合または接合層の材料で十分被覆されるので、不都合なデッドスペース9が形成されず、隣接する開口5と7の端部または縁部は接合層の材料で被覆されることになる。 FIG. 4 shows yet another possible embodiment of the invention similar to FIG. In this embodiment, only the passages or openings 6 of the plate 2 are provided with a coating 8.1 made of bonding means on their inner surface, and the plates 1, 3, 4 have bonding means only on their bonding surfaces. In any case, at least the adjacent openings 5 and 7 by having a sufficiently thick coating 8.1 in the region of the openings 6, ie by having a sufficient amount of joining means volume during bonding. Are sufficiently covered with the material of the bonding or bonding layer formed by the bonding means, so that inconvenient dead space 9 is not formed and the ends or edges of the adjacent openings 5 and 7 are formed on the bonding layer. It will be coated with material.

上記の図4に関しては、全てのプレート1〜4は、接合手段またはコーティング8を少なくともそれらの結合表面に備えるが、接合手段(コーティング8.1)は少なくともプレート1〜3のうちの1個に、その通路または開口の内部または側部表面にも塗工することが想定された。また一方、一般に、スタックまたは冷却器10の隣接する2個のプレートの1個だけは、その表面側とその通路または開口の内部または側部表面にも接合手段を設け、隣接プレートがそれらの接合手段をもたないことも可能である。例えば、図4に関して説明した実施形態の変形として、プレート1には、プレート2と結合される少なくともその表面側、および開口5の内側表面に接合手段を設け、プレート3には、その2つの表面および開口7の内側表面に接合手段を設けるが、プレート2と4は接合手段を設けないことが可能である。プレート1〜4の結合の間に、全てのプレートを結合して冷却器10を形成することはプレート1と3の接合手段によって達成され、さらに、開口5〜7の領域の個々のプレート間の接合部が被覆されるので、望ましくないデッドスペース9が除かれる。 With respect to FIG. 4 above, all the plates 1 to 4 are provided with a joining means or coating 8 at least on their joining surface, but the joining means (coating 8.1) is at least one of the plates 1 to 3. It was envisaged that the interior or side surface of the passage or opening was also applied. On the other hand, in general, only one of the two adjacent plates of the stack or cooler 10 is provided with bonding means on the surface side and the inside or side surface of the passage or opening. It is possible to have no means. For example, as a variant of the embodiment described with reference to FIG. 4, the plate 1 is provided with joining means at least on its surface side to be coupled with the plate 2 and on the inner surface of the opening 5, and the plate 3 has its two surfaces. Although the joining means is provided on the inner surface of the opening 7, the plates 2 and 4 can be provided with no joining means. The joining of all the plates to form the cooler 10 during the joining of the plates 1 to 4 is achieved by the joining means of the plates 1 and 3, and further between the individual plates in the region of the openings 5-7. Since the joint is covered, the undesired dead space 9 is eliminated.

したがって、同様に、プレート2にのみ、その2個の表面側と開口6の内側表面にも接合手段を設け、同様にプレート4には少なくともプレート3と結合されるその表面側に接合手段を設けるが、プレート1および3には接合手段を設けないことが可能である。結合の間、個々のプレート間の接合部は同様に溶融可能な金属でその開口5〜7の領域を被覆されるので、望ましくないデッドスペース9が除かれる。 Therefore, similarly, only the plate 2 is provided with bonding means on its two surface sides and the inner surface of the opening 6, and similarly, the plate 4 is provided with bonding means on at least the surface side coupled to the plate 3. However, the plates 1 and 3 can be provided with no joining means. During bonding, the joints between the individual plates are likewise covered with a meltable metal in the area of the openings 5-7, so that unwanted dead space 9 is eliminated.

さらにこの方法の変形は、例えば、開口5と7の内側表面だけに接合手段の塗工8.1を設け、開口6の内側表面は接合手段を設けない形などが考えられる。 Further, a modification of this method is conceivable, for example, in which the bonding means coating 8.1 is provided only on the inner surfaces of the openings 5 and 7, and the inner surface of the opening 6 is not provided with the bonding means.

図5は図1と類似した、プレートスタックまたは冷却器10aを形成するために結合されるプレートを示している。この実施形態は、総計5個のプレート、すなわちプレート1〜4およびプレート3と4の間の追加のプレート2を使用し、示した実施形態のプレートは金属箔、例えば銅箔の同じサイズの四辺形の素材から同様に形成される。プレートスタックまたは冷却器10aを形成するためのプレート1〜4の表面結合または接合は、接合手段の使用および加工温度までの加熱によって同様に行われる。冷却器10aにおいて、2個のプレート2の通路または開口6は拡大された直径を有する分配チャンネルを形成し、プレート3の通路または開口7はこれらの分配チャンネルの間に展延する複数の冷却チャンネルを同様に形成する。冷却器10aは、プレート1および4によってその両側を閉じられ、それによって開口5は開口6によって形成された分配チャンネルに接続する外部接続部を同様に形成し、この目的のために、例えば示していない管状接続要素が設けられる。 FIG. 5 shows a plate that is joined to form a plate stack or cooler 10a, similar to FIG. This embodiment uses a total of 5 plates, namely plates 1 to 4 and an additional plate 2 between plates 3 and 4, where the plate of the illustrated embodiment is a metal foil, for example four sides of the same size of copper foil Formed in the same way from shaped material. Surface bonding or joining of the plates 1-4 to form a plate stack or cooler 10a is similarly performed by using joining means and heating to the processing temperature. In the cooler 10a, the passages or openings 6 of the two plates 2 form a distribution channel having an enlarged diameter, and the passages or openings 7 of the plate 3 are a plurality of cooling channels extending between these distribution channels. Are similarly formed. The cooler 10a is closed on both sides by the plates 1 and 4, so that the opening 5 likewise forms an external connection connecting to the distribution channel formed by the opening 6, for this purpose for example shown. No tubular connecting element is provided.

この方法において、接合手段は互いに接合されるプレート1〜4の表面または結合表面に塗工されるだけではなく、少なくともプレートのいくつかはこれらのプレートに設けられた通路または開口の内側表面にも塗工される。この例は図6および7に再現されている。 In this method, the joining means are not only applied to the surfaces of the plates 1 to 4 or the joining surfaces to be joined together, but at least some of the plates are also on the inner surfaces of the passages or openings provided in these plates. Coated. This example is reproduced in FIGS.

図6に示した実施形態では、プレート1〜4を結合して冷却器10aを形成する前に、ひとつおきのプレートにだけその表面およびその開口の内側表面に接合手段が設けられる。すなわち、a、c、eの位置に示したように、コーティング8および8.1を備えるプレート1、3、4が設けられる。結合または接合の間に、接合手段を用いて作製された可溶性の、または溶融可能な金属は、開口5、6、7の領域における全ての隣接プレート1〜4の接合部を被覆するので、不都合なデッドスペース9は除かれ、またプレート1〜4の間の接合部で開口の縁部および開口の内側表面は接合層の金属で被覆されることになる。 In the embodiment shown in FIG. 6, prior to joining the plates 1 to 4 to form the cooler 10a, the joining means are provided on the surface of only every other plate and on the inner surface of the opening. That is, as shown at positions a, c, e, plates 1, 3, 4 with coatings 8 and 8.1 are provided. During bonding or bonding, soluble or meltable metal made using bonding means covers all adjacent plate 1-4 joints in the region of openings 5, 6, 7 and is therefore inconvenient. The dead space 9 is removed, and the edge of the opening and the inner surface of the opening are covered with the metal of the bonding layer at the joint between the plates 1 to 4.

同じ結果は、2個のプレート2だけ、表面側に接合手段(コーティング8)を設け、開口6に接合手段(コーティング8.1)を設ける、図7に示した実施形態によっても達成することができる。この実施形態において、接合の間に溶融可能な金属は開口5〜7の領域における全てのプレート1〜4間の接合部、また、これらの開口の内側表面も被覆するので、望ましくないデッドスペース9が除かれる。 The same result can also be achieved with the embodiment shown in FIG. 7 in which only two plates 2 are provided with a joining means (coating 8) on the surface side and a joining means (coating 8.1) in the opening 6. it can. In this embodiment, the metal that can be melted during bonding covers all the junctions between the plates 1 to 4 in the region of the openings 5 to 7 and also the inner surface of these openings, so undesirable dead space 9 Is removed.

接合手段は、例えば、接合手段の種類、したがって接合手段の種類に応じて、様々な手段で塗工することができる。例えば、直接接合プロセスを用いるならば、例えば、プレート1〜4が銅から作られ、直接銅接合プロセスが用いられるならば、接合手段はそれぞれのプレートの金属間の反応性ガスによる接合であって、銅から作られたプレートでは接合手段はCuOおよび/またはCuOであり、結合または接合は互いにスタック状に構成されたプレート1〜4を低濃度の酸素を含有する不活性ガス雰囲気中で1065℃〜1082℃の加工温度に加熱し、次いで環境温度まで冷却することによって行われる。 The joining means can be applied by various means depending on, for example, the kind of joining means and therefore the kind of joining means. For example, if a direct bonding process is used, for example, if plates 1-4 are made from copper and a direct copper bonding process is used, the bonding means is a reactive gas bonding between the metals of each plate. In a plate made of copper, the bonding means is CuO and / or Cu 2 O, and the bonding or bonding is performed in the inert gas atmosphere containing a low concentration of oxygen by connecting the plates 1 to 4 configured in a stack. This is done by heating to a processing temperature of 1065 ° C. to 1082 ° C. and then cooling to ambient temperature.

次に、接合手段の塗工は、例えばプレート1〜4または箔素材の適切な化学処理によって行われる。開口の内側表面に接合手段を有するプレートでは、接合手段層、すなわち、例えばCuOおよび/またはCuOコーティングを形成するためのこの化学処理は、開口を構成または作製するまで行わない。 Next, the application of the joining means is performed by an appropriate chemical treatment of the plates 1 to 4 or the foil material, for example. The plates with joining means to the inner surface of the opening, joining means layer, i.e., for example, the chemical process to form the CuO and / or Cu 2 O coating does not take place until the construction or making an opening.

様々な金属または金属合金が接合手段として適しており、特に、加工温度でプレート1〜4の金属と半田を形成し、その(半田の)溶融温度がプレート1〜4の金属の溶融温度よりもかなり低い金属または金属合金が接合手段として適している。 Various metals or metal alloys are suitable as bonding means, and in particular, the metal and the solder of the plates 1 to 4 are formed at the processing temperature, and the melting temperature thereof (solder) is higher than the melting temperature of the metals of the plates 1 to 4. A fairly low metal or metal alloy is suitable as a joining means.

適切な接合手段は、例えばリン含有率が1〜20重量%のNi−P合金である。そのとき、積み重ねられたプレート1〜4の結合または接合は、プレートスタックを850℃〜1082℃の加工温度に加熱し、次いで環境温度まで冷却することによって行われ、それによって接合手段は加工温度で隣接するプレート1〜4の銅と溶融可能な半田を形成する。 A suitable joining means is, for example, a Ni-P alloy having a phosphorus content of 1 to 20% by weight. The joining or joining of the stacked plates 1 to 4 is then performed by heating the plate stack to a processing temperature of 850 ° C. to 1082 ° C. and then cooling to ambient temperature, whereby the joining means is at the processing temperature. The copper of the adjacent plates 1 to 4 and solder that can be melted are formed.

銀は、特に銅から作られたプレート1〜4に適した接合手段であり、接合は780℃〜1080℃の加工温度に加熱することによって行われる。 Silver is a joining means particularly suitable for plates 1 to 4 made of copper, and the joining is performed by heating to a processing temperature of 780 ° C to 1080 ° C.

例えば、スズまたはスズ合金も適切な接合手段である。積み重ねられたプレート1〜4の結合または接合は、プレートスタックを約170℃〜280℃の加工温度に加熱することによって行われる。 For example, tin or a tin alloy is a suitable joining means. Bonding or joining of the stacked plates 1 to 4 is performed by heating the plate stack to a processing temperature of about 170 ° C to 280 ° C.

接合手段の塗工は例えば、電気めっきまたは浸漬によって化学的に達成される。 Application of the joining means is accomplished chemically, for example, by electroplating or dipping.

プレートの厚さが0.1〜2mmの場合、開口の内側表面の十分な接合手段コーティング8.1の厚さは、約0.5〜1.5μmである。 If the thickness of the plate is 0.1-2 mm, the thickness of the sufficient bonding means coating 8.1 on the inner surface of the opening is about 0.5-1.5 μm.

特に接合手段を、それぞれのプレート1〜4の化学的または電気化学的な処理によって塗工する上記の方法では、接合手段がコーティング8.1としてそれぞれの開口領域に堆積するだけでなく、それぞれのプレートの両側の表面にコーティング8として堆積することが避けられない。後者が望ましくなければ、すなわち、1個のプレートの2つの表面の1つだけに接合手段を設けなければならないときは、それぞれのプレートは接合手段の塗工の後、および接合の前に、図8に示したようにさらに処理が行われる。位置aは例えばプレート1を示しており、両面に接合手段から作られたコーティング8が設けられ、開口6の領域には接合手段から作られたコーティング8.1が設けられる。次いで、さらなる加工ステップ、例えば機械的または化学的な処理によって、接合手段は1つの表面から除去されるので、プレートは接合手段をその他方の表面と開口5の領域にのみ備えることになる。 In particular, in the above method in which the joining means are applied by chemical or electrochemical treatment of the respective plates 1 to 4, the joining means are not only deposited in the respective open areas as coatings 8.1, It is inevitable to deposit as a coating 8 on the surfaces on both sides of the plate. If the latter is not desired, i.e., if only one of the two surfaces of a plate must be provided with a joining means, each plate is applied after application of the joining means and before joining. Further processing is performed as shown in FIG. The position a shows, for example, the plate 1, the coating 8 made from the joining means is provided on both sides, and the coating 8.1 made from the joining means is provided in the region of the opening 6. Then, by further processing steps, for example mechanical or chemical treatment, the joining means is removed from one surface, so that the plate will comprise the joining means only in the region of the other surface and the opening 5.

本発明の一般的な利点は、上述の全ての実施形態において、通路または開口領域でプレートまたは複数のプレート1〜4の間の接合部の従来技術の不都合なデッドスペースが除かれ、したがって、特に望ましくない冷媒中の乱流が防止されることである。さらに、通路または開口におけるプレート1〜4間の接合部を溶融可能な金属によって接合中に完全に被覆することは、完成したスタックにおいて同じ材料が表面全てに存在することも意味し、したがって液体冷媒(例えば水)と他の材料の接触に起因する接触腐食が回避される。 The general advantage of the present invention is that in all the embodiments described above, the disadvantageous prior art dead space of the joint between the plates or plates 1-4 is eliminated in the passages or open areas, and thus in particular Undesirable turbulence in the refrigerant is prevented. Furthermore, completely covering the joints between the plates 1 to 4 in the passages or openings during melting with a meltable metal also means that the same material is present on all surfaces in the finished stack, so that the liquid refrigerant Contact corrosion due to contact between (eg water) and other materials is avoided.

特に、図5および7に関して説明した実施形態は、接合の前にプレート1〜4のいくつかだけに接合手段を塗工するため、製造と加工コストが低減されるという利点がある。驚くべきことに、これらの実施形態において、それらの通路または開口領域における個々のプレート間の接合部は接合手段で形成された溶融可能な金属によって完全に被覆されるので、従来技術の望ましくないデッドスペース9が除かれるだけでなく、少なくとも開口領域において、冷媒が流れるチャンネルの表面が同じ材料から形成されることになり、冷腐食が少なくとも最大限回避される。 In particular, the embodiment described with respect to FIGS. 5 and 7 has the advantage that manufacturing and processing costs are reduced because the joining means is applied to only some of the plates 1-4 before joining. Surprisingly, in these embodiments, the junctions between the individual plates in their passages or open areas are completely covered by the meltable metal formed by the joining means, which is an undesirable dead of the prior art. Not only is the space 9 removed, but at least in the open region, the surface of the channel through which the refrigerant flows is formed from the same material, so that cold corrosion is at least maximally avoided.

本発明は例示的な実施形態に基づいて上に説明した。いうまでもなく、本発明の根拠となる基本的な本発明の概念を放棄することなく、様々な修正と変更を加えることが可能である。 The invention has been described above on the basis of exemplary embodiments. Needless to say, various modifications and changes can be made without giving up the basic concept of the present invention on which the present invention is based.

図示していない電子素子またはモジュールを冷却するためのヒートシンクまたは冷却器の3個の金属層またはプレートを簡略化して示す展開俯瞰図である。It is a development top view which simplifies and shows three metal layers or plates of a heat sink or a cooler for cooling an electronic element or module which is not illustrated. 図1に描いたプレートを表面結合または接合することによって製造された、従来技術で知られている冷却器の簡略化した部分図である。FIG. 2 is a simplified partial view of a cooler known in the prior art manufactured by surface bonding or joining the plates depicted in FIG. 1. 接続または接合する前の本発明による冷却器の個々のプレートを、各々a〜dの位置に断面で示し、冷却器の断面をeの位置に示す図である。FIG. 2 shows the individual plates of the cooler according to the invention before connection or joining, each in section at positions a to d, and the section of the cooler at position e. 図3と同様に描いてあるが、さらに別の可能な実施形態を示す図である。FIG. 4 is a view similar to FIG. 3 but showing yet another possible embodiment. さらに別の可能な実施形態の冷却器を製造するための5個の層またはプレートを図1と同様に描いて示す図である。FIG. 5 is a drawing depicting five layers or plates similar to FIG. 1 for producing a cooler of yet another possible embodiment. 接合してマイクロクーラーを形成する前の図5のプレートを、各々a〜eの位置に部分断面で示し、プレートによって形成される冷却器の部分断面をfの位置に示す図である。It is a figure which shows the plate of FIG. 5 before joining and forming a micro cooler in the position of a-e in a partial cross section, and shows the partial cross section of the cooler formed by a plate in the position of f. 図6と同様に描いた図である。It is the figure drawn similarly to FIG. 本発明のさらに別の可能な実施形態の2つのプロセス段階をaおよびbの位置に示す図である。FIG. 4 shows two process steps of yet another possible embodiment of the invention at positions a and b.

符号の説明Explanation of symbols

1 プレートまたはプレート状要素
2 プレートまたはプレート状要素
3 プレートまたはプレート状要素
4 プレートまたはプレート状要素
5 通路または開口
6 通路または開口
7 通路または開口
8 表面側への接合手段コーティングまたは塗工
8.1 開口への接合手段コーティングまたは塗工
9 デッドスペース
10 冷却器
10a 冷却器
DESCRIPTION OF SYMBOLS 1 Plate or plate-like element 2 Plate or plate-like element 3 Plate or plate-like element 4 Plate or plate-like element 5 Passage or opening 6 Passage or opening 7 Passage or opening 8 Coating means coating or coating on the surface side 8.1 Bonding means coating or coating to opening 9 Dead space 10 Cooler 10a Cooler

Claims (4)

金属から作製された少なくとも2個のプレート状の要素(1〜4)を具備し、通路または開口(5、7)を設けた、少なくとも1個のプレートスタックからなる冷却器または冷却器要素もしくはヒートシンクを製造する方法であって、積み重ねられた要素(1〜4)は、前記要素の接合表面上および通路または開口(5、7)の内側表面上に接合手段を塗工して加工温度まで加熱することにより互いに接合されてスタックを形成する方法であり、スズまたは少なくともスズ合金が接合手段として使用され、接合が約170℃〜280℃の加工温度で行われることを特徴とする記載の方法。   Cooler or cooler element or heat sink consisting of at least one plate stack, comprising at least two plate-like elements (1-4) made of metal and provided with passages or openings (5, 7) The stacked elements (1-4) are heated to the processing temperature by applying bonding means on the bonding surfaces of the elements and on the inner surfaces of the passages or openings (5, 7). To form a stack by bonding to each other, wherein tin or at least a tin alloy is used as a bonding means, and the bonding is performed at a processing temperature of about 170 ° C. to 280 ° C. スズまたは少なくともスズ合金が要素(1〜4)の結合表面および開口の内側表面に接合手段として塗工され、次いで要素(1〜4)が積み重ねられ、170℃〜280℃の加工温度で互いに結合されることを特徴とする請求項1に記載の方法。   Tin or at least a tin alloy is applied as a joining means to the bonding surface of the element (1-4) and the inner surface of the opening, then the elements (1-4) are stacked and bonded together at a processing temperature of 170 ° C. to 280 ° C. The method of claim 1, wherein: 接合の前に、全ての要素(1〜4)には、少なくともそれらの接合表面および存在する全ての通路または開口(5〜7)上に接合手段(8、8.1)が設けられることを特徴とする請求項1、2のいずれか一項に記載の方法。 Prior to joining, all elements (1-4) should be provided with joining means (8, 8.1) on at least their joining surfaces and any passages or openings (5-7) present. The method according to claim 1, wherein the method is characterized in that 金属から作製された少なくとも2個のプレート状の要素(1〜4)を具備し、通路または開口(5、7)を設けた、少なくとも1個のプレートスタックからなる冷却器または冷却器要素もしくはヒートシンクを製造する方法であって、積み重ねられた要素(1〜4)は、前記要素の表面上および通路または開口(5〜7)の内側表面上に接合手段(8、8.1)を塗工する要素と塗工しない要素を含むことを特徴とする請求項1、2のいずれか一項に記載の方法。 Cooler or cooler element or heat sink consisting of at least one plate stack, comprising at least two plate-like elements (1-4) made of metal and provided with passages or openings (5, 7) Wherein the stacked elements (1-4) are coated with joining means (8, 8.1) on the surface of said elements and on the inner surface of the passages or openings (5-7) A method according to any one of claims 1 and 2, characterized in that it comprises an element to be applied and an element to be uncoated.
JP2008313227A 2004-01-12 2008-12-09 Method for manufacturing plate stack, more specifically method for manufacturing cooling unit or cooling unit element made of plate stacks Pending JP2009065206A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102004001772 2004-01-12
DE102004002494 2004-01-17
DE102004002841A DE102004002841B3 (en) 2004-01-12 2004-01-19 Process for production of plate-like stack elements, especially of coolers, cooler elements or heat sinks made from such elements useful for cooling high power electrical components or modules

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005005654A Division JP4346555B2 (en) 2004-01-12 2005-01-12 A method of manufacturing a plate stack, in particular a method of manufacturing a cooler or cooler element comprising a plate stack.

Publications (1)

Publication Number Publication Date
JP2009065206A true JP2009065206A (en) 2009-03-26

Family

ID=34424592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008313227A Pending JP2009065206A (en) 2004-01-12 2008-12-09 Method for manufacturing plate stack, more specifically method for manufacturing cooling unit or cooling unit element made of plate stacks

Country Status (3)

Country Link
JP (1) JP2009065206A (en)
DE (2) DE102004002841B3 (en)
HK (1) HK1079036A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011129829A (en) * 2009-12-21 2011-06-30 Hamamatsu Photonics Kk Heat sink

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2091684A1 (en) 2006-11-07 2009-08-26 Perkinelmer Optoelectronics GmbH & Co. Kg Method for bonding metal surfaces by applying a first oxidised metal layer and a second oxidised metal layer object having cavities or structure of a light emitting diode produced through the last method
WO2008128949A2 (en) 2007-04-24 2008-10-30 Ceramtec Ag Method for producing a composite including at least one non-flat component
DE102020104493B4 (en) 2020-02-20 2022-08-04 Rogers Germany Gmbh Method for manufacturing a cooling element and cooling element manufactured with such a method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11325763A (en) * 1998-05-18 1999-11-26 Matsushita Electric Ind Co Ltd Lamination type heat-exchanger and manufacture thereof
JP2003100970A (en) * 2001-09-20 2003-04-04 Ntt Advanced Technology Corp Composite heat radiation member

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3630323C1 (en) * 1986-09-05 1987-09-03 Kernforschungsanlage Juelich Gmbh, 5170 Juelich, De

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11325763A (en) * 1998-05-18 1999-11-26 Matsushita Electric Ind Co Ltd Lamination type heat-exchanger and manufacture thereof
JP2003100970A (en) * 2001-09-20 2003-04-04 Ntt Advanced Technology Corp Composite heat radiation member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011129829A (en) * 2009-12-21 2011-06-30 Hamamatsu Photonics Kk Heat sink

Also Published As

Publication number Publication date
DE102004002841B3 (en) 2005-05-04
HK1079036A1 (en) 2006-03-24
DE502004007661D1 (en) 2008-09-04

Similar Documents

Publication Publication Date Title
JP4346555B2 (en) A method of manufacturing a plate stack, in particular a method of manufacturing a cooler or cooler element comprising a plate stack.
US20080189948A1 (en) Heat sink in the form of a heat pipe and process for manufacturing such a heat sink
US20070251410A1 (en) Method For Reducing Metal Oxide Powder And Attaching It To A Heat Transfer Surface And The Heat Transfer Surface
CN105659377A (en) Method for manufacturing assembly and method for manufacturing power-module substrate
CN1813166B (en) Method for making brazed heat exchanger and apparatus
JP2009515054A5 (en)
JP2009065206A (en) Method for manufacturing plate stack, more specifically method for manufacturing cooling unit or cooling unit element made of plate stacks
DE102012106244B4 (en) Metal-ceramic substrate
JP2004154861A (en) Method of connecting module layers suitable for production of microstructure module and microstructure module
CN107614178A (en) The manufacture method of constructed of aluminium body
RU2305615C2 (en) Method for soldering by hard solder
JPS5961050A (en) Electronic circuit package
JP2003314985A5 (en)
CN107708907A (en) The manufacture method of constructed of aluminium body
BG64352B1 (en) Method for plugging a hole in a cooling element and element manufactured by said method
RU2004104336A (en) HYDROPROFILE EVAPORATION SURFACE FOR A HEAT EXCHANGER, METHOD FOR PRODUCING A HEAT EXCHANGER AND COMPOSITION FOR FORMING SUCH SURFACE
KR20110106455A (en) A plate heat exchanger
KR100625090B1 (en) Adhesive sheet for brazing magnesium alloy and method for brazing magnesium and aluminum alloy
KR20170134620A (en) Manufacturing Method of Plate Heat Exchanger
FI120051B (en) Method of connecting metal powder to a heat transfer surface and heat transfer surface
JP2005319503A (en) Metallic member joining method, heat exchange plate manufacturing method, and heat exchanger manufacturing method
JPS6023906B2 (en) How to solder parts
JPH09105592A (en) Plate laminated heat exchanger and production for the same
JPH04273484A (en) Heat exchanger and heat exchanger with peltier element and manufacture method thereof
KR100704038B1 (en) Method for joining thin metal plates by continuous process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090108

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110926

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120626