JP2009063973A - 合焦点装置 - Google Patents

合焦点装置 Download PDF

Info

Publication number
JP2009063973A
JP2009063973A JP2007234012A JP2007234012A JP2009063973A JP 2009063973 A JP2009063973 A JP 2009063973A JP 2007234012 A JP2007234012 A JP 2007234012A JP 2007234012 A JP2007234012 A JP 2007234012A JP 2009063973 A JP2009063973 A JP 2009063973A
Authority
JP
Japan
Prior art keywords
voltage
liquid crystal
lens
state
voltage distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007234012A
Other languages
English (en)
Inventor
Yasuhiro Kageyama
康博 影山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Holdings Co Ltd
Original Assignee
Citizen Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co Ltd filed Critical Citizen Holdings Co Ltd
Priority to JP2007234012A priority Critical patent/JP2009063973A/ja
Publication of JP2009063973A publication Critical patent/JP2009063973A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

【課題】液晶レンズの、レンズ効果を持たない状態とレンズ効果を有する状態との間の切り替えを、速く行うことを可能とする合焦点装置を提供する。
【解決手段】合焦点装置は、パターン電極群と共通電極とで液晶層を挟持する液晶レンズと、パターン電極群に印加する電圧を切り替えて液晶層に屈折率分布を形成する制御コントローラとを備える。本発明の合焦点装置は、液晶レンズがレンズ効果を持たない状態とするために、パターン電極群に同一の電圧からなる電圧分布92を形成する。また、液晶レンズを凸レンズ状態とするために、電圧分布92をなす電圧より低い電圧と高い電圧とを含む電圧分布91を、パターン電極群に形成する。これより、液晶レンズを、レンズ効果を持たない状態と凸レンズ状態との間で切り替える際の、液晶層に印加される電圧の変化を小さくして、液晶層の過渡応答時間を短くすることで、液晶レンズの切り替えを速く行うことが可能となる。
【選択図】図9

Description

本発明は、液晶レンズを用いた合焦点装置に関する。詳しくは、液晶層に印加される電圧の変化を小さくすることで、液晶レンズの、レンズ効果を持たない状態とレンズ効果を有する状態との間の切り替えを、速く行うことを可能とするものである。
従来より、光学系の焦点距離または焦点位置を変化させる合焦点装置として、レンズを移動させることにより焦点を合わせる方式が広く用いられている。しかし、この方式では、レンズ駆動機構が必要であるため、機構が複雑になるという欠点や、レンズ駆動用モータに比較的多くの電力を要するという欠点がある。また、一般に耐衝撃性が低いという欠点もある。そこで、レンズ駆動機構が不要な合焦点装置として、液晶レンズの屈折率を変化させることにより焦点を合わせる方式が提案されている(例えば、特許文献1参照。)。
この従来の方式を達成するための液晶レンズは、パターン電極を備えたガラス基板と、共通電極を備えたガラス基板との間に液晶層を挟持した構成となっている。そして、このパターン電極は、中心部電極と複数個の輪帯電極を有し、中心部電極と各輪帯電極とが電圧降下抵抗にて接続された構成となっている。そして、各輪帯電極とは絶縁して中心部電極に接続された引き出し電極には、電力増幅器を介して可変抵抗が接続されており、輪帯電極(外周部電極)に接続された引き出し電極には、増幅器を介して可変抵抗が接続されている。さらに、これら可変抵抗に並列に接続された交流源から供給される交流電圧は、可変抵抗により、降圧されるようになっている。
このように、引き出し電極に印加された電圧信号と電圧降下抵抗より電圧分布が形成され、液晶層に電圧分布が形成される。そして、可変抵抗をそれぞれ調整することにより、液晶層に様々な電圧分布を発生させることが可能となる。
また、特許文献1には、液晶レンズがレンズ効果を持たない状態と、液晶レンズが凸レンズまたは凹レンズのレンズ効果を有する状態とにおける、液晶層の屈折率分布が記載されている。液晶レンズがレンズ効果を持たない状態では、液晶層の屈折率の分布が一様となるように液晶層に電圧が印加される。
また、液晶レンズが凸レンズの効果を有する状態では、レンズ効果を持たない状態での屈折率より高い屈折率で、所定の屈折率分布をなすように、液晶層に電圧が印加される。さらに、液晶レンズが凹レンズの効果を有する状態では、レンズ効果を持たない状態での屈折率より低い屈折率で、所定の屈折率分布をなすように、液晶層に電圧が印加される。
特許第3047082号公報(第6頁、第13図)
しかし、上述した従来の液晶レンズを用いた合焦点装置では、以下のような問題がある。液晶レンズにおいて液晶層への印加電圧が変化した際には、液晶の過渡応答が完了するまでに、印加電圧の変化に応じた時間を要する。
特許文献1に記載された合焦点装置の液晶レンズでは、レンズ効果を有する状態では、レンズ効果を持たない状態での屈折率より高い屈折率または低い屈折率で、屈折率分布が形成される。
このため、特許文献1に記載された合焦点装置では、液晶レンズを、レンズ効果を持た
ない状態とレンズ効果を有する状態との間で切り替える際に、液晶層に印加される電圧の変化が大きい。よって、液晶レンズのレンズ効果を持たない状態とレンズ効果を有する状態との間の切り替え時に、液晶の過渡応答が完了して液晶層が所望の屈折率分布となるまでに、長い時間を要してしまうという問題がある。
本発明は、上述した従来技術による問題点を解消し、液晶レンズの、レンズ効果を持たない状態とレンズ効果を有する状態との間の切り替えを、速く行うことを可能とする合焦点装置を提供することを特徴とする。
本発明にかかる合焦点装置は、上記の目的を達成するため、複数のパターン電極からなるパターン電極群と、パターン電極群と対向した共通電極と、で液晶層を挟持する液晶レンズと、共通電極に所定の電圧が印加された状態で、パターン電極群に印加する電圧を切り替えて、液晶層に屈折率分布を形成する制御手段と、を備える合焦点装置において、制御手段は、パターン電極群に、同一の電圧からなる第1の電圧分布の電圧を印加して、液晶層に第1の屈折率分布を形成し、パターン電極群に、第1の電圧分布をなす電圧より低い電圧と、第1の電圧分布をなす電圧より高い電圧と、を含む第2の電圧分布の電圧を印加して、液晶層に第2の屈折率分布を形成することを特徴とするものである。
また、本発明にかかる合焦点装置制御手段は、制御手段は、第1の電圧分布から第2の電圧分布へ切り替えることでの液晶層の過渡応答時間と、第2の電圧分布から第1の電圧分布へ切り替えることでの液晶層の過渡応答時間と、が等しくなるように、第1の電圧分布と第2の電圧分布とを形成することを特徴とするものである。
さらに、本発明にかかる合焦点装置制御手段は、制御手段は、第2の電圧分布の最小電圧と、第1の電圧分布をなす電圧との電位差が、第2の電圧分布の最大電圧と、第1の電圧分布をなす電圧との電位差より小さくなるように、第1の電圧分布と第2の電圧分布とを形成することを特徴とするものである。
さらに、本発明にかかる合焦点装置制御手段は、制御手段は、第2の電圧分布の最大電圧から、第1の電圧分布をなす電圧に切り替えることでの液晶層の過渡応答時間と、第1の電圧分布をなす電圧から、第2の電圧分布の最小電圧に切り替えることでの液晶層の過渡応答時間と、が等しくなるように、第1の電圧分布と第2の電圧分布とを形成することを特徴とするものである。
本発明の合焦点装置では、液晶レンズがレンズ効果を持たない状態とするために、パターン電極群に同一の電圧からなる電圧分布を形成する。また、液晶レンズがレンズ効果を有する状態とするために、レンズ効果を持たない状態を形成する電圧より低い電圧と高い電圧とを含む電圧分布を、パターン電極群に形成する。
これより、液晶レンズを、レンズ効果を持たない状態とレンズ効果を有する状態との間で切り替える際に、液晶層に印加される電圧の変化を小さくすることができる。すなわち、本発明の合焦点装置では、液晶レンズの、レンズ効果を持たない状態とレンズ効果を有する状態との切り替え時の液晶の過渡応答時間を短くし、液晶レンズの切り替えを速く行うことが可能となる。
以下、図面に基づき本発明の実施形態における合焦点装置の好適な実施の形態を詳細に説明する。
[構成の説明]
まず、本発明の合焦点装置の構成について説明する。図1は、本発明の合焦点装置の概略構成を示すブロック図である。
図1に示すように、本発明の合焦点装置は、液晶レンズ1、光学レンズ2、撮像素子3、DSP(デジタルシグナルプロセッサ)4、切り替え手段5、制御コントローラ6および液晶レンズドライバ7を備えている。液晶レンズ1は、P波用液晶レンズとS波用液晶レンズを組み合わせた構成を有する。光学レンズ2は、絞り、所定の焦点距離を有する組レンズおよび赤外線カットフィルタを有する。撮像素子3は、CCDやCMOS等の固体撮像素子よりなるイメージセンサとアナログ−デジタル変換器を有する。
液晶レンズ1および光学レンズ2を通過して結像した光学像は、撮像素子3のイメージセンサにより、電気信号に変換される。イメージセンサから出力された電気信号は、アナログ−デジタル変換器によりデジタル信号に変換される。DSP4は、アナログ−デジタル変換器から出力されたデジタル信号に対して画像処理を行い、画像信号を出力する。制御コントローラ6は制御手段の一例であり、切り替え手段5を介してユーザからの撮影モードの切り替え操作を受け、液晶レンズドライバ7を介して液晶レンズ1の駆動制御を行う。
制御コントローラ6は、上述した一連の制御を行うマイクロプロセッサ61と記憶手段62を有する。記憶手段62は、マイクロプロセッサ61が実行するプログラムや最適な駆動電圧を求めるために必要な種々の関係などを格納した読み出し専用メモリ部(ROM部)と、マイクロプロセッサ61が作業領域として使用する書き込み可能なメモリ部(RAM部)を有する。液晶レンズドライバ7は、制御コントローラ6から出力された制御信号に基づいて液晶レンズ1に電圧を印加する。
次に、液晶レンズの構成について説明をする。図2および図3は、それぞれ液晶レンズのセル構成を示す平面図および断面図である。
液晶レンズ1は、液晶パネル10等から構成される。液晶パネル10では、一対の対向するガラス基板11、12の内側にパターン電極群13と共通電極14が対向して配置されている。パターン電極群13および共通電極14の内側には、配向膜15、16が対向して配置されている。配向膜15、16の間には、ホモジニアス配向の液晶層17が封入されているが、他の種類の液晶層を用いることも可能である。
P波用液晶レンズとS波用液晶レンズの構成は同じであるが、液晶層17の配向方向が90°異なる。これは、P波用液晶レンズの屈折率分布を変化させた場合、P波用液晶レンズの配向方向と同じ方向の偏光面を有する光は、屈折率分布の変化の影響を受けるが、P波用液晶レンズの配向方向に対して直交する方向の偏光面を有する光は、屈折率分布の変化の影響を受けない。S波用液晶レンズについても同様である。
従って、配向方向が90°異なる2枚の液晶レンズ、すなわちP波用液晶レンズとS波用液晶レンズが必要となる。P波用液晶レンズとS波用液晶レンズは、同じ波形の駆動電圧によって駆動される。駆動電圧は、例えばパルス高さ変調(PHM)またはパルス幅変調(PWM)された交流電圧である。
液晶パネルの中央部には、印加電圧に応じて屈折率が変化するレンズ部18が設けられている。また、液晶パネルの周縁部は、シール部材19により封止されている。液晶層17の厚さは、スペーサ部材20により一定に保たれている。パターン電極群13の電極取り出し部21には、フレキシブルプリント配線板(FPC)22が異方性導電膜を用いて接続されている。電極取り出し部21の一部は、パターン電極群13から絶縁されており
、共通電極14に接続されている。
特に限定しないが、一例として液晶レンズ1の寸法を示す。ガラス基板11、12の一辺の長さは10mmであるが、数mmから十数mm程度とすることができる。ただし、パターン電極13側のガラス基板11については、パターン電極13の電極取り出し部21を被う部分を除いた寸法である。ガラス基板11、12の厚さは300μmであるが、数百μm程度とすることができる。液晶層17の厚さは23μmであるが、十数μmから数十μm程度とすることができる。レンズ部18の直径は2.4mmであるが、数mm程度とすることができる。
図4は、パターン電極群13の概略構成を示す平面図である。図5は、パターン電極群13における各電極の配置例を示すデータである。
図4に示すように、パターン電極群13は、パターン電極として、円形状の中心部電極23と、中心部電極23の回りに、半径の異なる複数の同心円の円周に沿って複数のC字状に設けられた輪帯電極24とを有する。中心部電極23と最も内側の輪帯電極24の間、および隣り合う輪帯電極24の間は絶縁されている。なお、図4に示す輪帯電極24の個数は、表示上の問題から実際の数と異なる。
中心部電極23、および、複数の輪帯電極24からは、それぞれが絶縁された状態で複数の引き出し電極25が外側まで伸びている。パターン電極群13の図4に示す各パターン電極は、レンズ部18(図2参照)に重なるように配置される。
複数の引き出し電極25のそれぞれに異なる電圧を印加すると、共通電極14に対する中心部電極23、各輪帯電極24のそれぞれの電圧値が異なる状態となり、レンズ部18に電圧分布が生じる。この電圧分布を変化させることによって、液晶レンズ1の屈折率の分布が変化し、液晶レンズ1を凸レンズの状態にしたり、レンズ効果を持たない平行ガラスの状態にしたり、凹レンズの状態にすることができる。
特に限定しないが、本実施の形態におけるパターン電極群13の各部の寸法を示す。中心部電極23、輪帯電極24の総数は20である。また、中心部電極23をn=1として、各輪帯電極24の内側から、n=2からn=20とした場合における中心からの中心部電極23および各輪帯電極24の外周までの距離を考える。中心から各電極までの距離をrとした場合に、n=Ar (A:定数)の関係が成り立つように、パターン電極群13を形成する。本実施形態において用いた寸法を図5に示す。また、中心部電極23、各輪帯電極24の隣り合うもの同士の間にある空間の幅は、3μmとした。なお、図5に示す寸法および中心部電極23、各輪帯電極24の隣り合うもの同士の間にある空間の幅は一例であって、これに限定されるものではない。
[動作の説明]
次に、本発明の合焦点装置における合焦点の制御方法について、中心部電極23及び各輪帯電極24への印加電圧と比較しながら説明する。
図6は、本実施形態における液晶への印加電圧とリタデーション値の関係を示す図である。図6の縦軸は液晶レンズ1のリタデーション(nm)を示し、横軸は実効値電圧(Vrms)を示している。
ここで、図6のΔVの範囲の電圧を液晶に印加する場合に得られるリタデーション値は、図6のΔReの範囲の値となる。中心部電極23と各輪帯電極24(以下、各輪帯という)のそれぞれに異なる電圧を印加することにより、各輪帯での液晶のリタデーション値
を異ならせしめ、液晶層に屈折率分布を形成する。
以下においては、通常撮影モード時における液晶レンズ1を、レンズ効果を持たない平行ガラス状態とし、マクロ撮影モード時における液晶レンズ1を、凸レンズの効果を有する状態とする場合を例として、説明する。
まず、液晶レンズ1がレンズ効果を持たない状態について説明する。図7は、液晶レンズ1がレンズ効果を持たない状態の説明図である。図7(a)は各輪帯におけるリタデーション値を示す図であり、図7(b)は各輪帯への印加電圧を示す図である。図7においては、R1は中心部電極23を示し、R20は最外周に位置する輪帯電極24を示している。
図7(a)に示すように、液晶レンズ1がレンズ効果を持たない状態では、各輪帯におけるリタデーション値は等しい。各輪帯におけるリタデーション値が等しい状態は、図7(b)に示すように、各輪帯に同一の電圧を印加することにより形成される。
次に、液晶レンズ1が凸レンズの効果を有する状態について説明する。図8は、液晶レンズ1の凸レンズ状態の説明図である。図8(a)は各輪帯におけるリタデーション値を示す図であり、図8(b)は各輪帯への印加電圧を示す図である。図8においては、R1は中心部電極23を示し、R20は最外周に位置する輪帯電極24を示している。
図8(a)に示される直線は各輪帯におけるリタデーション値をプロットし、各プロットを結んで直線として示したものである。図8(b)に示される曲線は各輪帯に印加される電圧をプロットし、各プロットを結んで曲線として示したものである。
図8(a)に示すように、中心部電極23におけるリタデーション値を最も大きくし、最外周に位置する輪帯電極24におけるリタデーション値を最も小さくし、かつ、各輪帯における隣り合う電極におけるリタデーション値の差が等しくなるようにすることで、液晶レンズ1を凸レンズの効果を有する状態にしている。図6に示す、液晶への印加電圧とリタデーション値との関係から、各リタデーション値に対応する電圧を求め、図8(b)に示すような電圧を各輪帯へ印加する。このとき、中心部電極23に印加する電圧が最小の電圧となり、最外周の輪帯電極24に印加する電圧が最大の電圧となる。
次に、図9を用いて、液晶レンズ1を、レンズ効果を持たない状態とする際と凸レンズ状態とする際の、それぞれの状態での各輪帯への印加電圧の関係について説明する。図9は、液晶レンズ1を、レンズ効果を持たない状態とする際と凸レンズ状態とする際における各輪帯への印加電圧を重ねて表示した図である。
図9に示すように、本発明の合焦点装置では、液晶レンズ1を、レンズ効果を持たない状態とする際に印加される電圧分布92と、液晶レンズ1を凸レンズ状態とする際に印加される電圧分布91とは、交わる状態となる。すなわち、液晶レンズ1を、レンズ効果を持たない状態とする際に印加される電圧は、液晶レンズ1を凸レンズ状態とする際に中心部電極23に印加される電圧(電圧分布91の最小電圧)よりも高く、液晶レンズ1を凸レンズ状態とする際に最外周の輪帯電極24に印加される電圧(電圧分布91の最大電圧)よりも低い。
このため、本発明の合焦点装置では、液晶レンズがレンズ効果を持たない状態とする際に印加される電圧分布と、レンズ効果を有する状態とする際に印加される電圧分布が交わらない従来の技術と比較して、液晶レンズの切り替え時の液晶層に印加される電圧の変化を小さくし、液晶の過渡応答時間を短くすることができる。すなわち、本発明の合焦点装置では、液晶レンズの、レンズ効果を持たない状態とレンズ効果を有する状態との間の切り替えを、速く行うことが可能となる。
ここで、液晶レンズ1がレンズ効果を持たない状態とする際に各輪帯に印加される電圧と、液晶レンズ1を凸レンズ状態とする際に中心部電極23に印加される電圧(電圧分布91の最小電圧)との差をΔV1とする。また、液晶レンズがレンズ効果を持たない状態とする際に各輪帯に印加される電圧と、液晶レンズ1を凸レンズ状態とする際に最外周の輪帯電極24に印加される電圧(電圧分布91の最大電圧)との差をΔV2とする。
本発明の合焦点装置では、ΔV1よりΔV2が大きくなるように、レンズ効果を持たない状態とする際と、凸レンズ状態とする際に、それぞれ液晶レンズの各輪帯に電圧が印加される。一般に、高い電圧域で印加電圧が変化する場合より、低い電圧域で印加電圧が変化する場合の方が、液晶の過渡応答時間が長い。
本発明の合焦点装置では、低い電圧域、すなわち過渡応答時間の長い電圧域での電圧変化量であるΔV1を、高い電圧域、すなわち過渡応答時間の短い電圧域での電圧変化量であるΔV2より小さくしている。このため、液晶レンズ切り替え時の液晶の過渡応答時間をより短くすることができる。すなわち、本発明の合焦点装置では、液晶レンズの、レンズ効果を持たない状態とレンズ効果を有する状態との間の切り替えを、より速く行うことが可能となる。
ここで、レンズ効果を持たない状態から凸レンズ状態に液晶レンズ1を切り替えた際の、液晶の過渡応答の時間をΔT1とし、凸レンズ状態からレンズ効果を持たない状態に液晶レンズ1を切り替えた際の、液晶の過渡応答の時間をΔT2とする。
このΔT1とΔT2とが略等しくなるように、液晶レンズがレンズ効果を持たない状態とする際に印加される電圧分布92と、レンズ効果を有する状態とする際に印加される電圧分布91決定する。これにより、レンズ効果を持たない状態から凸レンズ状態への切り替えと、凸レンズ状態からレンズ効果を持たない状態への切り替えとを、それぞれ速く行うことが可能となる。
前述したように、液晶は、高い電圧域での過渡応答時間と比較して、低い電圧域での過渡応答時間の方が長いため、ΔV1よりΔV2が大きく、且つΔT1とΔT2とが略等しいように、電圧分布92と電圧分布91を決定することが可能である。
ここで、本発明の合焦点装置の、レンズ効果を持たない状態と凸レンズ状態とにおける液晶レンズの、各輪帯への印加電圧の一例を示す。図10は、レンズ効果を持たない状態と凸レンズ状態における各輪帯への印加電圧を示すデータである。
図10に示す例では、レンズ効果を持たない状態時の各電極への印加電圧(1.88V)よりも、凸レンズ状態時に輪帯に印加される電圧の中で最も小さい中心部電極23への印加電圧(1.82V)の方が低い。また、レンズ効果を持たない状態時の各電極への印加電圧(1.88V)よりも、凸レンズ状態時に輪帯に印加される電圧の中で最も大きい最外周の輪帯電極24への印加電圧(8.40V)の方が高い。
また、図10に示す例では、凸レンズ状態時に輪帯に印加される電圧の中で最も大きい最外周の輪帯電極24への印加電圧(8.40V)と、レンズ効果を持たない状態時の各電極への印加電圧(1.88V)との電位差(6.52V)よりも、レンズ効果を持たない状態時の各電極への印加電圧(1.88V)と、凸レンズ状態時に輪帯に印加される電圧の中で最も小さい中心部電極23への印加電圧(1.82V)との電位差(0.06V)の方が小さい。
これにより、図10に示す例では、液晶レンズの切り替え時に液晶層に印加される電圧の変化を小さくするとともに、液晶の過渡応答時間の長くなる電圧域(電圧の低い領域)での電圧変化量を小さくすることで、液晶レンズの、レンズ効果を持たない状態と凸レン
ズ状態との間の切り替えを、より速く行うことが可能となる。
次に、レンズ効果を待たない状態と凸レンズの状態との間の、液晶レンズの切り替えに要する時間について説明する。図11は、レンズ効果を待たない状態と凸レンズの状態において、各輪帯に図10に示す電圧を印加した際の、各輪帯における液晶の過渡応答時間を示すデータである。
図11に示すように、レンズ効果を持たない状態から凸レンズ状態への切り替えでは、凸レンズ状態時に最も小さい電圧が印加される中心部電極23における液晶の応答時間が最も長くなる。中心部電極23における液晶の応答時間は944ミリ秒であり、レンズ効果を持たない状態から凸レンズ状態への切り替え時間は全輪帯の液晶の応答が完了する944ミリ秒とすることができる。
凸レンズ状態からレンズ効果を持たない状態からへの切り替えでは、凸レンズ状態時に最も大きい電圧が印加される最外周の輪帯電極24における液晶の応答時間が最も長くなる。最外周の輪帯電極24における液晶の応答時間は944ミリ秒であり、凸レンズ状態からレンズ効果を持たない状態への切り替え時間は全輪帯の液晶の応答が完了する944ミリ秒とすることができる。
すなわち、レンズ効果を持たない状態から凸レンズ状態への切り替え時間と、凸レンズ状態からレンズ効果を持たない状態への切り替え時間が共に944ミリ秒となる。このように、レンズ効果を持たない状態から凸レンズ状態への切り替え時間と、凸レンズ状態からレンズ効果を持たない状態への切り替え時間を等しくすることにより、それぞれの切り替えを実用に十分な速度で行うことが可能となる。
図10および図11で示した例では、レンズ効果を持たない状態から凸レンズ状態への切り替え時は、凸レンズ状態時に最も小さい電圧が印加される電極における液晶の応答時間が最も長い。また、凸レンズ状態からレンズ効果を持たない状態からへの切り替え時は、凸レンズ状態時に最も大きい電圧が印加される電極における液晶の応答時間が最も長い。
しかし、本発明はこれに限定されるものではなく、液晶レンズの切り替え時に、液晶の応答時間が最も長くなる電極での応答時間に合わせて、レンズ効果を持たない状態から凸レンズ状態への切り替え時間と、凸レンズ状態からレンズ効果を持たない状態への切り替え時間を等しくすることにより、それぞれの切り替えを速く行うことが可能となる。
次に、本発明との比較のため、液晶レンズがレンズ効果を持たない状態での各輪帯への印加電圧をすべて0Vにした場合を考える。図12は、レンズ効果を待たない状態で各輪帯に0Vを印加して、凸レンズ状態で各輪帯に図10に示す電圧を印加した際の、各輪帯における液晶の過渡応答時間を示すデータである。
図12に示すように、レンズ効果を持たない状態から凸レンズ状態への切り替えでは、中心部電極23における液晶の過渡応答時間が最も長くなり、切り替え時間に2159ミリ秒を要することが分かる。同様に、凸レンズ状態からレンズ効果を持たない状態への切り替えでは、最外周の輪帯電極24における液晶過渡応答時間が最も長くなり、切り替え時間に3713ミリ秒を要することが分かる。
すなわち、図12で示した例では、凸レンズ状態からレンズ効果を持たない状態への切り替えには3秒以上の時間を要してしまい、実用する上では大きな問題となってしまう。このように、レンズ効果を持たない状態とする際に各輪帯に印加される電圧が、凸レンズ状態とする際に各輪帯に印加される各電圧よりも低くすると、レンズ効果を持たない状態とレンズ効果を有する状態との間で液晶レンズを切り替える際に、液晶層に印加される電圧の変化が大きくなり、液晶の過渡応答が完了して液晶層が所望の屈折率分布となるまで
に、長い時間を要してしまう。
図10および図11で示した、本発明の合焦点装置における液晶レンズの各輪帯への印加電圧の例では、図12で示した例と比較して、液晶レンズのレンズ効果を持たない状態と凸レンズ状態との間の切り替えが速いことが確認できる。
上述した本発明の実施の形態では、レンズ効果を持たない状態と、凸レンズ状態との間で液晶レンズを切り替える例を示した。しかし、本発明はこれに限定されるものではなく、レンズ効果を持たない状態と、凹レンズ状態との間で液晶レンズを切り替える合焦点装置にも適用可能である。
以上説明したように、本発明の合焦点装置では、レンズ効果を持たない状態とレンズ効果を有する状態との間で液晶レンズを切り替える際に、液晶層に印加される電圧の変化を小さくすることで、液晶の過渡応答時間を短くし、液晶レンズの切り替えを速く行うことが可能となる。
本発明にかかる合焦点装置の概略構成を示すブロック図である。 液晶レンズの構成を示す平面図である。 液晶レンズの構成を示す断面図である。 パターン電極群の構成を示す正面図である。 パターン電極群の各電極の配置例を示すデータである。 液晶への印加電圧とリタデーション値の関係を示す図である。 レンズ効果を持たない状態での各輪帯におけるリタデーション値と電圧を示す図である。 凸レンズ状態での各輪帯におけるリタデーション値と印加電圧を示す図である。 本発明のレンズ効果を持たない状態と凸レンズ状態での各輪帯おける印加電圧を示す図である。 本発明における、レンズ効果を持たない状態と凸レンズ状態での印加電圧の例を示す図である。 本発明における、液晶レンズ切り替え時の各輪帯における液晶の応答時間を示す図である。 従来技術における、液晶レンズ切り替え時の各輪帯における液晶の応答時間を示す図である。
符号の説明
1 液晶レンズ
2 光学レンズ
3 撮像素子
4 DSP
5 切り替え手段
6 制御コントローラ
61 マイクロプロセッサ
62 記憶手段
7 液晶レンズドライバ
10 液晶パネル
11、12 ガラス基板
13 パターン電極群
14 共通電極
15、16 配向膜
17 液晶層
18 レンズ部
19 シール部材
20 スペーサ部材
21 電極引き出し部
22 フレキシブルプリント配線板
23 中心部電極
24 輪帯電極
25 引き出し電極

Claims (4)

  1. 複数のパターン電極からなるパターン電極群と、前記パターン電極群と対向した共通電極と、で液晶層を挟持する液晶レンズと、
    前記共通電極に所定の電圧が印加された状態で、前記パターン電極群に印加する電圧を切り替えて、前記液晶層に屈折率分布を形成する制御手段と、を備える合焦点装置において、
    前記制御手段は、
    前記パターン電極群に、同一の電圧からなる第1の電圧分布の電圧を印加して、前記液晶層に第1の屈折率分布を形成し、
    前記パターン電極群に、前記第1の電圧分布をなす電圧より低い電圧と、前記第1の電圧分布をなす電圧より高い電圧と、を含む第2の電圧分布の電圧を印加して、前記液晶層に第2の屈折率分布を形成する
    ことを特徴とする合焦点装置。
  2. 前記制御手段は、前記第1の電圧分布から前記第2の電圧分布へ切り替えることでの前記液晶層の過渡応答時間と、前記第2の電圧分布から前記第1の電圧分布へ切り替えることでの前記液晶層の過渡応答時間と、が等しくなるように、前記第1の電圧分布と前記第2の電圧分布とを形成する
    ことを特徴とする請求項1に記載の合焦点装置。
  3. 前記制御手段は、前記第2の電圧分布の最小電圧と、前記第1の電圧分布をなす電圧との電位差が、前記第2の電圧分布の最大電圧と、前記第1の電圧分布をなす電圧との電位差より小さくなるように、前記第1の電圧分布と前記第2の電圧分布とを形成する
    ことを特徴とする請求項1に記載の合焦点装置。
  4. 前記制御手段は、前記第2の電圧分布の最大電圧から、前記第1の電圧分布をなす電圧に切り替えることでの前記液晶層の過渡応答時間と、前記第1の電圧分布をなす電圧から、前記第2の電圧分布の最小電圧に切り替えることでの前記液晶層の過渡応答時間と、が等しくなるように、前記第1の電圧分布と前記第2の電圧分布とを形成する
    ことを特徴とする請求項3に記載の合焦点装置。
JP2007234012A 2007-09-10 2007-09-10 合焦点装置 Pending JP2009063973A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007234012A JP2009063973A (ja) 2007-09-10 2007-09-10 合焦点装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007234012A JP2009063973A (ja) 2007-09-10 2007-09-10 合焦点装置

Publications (1)

Publication Number Publication Date
JP2009063973A true JP2009063973A (ja) 2009-03-26

Family

ID=40558571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007234012A Pending JP2009063973A (ja) 2007-09-10 2007-09-10 合焦点装置

Country Status (1)

Country Link
JP (1) JP2009063973A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116381973A (zh) * 2023-06-05 2023-07-04 南昌虚拟现实研究院股份有限公司 一种液晶透镜变焦响应测试方法、系统、设备及介质
WO2024005768A1 (en) * 2022-06-27 2024-01-04 Mazze Ahşap Mobi̇lya Dekorasyon İnşaat Gida Otomoti̇v Pazarlama Sanayi̇ Ve Ti̇caret Li̇mi̇ted Şi̇rketi̇ Office partition system and production method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024005768A1 (en) * 2022-06-27 2024-01-04 Mazze Ahşap Mobi̇lya Dekorasyon İnşaat Gida Otomoti̇v Pazarlama Sanayi̇ Ve Ti̇caret Li̇mi̇ted Şi̇rketi̇ Office partition system and production method thereof
CN116381973A (zh) * 2023-06-05 2023-07-04 南昌虚拟现实研究院股份有限公司 一种液晶透镜变焦响应测试方法、系统、设备及介质
CN116381973B (zh) * 2023-06-05 2023-08-11 南昌虚拟现实研究院股份有限公司 一种液晶透镜变焦响应测试方法、系统、设备及介质

Similar Documents

Publication Publication Date Title
CN103492935B (zh) 进行电场控制的多单元液晶光学装置
JP2008076926A (ja) 液晶レンズ
JP4671341B2 (ja) 液晶レンズ装置
JP2008216626A (ja) 可変焦点レンズ
US20080088756A1 (en) Tunable liquid crystal lens module
EP2477067A1 (en) Tunable electro-optic liquid crystal lenses and methods for forming the lenses
US20060215107A1 (en) Liquid crystal lens and optical device
JP2004101885A (ja) 液晶レンズ並びにその駆動方法及び装置
US8330933B2 (en) Liquid crystal lens structure and method of driving same
US9495924B2 (en) Three dimensional image display and liquid crystal lens thereof
US8520153B2 (en) Zoom lens array and switchable two and three dimensional display
JP2012212078A5 (ja)
CN104977771A (zh) 液晶透镜结构
JP2006227036A (ja) 液晶光学レンズ装置及びその駆動方法
JP2009180951A (ja) 合焦点装置
JP6135793B1 (ja) 調光システム、調光装置、調光フィルム、調光フィルムの駆動方法
JP2006201243A (ja) 液晶レンズおよび電子機器
JP2009063973A (ja) 合焦点装置
EP3489747B1 (en) Liquid crystal lens, manufacturing method therefor, and display device
CN111090209B (zh) 可变焦的液晶透镜、液晶透镜的驱动方法及显示装置
JP2006145957A (ja) 液晶光学素子及びその製造方法
JP2007248985A (ja) 液晶レンズおよび電子機器
JP4033148B2 (ja) レンズ鏡筒および撮像装置
JP2010054524A (ja) 可変焦点眼鏡
JP2007086163A (ja) 液晶レンズおよび電子機器