JP2009061407A - Settling apparatus, flocculating system and manufacturing method of settling apparatus - Google Patents

Settling apparatus, flocculating system and manufacturing method of settling apparatus Download PDF

Info

Publication number
JP2009061407A
JP2009061407A JP2007232423A JP2007232423A JP2009061407A JP 2009061407 A JP2009061407 A JP 2009061407A JP 2007232423 A JP2007232423 A JP 2007232423A JP 2007232423 A JP2007232423 A JP 2007232423A JP 2009061407 A JP2009061407 A JP 2009061407A
Authority
JP
Japan
Prior art keywords
partition
members
settling
assembly
rows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007232423A
Other languages
Japanese (ja)
Other versions
JP4858916B2 (en
Inventor
Kiyotaka Okado
清挙 岡戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Sekisui Co Ltd
Original Assignee
Toto Sekisui Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Sekisui Co Ltd filed Critical Toto Sekisui Co Ltd
Priority to JP2007232423A priority Critical patent/JP4858916B2/en
Publication of JP2009061407A publication Critical patent/JP2009061407A/en
Application granted granted Critical
Publication of JP4858916B2 publication Critical patent/JP4858916B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a settling apparatus and a flocculating system easy for cleaning without causing reduction in strength, and a manufacturing method of the settling apparatus. <P>SOLUTION: The settling apparatus is provided, wherein a plurality of bulkhead members 26 are disposed parallel to each other and spaced at prescribed distance, a plurality of partition members 27 are disposed between and along the bulkhead members 26 and are tilted toward the disposed direction at a prescribed angle and a plurality of rows are composed of the plurality of partition members 27, wherein the plurality of rows are composed of: a plurality of first rows 32 which are composed of partition members 27 each tilted in one direction of two directions along the disposed direction of the partition members 27; and a plurality of second rows 33 composed of the partition members 27 each tilted in the other direction, wherein at least one rows of the respective first and second rows 32, 33 are continuously disposed in the disposed direction of the bulkhead members 26, respectively. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、水処理施設の沈殿池内に流入した水に含まれる浮遊物の沈降を促進させるための沈降装置、沈殿処理システム及び沈降装置の製造方法に関する。   The present invention relates to a sedimentation device, a sedimentation treatment system, and a method for manufacturing a sedimentation device for promoting sedimentation of floating substances contained in water flowing into a sedimentation basin of a water treatment facility.

一般的に、例えば川から取り入れた水の浄化処理を行う水処理施設には、水に含まれる汚泥のような浮遊物を沈殿させるための沈殿池が設けられている。このような沈殿池内に、浮遊物の沈殿効率を向上させるための沈降装置を設置することが提案されている(例えば、特許文献1参照。)。   In general, for example, a water treatment facility that purifies water taken from a river is provided with a sedimentation basin for sedimenting suspended matters such as sludge contained in water. It has been proposed to install a sedimentation device for improving the sedimentation efficiency of suspended matter in such a sedimentation basin (see, for example, Patent Document 1).

この沈降装置は、それぞれ平行に且つ所定の間隔をおいて配置される複数の隔壁部材と、各隔壁部材間に配列され、該各隔壁部材間の空間を複数の流路に仕切る複数の仕切り部材とを備える。各仕切り部材は、それぞれ各隔壁部材に沿って等間隔をおいて配置されている。各隔壁部材の配列方向に沿った各仕切り部材の寸法すなわち各隔壁部材間の間隔の大きさは、各仕切り部材間の間隔の大きさにほぼ等しい。各隔壁部材間への各仕切り部材の配置により、矩形状の横断面を有する複数の流路が各隔壁部材間に形成される。また、各仕切り部材は、それぞれ各仕切り部材の配列方向に向けて同一の角度で傾斜している。各仕切り部材の傾斜方向は、各仕切り部材で構成される各列内でそれぞれ同一であり、互いに隣接する列間で異なる。これにより、沈降装置にその上方から荷重が作用したとき、一方向に傾斜した各仕切り部材に作用する力と他方向に傾斜した各仕切り部材に作用する力とが所謂筋交い効果により相殺される。従って、前記荷重によって沈降装置が大きく変形することが防止される。沈降装置は、各隔壁部材がそれぞれ上下方向に沿って立設されるように、水面の近傍で沈殿池内に配置されている。   The settling device includes a plurality of partition members arranged in parallel and at predetermined intervals, and a plurality of partition members arranged between the partition members and partitioning a space between the partition members into a plurality of flow paths. With. Each partition member is arranged at equal intervals along each partition member. The size of each partition member along the arrangement direction of the partition members, that is, the size of the interval between the partition members is substantially equal to the size of the interval between the partition members. By arranging each partition member between the partition members, a plurality of flow paths having a rectangular cross section are formed between the partition members. Moreover, each partition member inclines at the same angle toward the arrangement direction of each partition member, respectively. The inclination direction of each partition member is the same in each row constituted by each partition member, and is different between adjacent rows. Thus, when a load is applied to the settling device from above, the force acting on each partition member inclined in one direction and the force acting on each partition member inclined in the other direction are offset by a so-called bracing effect. Therefore, the settling device is prevented from being greatly deformed by the load. The sedimentation device is disposed in the sedimentation basin near the water surface so that each partition member is erected along the vertical direction.

沈殿池内の水位が上昇したとき、各隔壁部材間に形成された各流路内に水が流入する。このとき、各仕切り部材が、前記したように、それぞれ傾斜していることから、各流路内に流入した水に含まれる浮遊物が沈降したとき、多くの浮遊物は沈殿池の底面に到達する前に仕切り部材の傾斜面に到達する。これにより、水面の近傍に上昇した浮遊物が沈殿するのに要する距離が短くなるので、浮遊物が水面の近傍に上昇してから沈殿するまでの時間が短くなる。従って、沈殿池内に沈降装置が設置されていない場合に比べて、単位時間に沈殿する浮遊物の量が増大するので、浮遊物の沈殿効率が向上する。また、各仕切り部材がそれぞれ傾斜していることから、沈殿池の底面の単位面積当りの沈降面積が実質的に増大する。これにより、単位時間に沈殿可能な浮遊物の量が増大するので、沈殿池内に沈降装置が設置されていない場合に比べて浮遊物の収集能力が向上する。   When the water level in the settling pond rises, water flows into each flow path formed between the partition members. At this time, since each partition member is inclined as described above, when the suspended matter contained in the water flowing into each flow channel sinks, many suspended matter reaches the bottom of the sedimentation basin. It reaches the inclined surface of the partition member before it is done. As a result, the distance required for the suspended matter rising near the water surface to settle is shortened, so the time from when the suspended matter rises near the water surface to sedimentation is shortened. Therefore, compared to the case where no settling device is installed in the settling basin, the amount of suspended matter that settles per unit time increases, so the sedimentation efficiency of suspended matter is improved. Moreover, since each partition member inclines, the sedimentation area per unit area of the bottom face of a sedimentation tank increases substantially. As a result, the amount of suspended matter that can settle per unit time increases, so that the ability to collect suspended matter is improved compared to the case where no sedimentation device is installed in the sedimentation basin.

このような沈降装置では、各仕切り部材の傾斜面上に沈殿した後に該傾斜面上を下方へ滑り落ちることなく該傾斜面上に堆積した浮遊物を傾斜面上から除去するために、沈降装置の洗浄が行われる。沈降装置の洗浄時、例えば高圧洗浄水を各流路内に組立体の上方から噴射することにより、各仕切り部材の傾斜面上に堆積した浮遊物に高圧洗浄水から圧力を与える。これにより、傾斜面上に堆積した浮遊物を傾斜面から剥離させることができる。
実開昭62−194404号公報
In such a settling device, in order to remove the suspended matter deposited on the inclined surface after having settled on the inclined surface of each partition member without sliding down on the inclined surface, Cleaning is performed. At the time of washing the settling device, for example, high pressure washing water is sprayed from above the assembly into each flow path, thereby applying pressure from the high pressure washing water to the suspended matter deposited on the inclined surface of each partition member. Thereby, the suspended | floating matter deposited on the inclined surface can be peeled from the inclined surface.
Japanese Utility Model Publication No. 62-194404

ところで、沈降装置の洗浄時、各仕切り部材の傾斜面上に堆積した浮遊物を傾斜面からより確実に除去するために、傾斜した各仕切り部材に沿って高圧洗浄水を各流路内に噴射する必要がある。   By the way, when washing the sedimentation device, high-pressure washing water is injected into each flow path along each inclined partition member in order to more surely remove the suspended matter accumulated on the inclined surface of each partition member from the inclined surface. There is a need to.

しかしながら、各仕切り部材の傾斜方向が各列内でそれぞれ同一であり互いに隣接する列間で異なることから、高圧洗浄水の噴射方向を一列毎に変更する必要があるため、特に沈降装置に多数の列が形成されている場合には、沈降装置の洗浄作業が煩雑になる。   However, since the inclination direction of each partition member is the same in each row and is different between the rows adjacent to each other, it is necessary to change the injection direction of the high-pressure washing water for each row. When the rows are formed, the washing operation of the settling device becomes complicated.

沈降装置の洗浄を容易に行うために、各仕切り部材の傾斜方向を全て同一にすることが考えられるが、沈降装置に前記したような上方からの荷重に対する強度を確保することができない。   In order to easily wash the settling device, it is conceivable that all the slanting directions of the partition members are the same, but it is not possible to secure the strength against the load from above as described above.

そこで、本発明の目的は、強度の低下を招くことなく洗浄を容易に行うことができる沈降装置、沈殿処理システム及び沈降装置の製造方法を提供することにある。   Therefore, an object of the present invention is to provide a sedimentation device, a sedimentation processing system, and a method for manufacturing the sedimentation device that can be easily washed without causing a decrease in strength.

上記課題を解決するために、請求項1に記載の発明は、沈殿池内に配置され、該沈殿池内に流入した水に含まれる浮遊物の沈降を促進するための沈降装置であって、それぞれが平行に且つ所定の間隔をおいて配置される複数の隔壁部材と、該各隔壁部材間の空間を複数の流路に仕切るべく前記各隔壁部材間にそれぞれ該各隔壁部材に沿って所定の間隔をおいて配列され、その配列方向に向けて所定の角度で傾斜した複数の仕切り部材とを備え、前記各隔壁部材間にそれぞれ配列された前記各仕切り部材で構成される複数の列は、前記仕切り部材の配列方向に沿った二方向のうち一方向に傾斜する前記各仕切り部材で構成された複数の第一の列と、他方向に傾斜する前記各仕切り部材で構成された複数の第二の列とで構成されており、前記各第一の列及び前記各第二の列のうち少なくとも一方の前記各列は、それぞれ前記隔壁部材の配列方向に連続して配置されていることを特徴とする。   In order to solve the above-mentioned problem, the invention described in claim 1 is a settling device which is arranged in a settling basin and promotes the settling of suspended matter contained in water flowing into the settling pond, A plurality of partition members arranged in parallel and at a predetermined interval, and a predetermined interval along each partition member between the partition members to partition the space between the partition members into a plurality of flow paths. And a plurality of partition members that are inclined at a predetermined angle toward the array direction, and the plurality of rows configured by the partition members respectively arranged between the partition members are A plurality of first rows composed of the partition members inclined in one direction among two directions along the arrangement direction of the partition members, and a plurality of second rows composed of the partition members inclined in the other direction. And each of the first At least one of the columns of the row and each second column is characterized in that it is arranged continuously in the arranging direction of the partition member.

請求項2に記載の発明は、請求項1に記載の発明において、前記各隔壁部材の配列方向に沿った前記各仕切り部材の長さ寸法は、該各仕切り部材間の間隔の大きさよりも大きいことを特徴とする。   According to a second aspect of the present invention, in the first aspect of the present invention, the length dimension of the partition members along the arrangement direction of the partition members is larger than the size of the interval between the partition members. It is characterized by that.

請求項3に記載の発明は、請求項1又は2に記載の発明において、前記各仕切り部材はそれぞれ矩形状の横断面を有する管部材であり、該各管部材は、前記各仕切り部材の配列方向で互いに対向する一対の側壁と、前記各管部材を挟み込む一対の前記隔壁部材に対向し、前記各側壁を互いに連結する一対の端壁とをそれぞれ有し、該各端壁は前記各隔壁部材に固定されることを特徴とする。   The invention according to claim 3 is the invention according to claim 1 or 2, wherein each partition member is a tube member having a rectangular cross section, and each tube member is an array of the partition members. A pair of side walls opposed to each other in a direction, and a pair of end walls facing the pair of partition members sandwiching the tube members and connecting the side walls to each other, and each end wall includes the partition walls. It is fixed to a member.

請求項4に記載の発明は、請求項3に記載の発明において、前記各第一の列及び前記各第二の列のうち少なくとも前記一方の各列を構成する前記各管部材は、それぞれ前記一方の各列間で前記流路と前記各隔壁部材の配列方向に交互になるように配置されていることを特徴とする。   The invention according to claim 4 is the invention according to claim 3, wherein each of the tube members constituting at least one of the first rows and the second rows is respectively One of the rows is alternately arranged in the arrangement direction of the flow paths and the partition members.

請求項5に記載の発明は、請求項4に記載の発明において、前記各隔壁部材は、それぞれ前記各仕切り部材の配列方向に沿って伸びる矩形状をなしており、前記各流路のうち前記各隔壁部材の各角部に面する前記流路内には、該流路内への水の流通を許し且つ前記各角部を補強するための補強部材が設けられていることを特徴とする。   The invention according to claim 5 is the invention according to claim 4, wherein each of the partition members has a rectangular shape extending along the arrangement direction of the partition members, The flow path facing each corner of each partition wall member is provided with a reinforcing member that allows water to flow into the flow path and reinforces each corner. .

請求項6に記載の発明は、請求項4又は5に記載の発明において、前記各管部材で構成される前記列の数は偶数であることを特徴とする。   The invention according to claim 6 is the invention according to claim 4 or 5, characterized in that the number of the rows constituted by the respective pipe members is an even number.

請求項7に記載の発明は、請求項6に記載の発明において、前記列の数は4以上であることを特徴とする。   The invention according to claim 7 is the invention according to claim 6, wherein the number of the columns is four or more.

請求項8に記載の発明は、水が流入する沈殿池と、該沈殿池内に配置され、該沈殿池に流入した水に含まれる浮遊物の沈降を促進するための複数の沈降装置と、前記沈殿池内に前記各沈降装置の上方で配置され、前記各沈降装置を経た水を集めるための集水トラフとを備える沈殿処理システムであって、前記各沈降装置は、それぞれが平行に且つ所定の間隔をおいて配置される複数の隔壁部材と、該各隔壁部材間の空間を複数の流路に仕切るべく前記各隔壁部材間にそれぞれ該各隔壁部材に沿って所定の間隔をおいて配列され、その配列方向に向けて所定の角度で傾斜した複数の仕切り部材とを備え、それぞれの前記各隔壁部材がそれぞれ平行になるように隣接して配置されており、前記各隔壁部材間にそれぞれ配列された前記各仕切り部材で構成される複数の列は、前記仕切り部材の配列方向に沿った二方向のうち一方向に傾斜する前記各仕切り部材で構成された複数の第一の列と、他方向に傾斜する前記各仕切り部材で構成された複数の第二の列とで構成されており、前記各第一の列及び前記各第二の列のうち少なくとも一方の前記各列は、それぞれ前記隔壁部材の配列方向に連続して配置されていることを特徴とする。   The invention according to claim 8 is a sedimentation basin into which water flows, a plurality of sedimentation devices arranged in the sedimentation basin to promote sedimentation of suspended matter contained in the water that has flowed into the sedimentation basin, A sedimentation treatment system comprising a water collection trough disposed in a settling basin above each settling device and collecting water passing through each settling device, wherein each settling device is parallel and has a predetermined A plurality of partition members arranged at intervals, and a plurality of partition members arranged at predetermined intervals along the partition members between the partition members so as to partition a space between the partition members into a plurality of flow paths. A plurality of partition members inclined at a predetermined angle toward the arrangement direction, and the respective partition members are arranged adjacent to each other in parallel, and are arranged between the respective partition members. Each partition member The plurality of rows configured include a plurality of first rows configured by the partition members that are inclined in one direction among two directions along the arrangement direction of the partition members, and the partitions that are inclined in the other direction. A plurality of second rows made of members, and at least one of the first rows and the second rows is continuous in the arrangement direction of the partition members. It is characterized by being arranged.

請求項9に記載の発明は、それぞれが平行に且つ所定の間隔をおいて配置される複数の隔壁部材と、該各隔壁部材間の空間を複数の流路に仕切るべく前記各隔壁部材間にそれぞれ該各隔壁部材に沿って所定の間隔をおいて配列される複数の管部材とを備える沈降装置の製造方法であって、前記複数の隔壁部材のうち一の該隔壁部材の一側に、該隔壁部材の長手方向に所定の間隔をおき且つ該隔壁部材の一端から他端に向けて傾斜するように配置した前記各管部材をそれぞれ前記隔壁部材に取り付けることにより、前記隔壁部材の両端それぞれ管部材が配置された少なくとも二つの第一の組立体を形成すること、該各第一の組立体の前記隔壁部材とは別の前記隔壁部材の一側に、上端が前記第一の組立体の前記各管部材の上端間に位置し且つ前記第一の組立体の各管部材の傾斜方向と同一方向又は反対方向へ傾斜するように配置した前記各管部材をそれぞれ前記隔壁部材に取り付けることにより、前記隔壁部材の前記両端にそれぞれ前記流路が形成された少なくとも二つの第二の組立体を形成すること、一方の前記第一の組立体の前記各管部材が一方の前記第二の組立体の前記隔壁部材の他側の面に対向するように前記一方の第一の組立体を配置し、該第一の組立体の前記各管部材をそれぞれ前記一方の第二の組立体の前記隔壁部材の前記他側の面に取り付けること、他方の前記第二の組立体の前記各管部材が他方の前記第一の組立体の前記隔壁部材の他側の面に対向するように前記他方の第二の組立体を配置し、該第二の組立体の前記各管部材をそれぞれ前記他方の第一の組立体の前記隔壁部材の前記他側の面に取り付けること、前記他方の第一の組立体の前記各管部材の前記上端の位置が前記一方の第二の組立体の前記各管部材間に位置するように、前記他方の第一の組立体と前記一方の第二の組立体とを互いに近接させて配置した状態で、前記一方の第二の組立体の前記各管部材と前記他方の第一の組立体の前記各管部材との間に、前記各第一の組立体及び前記各第二の組立体のそれぞれの前記隔壁部材とは別の前記隔壁部材を挿入し、該隔壁部材の一方の面に前記一方の第二の組立体の前記各管部材をそれぞれ取り付け、挿入された前記隔壁部材の他方の面に前記他方の第一の組立体の前記各管部材をそれぞれ取り付けること、を含むことを特徴とする。   According to a ninth aspect of the present invention, there is provided a plurality of partition members that are arranged in parallel and at a predetermined interval, and between the partition members so as to partition a space between the partition members into a plurality of flow paths. A settling device comprising a plurality of pipe members arranged at predetermined intervals along each of the partition members, and one side of the partition member among the plurality of partition members, The pipe members arranged at predetermined intervals in the longitudinal direction of the partition wall member and inclined from one end to the other end of the partition wall member are respectively attached to the partition wall member, whereby both ends of the partition wall member are respectively Forming at least two first assemblies in which tube members are arranged; one side of the partition member separate from the partition member of each first assembly, the upper end of the first assembly Located between the upper ends of the pipe members The pipe members disposed so as to be inclined in the same direction as or in the opposite direction to the inclination direction of the pipe members of the first assembly are respectively attached to the partition members, whereby the flow paths are respectively provided at both ends of the partition members. Forming at least two second assemblies formed with one of the first assemblies, the pipe members of the first assembly facing the other surface of the partition member of the second assembly. Arranging the one first assembly so that the pipe members of the first assembly are respectively attached to the other surface of the partition member of the one second assembly; The other second assembly is disposed so that each pipe member of the other second assembly faces the other surface of the partition member of the other first assembly, Each of the tube members of the second assembly of each of the other first assemblies. It is attached to the other surface of the partition wall member, and the upper end position of each tube member of the other first assembly is positioned between the tube members of the one second assembly. In addition, in a state where the other first assembly and the one second assembly are arranged close to each other, each of the tube members of the one second assembly and the other first assembly The partition member different from the partition members of the first assembly and the second assembly is inserted between the pipe members of the assembly, and one of the partition members is inserted. Attaching each pipe member of the one second assembly to a surface, and attaching each pipe member of the other first assembly to the other surface of the inserted partition member. It is characterized by that.

請求項1に記載の発明によれば、各隔壁部材間にそれぞれ配列された各仕切り部材で構成される複数の列は、仕切り部材の配列方向に沿った二方向のうち一方向に傾斜する各仕切り部材で構成された複数の第一の列と、他方向に傾斜する各仕切り部材で構成された複数の第二の列とで構成されている。このことから、沈降装置にその上方から荷重が作用したとき、一方向に傾斜した各仕切り部材に作用する力と他方向に傾斜した各仕切り部材に作用する力との大部分を相殺することができる。これにより、前記荷重によって沈降装置が大きく変形することが防止される。また、各仕切り部材の傾斜方向を全て同一にすることによる沈降装置の強度の低下を招くことはない。   According to the first aspect of the present invention, each of the plurality of rows formed by the partition members arranged between the partition members is inclined in one of the two directions along the arrangement direction of the partition members. It is comprised by the some 1st row | line comprised by the partition member, and the some 2nd row | line | column comprised by each partition member which inclines in another direction. From this, when a load is applied to the settling device from above, most of the force acting on each partition member inclined in one direction and the force acting on each partition member inclined in the other direction can be offset. it can. This prevents the settling device from being greatly deformed by the load. Moreover, the fall of the intensity | strength of a sedimentation apparatus by making all the inclination directions of each partition member the same is not caused.

また、請求項1に記載の発明によれば、仕切り部材の配列方向に沿った二方向のうち一方向に傾斜する各仕切り部材で構成された複数の第一の列と、他方向に傾斜する各仕切り部材で構成された複数の第二の列のうち、少なくとも一方の各列は、それぞれ隔壁部材の配列方向に連続して配置されている。   In addition, according to the first aspect of the present invention, the plurality of first rows configured by the partition members that are inclined in one direction out of the two directions along the arrangement direction of the partition members, and the other direction are inclined. At least one of the plurality of second rows constituted by the partition members is continuously arranged in the arrangement direction of the partition members.

このことから、各第一の列及び各第二の列のうち一方の各列が各隔壁部材間の空間内に該各空間のうち一方の端に位置する空間内から順に配置されている場合、他方の各列は、それぞれ前記各空間のうち他方の端に位置する空間を含む残りの各空間内に配置される。この場合、沈降装置を洗浄する際、先ず、前記一方の各列を構成する各仕切り部材に高圧洗浄水の噴射方向を沿わせた状態で前記一方の各列内の各流路内に高圧洗浄水を噴射することにより前記一方の各列内の各流路を洗浄し、続いて、前記他方の各列を構成する各仕切り部材に沿うように高圧洗浄水の噴射方向を変更し、この状態で前記他方の各列内の各流路内に高圧洗浄水を噴射することにより該各流路を洗浄することができる。従って、この場合、沈降装置の洗浄時に高圧洗浄水の噴射方向を1回変更すればよい。   From this, when each 1st row | line | column among each 1st row | line | column and each 2nd row | line | column is arrange | positioned in order from the space located in one edge among each said space in the space between each partition member. The other row is disposed in each remaining space including a space located at the other end of each space. In this case, when washing the settling device, first, the high pressure washing is performed in each flow path in each of the one row with the partition member constituting each of the one row being aligned with the injection direction of the high pressure washing water. Each flow path in each one row is washed by jetting water, and then the direction in which the high-pressure washing water is jetted is changed so as to follow each partition member constituting each other row. Thus, each channel can be cleaned by spraying high-pressure cleaning water into each channel in each of the other rows. Therefore, in this case, it is only necessary to change the injection direction of the high-pressure washing water once when washing the settling device.

また、前記一方の各列が各隔壁部材間の各空間のうち少なくとも両端を除く各空間内に各隔壁部材の配列方向に連続して配置されている場合、他方の各列は、それぞれ前記各空間のうち少なくとも両端の空間を含む残りの各空間内に配置される。この場合、沈降装置を洗浄する際、先ず、一方の端に配置された前記他方の列を構成する各仕切り部材に高圧洗浄水の噴射方向を沿わせた状態で前記他方の列内の各流路内に高圧洗浄水を噴射することにより該各流路を洗浄し、続いて、前記一方の各列を構成する各仕切り部材に沿うように高圧洗浄水の噴射方向を変更し、この状態で前記一方の各列内の各流路内に高圧洗浄水を噴射することにより該各流路を洗浄し、更に、他方の端に配置された前記他方の列を構成する各仕切り部材に沿うように高圧洗浄水の噴射方向を変更し、この状態で前記他方の列内の各流路内に高圧洗浄水を噴射することにより該各流路を洗浄することができる。従って、この場合、沈降装置の洗浄時に高圧洗浄水の噴射方向を2回変更すればよい。   In addition, when each of the one row is continuously arranged in the arrangement direction of each partition member in each space excluding at least both ends of each space between the partition members, each other column is It arrange | positions in each remaining space including the space of at least both ends among spaces. In this case, when washing the settling device, first, each flow in the other row is arranged in a state in which the partition member constituting the other row arranged at one end is aligned with the injection direction of the high-pressure washing water. Each flow passage is washed by jetting high-pressure washing water into the passage, and subsequently, the jet direction of the high-pressure washing water is changed along each partition member constituting each of the one row. Each flow path is cleaned by spraying high-pressure washing water into each flow path in each said one row, and further along each partition member constituting the other row arranged at the other end. Each of the flow paths can be cleaned by changing the jet direction of the high-pressure wash water and injecting the high-pressure wash water into each flow path in the other row in this state. Therefore, in this case, the injection direction of the high-pressure washing water may be changed twice when washing the settling device.

以上のことから、高圧洗浄水の噴射方向を固定した状態で複数の列を連続して洗浄することができるので、沈降装置に多数の列が形成されている場合でも、沈降装置を洗浄する際に高圧洗浄水の噴射方向を一列毎に変更する必要がある従来の場合のような洗浄作業の煩雑さを招くことを確実に防止することができる。   From the above, it is possible to wash a plurality of rows continuously with the injection direction of the high-pressure washing water fixed, so even when many rows are formed in the settling device, when washing the settling device In addition, it is possible to reliably prevent the complexity of the cleaning operation as in the conventional case where the injection direction of the high-pressure cleaning water needs to be changed for each row.

従って、沈降装置の強度の低下を招くことなく沈降装置の洗浄を確実に容易に行うことができる。   Therefore, it is possible to reliably and easily clean the settling device without causing a decrease in the strength of the settling device.

更に、各仕切り部材がそれぞれ傾斜していることから、各隔壁部材間に形成された各流路内に流入した水に含まれる浮遊物が沈降したとき、多くの浮遊物は沈殿池の底面に到達する前に仕切り部材の傾斜面に到達する。これにより、浮遊物が水面の近傍に上昇してから沈殿するまでの時間が短くなるので、従来と同様に、沈殿池内に沈降装置が設置されていない場合に比べて浮遊物の沈殿効率を確実に向上させることができる。   Furthermore, since each partition member is inclined, when the suspended matter contained in the water flowing into each flow path formed between the partition members settles, many suspended matter is placed on the bottom surface of the sedimentation basin. It reaches the inclined surface of the partition member before reaching. This shortens the time it takes for suspended matter to rise near the surface of the water and settles, so that the sedimentation efficiency of suspended matter can be ensured as compared to the case where no sedimentation device is installed in the sedimentation basin, as in the past. Can be improved.

また、各仕切り部材がそれぞれ傾斜していることから、沈殿池の底面の単位面積当りの沈降面積が実質的に増大する。これにより、従来と同様に、浮遊物の収集能力を確実に向上させることができる。   Moreover, since each partition member inclines, the sedimentation area per unit area of the bottom face of a sedimentation tank increases substantially. As a result, as in the prior art, the ability to collect suspended solids can be reliably improved.

請求項2に記載の発明によれば、各隔壁部材の配列方向に沿った各仕切り部材の長さ寸法は、該各仕切り部材間の間隔の大きさよりも大きい。   According to invention of Claim 2, the length dimension of each partition member along the sequence direction of each partition member is larger than the magnitude | size of the space | interval between these partition members.

近年、沈降装置の製造コストの削減を図るべく沈降装置の組立作業性を向上させるために、沈降装置に用いられる仕切り部材の個数を減らすことが望まれている。   In recent years, in order to improve the assembly workability of the settling device in order to reduce the manufacturing cost of the settling device, it is desired to reduce the number of partition members used in the settling device.

仕切り部材の個数を減らすために、前記各列を構成する各仕切り部材間の間隔を変更することなく前記各列をそれぞれ構成する仕切り部材の個数を単に減らすことが考えられる。   In order to reduce the number of partition members, it is conceivable to simply reduce the number of partition members constituting each row without changing the interval between the partition members constituting each row.

しかしながら、この場合、各仕切り部材の配列方向に沿った沈降装置の長さ寸法が小さくなるため、沈殿池の所定の領域内に複数の沈降装置を敷き詰める場合、仕切り部材の個数を減らす前に比べて多くの沈降装置が必要となる。このため、各沈降装置を沈殿池に配置する作業が煩雑になる。   However, in this case, since the length dimension of the settling device along the arrangement direction of each partition member becomes small, when a plurality of settling devices are spread in a predetermined region of the settling basin, compared to before the number of partition members is reduced. Many sedimentation devices are required. For this reason, the operation | work which arrange | positions each sedimentation apparatus in a sedimentation basin becomes complicated.

そこで、前記各列をそれぞれ構成する仕切り部材の個数を減らし、更に、沈降装置の前記長さ寸法が変わらないように、前記各列を構成する各仕切り部材間の間隔の大きさを変更することが考えられる。   Therefore, the number of partition members constituting each row is reduced, and the size of the interval between the partition members constituting each row is changed so that the length dimension of the settling device does not change. Can be considered.

しかしながら、沈降装置の浮遊物の収集能力すなわち沈降面積の大きさは、従来よく知られているように、各仕切り部材間の間隔の大きさに依存する。従って、各仕切り部材間の間隔を変更すると、沈降装置の収集能力の低下を招く虞がある。   However, the collection capacity of the suspended matter of the settling device, that is, the size of the settling area depends on the size of the interval between the partition members, as is well known. Therefore, if the interval between the partition members is changed, there is a possibility that the collection ability of the sedimentation device is reduced.

沈降装置の前記長さ寸法及び各仕切り部材間の間隔を変更することなく仕切り部材の個数を減らすために、各仕切り部材で構成される列の数を減らすことが考えられる。   In order to reduce the number of partition members without changing the length dimension of the settling device and the spacing between the partition members, it is conceivable to reduce the number of rows formed by the partition members.

しかしながら、この場合、各隔壁部材の配列方向に沿った沈降装置の長さ寸法が小さくなるため、沈殿池の所定の領域内に複数の沈降装置を敷き詰める場合、列の数を減らす前に比べて多くの沈降装置が必要となる。このため、各仕切り部材間の間隔を変更することなく仕切り部材の個数を減らす場合と同様に、各沈降装置を沈殿池に配置する作業が煩雑になる。   However, in this case, since the length dimension of the settling device along the arrangement direction of each partition member becomes small, when laying a plurality of settling devices in a predetermined region of the settling basin, compared to before reducing the number of rows Many sedimentation devices are required. For this reason, the operation | work which arrange | positions each sedimentation apparatus in a sedimentation basin becomes complicated similarly to the case where the number of partition members is reduced, without changing the space | interval between each partition member.

これらに対し、本発明によれば、前記したように、各隔壁部材の配列方向に沿った各仕切り部材の長さ寸法を該各仕切り部材間の間隔の大きさよりも大きくすることにより、各隔壁部材の配列方向に沿った沈降装置の長さ寸法、各仕切り部材の配列方向に沿った沈降装置の長さ寸法及び各仕切り部材間の間隔を変更することなく、各仕切り部材の前記長さ寸法が各仕切り部材間の間隔の大きさとほぼ等しい従来の場合に比べて、各仕切り部材で構成される列の数を減らすことができる。   On the other hand, according to the present invention, as described above, each partition member is made longer than the size of the interval between the partition members by making the length dimension of each partition member along the arrangement direction of each partition member larger. The length dimension of each partition member without changing the length dimension of the settling device along the arrangement direction of the members, the length dimension of the settling device along the arrangement direction of each partition member, and the interval between the partition members Compared to the conventional case where is substantially equal to the size of the interval between the partition members, the number of rows formed by the partition members can be reduced.

これにより、沈降装置の前記各長さ寸法を変更することにより沈殿池への各沈降装置の配置作業に煩雑さを招いたり、各仕切り部材間の間隔の大きさを変更することにより沈降装置の収集能力の低下を招いたりすることなく、仕切り部材の個数を確実に減らすことができる。   Thereby, the arrangement of each settling device in the settling basin is complicated by changing each length dimension of the settling device, or the size of the interval between the partition members is changed by changing the size of the settling device. The number of partition members can be surely reduced without causing a reduction in collection capability.

また、各隔壁部材の配列方向に沿った各仕切り部材の長さ寸法を大きくした場合でも、各隔壁部材の配列方向に沿った沈降装置の長さ寸法が変わらない限り、沈降装置の浮遊物の収集能力すなわち沈降面積の大きさは変わらない。従って、各隔壁部材の配列方向に沿った各仕切り部材の長さ寸法を大きくすることによって沈降装置の収集能力の低下が生じることはない。   Moreover, even when the length dimension of each partition member along the arrangement direction of each partition member is increased, as long as the length dimension of the sedimentation apparatus along the arrangement direction of each partition member does not change, The collection capacity, that is, the size of the sedimentation area does not change. Therefore, the collection capacity of the settling device is not reduced by increasing the length of each partition member along the arrangement direction of the partition members.

請求項3に記載の発明によれば、仕切り部材である管部材は、その一対の端壁で各隔壁部材に固定されることから、仕切り部材が例えば板部材で構成されている場合のように板部材をその端面で各隔壁部材に固定する場合に比べて、各隔壁部材への仕切り部材の接触面積を確実に大きくすることができる。これにより、各隔壁部材への仕切り部材の固定強度を確実に高めることができる。また、管部材は板部材に比べて曲げ力に対する強度が高いので、仕切り部材を管部材で構成することにより、沈降装置全体の強度を高めることができる。更に、仕切り部材を管部材で構成することにより、各隔壁部材間で各管部材間に流路を形成することができることに加えて、各管部材内を流路として用いることができる。   According to invention of Claim 3, since the pipe member which is a partition member is fixed to each partition member by the pair of end walls, like the case where the partition member is comprised by the plate member, for example. Compared with the case where the plate member is fixed to each partition member at its end face, the contact area of the partition member to each partition member can be reliably increased. Thereby, the fixed strength of the partition member to each partition member can be reliably increased. Moreover, since the pipe member has higher strength against bending force than the plate member, the strength of the entire settling device can be increased by configuring the partition member with the pipe member. Further, by forming the partition member with a pipe member, a flow path can be formed between the respective pipe members between the respective partition members, and the inside of each pipe member can be used as the flow path.

請求項4に記載の発明によれば、各第一の列及び各第二の列のうち少なくとも隔壁部材の配列方向に連続して配置された前記一方の各列を構成する前記各管部材は、それぞれ前記一方の各列間で流路と各隔壁部材の配列方向に交互になるように配置されていることから、前記一方の各列内の各流路は、それぞれ互いに隣接する前記一方の各列間で隣り合うことはなく、互いに隣接する前記一方の各列間で管部材と必ず隣接する。これにより、各流路内に水が流れたとき、該水からの圧力は各隔壁部材及び該隔壁部材を介して各流路に隣接する各管部材で受け止めることができる。従って、各管部材の傾斜方向が互いに同一である前記一方の各列間で各流路がそれぞれ互いに隣接する場合のように流路内を流れる水からの圧力を隔壁部材のみで受ける場合に比べて、水から受ける圧力による隔壁部材の変形を確実に防止することができる。   According to invention of Claim 4, each said tube member which comprises each said one row | line | column arrange | positioned continuously at least in the sequence direction of a partition member among each 1st row | line | column and each 2nd row | line | column is In addition, since the flow paths and the partition wall members are alternately arranged between the one rows, the flow paths in the one row are adjacent to each other. The rows are not adjacent to each other, and the tube members are necessarily adjacent to each other between the rows adjacent to each other. Thereby, when water flows in each flow path, the pressure from the water can be received by each partition member and each tube member adjacent to each flow path via the partition member. Therefore, compared with the case where the pressure from the water flowing in the flow path is received only by the partition wall member as in the case where the flow paths are adjacent to each other between the one row where the inclination directions of the tube members are the same, Thus, deformation of the partition wall member due to pressure received from water can be reliably prevented.

請求項5に記載の発明によれば、各隔壁部材は、それぞれ各仕切り部材の配列方向に沿って伸びる矩形状をなしており、各流路のうち各隔壁部材の各角部に面する流路内には、該流路内への水の流通を許し且つ各角部を補強するための補強部材が設けられている。   According to the fifth aspect of the present invention, each partition member has a rectangular shape extending along the direction of arrangement of the partition members, and the flow facing each corner of each partition member in each flow path. A reinforcing member is provided in the path to allow water to flow into the flow path and reinforce each corner.

各管部材が、それぞれ各隔壁部材間で各管部材間に形成される流路と各隔壁部材の配列方向に交互になるように配置されている場合、各仕切り部材で構成される列の数が例えば4つであるとすると、一列目及び四列目のそれぞれの両端またはいずれか一方の端に管部材が配置されることなく流路が形成される場合がある。   When the pipe members are arranged so that the flow paths formed between the pipe members and the arrangement direction of the partition members are alternately arranged between the partition members, the number of rows constituted by the partition members For example, if there are four, the flow paths may be formed without arranging the pipe members at both ends or at one of the ends of the first and fourth rows.

この場合、一列目及び四列目の端に形成された流路は、該流路に隣接する管部材の側壁と、該管部材を挟み込む一対の隔壁部材の角部とで規定され、各仕切り部材の配列方向に直交する方向及び各隔壁部材の長手方向外方にそれぞれ開放する。このため、前記流路を規定する各隔壁部材の角部の先端が自由端となる。従って、各隔壁部材の角部に該角部を曲げる曲げ力が作用したとき、該曲げ力の大部分は受け止められず、角部に曲げ変形及び破損等が生じる虞がある。   In this case, the flow paths formed at the ends of the first and fourth rows are defined by the side wall of the pipe member adjacent to the flow path and the corners of the pair of partition members that sandwich the pipe member. It opens to the direction orthogonal to the arrangement direction of the members and outward in the longitudinal direction of each partition member. For this reason, the front-end | tip of the corner | angular part of each partition member which defines the said flow path becomes a free end. Therefore, when a bending force that bends the corners is applied to the corners of each partition wall member, most of the bending forces are not received, and the corners may be bent or deformed.

これに対し、本発明によれば、前記したように、各流路のうち各隔壁部材の各角部に面する流路内に、各角部を補強するための補強部材が設けられていることから、先端が自由端となった各隔壁部材の角部に該角部を曲げる曲げ力が作用したとき、補強部材の補強作用により角部に曲げ変形及び破損等が生じることを確実に抑制することができる。また、補強部材は流路内への水の流通を許すことから、補強部材が配置された流路による沈殿効果が低減することを確実に防止することができる。   On the other hand, according to the present invention, as described above, the reinforcing member for reinforcing each corner is provided in the channel facing each corner of each partition member among the channels. Therefore, when a bending force that bends the corner acts on the corner of each partition wall member whose tip is a free end, it is surely suppressed that the corner is bent and deformed by the reinforcing action of the reinforcing member. can do. Further, since the reinforcing member allows water to flow into the flow path, it is possible to reliably prevent the precipitation effect due to the flow path in which the reinforcing member is disposed from being reduced.

請求項6に記載の発明によれば、各管部材で構成される列の数が偶数であることから、各隔壁部材間で各管部材間に形成される流路と各隔壁部材の配列方向に交互になるように各管部材が配置された複数の沈降装置をそれぞれの各管部材の配列方向が一致するように隣接して配置したとき、互いに隣接する各沈降装置間で互いに隣り合う二つの列を構成する各管部材間の流路は、それぞれ互いに隣接する各沈降装置間で各隔壁部材を介して管部材に隣接する。これにより、互いに隣接する各沈降装置間で互いに隣り合う二つの列を構成する各管部材の傾斜方向がそれぞれ同一である場合でも、各沈降装置間で互いに隣接する各流路内に水が流れたとき、各沈降装置間で互いに隣接する各隔壁部材に水から作用する圧力は、該各隔壁部材に隣接する隔壁部材及び該隔壁部材に隣接する管部材で受け止められる。従って、互いに隣接する各沈降装置間で各管部材の傾斜方向が互いに同一である各列内の各流路がそれぞれ各沈降装置間で隣接する場合に比べて、水から受ける圧力による隔壁部材の変形を確実に防止することができる。   According to the invention described in claim 6, since the number of rows formed by the tube members is an even number, the flow paths formed between the tube members between the partition members and the arrangement direction of the partition members When the plurality of settling devices in which the respective tube members are arranged alternately are arranged adjacent to each other so that the arrangement directions of the respective tube members coincide with each other, the two adjacent settling devices are adjacent to each other. The flow paths between the tube members constituting one row are adjacent to the tube members via the partition members between the sedimentation devices adjacent to each other. Thus, even when the inclination directions of the tube members constituting the two rows adjacent to each other between the adjacent sedimentation devices are the same, water flows into the flow paths adjacent to each other between the sedimentation devices. Then, the pressure acting from the water on the partition members adjacent to each other between the settling devices is received by the partition members adjacent to the partition members and the pipe members adjacent to the partition members. Therefore, compared with the case where each flow path in each row | line | column where the inclination direction of each tube member is mutually the same between each adjacent sedimentation apparatus, it adjoins between each sedimentation apparatus, respectively, of the partition member by the pressure received from water Deformation can be reliably prevented.

請求項7に記載の発明によれば、各管部材で構成される列の数は、4以上の偶数であることから、例えば列の数が7である沈降装置の列の数を4に変更する場合、各隔壁部材間の間隔と各管部材の各側壁の幅寸法とをそれぞれ原形における大きさの1.75倍の大きさに変更すれば足りる。これにより、列の数を7から2に変更する場合程は、曲げ力に対する各側壁の強度が原形における場合のそれに比べて大きく低下することはない。従って、管部材全体の曲げ力に対する強度の大きな低下を招くことなく沈降装置の列の数を減らすことができる。   According to the invention described in claim 7, since the number of rows formed by each pipe member is an even number of 4 or more, for example, the number of rows of the settling device in which the number of rows is 7 is changed to 4. In this case, it is sufficient to change the distance between the partition members and the width dimension of each side wall of each pipe member to 1.75 times the size of the original shape. Thus, as the number of rows is changed from 7 to 2, the strength of each side wall with respect to the bending force is not greatly reduced compared to that in the original shape. Therefore, the number of rows of settling devices can be reduced without causing a significant decrease in strength with respect to the bending force of the entire pipe member.

請求項8に記載の発明によれば、各沈降装置の各隔壁部材間にそれぞれ配列された各仕切り部材で構成される複数の列は、仕切り部材の配列方向に沿った二方向のうち一方向に傾斜する各仕切り部材で構成された複数の第一の列と、他方向に傾斜する各仕切り部材で構成された複数の第二の列とで構成されている。このことから、各沈降装置にそれぞれの上方から荷重が作用したとき、一方向に傾斜した各仕切り部材に作用する力と他方向に傾斜した各仕切り部材に作用する力との大部分を相殺することができる。これにより、前記荷重によって各沈降装置がそれぞれ大きく変形することが防止される。また、各仕切り部材の傾斜方向を全て同一にすることによる各沈降装置の強度の低下を招くことはない。   According to the eighth aspect of the present invention, the plurality of rows formed by the partition members respectively arranged between the partition members of each settling device are one direction out of two directions along the array direction of the partition members. It is comprised by the some 1st row | line comprised by each partition member which inclines in the direction, and the some 2nd row | line | column comprised by each partition member which inclines in another direction. From this, when a load is applied to each settling device from above, most of the force acting on each partition member inclined in one direction and the force acting on each partition member inclined in the other direction are offset. be able to. Thereby, it is prevented that each sedimentation apparatus deform | transforms greatly with the said load, respectively. Moreover, the fall of the intensity | strength of each sedimentation apparatus by making all the inclination directions of each partition member the same is not caused.

また、請求項8に記載の発明によれば、各沈降装置の仕切り部材の配列方向に沿った二方向のうち一方向に傾斜する各仕切り部材で構成された複数の第一の列と、他方向に傾斜する各仕切り部材で構成された複数の第二の列のうち、少なくとも一方の各列は、それぞれ隔壁部材の配列方向に連続して配置されている。   Further, according to the invention described in claim 8, a plurality of first rows constituted by each partition member inclined in one direction out of two directions along the arrangement direction of the partition members of each settling device, and others Among the plurality of second rows configured by the partition members inclined in the direction, at least one of the rows is continuously arranged in the arrangement direction of the partition members.

このことから、各第一の列及び各第二の列のうち一方の各列が各隔壁部材間の空間内に該各空間のうち一方の端に位置する空間内から順に配置されている場合、他方の各列は、それぞれ前記各空間のうち他方の端に位置する空間を含む残りの各空間内に配置される。この場合、各沈降装置をそれぞれ洗浄する際、先ず、前記一方の各列を構成する各仕切り部材に高圧洗浄水の噴射方向を沿わせた状態で前記一方の各列内の各流路内に高圧洗浄水を噴射することにより前記一方の各列内の各流路を洗浄し、続いて、前記他方の各列を構成する各仕切り部材に沿うように高圧洗浄水の噴射方向を変更し、この状態で前記他方の各列内の各流路内に高圧洗浄水を噴射することにより該各流路を洗浄することができる。従って、この場合、各沈降装置の洗浄時に高圧洗浄水の噴射方向を1回変更すればよい。   From this, when each 1st row | line | column among each 1st row | line | column and each 2nd row | line | column is arrange | positioned in order from the space located in one edge among each said space in the space between each partition member. The other row is disposed in each remaining space including a space located at the other end of each space. In this case, when each sedimentation device is cleaned, first, in each flow path in each one row in a state where the injection direction of the high-pressure washing water is aligned with each partition member constituting each one row. Washing each flow path in each of the one row by jetting high pressure washing water, then changing the jet direction of the high pressure washing water along each partition member constituting each other row, In this state, each flow path can be cleaned by spraying high-pressure washing water into each flow path in the other row. Therefore, in this case, it is only necessary to change the injection direction of the high-pressure washing water once when washing each settling device.

また、前記一方の各列が各隔壁部材間の各空間のうち少なくとも両端を除く各空間内に各隔壁部材の配列方向に連続して配置されている場合、他方の各列は、それぞれ前記各空間のうち少なくとも両端の空間を含む残りの各空間内に配置される。この場合、各沈降装置をそれぞれ洗浄する際、先ず、一方の端に配置された前記他方の列を構成する各仕切り部材に高圧洗浄水の噴射方向を沿わせた状態で前記他方の列内の各流路内に高圧洗浄水を噴射することにより該各流路を洗浄し、続いて、前記一方の各列を構成する各仕切り部材に沿うように高圧洗浄水の噴射方向を変更し、この状態で前記一方の各列内の各流路内に高圧洗浄水を噴射することにより該各流路を洗浄し、更に、他方の端に配置された前記他方の列を構成する各仕切り部材に沿うように高圧洗浄水の噴射方向を変更し、この状態で前記他方の列内の各流路内に高圧洗浄水を噴射することにより該各流路を洗浄することができる。従って、この場合、各沈降装置の洗浄時に高圧洗浄水の噴射方向を2回変更すればよい。   In addition, when each of the one row is continuously arranged in the arrangement direction of each partition member in each space excluding at least both ends of each space between the partition members, each other column is It arrange | positions in each remaining space including the space of at least both ends among spaces. In this case, when each of the settling devices is washed, first, in each of the partition members constituting the other row arranged at one end, the injection direction of the high-pressure washing water is aligned along the other row. Each flow passage is washed by injecting high-pressure washing water into each flow passage, and subsequently, the injection direction of the high-pressure washing water is changed along each partition member constituting each of the one row. In the state, each flow path is cleaned by spraying high-pressure washing water into each flow path in each said one row, and each partition member constituting the other row disposed at the other end Each of the flow paths can be cleaned by changing the jet direction of the high-pressure cleaning water so that the high pressure cleaning water is jetted into each flow path in the other row in this state. Therefore, in this case, the injection direction of the high-pressure washing water may be changed twice when washing each settling device.

以上のことから、高圧洗浄水の噴射方向を固定した状態で複数の列を連続して洗浄することができるので、各沈降装置にそれぞれ多数の列が形成されている場合でも、各沈降装置をそれぞれ洗浄する際に高圧洗浄水の噴射方向を一列毎に変更する必要がある従来の場合のような洗浄作業の煩雑さを招くことを確実に防止することができる。   From the above, it is possible to wash a plurality of rows continuously with the injection direction of the high-pressure washing water fixed, so even if each settling device has a plurality of rows, each settling device It is possible to reliably prevent the trouble of the cleaning work as in the conventional case where it is necessary to change the jet direction of the high-pressure cleaning water for each row when cleaning.

従って、各沈降装置の強度の低下を招くことなく各沈降装置の洗浄を確実に容易に行うことができる。   Therefore, it is possible to reliably and easily wash each settling device without causing a decrease in strength of each settling device.

また、他方の各列がそれぞれ前記各空間のうち少なくとも両端の空間を含む残りの各空間内に配置されている場合、各沈降装置をそれぞれ各隔壁部材がそれぞれ平行になるように互いに隣接して配置したとき、傾斜方向が互いに同一である各仕切り部材で構成された少なくとも二つの列を互いに隣接させることができる。これにより、各沈降装置の洗浄時に各沈降装置間で高圧洗浄水の噴射方向を変更する必要はない。   In addition, when the other rows are arranged in the remaining spaces including at least both ends of the spaces, the settling devices are adjacent to each other so that the partition members are parallel to each other. When arranged, at least two rows composed of partition members having the same inclination direction can be adjacent to each other. Thereby, it is not necessary to change the injection direction of the high-pressure washing water between the settling devices during the cleaning of the settling devices.

更に、各仕切り部材がそれぞれ傾斜していることから、各隔壁部材間に形成された各流路内に流入した水に含まれる浮遊物が沈降したとき、多くの浮遊物は沈殿池の底面に到達する前に仕切り部材の傾斜面に到達する。これにより、浮遊物が水面の近傍に上昇してから沈殿するまでの時間が短くなるので、従来と同様に、沈殿池内に各沈降装置がそれぞれ設置されていない場合に比べて浮遊物の沈殿効率を確実に向上させることができる。   Furthermore, since each partition member is inclined, when the suspended matter contained in the water flowing into each flow path formed between the partition members settles, many suspended matter is placed on the bottom surface of the sedimentation basin. It reaches the inclined surface of the partition member before reaching. This shortens the time from the rising of the suspended matter to the vicinity of the water surface until it settles, so as in the conventional case, the sedimentation efficiency of suspended matter compared to the case where each sedimentation device is not installed in the sedimentation basin. Can be reliably improved.

また、各仕切り部材がそれぞれ傾斜していることから、沈殿池の底面の単位面積当りの沈降面積が実質的に増大する。これにより、従来と同様に、浮遊物の収集能力を確実に向上させることができる。   Moreover, since each partition member inclines, the sedimentation area per unit area of the bottom face of a sedimentation tank increases substantially. As a result, as in the prior art, the ability to collect suspended solids can be reliably improved.

請求項9に記載の発明によれば、一方向に傾斜する各管部材で構成された複数の列と、他方向に傾斜する各管部材で構成された複数の列のうち少なくとも一方の各列がそれぞれ隔壁部材の配列方向に連続して配置された沈降装置を製造することができる。   According to the ninth aspect of the present invention, at least one of the plurality of rows composed of the tube members inclined in one direction and the plurality of rows composed of the tube members inclined in the other direction. Can be manufactured in a continuous manner in the arrangement direction of the partition members.

本発明を図示の実施例に沿って説明する。   The present invention will be described with reference to the illustrated embodiments.

本発明に係る沈殿処理システム10は、図1に示すように、沈殿池11を備える。沈殿池11は、図示の例では、平面がほぼ矩形状をなした底壁12と、該底壁の各縁部12aから立ち上がる四つの側壁13とを有する。   A sedimentation processing system 10 according to the present invention includes a sedimentation basin 11 as shown in FIG. In the illustrated example, the settling basin 11 includes a bottom wall 12 having a substantially rectangular plane, and four side walls 13 rising from the respective edge portions 12a of the bottom wall.

互いに対向する一対の側壁13のうち一方の側壁13(図1で見て、左側に位置する側壁13である。)には、例えば河川の水を流入させるための流入口14が形成されている。   In one side wall 13 (a side wall 13 located on the left side in FIG. 1) of the pair of side walls 13 facing each other, an inflow port 14 for flowing in river water, for example, is formed. .

沈殿池11内には、流入口14で沈殿池11の外方へ開放し、流入口14を経て流入する水を受け入れる流入室15が形成されている。また、沈殿池11内には、流入室15に連通し、該流入室から流入した水に含まれる汚泥のような浮遊物を沈殿させるための沈殿室16が形成されている。   In the sedimentation basin 11, an inflow chamber 15 that opens to the outside of the sedimentation basin 11 at the inlet 14 and receives water flowing in through the inlet 14 is formed. Further, in the settling basin 11, a settling chamber 16 is formed which is in communication with the inflow chamber 15 and for precipitating suspended matters such as sludge contained in water flowing in from the inflow chamber.

沈殿室16内には、従来と同様に、沈殿室16内における底壁12の上面12b上に沈殿した浮遊物を掻き集めるための掻き集め装置17が、底壁12の上面12b上に設けられている。   In the sedimentation chamber 16, a scraping device 17 is provided on the top surface 12 b of the bottom wall 12 to collect the suspended matter that has settled on the top surface 12 b of the bottom wall 12 in the sedimentation chamber 16, as in the prior art. Yes.

底壁12の流入室15における部分には、図示の例では、掻き集め装置17により掻き集められた浮遊物を溜めておくための貯留部18が形成されている。前記一方の側壁13には、貯留部18内に開放し、該貯留部内に溜まった浮遊物を沈殿池11の外方へ排出するための排出口19が形成されている。   In the portion of the bottom wall 12 in the inflow chamber 15, in the example shown in the figure, a storage portion 18 is formed for storing the suspended matter collected by the scraping device 17. The one side wall 13 is formed with a discharge port 19 that opens into the storage portion 18 and discharges the suspended matter accumulated in the storage portion to the outside of the sedimentation basin 11.

また、沈殿室16内の上部には、該沈殿室内に流入した水に含まれる浮遊物の沈降を促進するための複数の沈降装置20が配置されている。各沈降装置20は、それぞれ互いに対向する一対の側壁13のうち他方の側壁13(図1で見て、右側に位置する側壁13である。)と沈殿室16及び流入室15間を仕切る仕切り壁21との間に配置されている。また、各沈降装置20は、それぞれ前記他方の側壁13と仕切り壁21との間で所定の間隔をおいて配置された複数の支持桁材B上に載置されることにより、該各支持桁材に支持されている。沈殿池11内の水位が上昇することによって沈殿室16内の水が各沈降装置20内にその下方すなわち沈殿室16内から各沈降装置20の上方へ通過することにより、後述するように浮遊物が除去される。各沈降装置20の構成及び作用の詳細な説明は後述する。   In addition, a plurality of settling devices 20 for accelerating the settling of suspended matters contained in the water flowing into the settling chamber are disposed in the upper portion of the settling chamber 16. Each settling device 20 is a partition wall that partitions between the other side wall 13 (the side wall 13 positioned on the right side in FIG. 1) and the settling chamber 16 and the inflow chamber 15 of the pair of side walls 13 that face each other. 21. Further, each settling device 20 is placed on a plurality of support beams B arranged at a predetermined interval between the other side wall 13 and the partition wall 21, respectively. Supported by the material. As the water level in the settling basin 11 rises, the water in the settling chambers 16 passes through the settling devices 20 below, that is, from the settling chambers 16 to above the settling devices 20, thereby floating as described later. Is removed. A detailed description of the configuration and operation of each settling device 20 will be described later.

更に、沈殿室16内には、各沈降装置20を通過した水すなわち浮遊物が除去された水を収集するための集水室22が各沈降装置20の上方で規定されている。集水室22内には、複数の集水トラフ23が配置されている。各集水トラフ23は、それぞれ互いに連通した樋部材であり、それぞれ長尺状の底板24と該底板の幅方向で互いに対向する各縁部24aから立ち上がる一対の側板25とを有する。各側板25には、それぞれ各沈降装置20を通過した水を流入させるための複数の流入孔25aが各側板25の長手方向に互いに所定の間隔をおいて形成されている。各流入孔25aを経て各集水トラフ23内に流入した水は、従来よく知られているように、各集水トラフ23により図示しない濾過池に案内される。   Further, in the settling chamber 16, a water collection chamber 22 for collecting the water that has passed through each settling device 20, that is, the water from which suspended matters have been removed, is defined above each settling device 20. A plurality of water collection troughs 23 are arranged in the water collection chamber 22. Each of the water collecting troughs 23 is an eaves member that is in communication with each other, and includes a long bottom plate 24 and a pair of side plates 25 that rise from edge portions 24a that face each other in the width direction of the bottom plate. In each side plate 25, a plurality of inflow holes 25 a for allowing the water that has passed through each settling device 20 to flow in are formed in the longitudinal direction of each side plate 25 at predetermined intervals. The water flowing into each water collecting trough 23 through each inflow hole 25a is guided to a filtration pond (not shown) by each water collecting trough 23 as is well known.

本発明に係る沈降装置20は、図2に示す例では、5つの隔壁部材26と、複数の仕切り部材27とを備える。   In the example shown in FIG. 2, the sedimentation device 20 according to the present invention includes five partition members 26 and a plurality of partition members 27.

各隔壁部材26は、図示の例では、それぞれ塩化ビニルのような合成樹脂材料からなり、矩形状をなしたシート部材からなる。また、各隔壁部材26は、それぞれの長手方向を一致させて平行に且つ所定の間隔をおいて配置されている。各隔壁部材26の厚さ寸法と各隔壁部材26間の前記所定の間隔の寸法とを足し合わせた大きさが、沈降装置20の幅寸法となる。沈降装置20の幅寸法は、該沈降装置の運搬時に例えば運搬用車両に所要の数の沈降装置20を載置することができる大きさに設定されており、従来と同様に、ほぼ370mmである。   In the illustrated example, each partition member 26 is made of a synthetic resin material such as vinyl chloride, and is made of a rectangular sheet member. Each partition member 26 is arranged in parallel with a predetermined interval so that the longitudinal directions thereof coincide with each other. The sum of the thickness dimension of each partition member 26 and the dimension of the predetermined interval between the partition members 26 is the width dimension of the settling device 20. The width dimension of the settling device 20 is set to such a size that a required number of settling devices 20 can be placed on a transporting vehicle when the settling device is transported, and is approximately 370 mm as in the prior art. .

各仕切り部材27は、図示の例では、それぞれ塩化ビニルのような合成樹脂材料からなる管部材28で構成されている。各管部材28は、図3に示すように、各隔壁部材26間にそれぞれ該各隔壁部材の長手方向に所定の間隔をおいて配列されている。また、各管部材28は、それぞれ該各管部材の配列方向で互いに対向する一対の側壁29と、各管部材28を挟み込む一対の隔壁部材26に対向し、各側壁29を互いに連結する一対の端壁30とを有する。   In the example shown in the drawing, each partition member 27 is constituted by a tube member 28 made of a synthetic resin material such as vinyl chloride. As shown in FIG. 3, the tube members 28 are arranged between the partition members 26 at predetermined intervals in the longitudinal direction of the partition members. Each pipe member 28 is opposed to a pair of side walls 29 facing each other in the arrangement direction of the respective pipe members and a pair of partition wall members 26 sandwiching each pipe member 28, and a pair of side walls 29 connected to each other. And an end wall 30.

各隔壁部材26の配列方向である沈降装置20の幅方向に沿った各管部材28の長さ寸法すなわち各側壁29の幅寸法は、それぞれ各隔壁部材26間の間隔の大きさにほぼ等しい。これにより、各管部材28がそれぞれ各隔壁部材26間に配置された状態では、各端壁30がそれぞれ各隔壁部材26に当接する。これにより、各隔壁部材26間に各管部材28を配列することによって各隔壁部材26間の空間が複数の小空間に仕切られ、各隔壁部材26間で各管部材28間に各隔壁部材26及び各管部材28の各側壁29で規定される複数の流路31が形成される。また、各隔壁部材26間への各管部材28の配列により、各管部材28で構成された4つの列が形成される。   The length dimension of each pipe member 28 along the width direction of the settling device 20 that is the arrangement direction of the partition wall members 26, that is, the width dimension of the side walls 29 is substantially equal to the size of the interval between the partition wall members 26. Thereby, in the state where each pipe member 28 is arranged between each partition member 26, each end wall 30 contacts each partition member 26, respectively. Thus, by arranging the tube members 28 between the partition members 26, the spaces between the partition members 26 are partitioned into a plurality of small spaces, and the partition members 26 are interposed between the partition members 26 between the partition members 26. And the some flow path 31 prescribed | regulated by each side wall 29 of each pipe member 28 is formed. Further, four rows formed of the tube members 28 are formed by the arrangement of the tube members 28 between the partition members 26.

また、各側壁29の幅寸法は、それぞれ各管部材28間の間隔の大きさよりも大きくなるように設定されており、図示の例では、ほぼ92mmである。   In addition, the width dimension of each side wall 29 is set to be larger than the size of the interval between the tube members 28, and is approximately 92 mm in the illustrated example.

各端壁30の幅寸法は、それぞれ各管部材28間の間隔の大きさにほぼ等しく、図示の例では、ほぼ50mmである。これにより、大きさが各流路31とほぼ等しい流路が各管部材28内に形成される。各端壁30は、それぞれ例えば接着剤により、それぞれが対向する隔壁部材26に接着される。これにより、各管部材28は、それぞれ各隔壁部材26に固定される。   The width dimension of each end wall 30 is approximately equal to the size of the space between the tube members 28, and is approximately 50 mm in the illustrated example. As a result, a channel having a size substantially equal to that of each channel 31 is formed in each tube member 28. Each end wall 30 is bonded to the opposing partition wall member 26 by an adhesive, for example. Thereby, each pipe member 28 is fixed to each partition member 26.

また、各管部材28は、図示の例では、各隔壁部材26間で各管部材28間に形成される流路31と沈降装置20の幅方向に交互になるように配置されている。   Further, in the illustrated example, the pipe members 28 are arranged so as to alternate between the partition members 26 in the width direction of the flow paths 31 formed between the pipe members 28 and the settling device 20.

更に、各管部材28は、その配列方向である各隔壁部材26の長手方向に向けて所定の角度で傾斜している。各隔壁部材26の長手方向に対する各管部材28の傾斜角度は、図示の例では、それぞれ60°に設定されている。   Further, each tube member 28 is inclined at a predetermined angle toward the longitudinal direction of each partition wall member 26 which is the arrangement direction thereof. In the illustrated example, the inclination angle of each pipe member 28 with respect to the longitudinal direction of each partition wall member 26 is set to 60 °.

各隔壁部材26間への各管部材28の配置により形成された4つの列は、複数の第一の列32と複数の第二の列33とで構成されている。各第一の列32は、それぞれ各隔壁部材26の長手方向に沿った二方向のうち図3で見て右方向に向けて傾斜する(図3において、矢印は各管部材28の傾斜方向を示す。)複数の管部材28で構成されている。各第二の列33は、それぞれ図3で見て左方向に向けて傾斜する複数の管部材28で構成されている。   The four rows formed by the arrangement of the pipe members 28 between the partition members 26 are composed of a plurality of first rows 32 and a plurality of second rows 33. Each first row 32 is inclined toward the right as viewed in FIG. 3 out of two directions along the longitudinal direction of each partition wall member 26 (in FIG. 3, the arrow indicates the inclination direction of each tube member 28). Shown) It is composed of a plurality of pipe members 28. Each second row 33 is composed of a plurality of pipe members 28 that incline toward the left as viewed in FIG.

各第一の列32及び各第二の列33のうち少なくとも一方の各列32,33は、それぞれ沈降装置20の幅方向(図3で見て上下方向である。)に連続して配置されている。本実施例では、図3及び図4に示すように、各第一の列32がそれぞれ沈降装置20の幅方向に連続して配置されており、各隔壁部材26により規定された4つの空間のうち図3で見て上から2つ目の空間及び3つ目の空間にそれぞれ配置されている。従って、各第二の列33は、それぞれ図3で見て上から1つ目の空間及び4つ目の空間にそれぞれ配置されている。   At least one of the first row 32 and the second row 33 is continuously arranged in the width direction of the settling device 20 (the vertical direction as viewed in FIG. 3). ing. In the present embodiment, as shown in FIGS. 3 and 4, each first row 32 is continuously arranged in the width direction of the settling device 20, and the four spaces defined by the respective partition members 26 are included. Of these, they are arranged in the second space and the third space from the top as seen in FIG. Accordingly, the second rows 33 are respectively arranged in the first space and the fourth space from the top as viewed in FIG.

複数の沈降装置20は、それぞれの各隔壁部材26がそれぞれ平行になり且つ各沈降装置20の幅方向が沈殿池11の上下方向に沿うように、それぞれ隣接して沈殿池11内に沈殿室16と集水室22との間で配置されている。これにより、各沈降装置20がそれぞれ沈殿池11内に配置された状態では、図1に示すように、各管部材28及び各流路31はそれぞれ沈殿室16内と集水室22内とに開放する。   The plurality of settling devices 20 are adjacent to each other in the settling basin 11 so that the partition members 26 are parallel to each other and the width direction of each settling device 20 is along the vertical direction of the settling basin 11. And the water collecting chamber 22. Thereby, in the state where each sedimentation device 20 is arranged in the sedimentation basin 11, as shown in FIG. 1, each pipe member 28 and each flow path 31 are respectively located in the sedimentation chamber 16 and the water collection chamber 22. Open.

沈殿池11内の水位の上昇によって沈殿室16内から各管部材28及び各流路31内に流入した水に含まれる浮遊物が沈降したとき、各管部材28がそれぞれ傾斜していることから、各管部材28内を沈降する浮遊物は、沈殿池の底面に到達する前に、各管部材28の一対の側壁29のうち傾斜方向側に位置する一方の側壁29の各傾斜面のうち各管部材28の内方側に位置する傾斜面29a(図5参照。)に到達し、各流路31内を沈降する浮遊物は、沈殿池の底面に到達する前に、各管部材28の他方の側壁29の各傾斜面のうち各管部材28の外方側に位置する傾斜面29bに到達する。すなわち、各管部材28及び各流路31内に流入した浮遊物は、図5に示すように、hだけ沈降すれば沈殿する。これにより、深さがhである複数の沈降池が配置されているのと同等の効果を得ることができる。従って、沈殿池11内に各沈降装置20が設置されていない場合に比べて、水面の近傍に上昇した浮遊物が沈殿するのに要する距離が短くなるので、浮遊物が水面の近傍に上昇してから沈殿するまでの時間が短くなる。   When the suspended matter contained in the water flowing into the pipe members 28 and the flow paths 31 from the settling chamber 16 sinks due to the rise of the water level in the settling basin 11, the pipe members 28 are inclined. The suspended matter that settles in each pipe member 28 is out of the inclined surfaces of one side wall 29 located on the inclined direction side of the pair of side walls 29 before reaching the bottom surface of the settling basin. Floating matter that reaches the inclined surface 29a (see FIG. 5) located on the inner side of each pipe member 28 and settles in each flow path 31 reaches each pipe member 28 before reaching the bottom surface of the settling basin. Of the inclined surfaces of the other side wall 29, the inclined surface 29b located on the outer side of each pipe member 28 is reached. That is, as shown in FIG. 5, the suspended matter flowing into each pipe member 28 and each flow path 31 is settled if it settles by h. Thereby, an effect equivalent to that of a plurality of sedimentation basins having a depth of h can be obtained. Therefore, compared with the case where each settling device 20 is not installed in the settling basin 11, the distance required for the suspended matter rising near the water surface to settle is shortened, so that the suspended matter rises near the water surface. It takes less time to settle.

また、水が各管部材28及び各流路31に流入するときの水の上昇速度をVとし、各管部材28及び各流路31内での水の速度をVfとし、水に含まれる浮遊物の沈降速度をVsとし、各管部材28の傾斜角度をθとし、傾斜した状態での各管部材28の高さ寸法をHとし、各管部材28の各端壁30の幅寸法をdとすると、V=H/TとVs・cosθ=d/Tとの関係から(Tは時間である。)、(H/V)=(d/Vs・cosθ)の関係が成り立つ。従って、沈降速度Vsは、Vs=(d/Hcosθ)・Vである。ここで、各隔壁部材26の長手方向に沿った各管部材28の各端壁30の寸法すなわち各管部材28間の間隔の大きさをPとし、各管部材28及び各流路31の長さ寸法をLとすると、d=Psinθであり、H=Lsinθであることから、Vs=(P/Lcosθ)・Vとなる。   Moreover, the rising speed of water when water flows into each pipe member 28 and each flow path 31 is V, and the speed of water in each pipe member 28 and each flow path 31 is Vf. The sedimentation speed of the object is Vs, the inclination angle of each pipe member 28 is θ, the height dimension of each pipe member 28 in the inclined state is H, and the width dimension of each end wall 30 of each pipe member 28 is d. Then, from the relationship of V = H / T and Vs · cos θ = d / T (T is time), the relationship of (H / V) = (d / Vs · cos θ) is established. Therefore, the sedimentation velocity Vs is Vs = (d / Hcos θ) · V. Here, the dimension of each end wall 30 of each tube member 28 along the longitudinal direction of each partition member 26, that is, the size of the interval between each tube member 28 is P, and the length of each tube member 28 and each flow path 31 is set to P. When the dimension is L, d = Psinθ and H = Lsinθ, so Vs = (P / Lcosθ) · V.

従って、沈殿池11の底壁12の上面12bの単位面積当りの沈降装置20の沈降面積Asは、各管部材28及び各流路31のそれぞれの沈降面積をasとすると、As=as/P=Lcosθ/Pとなる。本実施例では、d=0.05[m]であり、θ=60°であり、L=0.61[m]とすると、
As=Lcosθ/P=Lsinθcosθ/d
=(0.61×sin60°×cos60°)/0.05
=5.3(m/m
となり、沈降装置20を沈殿池11内に配置すると、沈降装置20が配置されていない場合に比べて、沈降面積が5.3倍になる。
Therefore, the settling area As of the settling device 20 per unit area of the upper surface 12b of the bottom wall 12 of the settling basin 11 is As = as / P, where as the settling area of each pipe member 28 and each flow path 31 is as. = L cos θ / P. In this embodiment, when d = 0.05 [m], θ = 60 °, and L = 0.61 [m],
As = L cos θ / P = L sin θ cos θ / d
= (0.61 × sin 60 ° × cos 60 °) /0.05
= 5.3 (m 2 / m 2 )
Thus, when the settling device 20 is arranged in the settling basin 11, the settling area is 5.3 times that of the case where the settling device 20 is not arranged.

このような沈降装置20を組み立てる際、先ず、隔壁部材26の一側に、隔壁部材26の長手方向に所定の間隔をおき且つ隔壁部材26の一端26aから他端26bに向けて傾斜するように各管部材28をそれぞれ配置し、該各管部材の一対の端壁30のうち隔壁部材26側に位置する一方の端壁30をそれぞれ隔壁部材26に例えば接着剤を用いて取り付ける。これにより、単一の隔壁部材26と該隔壁部材をその前記一側から見て一端26aから他端26bに向けて傾斜する複数の管部材28とで構成される第一の組立体34(図3及び図4参照。)が形成される。第一の組立体34の隔壁部材26の両端26a,26bには、図3に示すように、それぞれ管部材28が配置されている。   When assembling such a settling device 20, first, a predetermined interval is provided on one side of the partition wall member 26 in the longitudinal direction of the partition wall member 26 and is inclined from one end 26 a to the other end 26 b of the partition wall member 26. Each pipe member 28 is arranged, and one end wall 30 located on the partition wall member 26 side among the pair of end walls 30 of each pipe member is attached to the partition wall member 26 using, for example, an adhesive. As a result, the first assembly 34 (see FIG. 1) is constituted by a single partition member 26 and a plurality of pipe members 28 inclined from one end 26a to the other end 26b when the partition member is viewed from the one side. 3 and FIG. 4). As shown in FIG. 3, pipe members 28 are respectively disposed at both ends 26 a and 26 b of the partition wall member 26 of the first assembly 34.

続いて、第一の組立体34の隔壁部材26とは別の隔壁部材26の一側に、上端28a(図3及び図4参照。)が第一の組立体34の各管部材28の上端28a間に位置し且つ第一の組立体34の各管部材28の傾斜方向と反対方向へ傾斜するように各管部材28をそれぞれ配置し、該各管部材の前記一方の端壁30をそれぞれ隔壁部材26に例えば接着剤を用いて取り付ける。これにより、単一の隔壁部材26と該隔壁部材をその前記一側から見て他端から一端に向けて傾斜する複数の管部材28とで構成される第二の組立体35(図3及び図4参照。)が形成される。第二の組立体35の隔壁部材26の両端26a,26bには、図3に示すように、それぞれ管部材28は配置されておらず、流路31が形成されている。   Subsequently, an upper end 28 a (see FIGS. 3 and 4) is provided on one side of the partition member 26, which is different from the partition member 26 of the first assembly 34, and the upper end of each pipe member 28 of the first assembly 34. 28a, the pipe members 28 are respectively arranged so as to be inclined in the direction opposite to the inclination direction of the pipe members 28 of the first assembly 34, and the one end wall 30 of each pipe member is arranged respectively. The partition member 26 is attached using, for example, an adhesive. As a result, the second assembly 35 (see FIG. 3 and FIG. 3), which is composed of a single partition member 26 and a plurality of pipe members 28 inclined from the other end to one end when the partition member is viewed from the one side. (See FIG. 4). As shown in FIG. 3, the pipe members 28 are not disposed at both ends 26 a and 26 b of the partition wall member 26 of the second assembly 35, respectively, and a flow path 31 is formed.

図示の例では、第一の組立体34及び第二の組立体35をそれぞれ二つずつ形成する。   In the illustrated example, two each of the first assembly 34 and the second assembly 35 are formed.

次に、二つの第一の組立体34のうち一方の第一の組立体34の各管部材28の他方の端壁30が一方の第二の組立体35の隔壁部材26の他側の面に対向するように前記一方の第一の組立体34を配置し、該第一の組立体の各管部材28の各他方の端壁30をそれぞれ前記一方の第二の組立体35の隔壁部材26の前記他側の面に例えば接着剤を用いて取り付ける。これにより、前記一方の第一の組立体34と前記一方の第二の組立体35とが一体的に接合される。   Next, the other end wall 30 of each pipe member 28 of the first assembly 34 of the two first assemblies 34 is the surface on the other side of the partition member 26 of the second assembly 35. The one first assembly 34 is arranged so as to face each other, and the other end walls 30 of the respective pipe members 28 of the first assembly are respectively connected to the partition members of the one second assembly 35. It attaches to the said other side surface of 26, for example using an adhesive agent. As a result, the one first assembly 34 and the one second assembly 35 are integrally joined.

また、他方の第二の組立体35の各管部材28の他方の端壁30が他方の第一の組立体34の隔壁部材26の他側の面に対向するように前記他方の第二の組立体35を配置し、該第二の組立体の各管部材28の各他方の端壁30をそれぞれ前記他方の第一の組立体34の隔壁部材26の前記他側の面に例えば接着剤を用いて取り付ける。これにより、前記他方の第一の組立体34と前記他方の第二の組立体35とが一体的に接合される。   Further, the other second wall 35 of the other second assembly 35 is arranged so that the other end wall 30 faces the other surface of the partition member 26 of the other first assembly 34. An assembly 35 is arranged, and each other end wall 30 of each pipe member 28 of the second assembly is placed on the other surface of the partition member 26 of the other first assembly 34, for example, an adhesive. Install using. Thereby, the other first assembly 34 and the other second assembly 35 are integrally joined.

続いて、前記他方の第一の組立体34の各管部材28の上端28aの位置が前記一方の第二の組立体35の各管部材28間に位置するように、前記他方の第二の組立体35が接合された前記他方の第一の組立体34と前記一方の第一の組立体34が接続された前記一方の第二の組立体35とを互いに近接させて配置する。   Subsequently, the other second assembly is arranged such that the upper end 28a of each tube member 28 of the other first assembly 34 is positioned between the tube members 28 of the one second assembly 35. The other first assembly 34 to which the assembly 35 is joined and the one second assembly 35 to which the one first assembly 34 is connected are arranged close to each other.

この状態で、前記一方の第二の組立体35の各管部材28と前記他方の第一の組立体34の各管部材28との間に隔壁部材26を挿入し、該隔壁部材の一方の面に前記一方の第二の組立体35の各管部材28の他方の端壁30をそれぞれ例えば接着剤を用いて取り付け、挿入された隔壁部材26の他方の面に前記他方の第一の組立体34の各管部材28の他方の端壁30を例えば接着剤を用いてそれぞれ取り付ける。   In this state, the partition member 26 is inserted between each tube member 28 of the one second assembly 35 and each tube member 28 of the other first assembly 34, and one of the partition members The other end wall 30 of each pipe member 28 of the one second assembly 35 is attached to the surface using, for example, an adhesive, and the other first set is attached to the other surface of the inserted partition wall member 26. The other end wall 30 of each pipe member 28 of the solid 34 is attached using, for example, an adhesive.

これにより、前記一方の第二の組立体35と前記他方の第一の組立体34との間に挿入された隔壁部材26を介して、各第一の組立体34と各第二の組立体35とがそれぞれ一体的に接合され、沈降装置20の組み立てが終了する。   Accordingly, each first assembly 34 and each second assembly are interposed via the partition wall member 26 inserted between the one second assembly 35 and the other first assembly 34. 35 are integrally joined to each other, and the assembly of the settling device 20 is completed.

本実施例によれば、前記したように、各隔壁部材26間にそれぞれ配列された各仕切り部材27で構成される複数の列は、仕切り部材27の配列方向に沿った二方向のうち一方向に傾斜する各仕切り部材27で構成された複数の第一の列32と、他方向に傾斜する各仕切り部材27で構成された複数の第二の列33とで構成されている。   According to the present embodiment, as described above, the plurality of rows constituted by the partition members 27 respectively arranged between the partition wall members 26 is one of the two directions along the array direction of the partition members 27. Each of the plurality of first rows 32 is composed of partition members 27 that are inclined to each other, and the plurality of second rows 33 is composed of partition members 27 that are inclined in the other direction.

このことから、沈降装置20にその上方から荷重が作用したとき、一方向に傾斜した各仕切り部材27に作用する力と他方向に傾斜した各仕切り部材27に作用する力との大部分を相殺することができる。これにより、前記荷重によって沈降装置20が大きく変形することが防止される。また、各仕切り部材27の傾斜方向を全て同一にすることによる沈降装置20の強度の低下を招くことはない。   From this, when a load is applied to the settling device 20 from above, most of the force acting on each partition member 27 inclined in one direction and the force acting on each partition member 27 inclined in the other direction are offset. can do. This prevents the settling device 20 from being greatly deformed by the load. Moreover, the fall of the intensity | strength of the sedimentation apparatus 20 by making all the inclination directions of each partition member 27 the same is not caused.

また、仕切り部材27の配列方向に沿った二方向のうち一方向に傾斜する各仕切り部材27で構成された複数の第一の列32と、他方向に傾斜する各仕切り部材27で構成された複数の第二の列33のうち、少なくとも一方の各列は、それぞれ隔壁部材26の配列方向に連続して配置されている。   Moreover, it comprised with the some 1st row | line | column 32 comprised by each partition member 27 inclined in one direction among the two directions along the arrangement direction of the partition member 27, and each partition member 27 inclined in the other direction. At least one of the plurality of second rows 33 is continuously arranged in the arrangement direction of the partition wall members 26.

このことから、各第一の列32及び各第二の列33のうち一方の各列が各隔壁部材26間の空間内に該各空間のうち一方の端に位置する空間内から順に配置されている場合、他方の各列は、それぞれ前記各空間のうち他方の端に位置する空間を含む残りの各空間内に配置される。この場合、沈降装置20を洗浄する際、先ず、前記一方の各列を構成する各仕切り部材27に高圧洗浄水の噴射方向を沿わせた状態で前記一方の各列内の各流路31内に高圧洗浄水を噴射することにより前記一方の各列内の各流路31を洗浄し、続いて、前記他方の各列を構成する各仕切り部材27に沿うように高圧洗浄水の噴射方向を変更し、この状態で前記他方の各列内の各流路31内に高圧洗浄水を噴射することにより該各流路31を洗浄することができる。従って、この場合、沈降装置20の洗浄時に高圧洗浄水の噴射方向を1回変更すればよい。   Therefore, one of the first rows 32 and the second rows 33 is sequentially arranged in the space between the partition members 26 from the space located at one end of the spaces. The other rows are arranged in the remaining spaces including the space located at the other end of the spaces. In this case, when washing the settling device 20, first, in each flow path 31 in each of the one row in a state where the partition member 27 constituting each of the one row is aligned with the injection direction of the high-pressure washing water. The flow path 31 in each of the one row is washed by spraying the high-pressure wash water on the first row, and then the injection direction of the high pressure wash water is set along the partition members 27 constituting the other row. In this state, each flow path 31 can be cleaned by injecting high-pressure washing water into each flow path 31 in the other row. Therefore, in this case, it is only necessary to change the jet direction of the high-pressure washing water once when washing the settling device 20.

また、前記一方の各列が各隔壁部材26間の各空間のうち少なくとも両端を除く各空間内に沈降装置20の幅方向に連続して配置されている場合、他方の各列は、それぞれ前記各空間のうち少なくとも両端の空間を含む残りの各空間内に配置される。この場合、沈降装置20を洗浄する際、先ず、一方の端に配置された前記他方の列を構成する各仕切り部材27に高圧洗浄水の噴射方向を沿わせた状態で前記他方の列内の各流路31内に高圧洗浄水を噴射することにより該各流路31を洗浄し、続いて、前記一方の各列を構成する各仕切り部材27に沿うように高圧洗浄水の噴射方向を変更し、この状態で前記一方の各列内の各流路31内に高圧洗浄水を噴射することにより該各流路31を洗浄し、更に、他方の端に配置された前記他方の列を構成する各仕切り部材27に沿うように高圧洗浄水の噴射方向を変更し、この状態で前記他方の列内の各流路31内に高圧洗浄水を噴射することにより該各流路31を洗浄することができる。従って、この場合、沈降装置20の洗浄時に高圧洗浄水の噴射方向を2回変更すればよい。   Moreover, when each said row | line | column is continuously arrange | positioned in the width direction of the sedimentation apparatus 20 in each space except at least both ends among each space between each partition member 26, each other row | line | column is each said It arrange | positions in each remaining space including the space of at least both ends among each space. In this case, when the settling device 20 is washed, first, the partition members 27 constituting the other row arranged at one end are placed in the other row with the injection direction of the high-pressure washing water aligned. Each flow passage 31 is washed by jetting high-pressure washing water into each flow passage 31, and then the injection direction of the high-pressure washing water is changed along each partition member 27 constituting each of the one row. In this state, each flow path 31 is washed by injecting high-pressure washing water into each flow path 31 in each of the one row, and the other row arranged at the other end is configured. The injection direction of the high-pressure washing water is changed so as to follow each partition member 27 to be performed, and the respective flow paths 31 are washed by injecting the high-pressure washing water into the respective flow paths 31 in the other row in this state. be able to. Therefore, in this case, the jetting direction of the high-pressure washing water may be changed twice when washing the settling device 20.

以上のことから、高圧洗浄水の噴射方向を固定した状態で複数の列を連続して洗浄することができるので、沈降装置20に多数の列が形成されている場合でも、沈降装置20を洗浄する際に高圧洗浄水の噴射方向を一列毎に変更する必要がある従来の場合のような洗浄作業の煩雑さを招くことを確実に防止することができる。   From the above, a plurality of rows can be continuously washed in a state where the injection direction of the high-pressure washing water is fixed. Therefore, even when a large number of rows are formed in the settling device 20, the settling device 20 is washed. In doing so, it is possible to reliably prevent the complication of the cleaning operation as in the conventional case where it is necessary to change the injection direction of the high-pressure cleaning water for each row.

従って、沈降装置20の強度の低下を招くことなく沈降装置20の洗浄を確実に容易に行うことができる。   Therefore, the settling device 20 can be reliably and easily cleaned without causing a decrease in the strength of the settling device 20.

更に、各隔壁部材26間に形成された各流路31内及び仕切り部材27である各管部材28内に流入した水に含まれる浮遊物が沈降したとき、多くの浮遊物は沈殿池11の底壁12の上面12bに到達する前に各管部材28の各傾斜面29a,29bに到達する。これにより、浮遊物が水面の近傍に上昇してから沈殿するまでの時間が短くなるので、従来と同様に、沈殿池11内に沈降装置20が設置されていない場合に比べて浮遊物の沈殿効率を確実に向上させることができる。   Furthermore, when the suspended matter contained in the water flowing into each flow path 31 formed between each partition wall member 26 and each pipe member 28 which is the partition member 27 sinks, many suspended matters are stored in the sedimentation basin 11. Before reaching the upper surface 12b of the bottom wall 12, the inclined surfaces 29a and 29b of the pipe members 28 are reached. As a result, since the time until the suspended matter rises to the vicinity of the water surface and settles becomes shorter, the sedimentation of the suspended matter than in the case where the settling device 20 is not installed in the settling basin 11 as in the prior art. Efficiency can be improved reliably.

また、各仕切り部材27がそれぞれ傾斜していることから、沈殿池11の底壁12の上面12bの単位面積当りの沈降面積が実質的に増大する。これにより、従来と同様に、浮遊物の収集能力を確実に向上させることができる。また、沈降面積が増大することから、沈殿池11に沈降装置20を設置することにより、沈殿池11の面積を縮小することができる。   Further, since each partition member 27 is inclined, the settling area per unit area of the upper surface 12b of the bottom wall 12 of the settling basin 11 is substantially increased. As a result, as in the prior art, the ability to collect suspended solids can be reliably improved. Moreover, since the sedimentation area increases, the area of the sedimentation basin 11 can be reduced by installing the sedimentation device 20 in the sedimentation basin 11.

また、本実施例によれば、前記したように、沈降装置20の幅方向に沿った各管部材28の各側壁29の幅寸法は、各管部材28間の間隔の大きさよりも大きい。   Further, according to the present embodiment, as described above, the width dimension of each side wall 29 of each tube member 28 along the width direction of the settling device 20 is larger than the size of the interval between each tube member 28.

近年、沈降装置20の製造コストの削減を図るべく沈降装置20の組立作業性を向上させるために、沈降装置20に用いられる仕切り部材27の個数を減らすことが望まれている。   In recent years, in order to improve the assembly workability of the settling device 20 in order to reduce the manufacturing cost of the settling device 20, it is desired to reduce the number of partition members 27 used in the settling device 20.

仕切り部材27の個数を減らすために、前記各列を構成する各仕切り部材27間の間隔を変更することなく前記各列をそれぞれ構成する仕切り部材27の個数を単に減らすことが考えられる。   In order to reduce the number of partition members 27, it is conceivable to simply reduce the number of partition members 27 constituting each row without changing the spacing between the partition members 27 constituting each row.

しかしながら、この場合、各隔壁部材26の長手方向に沿った沈降装置20の長さ寸法が小さくなるため、沈殿池11の所定の領域内に複数の沈降装置20を敷き詰める場合、仕切り部材27の個数を減らす前に比べて多くの沈降装置20が必要となる。このため、各沈降装置20を沈殿池11に配置する作業が煩雑になる。   However, in this case, since the length dimension of the settling device 20 along the longitudinal direction of each partition wall member 26 becomes small, when a plurality of settling devices 20 are spread in a predetermined region of the settling basin 11, the number of the partition members 27 is increased. More sedimentation devices 20 are required than before the reduction. For this reason, the operation | work which arrange | positions each sedimentation apparatus 20 in the sedimentation basin 11 becomes complicated.

そこで、前記各列をそれぞれ構成する仕切り部材27の個数を減らし、更に、沈降装置20の前記長さ寸法が変わらないように、前記各列を構成する各仕切り部材27間の間隔の大きさを変更することが考えられる。   Therefore, the number of partition members 27 constituting each row is reduced, and further, the size of the interval between the partition members 27 constituting each row is set so that the length dimension of the settling device 20 does not change. It is possible to change.

しかしながら、沈降装置20の浮遊物の収集能力すなわち沈降面積の大きさは、従来よく知られているように、各仕切り部材27間の間隔の大きさに依存する。従って、各仕切り部材27間の間隔を変更すると、沈降装置20の収集能力の低下を招く虞がある。   However, the collection capacity of the suspended matter of the settling device 20, that is, the size of the settling area, depends on the size of the interval between the partition members 27 as is well known in the art. Therefore, if the interval between the partition members 27 is changed, there is a possibility that the collection capability of the settling device 20 is reduced.

沈降装置20の前記長さ寸法及び各仕切り部材27間の間隔を変更することなく仕切り部材27の個数を減らすために、各仕切り部材27で構成される列の数を減らすことが考えられる。   In order to reduce the number of partition members 27 without changing the length dimension of the settling device 20 and the interval between the partition members 27, it is conceivable to reduce the number of rows formed by the partition members 27.

しかしながら、この場合、沈降装置20の幅方向に沿った沈降装置20の長さ寸法が小さくなるため、沈殿池11の所定の領域内に複数の沈降装置20を敷き詰める場合、列の数を減らす前に比べて多くの沈降装置20が必要となる。このため、各仕切り部材27間の間隔を変更することなく仕切り部材27の個数を減らす場合と同様に、各沈降装置20を沈殿池11に配置する作業が煩雑になる。   However, in this case, since the length dimension of the settling device 20 along the width direction of the settling device 20 becomes small, when a plurality of settling devices 20 are spread in a predetermined region of the settling basin 11, before the number of rows is reduced. Compared to the above, a larger number of settling devices 20 are required. For this reason, the operation | work which arrange | positions each sedimentation apparatus 20 in the sedimentation basin 11 becomes complicated similarly to the case where the number of the partition members 27 is reduced, without changing the space | interval between each partition member 27. FIG.

これらに対し、本発明によれば、前記したように、沈降装置20の幅方向に沿った仕切り部材27である各管部材28の各側壁29の幅寸法を各管部材28間の間隔の大きさよりも大きくすることにより、沈降装置20の幅方向に沿った沈降装置20の長さ寸法、各隔壁部材26の長手方向に沿った沈降装置20の長さ寸法及び各管部材28間の間隔を変更することなく、各管部材28の各側壁29の幅寸法が各管部材28間の間隔の大きさとほぼ等しい従来の場合に比べて、各管部材28で構成される列の数を減らすことができる。   On the other hand, according to the present invention, as described above, the width dimension of each side wall 29 of each pipe member 28 which is the partition member 27 along the width direction of the settling device 20 is set to a large distance between the pipe members 28. The length dimension of the sedimentation device 20 along the width direction of the sedimentation device 20, the length dimension of the sedimentation device 20 along the longitudinal direction of each partition wall member 26, and the interval between the tube members 28 are made larger. Without change, the number of rows formed by the tube members 28 is reduced as compared to the conventional case where the width dimension of the side walls 29 of the tube members 28 is substantially equal to the distance between the tube members 28. Can do.

これにより、沈降装置20の前記各長さ寸法を変更することにより沈殿池11への各沈降装置20の配置作業に煩雑さを招いたり、各仕切り部材27間の間隔の大きさを変更することにより沈降装置20の収集能力の低下を招いたりすることなく、仕切り部材27の個数を確実に減らすことができる。   Thereby, by changing the lengths of the settling device 20, the arrangement work of the settling devices 20 in the settling tank 11 is complicated, or the size of the interval between the partition members 27 is changed. Thus, the number of the partition members 27 can be surely reduced without causing a decrease in the collecting ability of the settling device 20.

また、各管部材28の各側壁29の幅寸法を大きくした場合でも、沈降装置20の幅方向に沿った沈降装置20の長さ寸法が変わらない限り、沈降装置20の浮遊物の収集能力すなわち沈降面積の大きさは変わらない。従って、各管部材28の各側壁29の幅寸法を大きくすることによって沈降装置20の収集能力の低下が生じることはない。   Further, even when the width dimension of each side wall 29 of each pipe member 28 is increased, as long as the length dimension of the settling apparatus 20 along the width direction of the settling apparatus 20 does not change, The size of the sedimentation area does not change. Therefore, the collection capacity of the settling device 20 is not reduced by increasing the width dimension of each side wall 29 of each pipe member 28.

更に、各管部材28の各側壁29の幅寸法を従来のそれよりも大きくすることにより、各管部材28及び各流路31のそれぞれの横断面積が大きくなる。これにより、各管部材28及び各流路31にいわゆる目詰まりが発生することを確実に抑制することができる。   Furthermore, by making the width dimension of each side wall 29 of each pipe member 28 larger than that of the conventional one, the cross-sectional area of each pipe member 28 and each flow path 31 is increased. Thereby, it is possible to reliably suppress so-called clogging in each pipe member 28 and each flow path 31.

更に、本実施例によれば、前記したように、仕切り部材27である管部材28は、その一対の端壁30で各隔壁部材26に固定されることから、仕切り部材27が例えば板部材で構成されている場合のように板部材をその端面で各隔壁部材26に固定する場合に比べて、各隔壁部材26への仕切り部材27の接触面積を確実に大きくすることができる。これにより、各隔壁部材26への仕切り部材27の固定強度を確実に高めることができる。   Furthermore, according to the present embodiment, as described above, the pipe member 28 that is the partition member 27 is fixed to each partition wall member 26 by the pair of end walls 30, so that the partition member 27 is a plate member, for example. The contact area of the partition member 27 to each partition member 26 can be reliably increased as compared with the case where the plate member is fixed to each partition member 26 at the end face as in the case of being configured. Thereby, the fixing strength of the partition member 27 to each partition member 26 can be reliably increased.

また、管部材28は板部材に比べて曲げ力に対する強度が高いので、仕切り部材27を管部材28で構成することにより、沈降装置20全体の強度を高めることができる。更に、仕切り部材27を管部材28で構成することにより、各隔壁部材26間で各管部材28間に流路31を形成することができることに加えて、各管部材28内を流路として用いることができる。   Moreover, since the pipe member 28 has a higher strength against bending force than the plate member, the overall strength of the settling device 20 can be increased by configuring the partition member 27 with the pipe member 28. Further, by forming the partition member 27 with the pipe member 28, the flow path 31 can be formed between the respective pipe members 28 between the respective partition members 26, and the inside of each pipe member 28 is used as a flow path. be able to.

また、本実施例によれば、前記したように、各管部材28は、各隔壁部材26間で各管部材28間に形成される流路31と沈降装置20の幅方向に交互になるように配置されていることから、各流路31は、それぞれ互いに隣接する各列間で隣り合うことはなく、互いに隣接する各列間で管部材28と必ず隣接する。これにより、各流路31内に水が流れたとき、該水からの圧力は各隔壁部材26及び該隔壁部材26を介して各流路31に隣接する各管部材28で受け止めることができる。従って、各管部材28の傾斜方向が互いに同一である各列間で各流路31がそれぞれ互いに隣接する場合のように流路31内を流れる水からの圧力を隔壁部材26のみで受ける場合に比べて、水から受ける圧力による隔壁部材26の変形を確実に防止することができる。   Further, according to the present embodiment, as described above, the pipe members 28 are alternately arranged in the width direction of the settling device 20 between the flow paths 31 formed between the pipe members 28 between the partition members 26. Therefore, the flow paths 31 are not adjacent to each other adjacent to each other, and are necessarily adjacent to the tube member 28 between the adjacent rows. Thereby, when water flows into each flow path 31, the pressure from the water can be received by each partition member 26 and each pipe member 28 adjacent to each flow path 31 via the partition member 26. Accordingly, when the pressure from the water flowing in the flow path 31 is received only by the partition wall member 26 as in the case where the flow paths 31 are adjacent to each other between the rows in which the inclination directions of the tube members 28 are the same. In comparison, the partition member 26 can be reliably prevented from being deformed by the pressure received from the water.

更に、本実施例によれば、前記したように、各管部材28で構成される列の数が偶数である。   Furthermore, according to the present embodiment, as described above, the number of rows formed by the tube members 28 is an even number.

各隔壁部材26間で各管部材28間に形成される流路31と沈降装置20の幅方向に交互になるように配置された各管部材28で構成される列の数が奇数である場合、複数の沈降装置20をそれぞれの各隔壁部材26の長手方向が一致するように隣接して配置したとき、互いに隣接する各沈降装置20間で互いに隣り合う二つの列を構成する各管部材28間の流路31が、互いに隣接する各沈降装置20間で各隔壁部材26を介して互いに隣接する。このため、互いに隣接する各沈降装置20間で互いに隣り合う二つの列を構成する各管部材28の傾斜方向がそれぞれ同一である場合、各沈降装置20間で互いに隣接する各流路31内に水が流れたとき、該水からの圧力の一部は、前記各流路31に隣接する各管部材28と該各管部材28及び前記各流路31間に配置された各隔壁部材26とで受け止められるが、前記圧力の一部は、各沈降装置20間で互いに隣接する各隔壁部材26のみで受ける。従って、各沈降装置20間で互いに隣接する各隔壁部材26が、水から受ける圧力によって変形する虞がある。   When the number of rows composed of the pipe members 28 arranged alternately between the partition walls 26 and the flow paths 31 formed between the pipe members 28 in the width direction of the settling device 20 is odd When the plurality of settling devices 20 are arranged adjacent to each other so that the longitudinal directions of the respective partition members 26 coincide with each other, the tube members 28 constituting two rows adjacent to each other between the settling devices 20 adjacent to each other. The flow paths 31 are adjacent to each other between the sedimentation devices 20 adjacent to each other via the partition members 26. For this reason, when the inclination directions of the pipe members 28 constituting the two rows adjacent to each other between the settling devices 20 adjacent to each other are the same, the channels 31 are adjacent to each other between the settling devices 20. When water flows, a part of the pressure from the water is divided between each pipe member 28 adjacent to each flow path 31 and each partition member 26 arranged between each pipe member 28 and each flow path 31. However, a part of the pressure is received only by the partition members 26 adjacent to each other between the settling devices 20. Accordingly, the partition wall members 26 adjacent to each other between the settling devices 20 may be deformed by the pressure received from the water.

これに対し、本発明によれば、前記したように、各管部材28で構成される列の数が偶数であることから、各隔壁部材26間で各管部材28間に形成される流路31と沈降装置20の幅方向に交互になるように各管部材28が配置された複数の沈降装置20をそれぞれの各管部材28の配列方向が一致するように隣接して配置したとき、互いに隣接する各沈降装置20間で互いに隣り合う二つの列を構成する各管部材28間の流路31は、それぞれ互いに隣接する各沈降装置20間で各隔壁部材26を介して管部材28に隣接する。これにより、互いに隣接する各沈降装置20間で互いに隣り合う二つの列を構成する各管部材28の傾斜方向がそれぞれ同一である場合でも、各沈降装置20間で互いに隣接する各流路31内に水が流れたとき、各沈降装置20間で互いに隣接する各隔壁部材26に水から作用する圧力は、該各隔壁部材26に隣接する隔壁部材26及び該隔壁部材26に隣接する管部材28で受け止められる。従って、各流路31がそれぞれ互いに隣接する各沈降装置20間で隣接する場合に比べて、水から受ける圧力による隔壁部材26の変形を確実に防止することができる。   On the other hand, according to the present invention, as described above, since the number of rows formed by the tube members 28 is an even number, the flow path formed between the tube members 28 between the partition wall members 26. When the plurality of settling devices 20 in which the respective pipe members 28 are arranged so as to alternate with each other in the width direction of the settling devices 20 are arranged adjacent to each other so that the arrangement directions of the respective tube members 28 coincide with each other, The flow paths 31 between the tube members 28 constituting two rows adjacent to each other between the adjacent settling devices 20 are adjacent to the tube members 28 via the partition members 26 between the settling devices 20 adjacent to each other. To do. Thereby, even in the case where the inclination directions of the tube members 28 constituting the two rows adjacent to each other between the settling devices 20 adjacent to each other are the same, the flow paths 31 adjacent to each other between the settling devices 20 When water flows into the partition members 20, the pressure acting from the water on the partition members 26 adjacent to each other between the settling devices 20 is divided into the partition members 26 adjacent to the partition members 26 and the pipe members 28 adjacent to the partition members 26. It is received by. Therefore, it is possible to reliably prevent the partition member 26 from being deformed by the pressure received from the water, as compared with the case where the respective flow paths 31 are adjacent to each other between the adjacent sedimentation devices 20.

また、本実施例によれば、前記したように、各管部材28で構成される列の数は4である。   Further, according to the present embodiment, as described above, the number of rows formed by the tube members 28 is four.

沈降装置20の幅方向に沿った沈降装置20の長さ寸法を変更することなく列を減らすために、各隔壁部材26間の間隔と、沈降装置20の幅方向に沿った各管部材28の長さ寸法すなわち各管部材28の各側壁29の幅寸法とをそれぞれ大きくする必要がある。このとき、例えば、前記列の数が7である沈降装置20の列の数を2に変更すると、各隔壁部材26間の間隔を原形における間隔の3.5倍の大きさに変更し、更に、沈降装置20の幅方向に沿った各管部材28の長さ寸法すなわち各管部材28の各側壁29の幅寸法をそれぞれ原形における寸法の3.5倍の大きさにする必要がある。各管部材28の各側壁29の幅寸法が大きくなるに従って曲げ力に対する各側壁29の強度が原形における場合に比べて低下するため、管部材28全体の曲げ力に対する強度が低下してしまう。   In order to reduce the number of rows without changing the length dimension of the settling device 20 along the width direction of the settling device 20, the interval between the partition members 26 and the tube members 28 along the width direction of the settling device 20 are reduced. The length dimension, that is, the width dimension of each side wall 29 of each pipe member 28 needs to be increased. At this time, for example, when the number of columns of the settling device 20 having the number of columns of 7 is changed to 2, the interval between the partition members 26 is changed to 3.5 times the interval in the original shape, The length dimension of each pipe member 28 along the width direction of the settling device 20, that is, the width dimension of each side wall 29 of each pipe member 28 must be 3.5 times larger than the original dimension. As the width dimension of each side wall 29 of each tube member 28 increases, the strength of each side wall 29 with respect to the bending force decreases as compared with the original shape, and therefore the strength of the entire tube member 28 with respect to the bending force decreases.

これに対し、本発明によれば、前記したように、各管部材28で構成される列の数が4以上であることから、例えば列の数が7である沈降装置20の列の数を4に変更する場合、各隔壁部材26間の間隔と各管部材28の各側壁29の幅寸法とをそれぞれ原形における大きさの1.75倍の大きさに変更すれば足りる。これにより、列の数を7から2に変更する場合程は、曲げ力に対する各側壁29の強度が原形における場合のそれに比べて大きく低下することはない。従って、管部材28全体の曲げ力に対する強度の大きな低下を招くことなく沈降装置20の列の数を減らすことができる。   On the other hand, according to the present invention, as described above, since the number of rows formed by the pipe members 28 is 4 or more, for example, the number of rows of the sedimentation device 20 in which the number of rows is 7 is set. In the case of changing to 4, it is sufficient to change the distance between the partition members 26 and the width dimension of the side walls 29 of the pipe members 28 to 1.75 times the size of the original shape. Thus, as the number of rows is changed from 7 to 2, the strength of each side wall 29 with respect to the bending force is not greatly reduced compared to that in the original shape. Therefore, the number of rows of the settling devices 20 can be reduced without causing a significant decrease in strength with respect to the bending force of the entire pipe member 28.

本実施例において、図6に示すように、各隔壁部材26間に形成された各流路31のうち各隔壁部材26の各角部26cに面する流路31内に、該流路内への水の流通を許し且つ各角部26cを補強するための補強部材36を設けることができる。   In this embodiment, as shown in FIG. 6, among the flow paths 31 formed between the partition wall members 26, the flow paths 31 facing the corners 26 c of the partition wall members 26 enter the flow paths. It is possible to provide a reinforcing member 36 for allowing the water to flow and reinforcing each corner portion 26c.

図示の例では、各管部材28を各流路31と沈降装置20の幅方向に交互になるように配置し、且つ、各管部材28で構成される列の数を偶数にすることにより、例えば図3で見て上から1列目の右端に、管部材28の側壁29と該管部材を挟み込む一対の隔壁部材26の角部26cとで規定され各隔壁部材26の長手方向に直交する方向及び各隔壁部材26の長手方向外方にそれぞれ開放する流路31´が形成されている。図示の例では、この流路31´内に補強部材36が設けられている。   In the illustrated example, the tube members 28 are alternately arranged in the width direction of the flow paths 31 and the settling device 20, and the number of rows formed of the tube members 28 is an even number. For example, the right end of the first row from the top in FIG. 3 is defined by the side wall 29 of the tube member 28 and the corner portion 26c of the pair of partition members 26 that sandwich the tube member, and is orthogonal to the longitudinal direction of each partition member 26. A flow path 31 ′ is formed to open in the direction and outward in the longitudinal direction of each partition wall member 26. In the illustrated example, a reinforcing member 36 is provided in the flow path 31 '.

各隔壁部材26の角部26cは、それぞれ前記一つ目の隔壁部材26と二つ目の隔壁部材26との間に各管部材28をそれぞれ傾斜させて配置することにより、右端に配置された管部材28から張り出す三角形状をなしている。   A corner portion 26c of each partition member 26 is disposed at the right end by inclining each tube member 28 between the first partition member 26 and the second partition member 26, respectively. A triangular shape protruding from the tube member 28 is formed.

補強部材36は、図示の例では、管部材28と同様の材料で形成されている。また、補強部材36は、図6(a)に示す例では、平面が矩形状をなした板部材からなる基部37と、該基部の短辺方向で互いに向かい合う一対の側縁部37aから立ち上がる一対の側壁38とを有する。   The reinforcing member 36 is formed of the same material as the tube member 28 in the illustrated example. Further, in the example shown in FIG. 6A, the reinforcing member 36 rises from a base portion 37 made of a plate member having a rectangular plane and a pair of side edge portions 37a facing each other in the short side direction of the base portion. Side wall 38.

基部37は、前記流路31´に隔壁部材26の長手方向で隣接して配置された管部材28の一対の側壁29のうち前記流路31´側に位置する一方の側壁29の大きさとほぼ等しい大きさを有する。基部37は、図6(b)に示すように、前記一方の側壁29に対向するよう配置され、例えば接着剤のような締結具により前記一方の側壁29に固定される。   The base portion 37 has a size approximately equal to the size of one side wall 29 located on the channel 31 ′ side of the pair of side walls 29 of the pipe member 28 disposed adjacent to the channel 31 ′ in the longitudinal direction of the partition wall member 26. Have equal size. As shown in FIG. 6B, the base 37 is disposed so as to face the one side wall 29, and is fixed to the one side wall 29 by a fastener such as an adhesive.

各側壁38は、図6(a)に示すように、各隔壁部材26の三角形をなした角部26cとほぼ同一の大きさを有し、基部37から離反するに従って先細る三角形をなしている。各側壁38は、図6(b)に示すように、それぞれ各隔壁部材26の角部26cに対向するように前記流路31´内に配置され、例えば接着剤のような締結具により各角部26cに固定される。このとき、各側壁38の大きさが各隔壁部材26の角部26cとほぼ同一であることから、各側壁38の先端が各隔壁部材26の先端に整合する。これにより、補強部材36の各側壁38が各隔壁部材26の角部26cと一体的に接合され、各角部26cの肉厚が実質的に厚くなる。   As shown in FIG. 6A, each side wall 38 has substantially the same size as the triangular corner portion 26 c of each partition wall member 26, and has a triangular shape that tapers away from the base portion 37. . As shown in FIG. 6 (b), each side wall 38 is disposed in the flow path 31 'so as to face the corner portion 26c of each partition wall member 26. For example, each side wall 38 is connected to each corner by a fastener such as an adhesive. It is fixed to the part 26c. At this time, since the size of each side wall 38 is substantially the same as the corner portion 26 c of each partition wall member 26, the front end of each side wall 38 is aligned with the front end of each partition wall member 26. Thereby, each side wall 38 of the reinforcing member 36 is integrally joined with the corner portion 26c of each partition wall member 26, and the thickness of each corner portion 26c is substantially increased.

流路31´内に補強部材36が設けられていない場合、前記流路31´を規定する各隔壁部材26のうち沈降部材20の外方側に位置する隔壁部材26の角部26cの先端が自由端となる。従って、隔壁部材26の角部26cに該角部を曲げる曲げ力が作用したとき、該曲げ力の大部分は受け止められず、角部26cに曲げ変形及び破損等が生じる虞がある。   When the reinforcing member 36 is not provided in the flow path 31 ′, the tip of the corner portion 26 c of the partition wall member 26 located on the outer side of the settling member 20 among the partition wall members 26 defining the flow path 31 ′ Become free end. Therefore, when a bending force that bends the corner acts on the corner portion 26c of the partition wall member 26, most of the bending force is not received, and the corner portion 26c may be bent or deformed.

これに対し、図6に示す例によれば、前記したように、各流路31のうち各隔壁部材26の各角部26cに面する流路31内に、各角部26cを補強するための補強部材36が設けられていることから、先端が自由端となった隔壁部材26の角部26cに該角部を曲げる曲げ力が作用したとき、該曲げ力を補強部材36の各側壁38に伝達させることができる。これにより、この補強部材36の補強作用により角部26cに曲げ変形及び破損等が生じることを確実に抑制することができる。   On the other hand, according to the example shown in FIG. 6, as described above, in order to reinforce each corner 26 c in the channel 31 facing each corner 26 c of each partition wall member 26 among the channels 31. Since the reinforcing member 36 is provided, when a bending force that bends the corner acts on the corner 26c of the partition wall member 26 whose tip is a free end, the bending force is applied to each side wall 38 of the reinforcing member 36. Can be transmitted. Thereby, it is possible to reliably suppress bending deformation and breakage in the corner portion 26c due to the reinforcing action of the reinforcing member 36.

また、沈殿池11内の水位が上昇したとき、補強部材36の基部37及び各側壁38で囲まれた空間内に水を受け入れることができる。これにより、補強部材36は流路31´内への水の流通を許すことから、補強部材36が配置された流路31´による沈殿効果が低減することを確実に防止することができる。   Moreover, when the water level in the sedimentation basin 11 rises, water can be received in the space surrounded by the base 37 and the side walls 38 of the reinforcing member 36. Thereby, since the reinforcement member 36 permits the flow of water into the flow path 31 ′, it is possible to reliably prevent the precipitation effect due to the flow path 31 ′ in which the reinforcement member 36 is disposed from being reduced.

図6に示す例では、図3で見て上から1列目の右端に形成された流路31´内に補強部材36を設けた例を示したが、これに代えて、又は、これに加えて、前記流路31´以外の流路31内に補強部材36を設けることができる。   In the example shown in FIG. 6, the example in which the reinforcing member 36 is provided in the flow path 31 ′ formed at the right end of the first row from the top in FIG. 3 is shown, but instead of this, or In addition, a reinforcing member 36 can be provided in the flow channel 31 other than the flow channel 31 ′.

また、図6に示す例において、補強部材36の各側壁38の先端間に両側壁38を互いに連結する連結部材を設けることができる。この場合、各隔壁部材26の角部26cに作用する曲げ力が各側壁38に作用したとき、その曲げ力は前記連結部材に該連結部材を圧縮する圧縮力として作用する。これにより、前記曲げ力を各側壁38及び前記連結部材によってより確実に受け止めることができる。従って、角部26cに曲げ変形及び破損等が生じることをより確実に抑制することができる。   In the example shown in FIG. 6, a connecting member that connects the side walls 38 to each other can be provided between the tips of the side walls 38 of the reinforcing member 36. In this case, when a bending force acting on the corner portion 26c of each partition member 26 acts on each side wall 38, the bending force acts on the connecting member as a compressive force for compressing the connecting member. Thereby, the said bending force can be more reliably received by each side wall 38 and the said connection member. Therefore, it is possible to more surely prevent the corner portion 26c from being bent and damaged.

更に、図6に示す例では、補強部材36が基部37及び各側壁38を有する例を示したが、これに代えて、各流路31内への水の流通を許し且つ各角部26cを補強することができれば、図6に示す補強部材36以外の補強部材を本発明に適用することができる。   Further, in the example shown in FIG. 6, an example in which the reinforcing member 36 has the base portion 37 and each side wall 38 is shown. However, instead of this, water is allowed to flow into each flow path 31 and each corner portion 26 c is formed. If it can be reinforced, a reinforcing member other than the reinforcing member 36 shown in FIG. 6 can be applied to the present invention.

図1乃至図6に示す例では、各第一の列32がそれぞれ沈降装置20の幅方向に連続して配置された例を示したが、これに代えて、各第二の列33をそれぞれ沈降装置20の幅方向に連続して配置することができる。   In the example shown in FIG. 1 to FIG. 6, the example in which each first row 32 is continuously arranged in the width direction of the settling device 20 is shown. It can arrange | position continuously in the width direction of the sedimentation apparatus 20. FIG.

また、図1乃至図6に示す例では、各第一の列32が、それぞれ沈降装置20の幅方向に連続して配置されており、各隔壁部材26により規定された4つの空間のうち図3で見て上から2つ目の空間及び3つ目の空間にそれぞれ配置され、各第二の列33は、それぞれ図3で見て上から1つ目の空間及び4つ目の空間にそれぞれ配置された例を示したが、これに代えて、例えば図7に示すように、各第一の列32をそれぞれ図7で見て上から1つ目及び2つ目の空間に配置し、各第二の列33をそれぞれ図7で見て上から3つ目及び4つ目の空間に配置することができる。   Further, in the example shown in FIGS. 1 to 6, each first row 32 is arranged continuously in the width direction of the settling device 20, and is a diagram of four spaces defined by each partition wall member 26. 3 are respectively arranged in the second space and the third space from the top as seen in FIG. 3, and each second row 33 is respectively in the first space and the fourth space from the top as seen in FIG. In the example shown in FIG. 7, for example, as shown in FIG. 7, the first rows 32 are arranged in the first and second spaces from the top when viewed in FIG. The second rows 33 can be arranged in the third and fourth spaces from the top as viewed in FIG.

この場合、各第一の列32及び各第二の列33のそれぞれが、沈降装置20の幅方向に連続して配置される。   In this case, each of the first rows 32 and the second rows 33 is continuously arranged in the width direction of the settling device 20.

また、この場合、沈降装置20を組み立てる際、第一の組立体34の隔壁部材26とは別の隔壁部材26の一側に上端28aが第一の組立体34の各管部材28の上端28a間に位置し且つ第一の組立体34の各管部材28の傾斜方向と同一方向へ傾斜するように配置した各管部材28の前記一方の端壁30をそれぞれ隔壁部材26に取り付けることにより、第二の組立体35を形成することができる。   In this case, when assembling the settling device 20, the upper end 28 a is on one side of the partition member 26, which is different from the partition member 26 of the first assembly 34, and the upper end 28 a of each pipe member 28 of the first assembly 34. By attaching the one end wall 30 of each pipe member 28 located between them and inclined in the same direction as the inclination direction of each pipe member 28 of the first assembly 34 to the partition wall member 26, A second assembly 35 can be formed.

図1乃至図7に示す例では、各管部材28により構成される列の数が4つである例を示したが、これに代えて、列の数を例えば6つにすることができる。この場合、例えば、各第一の例32及び各第二の列33の数をそれぞれ3つずつにすることができ、又は、いずれか一方の各列を4つにし、他方の各列を2つにすることができる。   In the example shown in FIGS. 1 to 7, an example in which the number of rows formed by each tube member 28 is four is shown. However, instead of this, the number of rows can be six, for example. In this case, for example, the number of each first example 32 and each second column 33 can be three, or each one column can be four and the other column can be two. Can be one.

また、図1乃至図7に示す例では、各第一の列32及び各第二の列33のそれぞれを構成する各管部材28が、各隔壁部材26間で各管部材28間に形成される流路31と沈降装置20の幅方向に交互になるように配置された例を示したが、これに代えて、各第一の列32及び各第二の列33のうち沈降装置20の幅方向に沿って連続して配置される一方の各列を構成する各管部材28のみを、それぞれ前記一方の各列間で流路31と沈降装置20の幅方向に交互になるように配置することができる。この場合、各管部材28の傾斜方向が互いに同一である前記一方の各列間で該各列内の各流路31がそれぞれ互いに隣接することが防止されるので、前記一方の各列内の流路31内を流れる水から受ける圧力による隔壁部材26の変形を確実に防止することができる。   Further, in the example shown in FIGS. 1 to 7, the tube members 28 constituting the first rows 32 and the second rows 33 are formed between the tube members 28 between the partition members 26. However, instead of this, in the first row 32 and the second row 33, the settling device 20 Only the tube members 28 constituting one row arranged continuously along the width direction are arranged so as to alternate in the width direction of the flow path 31 and the settling device 20 between the one row, respectively. can do. In this case, the flow paths 31 in each row are prevented from being adjacent to each other between the one row where the inclination directions of the tube members 28 are the same, so The deformation of the partition wall member 26 due to the pressure received from the water flowing in the flow path 31 can be reliably prevented.

更に、図1乃至図7に示す例では、仕切り部材27が管部材28で構成された例を示したが、これに代えて、仕切り部材27を例えば板部材で構成することができる。この場合、前記各板部材を、それぞれ各隔壁部材26間で前記板部材間に形成される流路31と沈降装置20の幅方向に互い違いになることなく該沈降装置の幅方向に直列的に配置することができる。また、各隔壁部材26間の空間を複数の流路31に仕切ることができれば、仕切り部材27に管部材28及び前記板部材以外の部材を用いることができる。   Furthermore, in the example shown in FIGS. 1 to 7, the example in which the partition member 27 is configured by the pipe member 28 is shown, but instead, the partition member 27 can be configured by a plate member, for example. In this case, the plate members are connected in series in the width direction of the settling device without interchanging in the width direction of the flow channel 31 and the settling device 20 formed between the plate members between the partition members 26, respectively. Can be arranged. Further, if the space between the partition members 26 can be partitioned into a plurality of flow paths 31, members other than the pipe member 28 and the plate member can be used as the partition member 27.

本発明に係る沈殿池を概略的に示す横断面図である。It is a cross-sectional view schematically showing a sedimentation basin according to the present invention. 本発明に係る沈降装置を概略的に示す斜視図である。1 is a perspective view schematically showing a sedimentation device according to the present invention. 本発明に係る沈降装置を概略的に示す平面図である。It is a top view which shows schematically the sedimentation apparatus which concerns on this invention. 本発明に係る沈降装置を概略的に示す分解斜視図である。1 is an exploded perspective view schematically showing a sedimentation device according to the present invention. 本発明に係る沈降装置の沈殿作用を説明するための説明図である。It is explanatory drawing for demonstrating the sedimentation effect | action of the sedimentation apparatus which concerns on this invention. (a)は本発明に係る補強部材を概略的に示す斜視図であり、(b)は補強部材が設けられた沈降装置を概略的に示す斜視図である。(A) is a perspective view which shows schematically the reinforcement member which concerns on this invention, (b) is a perspective view which shows schematically the sedimentation apparatus provided with the reinforcement member. 図1乃至図6に示す例とは別の実施例に係る沈降装置を概略的に示す平面図である。It is a top view which shows roughly the sedimentation apparatus which concerns on an Example different from the example shown in FIG. 1 thru | or FIG.

符号の説明Explanation of symbols

10 沈殿処理システム
11 沈殿池
20 沈降装置
26 隔壁部材
26c 角部
27 仕切り部材(管部材)
29 側壁(管部材の側壁)
30 端壁(管部材の端壁)
31 流路
32 第一の列
33 第二の列
34 第一の組立体
35 第二の組立体
36 補強部材
DESCRIPTION OF SYMBOLS 10 Sedimentation processing system 11 Sedimentation basin 20 Sedimentation apparatus 26 Partition member 26c Corner | angular part 27 Partition member (pipe member)
29 side wall (side wall of pipe member)
30 end wall (end wall of pipe member)
31 Flow path 32 First row 33 Second row 34 First assembly 35 Second assembly 36 Reinforcing member

Claims (9)

沈殿池内に配置され、該沈殿池内に流入した水に含まれる浮遊物の沈降を促進するための沈降装置であって、それぞれが平行に且つ所定の間隔をおいて配置される複数の隔壁部材と、該各隔壁部材間の空間を複数の流路に仕切るべく前記各隔壁部材間にそれぞれ該各隔壁部材に沿って所定の間隔をおいて配列され、その配列方向に向けて所定の角度で傾斜した複数の仕切り部材とを備え、前記各隔壁部材間にそれぞれ配列された前記各仕切り部材で構成される複数の列は、前記仕切り部材の配列方向に沿った二方向のうち一方向に傾斜する前記各仕切り部材で構成された複数の第一の列と、他方向に傾斜する前記各仕切り部材で構成された複数の第二の列とで構成されており、前記各第一の列及び前記各第二の列のうち少なくとも一方の前記各列は、それぞれ前記隔壁部材の配列方向に連続して配置されていることを特徴とする沈降装置。   A settling device arranged in a settling basin for accelerating the settling of floating substances contained in water flowing into the settling pond, each of which is arranged in parallel and at a predetermined interval In order to partition the space between the partition members into a plurality of flow paths, the partition members are arranged at predetermined intervals along the partition members, and inclined at a predetermined angle toward the arrangement direction. And a plurality of rows formed by the partition members arranged between the partition members are inclined in one of two directions along the arrangement direction of the partition members. It is composed of a plurality of first rows composed of the partition members and a plurality of second rows composed of the partition members inclined in the other direction, and the first rows and the At least one of said second columns Columns, settling apparatus characterized by being arranged continuously in the arranging direction of the partition member. 前記各隔壁部材の配列方向に沿った前記各仕切り部材の長さ寸法は、該各仕切り部材間の間隔の大きさよりも大きいことを特徴とする請求項1に記載の沈降装置。   The settling device according to claim 1, wherein a length dimension of each partition member along an arrangement direction of each partition member is larger than a size of an interval between the partition members. 前記各仕切り部材はそれぞれ矩形状の横断面を有する管部材であり、該各管部材は、前記各仕切り部材の配列方向で互いに対向する一対の側壁と、前記各管部材を挟み込む一対の前記隔壁部材に対向し、前記各側壁を互いに連結する一対の端壁とをそれぞれ有し、該各端壁は前記各隔壁部材に固定されることを特徴とする請求項1又は2に記載の沈降装置。   Each of the partition members is a tube member having a rectangular cross section, and each of the tube members includes a pair of side walls facing each other in the arrangement direction of the partition members, and a pair of the partition walls sandwiching the tube members The settling device according to claim 1 or 2, further comprising a pair of end walls facing the member and connecting the side walls to each other, the end walls being fixed to the partition members. . 前記各第一の列及び前記各第二の列のうち少なくとも前記一方の各列を構成する前記各管部材は、それぞれ前記一方の各列間で前記流路と前記各隔壁部材の配列方向に交互になるように配置されていることを特徴とする請求項3に記載の沈降装置。   The tube members constituting at least one of the first rows and the second rows are arranged in the direction in which the flow paths and the partition members are arranged between the one rows, respectively. 4. The settling device according to claim 3, wherein the settling devices are arranged alternately. 前記各隔壁部材は、それぞれ前記各仕切り部材の配列方向に沿って伸びる矩形状をなしており、前記各流路のうち前記各隔壁部材の各角部に面する前記流路内には、該流路内への水の流通を許し且つ前記各角部を補強するための補強部材が設けられていることを特徴とする請求項4に記載の沈降装置。   Each of the partition members has a rectangular shape extending along the arrangement direction of each of the partition members, and in each of the flow paths facing each corner of each of the partition members, The settling device according to claim 4, wherein a reinforcing member is provided for allowing water to flow into the flow path and reinforcing the corners. 前記各管部材で構成される前記列の数は偶数であることを特徴とする請求項4又は5に記載の沈降装置。   The sedimentation apparatus according to claim 4 or 5, wherein the number of the rows constituted by the tube members is an even number. 前記列の数は4以上であることを特徴とする請求項6に記載の沈降装置。   The settling device according to claim 6, wherein the number of the rows is 4 or more. 水が流入する沈殿池と、該沈殿池内に配置され、該沈殿池に流入した水に含まれる浮遊物の沈降を促進するための複数の沈降装置と、前記沈殿池内に前記各沈降装置の上方で配置され、前記各沈降装置を経た水を集めるための集水トラフとを備える沈殿処理システムであって、前記各沈降装置は、それぞれが平行に且つ所定の間隔をおいて配置される複数の隔壁部材と、該各隔壁部材間の空間を複数の流路に仕切るべく前記各隔壁部材間にそれぞれ該各隔壁部材に沿って所定の間隔をおいて配列され、その配列方向に向けて所定の角度で傾斜した複数の仕切り部材とを備え、それぞれの前記各隔壁部材がそれぞれ平行になるように隣接して配置されており、前記各隔壁部材間にそれぞれ配列された前記各仕切り部材で構成される複数の列は、前記仕切り部材の配列方向に沿った二方向のうち一方向に傾斜する前記各仕切り部材で構成された複数の第一の列と、他方向に傾斜する前記各仕切り部材で構成された複数の第二の列とで構成されており、前記各第一の列及び前記各第二の列のうち少なくとも一方の前記各列は、それぞれ前記隔壁部材の配列方向に連続して配置されていることを特徴とする沈殿処理システム。   A settling basin into which water flows, a plurality of settling devices arranged in the settling basin to promote sedimentation of suspended matter contained in the water flowing into the settling pond, and above the settling devices in the settling pond And a water collection trough for collecting water that has passed through each of the settling devices, wherein each of the settling devices is arranged in parallel and at a predetermined interval. A partition member and a space between the partition members are arranged at predetermined intervals along the partition members between the partition members so as to partition the spaces between the partition members into a plurality of flow paths. A plurality of partition members inclined at an angle, and the partition members are arranged adjacent to each other so as to be parallel to each other, and each partition member is arranged between the partition members. Multiple columns Among the two directions along the arrangement direction of the partition members, a plurality of first rows composed of the partition members inclined in one direction and a plurality of first rows composed of the partition members inclined in the other direction. Each of the first rows and the second rows is arranged continuously in the arrangement direction of the partition wall members. Characterized precipitation treatment system. それぞれが平行に且つ所定の間隔をおいて配置される複数の隔壁部材と、該各隔壁部材間の空間を複数の流路に仕切るべく前記各隔壁部材間にそれぞれ該各隔壁部材に沿って所定の間隔をおいて配列される複数の管部材とを備える沈降装置の製造方法であって、
前記複数の隔壁部材のうち一の該隔壁部材の一側に、該隔壁部材の長手方向に所定の間隔をおき且つ該隔壁部材の一端から他端に向けて傾斜するように配置した前記各管部材をそれぞれ前記隔壁部材に取り付けることにより、前記隔壁部材の両端それぞれ管部材が配置された少なくとも二つの第一の組立体を形成すること、
該各第一の組立体の前記隔壁部材とは別の前記隔壁部材の一側に、上端が前記第一の組立体の前記各管部材の上端間に位置し且つ前記第一の組立体の各管部材の傾斜方向と同一方向又は反対方向へ傾斜するように配置した前記各管部材をそれぞれ前記隔壁部材に取り付けることにより、前記隔壁部材の前記両端にそれぞれ前記流路が形成された少なくとも二つの第二の組立体を形成すること、
一方の前記第一の組立体の前記各管部材が一方の前記第二の組立体の前記隔壁部材の他側の面に対向するように前記一方の第一の組立体を配置し、該第一の組立体の前記各管部材をそれぞれ前記一方の第二の組立体の前記隔壁部材の前記他側の面に取り付けること、
他方の前記第二の組立体の前記各管部材が他方の前記第一の組立体の前記隔壁部材の他側の面に対向するように前記他方の第二の組立体を配置し、該第二の組立体の前記各管部材をそれぞれ前記他方の第一の組立体の前記隔壁部材の前記他側の面に取り付けること、
前記他方の第一の組立体の前記各管部材の前記上端の位置が前記一方の第二の組立体の前記各管部材間に位置するように、前記他方の第一の組立体と前記一方の第二の組立体とを互いに近接させて配置した状態で、前記一方の第二の組立体の前記各管部材と前記他方の第一の組立体の前記各管部材との間に、前記各第一の組立体及び前記各第二の組立体のそれぞれの前記隔壁部材とは別の前記隔壁部材を挿入し、該隔壁部材の一方の面に前記一方の第二の組立体の前記各管部材をそれぞれ取り付け、挿入された前記隔壁部材の他方の面に前記他方の第一の組立体の前記各管部材をそれぞれ取り付けること、
を含むことを特徴とする沈降装置の製造方法。
A plurality of partition members each arranged in parallel and at a predetermined interval, and a predetermined distance along each partition member between the partition members to partition a space between the partition members into a plurality of flow paths. A method of manufacturing a settling device comprising a plurality of pipe members arranged at intervals of
Each said pipe | tube arrange | positioned in one side of this partition member among these partition members at predetermined intervals in the longitudinal direction of this partition member, and inclining toward the other end from this partition member Forming at least two first assemblies in which pipe members are respectively disposed at both ends of the partition member by attaching members to the partition member,
On the one side of the partition member different from the partition member of each first assembly, the upper end is located between the upper ends of the tube members of the first assembly, and the first assembly At least two flow paths are formed at both ends of the partition member by attaching the tube members arranged so as to be inclined in the same direction as the inclination direction of the tube members or in the opposite direction to the partition member. Forming two second assemblies,
The one first assembly is disposed so that each pipe member of one of the first assemblies faces the other surface of the partition member of one of the second assemblies, Attaching each of the tube members of one assembly to the other surface of the partition member of the one second assembly;
The other second assembly is disposed so that each pipe member of the other second assembly faces the other surface of the partition member of the other first assembly, Attaching each pipe member of the second assembly to the other surface of the partition member of the other first assembly;
The other first assembly and the one so that the position of the upper end of each tube member of the other first assembly is located between the tube members of the one second assembly. In a state where the second assemblies are arranged close to each other, the tube members of the one second assembly and the tube members of the other first assembly, The partition member different from the partition member of each first assembly and each second assembly is inserted, and each of the second assemblies is inserted into one surface of the partition member. Attaching each pipe member, attaching each said pipe member of said other first assembly to the other side of said inserted partition member;
The manufacturing method of the sedimentation apparatus characterized by including.
JP2007232423A 2007-09-07 2007-09-07 Sedimentation device, sedimentation processing system, and method for manufacturing sedimentation device Active JP4858916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007232423A JP4858916B2 (en) 2007-09-07 2007-09-07 Sedimentation device, sedimentation processing system, and method for manufacturing sedimentation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007232423A JP4858916B2 (en) 2007-09-07 2007-09-07 Sedimentation device, sedimentation processing system, and method for manufacturing sedimentation device

Publications (2)

Publication Number Publication Date
JP2009061407A true JP2009061407A (en) 2009-03-26
JP4858916B2 JP4858916B2 (en) 2012-01-18

Family

ID=40556507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007232423A Active JP4858916B2 (en) 2007-09-07 2007-09-07 Sedimentation device, sedimentation processing system, and method for manufacturing sedimentation device

Country Status (1)

Country Link
JP (1) JP4858916B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010149081A (en) * 2008-12-26 2010-07-08 Toto Sekisui Kk Setting device
JP2010264409A (en) * 2009-05-18 2010-11-25 Isomura Hosui Kiko Co Ltd Tilting tube unit and method of producing the same
WO2017169125A1 (en) * 2016-03-29 2017-10-05 メタウォーター株式会社 Inclined settling acceleration device
JP2020059026A (en) * 2020-01-27 2020-04-16 メタウォーター株式会社 Inclined settling accelerating device
JP2021003692A (en) * 2019-06-27 2021-01-14 株式会社日立製作所 Gradient sedimentation device

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4827473A (en) * 1971-08-09 1973-04-11
JPS506156A (en) * 1973-05-21 1975-01-22
JPS5039876A (en) * 1973-08-11 1975-04-12
JPS5211473A (en) * 1975-07-17 1977-01-28 Ube Nitto Kasei Kk Separating device by suspending-settling with inclined panel
JPS6279814A (en) * 1985-10-01 1987-04-13 Kawasaki Heavy Ind Ltd Method and device for washing inclined settler
JPS62106607A (en) * 1985-11-05 1987-05-18 Agency Of Ind Science & Technol Compound superconductive coil
JPS62194404A (en) * 1986-02-21 1987-08-26 Hitachi Ltd Inspection and instrument therefor
JPS62282607A (en) * 1986-05-30 1987-12-08 Kawasaki Heavy Ind Ltd Production of inclined pipe for settling
JPS62298409A (en) * 1986-06-19 1987-12-25 Waseda Giken Kk Upward flow type inclined settling pond
JPH02150004A (en) * 1988-11-30 1990-06-08 Toko Inc Inductance element
JPH037909A (en) * 1989-06-05 1991-01-16 Sumitomo Electric Ind Ltd Optical component and its manufacture and device using the same
JPH0332905A (en) * 1989-06-30 1991-02-13 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2007502700A (en) * 2003-08-19 2007-02-15 オ・テ・ベ・エス・アー Layered decantation module and block with plates that can be vertical

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4827473A (en) * 1971-08-09 1973-04-11
JPS506156A (en) * 1973-05-21 1975-01-22
JPS5039876A (en) * 1973-08-11 1975-04-12
JPS5211473A (en) * 1975-07-17 1977-01-28 Ube Nitto Kasei Kk Separating device by suspending-settling with inclined panel
JPS6279814A (en) * 1985-10-01 1987-04-13 Kawasaki Heavy Ind Ltd Method and device for washing inclined settler
JPS62106607A (en) * 1985-11-05 1987-05-18 Agency Of Ind Science & Technol Compound superconductive coil
JPS62194404A (en) * 1986-02-21 1987-08-26 Hitachi Ltd Inspection and instrument therefor
JPS62282607A (en) * 1986-05-30 1987-12-08 Kawasaki Heavy Ind Ltd Production of inclined pipe for settling
JPS62298409A (en) * 1986-06-19 1987-12-25 Waseda Giken Kk Upward flow type inclined settling pond
JPH02150004A (en) * 1988-11-30 1990-06-08 Toko Inc Inductance element
JPH037909A (en) * 1989-06-05 1991-01-16 Sumitomo Electric Ind Ltd Optical component and its manufacture and device using the same
JPH0332905A (en) * 1989-06-30 1991-02-13 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2007502700A (en) * 2003-08-19 2007-02-15 オ・テ・ベ・エス・アー Layered decantation module and block with plates that can be vertical

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010149081A (en) * 2008-12-26 2010-07-08 Toto Sekisui Kk Setting device
JP2010264409A (en) * 2009-05-18 2010-11-25 Isomura Hosui Kiko Co Ltd Tilting tube unit and method of producing the same
WO2017169125A1 (en) * 2016-03-29 2017-10-05 メタウォーター株式会社 Inclined settling acceleration device
JP2017176985A (en) * 2016-03-29 2017-10-05 メタウォーター株式会社 Inclined sedimentation promotion device
US10850214B2 (en) 2016-03-29 2020-12-01 Metawater Co., Ltd. Inclined sedimentation acceleration apparatus
JP2021003692A (en) * 2019-06-27 2021-01-14 株式会社日立製作所 Gradient sedimentation device
JP2020059026A (en) * 2020-01-27 2020-04-16 メタウォーター株式会社 Inclined settling accelerating device

Also Published As

Publication number Publication date
JP4858916B2 (en) 2012-01-18

Similar Documents

Publication Publication Date Title
JP5679365B2 (en) Transport system
JP4858916B2 (en) Sedimentation device, sedimentation processing system, and method for manufacturing sedimentation device
US7850860B2 (en) Plate settler with angular support members
JP2014024055A5 (en)
JP6408076B2 (en) Transport system
US20170050124A1 (en) Lamella settler
KR102173185B1 (en) high-rate plate settler module
CN100512916C (en) Lamellar decanting module and block comprising plates that can be vertical
CN205435080U (en) High -efficient inclined lamellar precipitation device
KR100872767B1 (en) Easily assembled inclined lamella clarifier for settling tank
JP6718074B2 (en) Sand pond
JP2020059026A (en) Inclined settling accelerating device
JP4578696B2 (en) Coolant filtration method and apparatus
JP2021087924A (en) Inclined plate system for sewage, solid-liquid separation system, and method for cleaning inclined plate system for sewage
JP7396734B2 (en) sand pond
JP2001038383A (en) Vegetation water channel
EP3421110B1 (en) Inclined sedimentation acceleration apparatus
CN211836472U (en) Improved inclined plate sedimentation tank cleaning device
JP7120606B2 (en) sand pond
JP2023033625A (en) Sedimentation basin and sand collection method
JP6514837B1 (en) Water and sediment surface sediment removal equipment
JP2022107650A (en) Sand sedimentation pond
KR20210123202A (en) Sludge draining hopper for settling pond
JP2011115727A (en) Oil-water separation drainage system
RU2364686C1 (en) Lamel and module from lamels assembled in packet

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20100514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111025

R150 Certificate of patent or registration of utility model

Ref document number: 4858916

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250