JP2009065005A - Manufacturing method of chip-like electronic component - Google Patents

Manufacturing method of chip-like electronic component Download PDF

Info

Publication number
JP2009065005A
JP2009065005A JP2007232331A JP2007232331A JP2009065005A JP 2009065005 A JP2009065005 A JP 2009065005A JP 2007232331 A JP2007232331 A JP 2007232331A JP 2007232331 A JP2007232331 A JP 2007232331A JP 2009065005 A JP2009065005 A JP 2009065005A
Authority
JP
Japan
Prior art keywords
plating
plating bath
chip
magnetism
electronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007232331A
Other languages
Japanese (ja)
Inventor
Seiichiro Goto
征一郎 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2007232331A priority Critical patent/JP2009065005A/en
Publication of JP2009065005A publication Critical patent/JP2009065005A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reduce plating defects while enhancing productivity of a plating process in forming an external electrode of a chip-like electronic component such as a laminated ceramic capacitor. <P>SOLUTION: A magnetism varying part 4 is arranged on the lower side of a bottom surface 2 of a plating bath 1 provided with the bottom surface 2 without having residual magnetism, and a side surface 3 having a negative electrode 7; chip-like electronic components 15 each containing a magnetic substance such as nickel are arranged on the bottom surface 2 of the plating bath 1 without being filled with a plating liquid 18; magnetism is generated in the magnetism varying part 4; thereafter the magnetism is eliminated from the magnetism varying part 4 after filling the plating liquid 18; and an electrolytic plating process is executed by arranging the chip-like electronic components 15 on the side surface 3 of the plating bath 1 by rotating the plating bath 1. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、積層セラミックコンデンサ、圧電部品等のチップ状電子部品の外部電極をめっき処理により形成するチップ状電子部品の製造方法に関する。   The present invention relates to a chip-shaped electronic component manufacturing method in which external electrodes of chip-shaped electronic components such as multilayer ceramic capacitors and piezoelectric components are formed by plating.

チップ状電子部品のひとつに、例えば積層セラミックコンデンサがあり、電子機器の小型化に伴い積層セラミックコンデンサも小型化し、長さ1.0mm、幅0.5mm、高さ0.5mm以下の極めて小型の積層セラミックコンデンサが用いられるようになっている。   One of the chip-shaped electronic components is, for example, a multilayer ceramic capacitor, and the multilayer ceramic capacitor is also miniaturized as electronic devices are miniaturized, and is extremely small with a length of 1.0 mm, a width of 0.5 mm, and a height of 0.5 mm or less. Multilayer ceramic capacitors are used.

図5は積層セラミックコンデンサの断面図、図6は従来の電解めっき処理工程における電解めっき処理の状態を示す断面図である。   FIG. 5 is a cross-sectional view of a multilayer ceramic capacitor, and FIG. 6 is a cross-sectional view showing a state of an electrolytic plating process in a conventional electrolytic plating process.

図5に示すように内部電極層31を交互に対向するように内部電極層31とセラミック層32とを積層したコンデンサ素体の両端部に、内部電極層31と導通するように外部電極34が配設され積層セラミックコンデンサとしたものである。   As shown in FIG. 5, external electrodes 34 are electrically connected to the internal electrode layers 31 at both ends of the capacitor body in which the internal electrode layers 31 and the ceramic layers 32 are laminated so that the internal electrode layers 31 are alternately opposed to each other. The laminated ceramic capacitor is provided.

積層セラミックコンデンサの外部電極34を形成する従来の方法は、印刷法等により導電性ペーストをコンデンサ素体に塗布し焼付けて下地電極層35を形成し、さらに下地電極層35上にニッケルからなる中間電極層36、錫または錫合金のめっき層37を電解めっき処理により順次形成して外部電極34とするものである。   In the conventional method of forming the external electrode 34 of the multilayer ceramic capacitor, a conductive paste is applied to the capacitor body by a printing method or the like and baked to form the base electrode layer 35. Further, an intermediate layer made of nickel is formed on the base electrode layer 35. An electrode layer 36 and a tin or tin alloy plating layer 37 are sequentially formed by electrolytic plating to form the external electrode 34.

従来のチップ状電子部品の電解めっき処理としては、チップ状電子部品が極小になると浮力によってめっき液の液面に浮いてしまい電解めっき処理ができないため、図6に示すように陰極電極47をめっき浴槽41の底面42に設け前記底面42の中に設けた電磁石44によってチップ状電子部品55を吸引した後、電解めっき処理を行う方法がある。   As a conventional electrolytic plating process for chip-shaped electronic components, if the chip-shaped electronic component is extremely small, it floats on the surface of the plating solution due to buoyancy and cannot be electroplated. Therefore, as shown in FIG. There is a method in which the electroplating process is performed after the chip-like electronic component 55 is sucked by the electromagnet 44 provided on the bottom surface 42 of the bathtub 41 and provided in the bottom surface 42.

なお、この出願の発明に関連する先行技術文献情報としては、例えば特許文献1が知られている。
特開2007−16290号公報
For example, Patent Document 1 is known as prior art document information related to the invention of this application.
JP 2007-16290 A

しかしながら、従来のチップ状電子部品の電解めっき処理方法は、めっき液57にニッケル等の強磁性体の金属を用いると、電解めっき処理によりチップ状電子部品55の外部電極34に強磁性体の金属めっき皮膜が形成されると同時に陰極電極47の表面に強磁性体の金属めっき皮膜が形成される。   However, in the conventional method of electrolytic plating of chip-shaped electronic components, when a ferromagnetic metal such as nickel is used for the plating solution 57, the ferromagnetic metal is applied to the external electrode 34 of the chip-shaped electronic component 55 by electrolytic plating. At the same time as the plating film is formed, a ferromagnetic metal plating film is formed on the surface of the cathode electrode 47.

このめっき浴槽41を繰り返し使用すると電磁石44の強い磁気によって陰極電極47に形成された強磁性体の金属めっき皮膜の残留磁性が大きくなり、電解めっき処理時に特定のチップ状電子部品55が陰極電極47に吸引されたままとなるため、チップ状電子部品55に形成されるめっき皮膜の厚みにバラツキが生じめっき不良が増加したり陰極電極47に吸引された極小のチップ状電子部品55をめっき浴槽から取り出すことが困難になったりして生産性が低下する課題があった。   When this plating bath 41 is used repeatedly, the residual magnetism of the ferromagnetic metal plating film formed on the cathode electrode 47 is increased by the strong magnetism of the electromagnet 44, and the specific chip-like electronic component 55 is attached to the cathode electrode 47 during the electrolytic plating process. As a result, the thickness of the plating film formed on the chip-like electronic component 55 varies, resulting in an increase in defective plating or the extremely small chip-like electronic component 55 sucked by the cathode electrode 47 from the plating bath. There is a problem that productivity becomes low due to difficulty in taking out.

そこで本発明は、チップ状電子部品のめっき不良を低減する製造方法を提供することを目的とする。   Then, an object of this invention is to provide the manufacturing method which reduces the plating defect of a chip-shaped electronic component.

この目的を達成するために、残留磁性を有しない底面と陰極電極を有する側面とを備えためっき浴槽の下側に磁気可変部を配設し、前記めっき浴槽の底面に磁性体を含有したチップ状電子部品を配置する工程と、磁気可変部に磁気を発生させる工程と、前記めっき浴槽にめっき液を導入する工程と、磁気可変部に磁気をなくす工程と、前記めっき浴槽を回転させて前記めっき浴槽の側面にチップ状電子部品を配置させる工程と、電解めっき処理を行う工程と、を含むチップ状電子部品の製造方法である。   In order to achieve this object, a chip having a magnetic variable portion disposed on the lower side of a plating bath provided with a bottom surface having no residual magnetism and a side surface having a cathode electrode, and containing a magnetic substance on the bottom surface of the plating bath A step of disposing a magnetic electronic component, a step of generating magnetism in the magnetic variable portion, a step of introducing a plating solution into the plating bath, a step of eliminating magnetism in the magnetic variable portion, and rotating the plating bath to It is a manufacturing method of a chip-like electronic component including the process of arranging a chip-like electronic component on the side of a plating bath, and the process of performing electrolytic plating treatment.

本発明によれば、めっき浴槽の下側に磁気可変部と側面に陰極電極を設けて電解めっき処理を行うことによって、磁気可変部の磁場が強く作用するめっき浴槽の底面と陰極電極とを離すことができるので、陰極電極に形成された強磁性体のめっき皮膜に残留磁性が生じることを低減できるため電解めっき処理中に特定のチップ状電子部品が陰極電極に吸引され続けることを防止し、めっき皮膜を均一に形成することができ、めっき不良を低減できる作用効果を奏する。   According to the present invention, the bottom surface of the plating bath on which the magnetic field of the magnetic variable portion acts strongly is separated from the cathode electrode by performing the electroplating process by providing the magnetic variable portion on the lower side of the plating bath and the cathode electrode on the side surface. Since it is possible to reduce the occurrence of residual magnetism in the ferromagnetic plating film formed on the cathode electrode, it is possible to prevent a specific chip-shaped electronic component from being continuously attracted to the cathode electrode during the electrolytic plating process, A plating film can be formed uniformly, and there exists an effect which can reduce a plating defect.

(実施の形態)
本発明の実施の形態1におけるチップ状電子部品として積層セラミックコンデンサを用いたもので説明する。
(Embodiment)
A description will be given using a multilayer ceramic capacitor as the chip-like electronic component according to the first embodiment of the present invention.

まず、積層セラミックコンデンサの構成と製造方法について説明する。   First, the configuration and manufacturing method of the multilayer ceramic capacitor will be described.

図5に示すように積層セラミックコンデンサは、内部電極層31がニッケル又はニッケル合金の磁性体の性質をもつ金属から構成され、チタン酸バリウム、チタン酸ストロンチウムなどの誘電体材料から構成されるセラミック層32を介して互いに対向するように複数積層されている。   As shown in FIG. 5, in the multilayer ceramic capacitor, the internal electrode layer 31 is made of a metal having a magnetic property of nickel or a nickel alloy, and the ceramic layer is made of a dielectric material such as barium titanate or strontium titanate. A plurality of layers are stacked so as to face each other through 32.

前記磁性体は、外部磁場がないときには磁化を有せず磁場を印加すると磁化を有する材料又は外部磁場がなくても自発磁化を有する材料であってもよい。また内部電極層31に限定されて含有されるものではなく、他の構成部分に含有されてもよい。   The magnetic material may be a material that does not have magnetization when there is no external magnetic field and that has magnetization when a magnetic field is applied, or a material that has spontaneous magnetization without an external magnetic field. Moreover, it is not limited to the internal electrode layer 31 and may be contained in other components.

また外部電極34は、交互に対向するように両端部に引出された内部電極層31と導通し、銀、銅などの導電性金属粉を焼き付けた下地電極層35と、はんだ食われを防止するニッケルめっきの中間電極層36と、はんだ濡れ性を良好にするための錫めっき又は錫合金からなるめっき層37とを備えたものである。   The external electrodes 34 are electrically connected to the internal electrode layers 31 drawn at both ends so as to alternately face each other, and prevent the solder erosion with the base electrode layer 35 baked with conductive metal powder such as silver or copper. An intermediate electrode layer 36 of nickel plating and a plating layer 37 made of tin plating or tin alloy for improving solder wettability are provided.

積層セラミックコンデンサの製造方法は、例えばセラミック層32の誘電体材料としてチタン酸バリウムを主成分とするものは、チタン酸バリウムの誘電体粉末に炭酸ストロンチウム、酸化マグネシウム、酸化ジスプロシウム、酸化マンガンおよびシリカ等の微量添加物を加え、さらにポリビニルブチラールを主成分とする有機ビヒクルに分散させることにより誘電体スラリーを作製する。   A method for manufacturing a multilayer ceramic capacitor is, for example, a method in which barium titanate is a main component as the dielectric material of the ceramic layer 32, and strontium carbonate, magnesium oxide, dysprosium oxide, manganese oxide, silica, etc. A dielectric slurry is prepared by adding a small amount of additive and further dispersing it in an organic vehicle containing polyvinyl butyral as a main component.

また、平均粒径が0.1μmから0.5μmのニッケル金属粉末を主成分として溶剤、樹脂、可塑剤等と混合し、好ましくはニッケル金属粉末を40重量%から60重量%含有させてニッケルペーストを作製する。   Further, nickel paste having an average particle size of 0.1 μm to 0.5 μm as a main component is mixed with a solvent, resin, plasticizer, etc., preferably 40 wt% to 60 wt% of nickel metal powder is contained in the nickel paste Is made.

さらに、前記誘電体スラリーを基体上に塗布、乾燥してグリーンシートを作製し、このグリーンシート上に前記ニッケルペーストを印刷して内部電極パターンを形成したものを所定の枚数分、積層圧着させた後、個片に分離し更に焼成してコンデンサ素体を作製する。   Further, the dielectric slurry was applied on a substrate and dried to produce a green sheet, and the nickel paste was printed on the green sheet to form an internal electrode pattern, and a predetermined number of sheets were laminated and pressure-bonded. After that, it is separated into individual pieces and further fired to produce a capacitor body.

次に、前記コンデンサ素体の両端部に導電性金属粉、ガラスフリット、有機バインダおよび溶剤からなる導電性ペーストを塗布、乾燥した後、次にピーク温度800℃〜900℃の条件で焼き付けを行いコンデンサ素体の両端部に下地電極層35を形成させる。   Next, a conductive paste composed of conductive metal powder, glass frit, organic binder and solvent is applied to both ends of the capacitor body, dried, and then baked at a peak temperature of 800 ° C. to 900 ° C. Base electrode layers 35 are formed on both ends of the capacitor body.

さらに、この下地電極層35の表面にニッケル電解めっき処理を施しニッケルからなる中間電極層36を形成し、中間電極層36の上には錫電解めっき処理を施してめっき層37を形成して外部電極34とし、積層セラミックコンデンサを形成するものである。   Further, nickel electrolytic plating is performed on the surface of the base electrode layer 35 to form an intermediate electrode layer 36 made of nickel, and tin electrolytic plating is performed on the intermediate electrode layer 36 to form a plated layer 37 to externally The electrode 34 is used to form a multilayer ceramic capacitor.

次に、積層セラミックコンデンサの中間電極層36の電解めっき処理工程に用いる電解めっき装置について説明する。   Next, the electroplating apparatus used for the electroplating process of the intermediate electrode layer 36 of the multilayer ceramic capacitor will be described.

図1は本発明の実施の形態の電解めっき処理工程における電解めっき処理中の状態を示す断面図、図2は同電解めっき装置の磁気可変部の上面断面図、図3は同めっき浴槽にチップ状電子部品が配置され、めっき液が充填された状態を示す断面図である。   FIG. 1 is a cross-sectional view showing a state during an electroplating process in an electroplating process according to an embodiment of the present invention, FIG. 2 is a top cross-sectional view of a magnetic variable portion of the electroplating apparatus, and FIG. It is sectional drawing which shows the state with which the electronic component was arrange | positioned and the plating solution was filled.

電解めっき処理の装置は、図1に示すようにめっき浴槽1が、円形の底面2と、底面2の外周に垂直に設けた筒状の側面3と、筒状の側面3の開口が小さくなるように斜めに突き出た上面開放の蓋8とを備えた台形円錐形状の容器である。   As shown in FIG. 1, the electrolytic plating apparatus includes a plating bath 1 having a circular bottom surface 2, a cylindrical side surface 3 provided perpendicular to the outer periphery of the bottom surface 2, and an opening in the cylindrical side surface 3. In this way, the container is a trapezoidal cone-shaped container provided with a lid 8 with an open upper surface protruding obliquely.

めっき浴槽1の底面2は、残留磁性を有しないもので外部磁場がないときに残留磁性が残らない材料で構成される。この構成にすることによって、めっき浴槽1に下側に備えた磁気可変部4で生じた磁場によって底面2に残留磁性が残らないので、磁気可変部4の磁気をなくしたときに電解めっき処理中に被めっき物のチップ状電子部品15が底面2に吸引され続けることを防止し、めっき皮膜を均一に形成することができ底面2の残留磁性を有しない材料として例えばポリ塩化ビニール樹脂、エポキシ樹脂、ポリプロピレン樹脂等の非磁性の樹脂材を用いることができ、底面2の内側表面を構成する絶縁性材料として用いたものである。また底面2の残留磁性を有しない他の材料として、アルミニウム、銅等の常磁性の金属を用いることができる。   The bottom surface 2 of the plating bath 1 is made of a material that does not have residual magnetism and does not leave residual magnetism when there is no external magnetic field. With this configuration, no residual magnetism remains on the bottom surface 2 due to the magnetic field generated in the magnetic variable portion 4 provided on the lower side of the plating bath 1, so that the electroplating process is performed when the magnetism of the magnetic variable portion 4 is lost. As a material that prevents the chip-shaped electronic component 15 of the object to be plated from being continuously attracted to the bottom surface 2 and can form a plating film uniformly and does not have residual magnetism of the bottom surface 2, for example, polyvinyl chloride resin, epoxy resin A non-magnetic resin material such as polypropylene resin can be used, and is used as an insulating material constituting the inner surface of the bottom surface 2. Moreover, paramagnetic metals, such as aluminum and copper, can be used as another material which does not have the residual magnetism of the bottom face 2.

底面2の平坦な内側表面の中心部にはシャフト11が固定されて蓋8の開放部からめっき浴槽1の上方に導出している。シャフト11も底面2と同様に残留磁性が残らないように構成することが望ましい。   A shaft 11 is fixed to the center portion of the flat inner surface of the bottom surface 2 and is led out from the opening portion of the lid 8 to above the plating bath 1. As with the bottom surface 2, the shaft 11 is preferably configured so that no residual magnetism remains.

まためっき浴槽1のめっき液18に浸漬される底面2、シャフト11等に金属等の導電性の材料を用いる際には、電解めっき処理中に電流が流れ、めっき皮膜が形成されないように絶縁性樹脂をコーティングし、絶縁化処理した構成とすることが望ましい。   Further, when a conductive material such as metal is used for the bottom surface 2 and the shaft 11 immersed in the plating solution 18 of the plating bath 1, an insulating property is provided so that a current flows during the electrolytic plating process and no plating film is formed. It is desirable that the resin is coated and insulated.

めっき浴槽1を回転させる回転手段は、モータ12とモータ12と連結する回転伝達部のシャフト11とを備えるものである。   The rotating means for rotating the plating bath 1 includes a motor 12 and a shaft 11 of a rotation transmission unit connected to the motor 12.

めっき浴槽1の側面3は、絶縁性樹脂又は金属材に絶縁性樹脂をコーティングし絶縁化処理した基材に銅、銅合金等の高伝導性金属又はチタン等の耐腐食性金属からなる陰極電極7が埋設されたもので、陰極電極7が側面3の外周面上に沿って連続してリング状に表出し又は一定間隔で分離して表出したもので、この陰極電極7の表出面が側面3内側の基材と同一面となっている。   The side surface 3 of the plating bath 1 is a cathode electrode made of a highly conductive metal such as copper or copper alloy or a corrosion-resistant metal such as titanium on an insulating resin or metal material coated with an insulating resin and insulated. 7 is embedded, and the cathode electrode 7 is continuously exposed along the outer peripheral surface of the side surface 3 in a ring shape or separated and displayed at regular intervals. The exposed surface of the cathode electrode 7 is It is the same surface as the base material inside the side surface 3.

まためっき浴槽1の側面3の前記基材、陰極電極7のいずれかが底面2と同様に残留磁性を有しない材料で構成されることが望ましい。   In addition, it is desirable that either the base material on the side surface 3 of the plating bath 1 or the cathode electrode 7 is made of a material having no residual magnetism, like the bottom surface 2.

蓋8の開放部の中心付近からは、めっき液18を供給する供給ノズル9と、めっき浴槽1に物理的に接触しないように陽極電極1が導入されている。   From the vicinity of the center of the open part of the lid 8, the anode 1 is introduced so as not to physically contact the supply nozzle 9 for supplying the plating solution 18 and the plating bath 1.

磁気可変部4は、高い磁力が容易に得られる電磁石4aを用いることが望ましく、この電磁石4aに磁気の発生を行う磁気制御手段は、電磁石4aと電磁石4aに電流を供給する電源13と電磁石4aに流れる電流をONまたはOFFして制御する電流制御部14とを備えるものである。   The magnetic variable unit 4 desirably uses an electromagnet 4a that can easily obtain a high magnetic force. Magnetic control means for generating magnetism in the electromagnet 4a includes a power supply 13 that supplies current to the electromagnet 4a, the electromagnet 4a, and the electromagnet 4a. And a current control unit 14 for controlling the current flowing through the power supply ON or OFF.

また、電磁石4aは取り付け台5に備えられ、図2に示すように電磁石4aを構成するコイルが、底面2の中心部の位置に対応する取り付け台5の箇所を中心としてめっき浴槽1側面3より内側の円形内に略等間隔で複数個を点在し配設している。   Moreover, the electromagnet 4a is provided in the mounting base 5, and the coil which comprises the electromagnet 4a from the side surface 3 of the plating bathtub 1 centering on the location of the mounting base 5 corresponding to the position of the center part of the bottom face 2, as shown in FIG. A plurality of dots are arranged in the inner circle at substantially equal intervals.

磁気可変部4とその取り付け台5は、めっき浴槽1の底面2の下側に底面2と機械的に分離して設けられている。このように磁気可変部4をめっき浴槽1と分離して設けることにより、磁気可変部4のメンテナンスが容易となり、まためっき浴槽1が重量化しないため回転パワーが小さくなり省電力にすることができる。   The magnetic variable portion 4 and its mounting base 5 are provided mechanically separated from the bottom surface 2 below the bottom surface 2 of the plating bath 1. Thus, by providing the magnetic variable portion 4 separately from the plating bath 1, maintenance of the magnetic variable portion 4 is facilitated, and since the plating bath 1 is not weighted, the rotational power is reduced and power can be saved. .

また、磁気可変部4をめっき浴槽1の底面2と分離して下側に設ける代わりに、めっき浴槽1の底面2内部の下側に埋め込んでもよい。   In addition, the magnetic variable portion 4 may be embedded in the lower side of the bottom surface 2 of the plating bath 1 instead of being separated from the bottom surface 2 of the plating bath 1 and provided on the lower side.

次に、積層セラミックコンデンサの中間電極層36の形成におけるニッケルの電解めっき処理工程の製造方法について説明する。   Next, a manufacturing method of the nickel electroplating process in forming the intermediate electrode layer 36 of the multilayer ceramic capacitor will be described.

まず、図3に示すようにコンデンサ素体に下地電極層35が形成された積層セラミックコンデンサとするチップ状電子部品15の複数の個片と、中間電極層36のニッケルめっき皮膜と同種のニッケルめっき皮膜が表面に形成された金属ボール16を混合した後、この混合物17をめっき浴槽1の底面2の内側に投入し配置する工程を行い、続いて電流制御部12をONにして磁気可変部4に磁気を発生させる工程を行いめっき浴槽1の底面2に混合物を引き寄せて固定する。   First, as shown in FIG. 3, a plurality of pieces of the chip-like electronic component 15 to be a multilayer ceramic capacitor in which the base electrode layer 35 is formed on the capacitor body, and the same kind of nickel plating as the nickel plating film of the intermediate electrode layer 36 After mixing the metal balls 16 having the film formed on the surface, the step of placing and placing the mixture 17 inside the bottom surface 2 of the plating bath 1 is performed. Subsequently, the current control unit 12 is turned on and the magnetic variable unit 4 is turned on. The step of generating magnetism is performed to attract and fix the mixture to the bottom surface 2 of the plating bath 1.

また、磁気可変部4に磁気を発生させる工程の後に、混合物17をめっき浴槽1に投入し底面2に配置させる工程を行ってもよい。この場合、めっき浴槽1に投入する際に混合物17の分離が大きくならないように磁気の強さを段階的に高くすることが望ましい。   Further, after the step of generating magnetism in the magnetic variable portion 4, a step of putting the mixture 17 into the plating bath 1 and arranging it on the bottom surface 2 may be performed. In this case, it is desirable to increase the magnetic strength in a stepwise manner so that the separation of the mixture 17 does not increase when it is introduced into the plating bath 1.

このようにめっき液18をめっき浴槽1に導入する前に、混合物を磁気可変部4の磁気によって底面2に固定することによって、チップ状電子部品15の一部がめっき液18の表面に浮くことを防止できる。   Thus, before introducing the plating solution 18 into the plating bath 1, the mixture is fixed to the bottom surface 2 by the magnetism of the magnetic variable portion 4, so that a part of the chip-like electronic component 15 floats on the surface of the plating solution 18. Can be prevented.

次に、めっき浴槽1にめっき液18を供給ノズル9から導入する工程を行い、めっき浴槽1の底面2に固定された混合物17全体が浸漬されるようにめっき液18を充填する。   Next, a step of introducing the plating solution 18 into the plating bath 1 from the supply nozzle 9 is performed, and the plating solution 18 is filled so that the entire mixture 17 fixed to the bottom surface 2 of the plating bath 1 is immersed.

めっき液18は、強磁性体のめっき皮膜を形成できるものであればよく、ニッケル、鉄、コバルト等の強磁性体の少なくとも一つを含有するものであり、積層セラミックコンデンサの中間電極層36の形成に用いるめっき液18は、硫酸ニッケル、塩化ニッケル、ホウ酸、添加剤を含有するpH2〜pH6のワット浴、高塩化浴等の慣用的に用いられるニッケルめっき浴を用いることができる。   The plating solution 18 only needs to be capable of forming a ferromagnetic plating film, and contains at least one ferromagnetic material such as nickel, iron, cobalt, etc., and is used for the intermediate electrode layer 36 of the multilayer ceramic capacitor. As the plating solution 18 used for the formation, a nickel plating bath which is conventionally used, such as nickel sulfate, nickel chloride, boric acid, pH 2 to pH 6 Watt bath, high chloride bath and the like containing additives can be used.

また、めっき浴槽1にめっき液18を導入する工程は、めっき浴槽1の底面2に磁性体を含有したチップ状電子部品15を配置する工程と、磁気可変部4に磁気を発生させる工程との前に行うことができる。この場合は、めっき浴槽1に導入されためっき液18の液面に浮いたチップ状電子部品15を磁気可変部4による磁気によって、めっき浴槽1の底面2に沈めることができる程度にめっき液18の導入量を調整する。   The step of introducing the plating solution 18 into the plating bath 1 includes the step of placing the chip-like electronic component 15 containing a magnetic substance on the bottom surface 2 of the plating bath 1 and the step of generating magnetism in the magnetic variable portion 4. Can be done before. In this case, the plating solution 18 is such that the chip-like electronic component 15 floating on the surface of the plating solution 18 introduced into the plating bath 1 can be sunk on the bottom surface 2 of the plating bath 1 by magnetism by the magnetic variable portion 4. Adjust the amount of introduction.

続いて、電流制御部14をOFFにして磁気可変部4に磁気をなくす工程を行った後、モータ12によりシャフト11を軸にしてめっき浴槽1を回転させ遠心力によって混合物17が側面3に移動していき、蓋8によって混合物17とめっき液18がめっき浴槽1の上面開口部から飛び出すのを防止しながら、図1に示すように混合物17が側面3の陰極電極7上に配置、固定される工程を行う。さらに陽極電極6と陰極電極7に電源10から供給される電流を流して電解めっき処理の工程を行う。   Subsequently, the current control unit 14 is turned OFF and the magnetic variable unit 4 is demagnetized. Then, the plating bath 1 is rotated about the shaft 11 by the motor 12 and the mixture 17 is moved to the side surface 3 by centrifugal force. As shown in FIG. 1, the mixture 17 is arranged and fixed on the cathode electrode 7 on the side surface 3 while preventing the mixture 17 and the plating solution 18 from jumping out from the upper surface opening of the plating bath 1 by the lid 8. The process is performed. Further, a current supplied from the power source 10 is supplied to the anode electrode 6 and the cathode electrode 7 to perform an electrolytic plating process.

また、めっき浴槽1を徐々に回転速度を上げながら磁気可変部4の磁気をなくしてもよく、電解めっき処理の時間を短縮できる。   Moreover, the magnetism of the magnetic variable part 4 may be eliminated while gradually increasing the rotational speed of the plating bath 1, and the time for the electrolytic plating process can be shortened.

電解めっき処理によって下地電極層35の表面にニッケルめっき皮膜が形成されるとともに、めっき浴槽1の側面3に表出された陰極電極7の表面にニッケルめっき皮膜が形成される。   A nickel plating film is formed on the surface of the base electrode layer 35 by the electrolytic plating treatment, and a nickel plating film is formed on the surface of the cathode electrode 7 exposed on the side surface 3 of the plating bath 1.

その後、めっき浴槽1からめっき液18を排出した後、混合物17をめっき浴槽1から取り出して、積層セラミックコンデンサの中間電極層36の形成が完了する。   Then, after discharging the plating solution 18 from the plating bath 1, the mixture 17 is taken out from the plating bath 1, and the formation of the intermediate electrode layer 36 of the multilayer ceramic capacitor is completed.

前述した積層セラミックコンデンサの個片の投入から電解めっき処理、取出しまでの一連の電解めっき処理工程は、電解めっき処理工程の生産性を高めるために、続く他のロットの積層セラミックコンデンサの中間電極層36のニッケル皮膜を形成の際に、めっき浴槽1の陰極電極7に形成されたニッケルめっき皮膜を除去せず、めっき浴槽1を複数回繰り返して用いて行われる。めっき浴槽1を繰り返し使用する回数は、電解めっき処理に要した電気量の累積値によって調整され5〜300回程度である。   In order to increase the productivity of the electroplating process, the series of electroplating processes from the introduction of the multilayer ceramic capacitor pieces to the electroplating process and removal, the intermediate electrode layers of the multilayer ceramic capacitors of other lots that follow. When the 36 nickel coating is formed, the nickel plating coating formed on the cathode electrode 7 of the plating bath 1 is not removed, and the plating bath 1 is repeatedly used a plurality of times. The number of times of repeatedly using the plating bath 1 is adjusted by the accumulated value of the amount of electricity required for the electrolytic plating treatment and is about 5 to 300 times.

また、本発明の電解めっき処理工程に用いる他のめっき装置について説明する。他のめっき装置は、図1に示すめっき装置と同一部分には同一記号を付与しその詳細な説明は省略し異なる部分についてのみ図面を用いて説明する。   Moreover, the other plating apparatus used for the electrolytic plating process of this invention is demonstrated. In the other plating apparatus, the same parts as those in the plating apparatus shown in FIG.

図4は本発明の実施の形態の電解めっき処理工程に用いる他のめっき装置の断面図である。図4に示すように回転手段をめっき浴槽21の底面22下方に設けモータ24に連結したシャフト23を底面22の外側の中心に固定し、取り付け台26に設けられた磁気可変部25がシャフト23を取り囲むように底面22に沿ってドーナツ状に点在したものである。   FIG. 4 is a cross-sectional view of another plating apparatus used in the electrolytic plating process according to the embodiment of the present invention. As shown in FIG. 4, a rotating means is provided below the bottom surface 22 of the plating bath 21 and the shaft 23 connected to the motor 24 is fixed to the center outside the bottom surface 22, and the magnetic variable portion 25 provided on the mounting base 26 is provided with the shaft 23. Are dotted in a donut shape along the bottom surface 22.

次に本発明の実施例、比較例について説明する。   Next, examples of the present invention and comparative examples will be described.

実施例及び比較例は、図5に示すニッケルの内部電極層31を有するチタン酸バリウムを主成分とするセラミック層32のコンデンサ素体の両端部に銅とガラスフリットからなる下地電極層35を形成した長さ1.0mm、幅0.5mm、高さ0.5mmの積層セラミックコンデンサの個片を用い電解めっき処理によりニッケルめっき皮膜の中間電極層36を形成する製造方法である。   In the example and the comparative example, a base electrode layer 35 made of copper and glass frit is formed at both ends of a capacitor body of a ceramic layer 32 mainly composed of barium titanate having a nickel internal electrode layer 31 shown in FIG. In this manufacturing method, the intermediate electrode layer 36 of the nickel plating film is formed by electrolytic plating using individual pieces of the laminated ceramic capacitor having a length of 1.0 mm, a width of 0.5 mm, and a height of 0.5 mm.

(実施例)
実施例は、実施の形態で説明した図1に示すめっき装置のめっき浴槽1に複数個の積層セラミックコンデンサ15の個片と表面にニッケルめっき皮膜が形成されたスチールボール16との混合物17を投入し、電流制御部14をONにして電磁石4aに磁気を発生させてからニッケルのめっき液18を混合物17が覆われるまで充填し、次に電流制御部14をOFFにして電磁石4aの磁気をゼロにし、続いてめっき浴槽1を回転させ陽極電極6、陰極電極7に電流を印加しめっき処理をした。
(Example)
In the example, a mixture 17 of a plurality of monolithic ceramic capacitors 15 and steel balls 16 having a nickel plating film formed on the surface is placed in the plating bath 1 of the plating apparatus shown in FIG. 1 described in the embodiment. Then, the current control unit 14 is turned on to generate magnetism in the electromagnet 4a, and then the nickel plating solution 18 is filled until the mixture 17 is covered, and then the current control unit 14 is turned off to zero the magnetism of the electromagnet 4a. Subsequently, the plating bath 1 was rotated to apply a current to the anode electrode 6 and the cathode electrode 7 to perform plating.

中間電極層層36のニッケルめっき皮膜を均一にするため、めっき液18が充填された状態でめっき浴槽1の回転の停止、稼動と、陽極電極6と陰極電極7への電流の供給停止、印加と、を夫々同期して行うことを繰り返して電解めっき処理を行った。   In order to make the nickel plating film of the intermediate electrode layer 36 uniform, the rotation and operation of the plating bath 1 are stopped while the plating solution 18 is filled, and the supply of current to the anode electrode 6 and the cathode electrode 7 is stopped and applied. And the electroplating process was performed by repeating the process in synchronization with each other.

めっき条件は電流密度0.1〜10A/dm2で、累積の電流印加時間20分〜100分を行い、厚み3μmのニッケルめっき皮膜の中間電極層36を形成した。 The plating conditions were a current density of 0.1 to 10 A / dm 2 , a cumulative current application time of 20 to 100 minutes was performed, and an intermediate electrode layer 36 of a nickel plating film having a thickness of 3 μm was formed.

めっき浴槽1の陰極電極7に形成されたニッケルめっき皮膜を除去せずに一連の電解めっき処理工程を100回繰り返してめっき浴槽1を利用した。   The plating bath 1 was used by repeating a series of electrolytic plating treatment steps 100 times without removing the nickel plating film formed on the cathode electrode 7 of the plating bath 1.

(比較例)
比較例のめっき装置は、図6に示すように陰極電極47をめっき浴槽41の円形の底面42内側に設け、電磁石44を底面42の下側に埋め込み、底面42の外周に側面43を垂直に設けたもので、これ以外の構成は実施例のめっき装置と同一とした。
(Comparative example)
In the plating apparatus of the comparative example, as shown in FIG. 6, the cathode electrode 47 is provided inside the circular bottom surface 42 of the plating bath 41, the electromagnet 44 is embedded below the bottom surface 42, and the side surface 43 is perpendicular to the outer periphery of the bottom surface 42. The other configuration is the same as that of the plating apparatus of the example.

実施例と同じ混合物17をめっき浴槽41に投入し、電磁石44に磁気を発生させてから混合物が覆われるまで実施例と同じニッケルのめっき液57を供給ノズル49から実施例と同程度の容量のめっき液57を充填し、次に電磁石44の磁気をゼロにしてモータ52によりシャフト51を介してめっき浴槽41を回転させ陽極電極46、陰極電極47に電源50から電流を印加しめっき処理をした。   The same mixture 17 as in the embodiment is put into the plating bath 41, the magnetism is generated in the electromagnet 44, and then the same nickel plating solution 57 as in the embodiment is supplied from the supply nozzle 49 until the mixture is covered. The plating solution 57 was filled, and then the electromagnet 44 was magnetized to zero, and the plating bath 41 was rotated by the motor 52 through the shaft 51 to apply current from the power source 50 to the anode electrode 46 and the cathode electrode 47 to perform plating. .

この時、混合物17が側面43に移動しない程度に実施例より回転速度を下げてめっき処理を行った以外は、実施例と同様に行い、めっき浴槽41の陰極電極47に形成されたニッケルめっき皮膜を除去せずに一連の電解めっき処理工程を100回繰り返してめっき浴槽41を利用した。   At this time, the nickel plating film formed on the cathode electrode 47 of the plating bath 41 was performed in the same manner as in the example except that the plating process was performed at a lower rotational speed than in the example so that the mixture 17 did not move to the side surface 43. The plating bath 41 was utilized by repeating a series of electrolytic plating treatment steps 100 times without removing.

表1は、上記実施例、比較例におけるめっき不良率を示し、めっき不良率は電解めっき処理工程に投入した前記100回分の積層セラミックコンデンサの総数に対し、一連の電解めっき処理工程が終了した後、陰極電極に付着したままの積層セラミックコンデンサの数量を各電解めっき処理工程毎に合計した合計数量の割合を示す。   Table 1 shows the plating failure rate in the above-mentioned Examples and Comparative Examples, and the plating failure rate is after the series of electrolytic plating treatment steps is completed with respect to the total number of the 100 times multilayer ceramic capacitors put into the electrolytic plating treatment step. The ratio of the total quantity which totaled the quantity of the multilayer ceramic capacitor with which it adhered to the cathode electrode for every electrolytic plating process is shown.

Figure 2009065005
Figure 2009065005

表1に示すように実施例のめっき不良率は0.01%、比較例は0.97%であり、実施例は比較例に比較しめっき不良率が著しく改善されていることがわかる。   As shown in Table 1, the defective plating rate of the examples is 0.01%, and the comparative example is 0.97%. It can be seen that the defective plating rate is significantly improved in the examples as compared with the comparative example.

以上のように、本発明のチップ状電子部品の製造方法を用いることにより、めっき不良を低減できる作用効果を奏する。   As described above, by using the chip-shaped electronic component manufacturing method of the present invention, there is an effect that plating defects can be reduced.

本発明にかかるチップ状電子部品の製造方法は、小型の被めっき物に強磁性体の性質を有するめっき皮膜を形成する電解めっき処理に有用である。   The method for manufacturing a chip-shaped electronic component according to the present invention is useful for an electrolytic plating process for forming a plating film having ferromagnetic properties on a small object to be plated.

本発明の実施の形態の電解めっき処理工程における電解めっき処理中の状態を示す断面図Sectional drawing which shows the state in the electroplating process in the electroplating process of embodiment of this invention 本発明の実施の形態の電解めっき装置の磁気可変部を示す上面断面図Top sectional drawing which shows the magnetic variable part of the electroplating apparatus of embodiment of this invention 本発明の実施の形態の電解めっき処理工程におけるめっき浴槽にチップ状電子部品が配置され、めっき液が充填された状態を示す断面図Sectional drawing which shows the state by which the chip-shaped electronic component was arrange | positioned to the plating bath in the electrolytic plating treatment process of embodiment of this invention, and the plating solution was filled 本発明の電解めっき処理工程に用いる他の電解めっき装置の断面図Sectional drawing of the other electroplating apparatus used for the electroplating process of this invention 積層セラミックコンデンサの断面図Cross section of multilayer ceramic capacitor 従来の電解めっき処理工程における電解めっき処理の状態を示す断面図Sectional drawing which shows the state of the electroplating process in the conventional electroplating process

符号の説明Explanation of symbols

1 めっき浴槽
2 底面
3 側面
4 磁気可変部
6 陽極電極
7 陰極電極
15 チップ状電子部品
18 めっき液
DESCRIPTION OF SYMBOLS 1 Plating bath 2 Bottom 3 Side 4 Magnetic variable part 6 Anode electrode 7 Cathode electrode 15 Chip-shaped electronic component 18 Plating solution

Claims (3)

残留磁性を有しない底面と陰極電極を有する側面とを備えためっき浴槽の下側に磁気可変部を配設し、前記めっき浴槽の底面に磁性体を含有したチップ状電子部品を配置する工程と、磁気可変部に磁気を発生させる工程と、前記めっき浴槽にめっき液を導入する工程と、磁気可変部に磁気をなくす工程と、前記めっき浴槽を回転させて前記めっき浴槽の側面にチップ状電子部品を配置させる工程と、電解めっき処理を行う工程と、を含むチップ状電子部品の製造方法。 A step of disposing a magnetic variable portion on a lower side of a plating bath provided with a bottom surface having no residual magnetism and a side surface having a cathode electrode, and disposing a chip-like electronic component containing a magnetic material on the bottom surface of the plating bath; A step of generating magnetism in the magnetic variable portion, a step of introducing a plating solution into the plating bath, a step of eliminating magnetism in the magnetic variable portion, and a chip-like electron on the side of the plating bath by rotating the plating bath A method for manufacturing a chip-shaped electronic component, comprising: a step of arranging a component; and a step of performing an electrolytic plating process. 前記めっき浴槽にめっき液を導入する工程が、前記めっき浴槽の底面に磁性体を含有したチップ状電子部品を配置する工程と、前記磁気可変部に磁気を発生させる工程と、とを含む工程の後に行われる請求項1に記載のチップ状電子部品の製造方法。 A step of introducing a plating solution into the plating bath includes a step of disposing a chip-shaped electronic component containing a magnetic material on a bottom surface of the plating bath, and a step of generating magnetism in the magnetic variable portion. The manufacturing method of the chip-shaped electronic component of Claim 1 performed later. 前記電解めっき処理が、強磁性体のめっき皮膜を形成するものである請求項1に記載のチップ状電子部品の製造方法。 The method of manufacturing a chip-shaped electronic component according to claim 1, wherein the electrolytic plating treatment forms a ferromagnetic plating film.
JP2007232331A 2007-09-07 2007-09-07 Manufacturing method of chip-like electronic component Pending JP2009065005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007232331A JP2009065005A (en) 2007-09-07 2007-09-07 Manufacturing method of chip-like electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007232331A JP2009065005A (en) 2007-09-07 2007-09-07 Manufacturing method of chip-like electronic component

Publications (1)

Publication Number Publication Date
JP2009065005A true JP2009065005A (en) 2009-03-26

Family

ID=40559317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007232331A Pending JP2009065005A (en) 2007-09-07 2007-09-07 Manufacturing method of chip-like electronic component

Country Status (1)

Country Link
JP (1) JP2009065005A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011174157A (en) * 2010-02-25 2011-09-08 Tdk Corp Plating device, plating method, and method for producing chip type electronic component
JP2011179064A (en) * 2010-03-01 2011-09-15 Hitachi Metals Ltd Plating device
JP2011256420A (en) * 2010-06-08 2011-12-22 Hitachi Metals Ltd Plating equipment
WO2019127014A1 (en) * 2017-12-26 2019-07-04 汉玛科技股份有限公司 Electroplating assembly mechanism
CN110475913A (en) * 2017-04-14 2019-11-19 Ykk株式会社 Electro-plating method and device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011174157A (en) * 2010-02-25 2011-09-08 Tdk Corp Plating device, plating method, and method for producing chip type electronic component
JP2011179064A (en) * 2010-03-01 2011-09-15 Hitachi Metals Ltd Plating device
JP2011256420A (en) * 2010-06-08 2011-12-22 Hitachi Metals Ltd Plating equipment
CN110475913A (en) * 2017-04-14 2019-11-19 Ykk株式会社 Electro-plating method and device
CN110475913B (en) * 2017-04-14 2020-09-01 Ykk株式会社 Electroplating method and apparatus
WO2019127014A1 (en) * 2017-12-26 2019-07-04 汉玛科技股份有限公司 Electroplating assembly mechanism
CN111630210A (en) * 2017-12-26 2020-09-04 汉玛科技股份有限公司 Electroplating combined mechanism
CN111630210B (en) * 2017-12-26 2022-01-25 汉玛科技股份有限公司 Electroplating combined mechanism

Similar Documents

Publication Publication Date Title
KR100944099B1 (en) Multilayer electronic component and its manufacturing method
CN1619731B (en) Module incorporating a capacitor, method for manufacturing the same, and capacitor used therefor
KR100953276B1 (en) Laminated electronic component and method for manufacturing the same
EP3439441B1 (en) Method for failure-free copper filling of a hole in a component carrier
TWI645431B (en) Power inductor
JP2009065005A (en) Manufacturing method of chip-like electronic component
WO2013111625A1 (en) Electronic part and manufacturing method therefor
JP5516501B2 (en) Electronic components
KR20130018582A (en) Monolithic ceramic electronic component
TW201740533A (en) Coil pattern and method of forming the same, and chip device having coil pattern
JP2015130471A (en) Manufacturing method of chip electronic component
JP2012237033A (en) Electronic component
US20160286644A1 (en) Metal substrate with insulated vias
JP2002231574A (en) Method for manufacturing multilayer ceramic electronic component and multilayer ceramic electronic component
JP4269864B2 (en) Method for producing ceramic thin film and method for producing multilayer ceramic electronic component
JP4111340B2 (en) Chip-type electronic components
JP4515334B2 (en) Barrel plating method and electronic component manufacturing method
US9847172B2 (en) Embedded device, and printed circuit board having the same
JP3038296B2 (en) Electronic component manufacturing method
JP2003309037A (en) Multilayered electronic parts and method of manufacturing the same
JP2007204822A (en) Plating method
JP2007016290A (en) Plating device, plating method, and method for manufacturing laminated ceramic electronic component
JP3899722B2 (en) Barrel plating method for electronic parts
KR20000003052A (en) External electrode forming of chip component
JP2005026403A (en) Process for forming external electrode of chip electronic component