JPS62106607A - Compound superconductive coil - Google Patents

Compound superconductive coil

Info

Publication number
JPS62106607A
JPS62106607A JP60247342A JP24734285A JPS62106607A JP S62106607 A JPS62106607 A JP S62106607A JP 60247342 A JP60247342 A JP 60247342A JP 24734285 A JP24734285 A JP 24734285A JP S62106607 A JPS62106607 A JP S62106607A
Authority
JP
Japan
Prior art keywords
insulating layer
superconducting
layer
insulating
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60247342A
Other languages
Japanese (ja)
Other versions
JPH0782935B2 (en
Inventor
Ko Azuma
洸 我妻
Katsuyuki Kaiho
海保 勝之
Tsukasa Kono
河野 宰
Yoshimitsu Ikeno
池野 義光
Masaru Sugimoto
優 杉本
Kiyoshi Yajima
矢島 喜代志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Fujikura Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP60247342A priority Critical patent/JPH0782935B2/en
Publication of JPS62106607A publication Critical patent/JPS62106607A/en
Publication of JPH0782935B2 publication Critical patent/JPH0782935B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To display an insulating effect even after a diffusion heat treatment is performed as well as to improve the strength of a superconductive coil by a method wherein the insulating layer, which will be formed outside a compound superconductive base line, is formed into a double-layer structure consisting of the heat-resisting layer of crystallized non-alkali vitreous material and an insulating coating. CONSTITUTION:A compound superconductive coil is formed by applying an insulating layer on the outside. At that time, the insulating layer is formed into a double structure consisting of the insulating layer 2 of crystallized non- alkali vitreous material and an insulation-coated layer 3. As a result, the insulating layer 2 can withstand the heat treatment performed after a diffusion heat treatment, the prescribed insulation effect is displayed, and the insulating layer 2 is protected by the coated layer 3 when a coil processing is performed, thereby increasing the strength of superconductive coil.

Description

【発明の詳細な説明】 1−産業上の利用分野Σ 本発明は、優れた絶縁特性と機械特性を有する絶縁層を
有した超電導コイルに関するものである。
DETAILED DESCRIPTION OF THE INVENTION 1-Field of Industrial Application Σ The present invention relates to a superconducting coil having an insulating layer having excellent insulating properties and mechanical properties.

「従来の技術」 極低温において使用されろ超電導マグネットにおいて、
化合物系超電導コイルが使用される構成の乙のにあって
は、従来、各コイル間の絶縁に使用される絶縁層として
、以下に記述ずろらのが知られている。
"Conventional technology" In superconducting magnets used at extremely low temperatures,
In the configuration B in which compound-based superconducting coils are used, the following types of insulating layers are conventionally known as insulating layers used for insulating between each coil.

(1)ポルマール樹脂の焼き付けにより形成されるホル
マール絶縁層。
(1) A formal insulating layer formed by baking Polmar resin.

(2)  ポリイミドあるいはポリイミドアミド樹1旨
テープの巻き付けにより形成されるポリ樹脂絶縁層。
(2) A polyresin insulating layer formed by wrapping polyimide or polyimide amide tape.

(3)柔軟性を向上させろバインダー成分を混入して形
成されたガラステープを巻き付けることによって、ある
いは、バインダー成分を混入して形成されたガラスヤー
ンを袋掴みすることにより形成されるガラス絶縁層。
(3) Improve flexibility A glass insulating layer is formed by wrapping a glass tape formed by mixing a binder component, or by bag-clamping a glass yarn formed by mixing a binder component.

(4)バインダー成分をl昆入して構成されたマイカテ
ープを巻き付けろことによ、って形I戊されろマイカ絶
縁層。
(4) Wrap a mica tape composed of a binder component into the mica insulating layer.

「発明か解決しようとする問題へ」 ところで、前記化合物系超電導コイルを構成する化合物
系超電導線にあっては、化合物超電導体が極めて硬く、
脆L)ために、コイル加工に伴う曲げ応力により、劣化
ないしは破壊する虞を有している。したがって従来は、
超電導化合物を構成する成分側々が別個に存在する複合
状態の加工性に富む線材にコイル加工を施し、コイル加
工後にこの線材に超電導化合物生成のための拡散熱処理
を血才ことによって超電導コイルを製造していた。
"To the problem to be solved by the invention" By the way, in the compound-based superconducting wire constituting the compound-based superconducting coil, the compound superconductor is extremely hard;
Because of the brittleness L), there is a risk of deterioration or destruction due to bending stress associated with coil processing. Therefore, conventionally,
Superconducting coils are manufactured by applying coil processing to wire rods that are highly workable in a complex state in which the components that make up superconducting compounds exist separately, and then applying diffusion heat treatment to this wire rod after coil processing to generate superconducting compounds. Was.

したがって、前記絶縁(オ企用いて施す絶縁処理は、従
来、前記複合状態の線材になされ、この絶縁処理された
線材にコイル加工と化合物生成用拡散熱処理を順次施す
ことによって化合物系超電導コイルが製造されるのであ
る。
Therefore, conventionally, the insulation treatment performed using the insulation method is applied to the wire rod in the composite state, and a compound-based superconducting coil is manufactured by sequentially applying coil processing and diffusion heat treatment for compound generation to the insulated wire rod. It will be done.

ところが、前記拡散熱処理は、600〜800°Cの温
度に20〜200時間の間加熱する処理であるために、
この拡散熱処理により前記各絶縁材に、以下に記泌する
如き不具合を生じる問題を有していた。
However, since the diffusion heat treatment is a process of heating at a temperature of 600 to 800°C for 20 to 200 hours,
This diffusion heat treatment has caused problems in each of the insulating materials as described below.

まず、前記各絶縁層の内、ホルマール絶縁層とポリ樹脂
絶縁層にあっては、前記拡散熱処理の加熱による劣化が
大きく、絶縁特性に支障を生じる問題を有していた。ま
た、前記ガラス絶縁層とマイカ絶縁層にあっては、前記
拡散熱処理の加熱には耐えるものの、柔軟性向上の目的
で混入したバインダー成分(デンプン系物質が多い)が
前記加熱によって炭化し、絶縁性を大きく劣化させてし
まう問題を有していた。なお、前記バインダー成分を含
有させずに形成1、またカラス絶縁層やマイカ走縁層を
用いて超電導コイルを製造すると、超′1a導線の巻き
付は加工時に、超電導線の角部て絶縁層に亀裂を生じた
り、コイル加工時に超電導線どうしの摩擦等により絶縁
層に亀裂部分やけば立ち部分、あるいは損耗による薄い
部分を生じて実用上の絶縁性に問題を生じることになる
First, among the above-mentioned insulating layers, the formal insulating layer and the polyresin insulating layer are significantly deteriorated by the heating of the above-mentioned diffusion heat treatment, resulting in a problem that the insulating properties are impaired. In addition, although the glass insulating layer and the mica insulating layer can withstand the heat of the diffusion heat treatment, the binder component (often starch-based substances) mixed in for the purpose of improving flexibility is carbonized by the heating, resulting in insulation. This had the problem of greatly deteriorating the performance. In addition, if a superconducting coil is manufactured using Form 1 without containing the binder component, or using a glass insulating layer or a mica running edge layer, the winding of the super'1a conductor wire will be carried out at the corner of the superconducting wire at the corner of the insulating layer. In addition, friction between superconducting wires during coil processing may cause cracks, fraying, or thin areas in the insulating layer due to wear and tear, resulting in problems with practical insulation properties.

「発明の目的」 本発明は、前記問題に鑑みてなされたもので、絶縁性と
機械特性と耐熱性に優れ、拡散熱処理やコイル加工を経
た後であっても絶縁性を損なわない絶縁層を具備した化
合物系超電導コイルを提供することを目的とする。
``Object of the Invention'' The present invention has been made in view of the above-mentioned problems. The object of the present invention is to provide a compound-based superconducting coil having the following properties.

「問題点を解決するための手段」 本発明は、前記問題点を解決するために、外部に絶縁層
が被覆されてなる化合物系超電導コイルであって、前記
絶縁層を結晶化無アルカリガラス質の絶縁層と絶縁被覆
層の複層構造にしてなるものであるっ 1 作用 」 結晶化無アルカリガラス質の耐熱絶縁層が拡散熱処理に
伴う加熱処理に耐えて所定の絶縁効果を奏するとともに
、コイル加工時に下層の絶縁材を上層の絶縁材が保護す
る。
"Means for Solving the Problems" In order to solve the above problems, the present invention provides a compound-based superconducting coil coated with an insulating layer on the outside, the insulating layer being made of crystallized non-alkali glass. It has a multi-layer structure of an insulating layer and an insulating coating layer.1 Function: The heat-resistant insulating layer made of crystallized alkali-free glass withstands the heat treatment associated with diffusion heat treatment and exhibits the desired insulating effect. The upper layer of insulation protects the lower layer of insulation during processing.

1実施例Σ 第1図は本発明の一実施例の超電導コイルAの断面構造
を示すもので、この超電導コイルAは横断面矩形状の化
合物系超電導基線lと、この超電導基線Iの外部に被覆
された無アクリルガラス質の絶縁材からなる下地側の耐
熱絶縁層2と、この耐熱絶縁層2の外部に被覆された絶
縁被覆層3とから構成されている。
1 Embodiment Σ Figure 1 shows the cross-sectional structure of a superconducting coil A according to an embodiment of the present invention. It is composed of a base-side heat-resistant insulating layer 2 made of a non-acrylic insulating material and an insulating coating layer 3 covering the outside of the heat-resistant insulating layer 2.

前記化合物系超電導基線1は、超電導金属間化合物(例
えばNb5Sn)を生成するのに必要な金属元素(例え
ばNbとSn)を複合して含有した超電導素線に、後述
する拡散熱処理を施して製造されたしので、内部に超電
導金属間化合物を有するものである。この超電導基線1
は、拡散熱処理以前の素線状態では延性に富み、加工性
に優れるものである。
The compound-based superconducting baseline 1 is manufactured by subjecting a superconducting wire containing a combination of metal elements (for example, Nb and Sn) necessary for producing a superconducting intermetallic compound (for example, Nb5Sn) to a diffusion heat treatment described below. Therefore, it has a superconducting intermetallic compound inside. This superconducting baseline 1
is highly ductile and has excellent workability in its strand state before diffusion heat treatment.

前記耐熱絶縁層2は、結晶化はうろうエナメル等の無ア
クリルガラス質の絶縁材から構成された乙ので、後述す
る方法によって超電導素線1に被覆されたちのである。
The heat-resistant insulating layer 2 is made of an acrylic-free insulating material such as non-crystallized enamel, and is coated on the superconducting wire 1 by the method described below.

前記絶縁被覆層3は前述したバインダー成分を含(了し
ていない石英テープ11により構成された乙のである。
The insulating coating layer 3 is composed of a quartz tape 11 that does not contain the binder component described above.

第2図のMは前記超電導コイルAをひ線ボビン5に巻回
して構成された超電導マクネットを示している。
M in FIG. 2 indicates a superconducting mucknet constructed by winding the superconducting coil A around a wire bobbin 5.

以下に、前記超電導コイル八と超電導マグネットMの製
造方法について説明する。
A method of manufacturing the superconducting coil 8 and superconducting magnet M will be described below.

第3図は、前記超電導マグネットMの製造状態を示すも
ので、図中6は超電導素線7が巻回された素線リールを
示し、図中8はガラスフリット浴等を備えた浸漬装置を
示し、図中IOは、バインダー成分を含有していない石
英テープ+1が巻回されたテープリールを示している。
FIG. 3 shows the manufacturing state of the superconducting magnet M. In the figure, 6 indicates a wire reel around which the superconducting wire 7 is wound, and 8 in the figure indicates an immersion device equipped with a glass frit bath, etc. In the figure, IO indicates a tape reel wound with quartz tape +1 that does not contain a binder component.

前記超71j導素線7を用いて超電導マクネットMを製
造するには、まず、素線リール6から引き出した超電導
素線7を浸漬装置8に供給する。
In order to manufacture a superconducting macnet M using the super 71j conductive strand 7, first, the superconducting strand 7 pulled out from the strand reel 6 is supplied to the dipping device 8.

浸漬装置8は、洗浄装置と脱指装置と下地メッキ装置等
の前処理装置と無アルカリの結晶性ガラス質のほうろう
ガラスフリット浴とを備えたもので、この浸漬装置8を
超電導素線7が通過することによって、浸漬装置8は超
電導素線7の外周にほうろうのガラスフリット層(例え
ば、MgO1B ao 、 B 203.5ift等の
成分からなる厚さ0゜1〜0.2mm程度のほうろう組
成物層)+2を生成する。
The dipping device 8 is equipped with a cleaning device, a finger removal device, a pretreatment device such as a base plating device, and an alkali-free crystalline vitreous enamel glass frit bath. By passing through, the dipping device 8 coats the outer periphery of the superconducting wire 7 with a glass frit layer of enamel (e.g., an enamel composition having a thickness of about 0.1 to 0.2 mm and consisting of components such as MgO1Bao and B203.5ift). layer) +2.

次に、前記浸漬装置8を通過した超電導素線7に前記テ
ープリール10から引き出した石英テープIIを巻き付
けて絶縁被覆層3を形成し、続いて巻線ボビン5に巻回
する。ここで、前記超電導素線7はその内部に、化合物
系超電導体を構成する元素を複合状態で含有し、加工性
に富むために、巻回作業は容易に実施できる。なお、前
記巻回作業時に超電導素線7の外周の絶縁被覆層3は擦
れ合うが、これら絶縁被覆層3が擦れあって損耗した場
合であってら、その内部のガラスフリット層12が損傷
オろことはなく、絶縁被覆層3はガラステープ1−1i
′7i12の保護作用を奏する。そして、前記巻回時に
、曲げmの多い部分ては、ガラスフリット層12が剥離
する虞を生じるが、石英テープ11がこの剥離を防止す
る。またこのガラスフリット層12はO11〜0.2m
mの薄いものであるために、超電導基線Iに対する占積
率は従来の絶縁層と同程度にすることができる。
Next, the quartz tape II drawn out from the tape reel 10 is wound around the superconducting strand 7 that has passed through the dipping device 8 to form an insulating coating layer 3, and then the superconducting wire 7 is wound around the winding bobbin 5. Here, the superconducting strand 7 contains elements constituting a compound superconductor in a complex state and is highly workable, so that the winding operation can be carried out easily. Note that during the winding operation, the insulating coating layers 3 on the outer periphery of the superconducting wire 7 rub against each other, but if these insulating coating layers 3 rub against each other and are worn out, the glass frit layer 12 inside may be damaged or damaged. Insulating coating layer 3 is glass tape 1-1i
'7i12 has a protective effect. During the winding, there is a risk that the glass frit layer 12 may peel off in the portion where there is a large amount of bending m, but the quartz tape 11 prevents this separation. Moreover, this glass frit layer 12 is O11~0.2m
Since it is thin, the space factor with respect to the superconducting base line I can be made comparable to that of a conventional insulating layer.

この後に、巻線ボビン5を、ガラスフリット層I2の結
晶化カラス焼成温度(800〜8508C)に加熱して
ガラスフリット層12を耐熱絶縁層2にするとと乙に、
拡散熱処理(600〜800°Cに20〜200時間加
熱する処理)を施して超電導素線7の内部に超電導金属
間化合物を生成させ、超電導素線7を超電導基線lにし
て超電導マグネットMを構成する。
After this, the winding bobbin 5 is heated to the crystallization glass firing temperature (800 to 8508 C) of the glass frit layer I2 to turn the glass frit layer 12 into the heat-resistant insulating layer 2.
A superconducting intermetallic compound is generated inside the superconducting wire 7 by diffusion heat treatment (heating treatment at 600 to 800° C. for 20 to 200 hours), and the superconducting magnet M is configured by using the superconducting wire 7 as a superconducting base line l. do.

前記超電導マグネットMにおいては、耐熱絶縁層2を無
アルカリの結晶化ガラス質絶縁材から形成したために、
拡散熱処理に耐えて拡散熱処理後も高い絶縁性を奏する
とともに、絶縁被覆層3はバインダー成分を含有してい
ないために、バインダー成分の炭化物を生じることも無
い。また、結晶化して構成された耐熱絶縁層2は機械的
強度が高いために、超電導マグネットMに通電して強大
な電磁力を発生させた場合に、この電磁力によって超電
導コイルAに作用する外力にも十分耐えるようになって
いて信頼性の高い構成になっている。
In the superconducting magnet M, since the heat-resistant insulating layer 2 is formed from an alkali-free crystallized glass insulating material,
It can withstand diffusion heat treatment and exhibits high insulation even after the diffusion heat treatment, and since the insulating coating layer 3 does not contain a binder component, it does not generate carbide of the binder component. In addition, since the heat-resistant insulating layer 2 formed by crystallization has high mechanical strength, when the superconducting magnet M is energized to generate a strong electromagnetic force, an external force acting on the superconducting coil A due to this electromagnetic force is generated. It has a highly reliable configuration and is designed to withstand high temperatures.

前記の超電導マグネットMにあっては、650℃程度で
軟化する非晶質はうろうに比較して、800〜850°
Cの高温でも安定性の高い無アルカリの結晶化ガラス質
はうろうからなる耐熱絶縁層2を有しているために、拡
散熱処理時の高温にも十分耐えて所定の絶縁効果を奏す
る。
In the superconducting magnet M mentioned above, the amorphous material softens at about 650°C, while the amorphous material softens at about 800 to 850°C.
Since the alkali-free crystallized glass material of C, which is highly stable even at high temperatures, has a heat-resistant insulating layer 2 made of wax, it can sufficiently withstand high temperatures during diffusion heat treatment and exhibit a predetermined insulating effect.

なお、前記実施例において、石英テープ11を超電導素
線7の外面に被覆し、その上にガラスフリット層I2を
形成しても良い。更に、超電導コイル7の外方にカラス
フリット層12を形成するには、前記浸漬方法の他に、
静電塗装法、デツプフォーミング法、あるいは泳動電着
法等の手段でも差し支えない。
In the embodiment described above, the outer surface of the superconducting wire 7 may be covered with the quartz tape 11, and the glass frit layer I2 may be formed thereon. Furthermore, in order to form the glass frit layer 12 on the outside of the superconducting coil 7, in addition to the above-mentioned dipping method,
Methods such as electrostatic coating method, depth forming method, or electrophoretic electrodeposition method may also be used.

また、超電導基線lの外方に形成する絶縁層は2層以上
の複層構造であっても良く、絶縁被覆層3は石英テープ
!!以外のガラス絶縁材やマイカ絶縁材から構成しても
良い。更に、前記超電導マグネットMの形成時に施す結
晶化のための焼成処理は、拡散熱処理時の加熱処理を利
用して行うことら可能である。
Further, the insulating layer formed outside the superconducting base line l may have a multilayer structure of two or more layers, and the insulating coating layer 3 may be a quartz tape! ! It may be constructed from other glass insulating materials or mica insulating materials. Furthermore, the firing treatment for crystallization performed when forming the superconducting magnet M can be performed using the heat treatment during the diffusion heat treatment.

「製造例」 横断面矩形状(横断面寸法;1.5mmX3゜Omm)
のNb3Sn系極細超電導素線を用いてソレノイドコイ
ルを製作した。このソレノイドコイルにガラスフリット
浴を通過させてその外周に厚さ015mmのガラスフリ
ット層を塗布し、このガラスフリット層が半乾燥状態の
際に、その外周に厚さ0゜25mm、幅15mmのS−
ガラステープをハーフラッピンクして絶縁処理を行った
。この絶縁処理を行った超電導索線をステンレス鋼(S
US30.4)からなる巻線ボビンに巻回して外径15
0mm、高さ150mmのマグネットを作製した。この
ひ四時に超電導線どうしの接触に伴うこすれ等により、
石英ガラステープに若干ケバ立ち部分を生じたが、大き
な損傷には至らなかった。この後に、前記マクネットを
750°Cに50時間加熱する処理を施し、ガラスフリ
ット層の焼成処理と拡散熱処理を同時に行い、ガラスフ
リット層を耐熱絶縁層にするとともに、超電導素線の内
部にNb+Sn超電導化合物を生成させて超電導マグネ
ットとする。この超電導マグネットの線間絶縁抵抗は拡
散熱処理以前は無限大の値を示し、拡散熱処理後ら無限
大の値を示した。したがって、前記耐熱絶縁層は十分な
絶縁性を保有している。なお、前記超電導マグネットは
通電実験によって十分高い超電導特性を設計どうり発揮
した。
"Manufacturing example" Rectangular cross section (cross section dimensions: 1.5mm x 3゜Omm)
A solenoid coil was manufactured using the Nb3Sn-based ultrafine superconducting wire. A glass frit layer with a thickness of 0.15 mm is applied to the outer circumference of this solenoid coil by passing it through a glass frit bath, and when this glass frit layer is in a semi-dry state, a S of 0.25 mm in thickness and 15 mm in width is applied to the outer circumference of the solenoid coil. −
Insulation treatment was performed by half wrapping the glass tape. This insulated superconducting cable is made of stainless steel (S
It is wound on a winding bobbin made of US30.4) with an outer diameter of 15 mm.
A magnet with a diameter of 0 mm and a height of 150 mm was produced. Due to friction caused by contact between superconducting wires,
Although the quartz glass tape was slightly fluffed, no major damage was caused. After this, the Macnet was heated to 750°C for 50 hours, and the glass frit layer was subjected to firing treatment and diffusion heat treatment at the same time, thereby making the glass frit layer a heat-resistant insulating layer and adding Nb+Sn to the inside of the superconducting wire. A superconducting compound is produced to form a superconducting magnet. The line-to-line insulation resistance of this superconducting magnet showed an infinite value before the diffusion heat treatment, and an infinite value after the diffusion heat treatment. Therefore, the heat-resistant insulating layer has sufficient insulation properties. In addition, the superconducting magnet exhibited sufficiently high superconducting properties as designed in an energization experiment.

ところで、前記ガラススリット層を用いずに超電導マグ
ネットを製造した場合、超電導基線を5層コイル加工し
た状態において、線間絶縁抵抗が数100にΩであった
ものが拡散熱処理後には、数10にΩに低下し、劣化が
進行した。
By the way, when a superconducting magnet is manufactured without using the above-mentioned glass slit layer, the insulation resistance between the wires was several hundred ohms when the superconducting baseline was processed into a five-layer coil, but after diffusion heat treatment, it became several tens of ohms. Ω, and deterioration progressed.

「発明の効果」 以に説明したように本発明は、化合物系超電導、11(
線の外部に形成4゛ろ絶縁層を結晶化511℃アルカリ
カラス質の耐熱絶縁層と絶縁層)夏層の1u層(1が逍
にした乙のであるlこめ、超電導括線の形成時に施す拡
散熱処理を施した場合に、この加熱処理に耐熱絶縁層が
耐えるために、拡散熱処理後に耐熱絶縁層が所定の絶縁
効果を発揮することかできる。また、結晶化ガラス質の
耐熱絶縁層は、結晶化後には機械強度ら高いために、こ
の耐熱絶縁層か超電導コイルのhli強作用を奏して超
電導コイルの強度を向−1〕さUoろ効果かあり、超電
導コイルに通電して強大な電磁力を作用させた場合に、
この電磁力に耐えろ信頼性の高い構造になっている。
"Effects of the Invention" As explained above, the present invention provides compound-based superconductivity, 11 (
Form an insulating layer on the outside of the wire.Crystallize the insulating layer at 511℃. When diffusion heat treatment is performed, the heat-resistant insulating layer can withstand this heat treatment, so that the heat-resistant insulating layer can exhibit a predetermined insulating effect after the diffusion heat treatment.Furthermore, the heat-resistant insulating layer made of crystallized glass After crystallization, the mechanical strength is high, so this heat-resistant insulating layer exerts a strong effect on the superconducting coil, increasing the strength of the superconducting coil. When force is applied,
It has a highly reliable structure that can withstand this electromagnetic force.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例の超電導線の横断面図、第
2図は第1図に示す超電導線を用いて構成された超電導
マグネットの断面図、第3図は第2図に示す超電導マグ
ネットの製造方法を示す斜視図である。
FIG. 1 is a cross-sectional view of a superconducting wire according to an embodiment of the present invention, FIG. 2 is a cross-sectional view of a superconducting magnet constructed using the superconducting wire shown in FIG. 1, and FIG. FIG. 2 is a perspective view showing a method of manufacturing the superconducting magnet shown in FIG.

Claims (1)

【特許請求の範囲】[Claims] 外部に絶縁層を被覆した化合物系超電導コイルであって
、前記絶縁層が結晶化無アルカリガラス質の耐熱絶縁層
と絶縁被覆層の複層構造であることを特徴とする化合物
系超電導コイル。
1. A compound superconducting coil externally coated with an insulating layer, wherein the insulating layer has a multilayer structure of a heat-resistant insulating layer made of crystallized alkali-free glass and an insulating coating layer.
JP60247342A 1985-11-05 1985-11-05 Compound superconducting coil Expired - Lifetime JPH0782935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60247342A JPH0782935B2 (en) 1985-11-05 1985-11-05 Compound superconducting coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60247342A JPH0782935B2 (en) 1985-11-05 1985-11-05 Compound superconducting coil

Publications (2)

Publication Number Publication Date
JPS62106607A true JPS62106607A (en) 1987-05-18
JPH0782935B2 JPH0782935B2 (en) 1995-09-06

Family

ID=17161978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60247342A Expired - Lifetime JPH0782935B2 (en) 1985-11-05 1985-11-05 Compound superconducting coil

Country Status (1)

Country Link
JP (1) JPH0782935B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009061407A (en) * 2007-09-07 2009-03-26 Toto Sekisui Kk Settling apparatus, flocculating system and manufacturing method of settling apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5682511A (en) * 1980-11-20 1981-07-06 Ulvac Corp Method of manufacturing superconductive wire
JPS59222904A (en) * 1983-06-01 1984-12-14 Hitachi Ltd Superconductive coil

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5682511A (en) * 1980-11-20 1981-07-06 Ulvac Corp Method of manufacturing superconductive wire
JPS59222904A (en) * 1983-06-01 1984-12-14 Hitachi Ltd Superconductive coil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009061407A (en) * 2007-09-07 2009-03-26 Toto Sekisui Kk Settling apparatus, flocculating system and manufacturing method of settling apparatus

Also Published As

Publication number Publication date
JPH0782935B2 (en) 1995-09-06

Similar Documents

Publication Publication Date Title
US6387852B1 (en) Method of applying high temperature compatible insulation to superconductors
JPS6047684B2 (en) Superconducting composite and its manufacturing method
JPH04106906A (en) High temperature superconducting coil
JPS62106607A (en) Compound superconductive coil
US3292242A (en) Process for the production of a superconductive member
EP0417329B1 (en) Method of producing an oxide superconducting wire
US6387525B1 (en) Self insulating substrate tape
JPS6221246B2 (en)
US3270400A (en) Process of making niobium stannide bodies
JP3032771B2 (en) Superconducting coil manufacturing method
JP3635210B2 (en) Oxide superconducting compression molded conductor and manufacturing method thereof
JPH0374012A (en) Handling method for oxide superconducting wire and product using it
JP3098906B2 (en) Method for manufacturing superconducting wire
JPH05234741A (en) Superconducting magnet structure
JPH06187849A (en) High-temperature superconducting cable
JPH0218810A (en) Vacuum heat resistant conductor
JPH0361288B2 (en)
JP2977202B2 (en) Manufacturing method of oxide superconducting coil
JPH04329217A (en) Oxide superconductive wire material and manufacture thereof
JPS6221244B2 (en)
JPH1125784A (en) Superconducting composite material, manufacture of superconducting coil and superconducting composite material
JPS62106606A (en) Structural material for ultralow temperature
JPH04181704A (en) Manufacture of oxide superconductor coil
JPH03158203A (en) Manufacture of ceramic superconductor
JPS63313418A (en) Superconductive wire and its manufacture

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250