JP2009058006A - Shaft member for fluid bearing device - Google Patents

Shaft member for fluid bearing device Download PDF

Info

Publication number
JP2009058006A
JP2009058006A JP2007224257A JP2007224257A JP2009058006A JP 2009058006 A JP2009058006 A JP 2009058006A JP 2007224257 A JP2007224257 A JP 2007224257A JP 2007224257 A JP2007224257 A JP 2007224257A JP 2009058006 A JP2009058006 A JP 2009058006A
Authority
JP
Japan
Prior art keywords
flange portion
shaft
shaft member
shaft portion
bearing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007224257A
Other languages
Japanese (ja)
Inventor
Atsushi Hiraide
淳 平出
Yoshihiko Bito
仁彦 尾藤
Tetsuya Yamamoto
哲也 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2007224257A priority Critical patent/JP2009058006A/en
Priority to US12/670,437 priority patent/US8297844B2/en
Priority to PCT/JP2008/064446 priority patent/WO2009025202A1/en
Priority to CN200880102673.0A priority patent/CN101779047B/en
Publication of JP2009058006A publication Critical patent/JP2009058006A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Mounting Of Bearings Or Others (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable easy manufacture of a shaft member for a fluid bearing device with high degree of accuracy and strength. <P>SOLUTION: This shaft member 2 is provided with a shaft section 21 with a radial bearing surface A, and a flange section 22 with thrust bearing surfaces B, C, which is arranged in one end of the shaft section 21. The shaft section 21 and the flange section 22 are fixedly welded together in a line-contact with an aligning mechanism 11 interposed therebetween. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、流体軸受装置用軸部材に関する。   The present invention relates to a shaft member for a hydrodynamic bearing device.

流体軸受装置は、軸受隙間に形成される油膜で軸部材を回転自在に支持する軸受装置である。この流体軸受装置は、高速回転、高回転精度、低騒音等の特徴を有するものであり、近年ではその特徴を活かして、情報機器をはじめ種々の電気機器に搭載されるモータ用の軸受装置として、より具体的には、HDD等の磁気ディスク装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク装置、MD、MO等の光磁気ディスク装置等のスピンドルモータ、レーザビームプリンタ(LBP)のポリゴンスキャナモータ、プロジェクタのカラーホイールモータ、ファンモータなどのモータ用軸受装置として好適に使用されている。   The hydrodynamic bearing device is a bearing device that rotatably supports a shaft member with an oil film formed in a bearing gap. This hydrodynamic bearing device has characteristics such as high-speed rotation, high rotation accuracy, and low noise. In recent years, the hydrodynamic bearing device has been utilized as a motor bearing device for motors mounted on various electrical devices including information devices. More specifically, magnetic disk devices such as HDDs, optical disk devices such as CD-ROM, CD-R / RW, DVD-ROM / RAM, spindle motors such as magneto-optical disk devices such as MD and MO, laser beams, etc. It is preferably used as a motor bearing device such as a polygon scanner motor of a printer (LBP), a color wheel motor of a projector, and a fan motor.

例えば、スピンドルモータ用の流体軸受装置は、軸受スリーブと、軸受スリーブの内周に挿入され、軸受スリーブに対して相対回転する軸部材とを備える。軸部材としては、ラジアル軸受面を有する軸部と、スラスト軸受面を有し、軸部の一端に設けられたフランジ部とを備えるものが使用される場合が多い。このフランジ付軸部材としては、軸部およびフランジ部を切削等の機械加工で一体に形成した一体タイプと、個別に製作した軸部およびフランジ部を適宜の手段で一体化した別体タイプとがある。   For example, a hydrodynamic bearing device for a spindle motor includes a bearing sleeve and a shaft member that is inserted into the inner periphery of the bearing sleeve and rotates relative to the bearing sleeve. As the shaft member, a member having a shaft portion having a radial bearing surface and a flange portion having a thrust bearing surface and provided at one end of the shaft portion is often used. As the shaft member with flange, there are an integrated type in which the shaft portion and the flange portion are integrally formed by machining such as cutting, and a separate type in which the shaft portion and the flange portion manufactured individually are integrated by appropriate means. is there.

一体タイプのフランジ付軸部材は、軸部とフランジ部との間に高い締結強度を確保し得る反面、その製作に際しては専用の加工設備が必要であるため、コスト高が問題となる。そのため、近時においては、フランジ付軸部材を別体タイプとする場合がある。   The integral-type flanged shaft member can secure a high fastening strength between the shaft portion and the flange portion, but on the other hand, a dedicated processing facility is required for the production thereof, so that high cost becomes a problem. Therefore, recently, the flanged shaft member may be a separate type.

別体タイプのフランジ付軸部材としては種々のものが提案されているが、軸部とフランジ部との間に高い締結強度を確保したものとして、例えば両者を抵抗溶接したものが公知である(例えば、特許文献1を参照)。詳細には、相互に対向する軸部とフランジ部の端面の何れか一方に微小な環状突起と、突起に隣接して凹部とを設け、突起の先端部を他方に接触させた状態で電圧を印加して突起を溶融させることにより、軸部とフランジ部とが溶接固定された軸部材である。かかる軸部材であれば、突起の溶融物が凹部内に収容され、溶接部の外側における軸部とフランジ部との当接面間に前記溶融物が入り込むのを防止することができるので、組み付け精度が高められる。
特開2004−340368号公報
Various types of shaft members with flanges have been proposed as separate types, but, for example, those in which both are resistance-welded are known as securing a high fastening strength between the shaft portion and the flange portion ( For example, see Patent Document 1). Specifically, a minute annular protrusion and a recess are provided adjacent to one of the shaft part and the end face of the flange part opposite to each other, and the voltage is applied with the tip of the protrusion being in contact with the other. It is a shaft member in which the shaft portion and the flange portion are welded and fixed by applying and melting the protrusions. With such a shaft member, the melt of the protrusion is accommodated in the recess, and the melt can be prevented from entering between the contact surfaces of the shaft portion and the flange portion outside the welded portion. Accuracy is increased.
JP 2004-340368 A

ところで、この種のフランジ付軸部材においては、回転時の振れ回りを防止する観点から軸部とフランジ部との間で所定の同軸度を確保することが重要になる。また、フランジ部は、軸受スリーブと軸方向に係合する抜け止めとしての機能を有するので、軸部とフランジ部の間に高い締結強度を確保することも重要である。上記特許文献1では、組立治具で軸部およびフランジ部の外周面を拘束することによって前記の同軸度を確保しているが、たとえ治具で軸部とフランジ部の姿勢を規制したとしても、例えば軸部の端面と外周面の間の直角度が不十分な場合、軸部とフランジ部とが点当たりとなるため、全周に亘って均一な溶接強度を確保するのが難しい。   By the way, in this type of flanged shaft member, it is important to ensure a predetermined degree of coaxiality between the shaft portion and the flange portion from the viewpoint of preventing swinging during rotation. Further, since the flange portion functions as a retaining member that engages with the bearing sleeve in the axial direction, it is also important to ensure a high fastening strength between the shaft portion and the flange portion. In Patent Document 1, the coaxiality is secured by constraining the outer peripheral surfaces of the shaft portion and the flange portion with an assembly jig, but even if the posture of the shaft portion and the flange portion is restricted with a jig. For example, when the perpendicularity between the end surface of the shaft portion and the outer peripheral surface is insufficient, the shaft portion and the flange portion are spotted, and it is difficult to ensure uniform welding strength over the entire circumference.

本発明の課題は、高精度かつ高強度な流体軸受装置用軸部材を提供することにある。   An object of the present invention is to provide a highly accurate and high-strength shaft member for a hydrodynamic bearing device.

上記課題を解決するため、本発明では、ラジアル軸受面を有する軸部と、スラスト軸受面を有し、軸部の一端に設けられたフランジ部とを備える流体軸受装置用軸部材において、軸部とフランジ部が、両者間に調心機構を介在させて、かつ両者を線接触させた状態で溶接固定されていることを特徴とする流体軸受装置用軸部材を提供する。なお、ここでいうラジアル軸受面およびスラスト軸受面は、この軸部材を流体軸受装置に組み込んだ際に、対向する面との間にそれぞれラジアル軸受隙間およびスラスト軸受隙間を形成する面を意図したものであり、これらの面に動圧溝等の動圧発生部が形成されているか否かは問わない。また、ここでいう調心機構は、軸部とフランジ部の何れか一方が他方に対して首振り揺動可能な関係を実現する機構をいう。   In order to solve the above problems, in the present invention, in a shaft member for a hydrodynamic bearing device including a shaft portion having a radial bearing surface and a flange portion having a thrust bearing surface and provided at one end of the shaft portion, the shaft portion A shaft member for a hydrodynamic bearing device is provided in which the flange portion and the flange portion are welded and fixed with a centering mechanism interposed therebetween and in a state where they are in line contact with each other. The radial bearing surface and the thrust bearing surface here are intended to form a radial bearing clearance and a thrust bearing clearance, respectively, between the opposing surfaces when the shaft member is incorporated in the fluid dynamic bearing device. It does not matter whether dynamic pressure generating portions such as dynamic pressure grooves are formed on these surfaces. In addition, the alignment mechanism here refers to a mechanism that realizes a relationship in which either one of the shaft portion and the flange portion can swing with respect to the other.

上記のように、本発明は、軸部とフランジ部が、両者間に調心機構を介在させて、かつ両者を線接触、好ましくはリング状に接触させた状態で溶接固定されていることを特徴とするものである。かかる構成とすれば、前述のように、軸部とフランジ部の何れか一方が他方に対して首振り揺動可能となるので、組立治具で軸部とフランジ部の相対姿勢を規制するだけで、軸部とフランジ部の調心を行って両者間の芯出しを精度良く行うことができる。この際、両者が線接触、好ましくはリング状に接触させた状態で溶接されるので、溶接強度を高めることができる。そのため、高精度かつ高強度な軸部材が容易に得られる。   As described above, according to the present invention, the shaft portion and the flange portion are welded and fixed in such a state that an alignment mechanism is interposed therebetween and both are in line contact, preferably in a ring shape. It is a feature. With such a configuration, as described above, since either the shaft portion or the flange portion can swing with respect to the other, the relative posture between the shaft portion and the flange portion is only regulated by the assembly jig. Thus, the shaft portion and the flange portion can be aligned, and the centering between them can be accurately performed. At this time, since the two are welded in a line contact, preferably in a ring shape, the welding strength can be increased. Therefore, a highly accurate and high strength shaft member can be easily obtained.

なお、溶接方法としては、特許文献1と同様に抵抗溶接を用いることも可能であるが、レーザ溶接がより望ましい。抵抗溶接は、溶接される部材間の接触面積が小さい程溶接強度が高まる傾向にあり、そのため、軸部とフランジ部とが線接触の状態で溶接固定される本発明の構成においては、溶接強度の点で優位性をもたせることができるからである。また、抵抗溶接では、軸部およびフランジ部の形成材料が導電性金属に限定されるが、レーザ溶接であれば、導電性の強弱あるいは有無を考慮する必要がなく、さらには異種金属同士でも高い溶接強度を確保することができる。従って、軸部およびフランジ部は、その溶接性を考慮することなく、軸部材として求められる品質を満足し得る最適材料で形成することが可能となる。   In addition, as a welding method, although resistance welding can also be used like patent document 1, laser welding is more desirable. Resistance welding tends to increase the welding strength as the contact area between the members to be welded is smaller. Therefore, in the configuration of the present invention in which the shaft portion and the flange portion are welded and fixed in a line contact state, the welding strength This is because an advantage can be given in this respect. In resistance welding, the material for forming the shaft portion and the flange portion is limited to conductive metal. However, in laser welding, it is not necessary to consider the strength or absence of conductivity, and even different metals are high. Welding strength can be ensured. Therefore, the shaft portion and the flange portion can be formed of an optimum material that can satisfy the quality required for the shaft member without considering the weldability.

上記の調心機構の具体的な構成としては、軸部とフランジ部の何れか一方に形成され、他方側の部材に向けて縮径した調心面と、他方の部材に設けられ、調心面の先端を収容する凹部とを有するものが挙げられる。調心機構は、軸部やフランジ部とは異なる別部材を設けることで構成することも可能であるが、別部材を設けることによるコスト増が生じるため望ましくない。この点、上記のように、軸部とフランジ部の何れか一方に形成した調心面と、他方に設けた凹部とで調心機構を形成すれば、前述のコスト増を防止することができ、望ましい。   As a specific configuration of the above alignment mechanism, an alignment surface formed on one of the shaft portion and the flange portion and reduced in diameter toward the member on the other side, and provided on the other member is aligned. What has a recessed part which accommodates the front-end | tip of a surface is mentioned. The aligning mechanism can be configured by providing a separate member different from the shaft portion and the flange portion, but it is not desirable because the cost increases due to the provision of the separate member. In this regard, as described above, if the alignment mechanism is formed by the alignment surface formed on one of the shaft portion and the flange portion and the concave portion provided on the other side, the above-described increase in cost can be prevented. ,desirable.

上記調心面は、テーパ面や凸曲面で形成することが可能である。調心面の加工容易性(加工コスト)を考慮した場合、調心面はテーパ面とする方が有利である。一方、前述のとおり本発明でいう調心機構は、軸部とフランジ部の何れか一方が他方に対して首振り揺動可能な関係を実現する機構、つまり、軸部とフランジ部の芯出しのみならず、両者間の直角度をも修正し得る機構である。そのため、かかる事項を考慮すると、調心面は凸曲面とする方が有利な場合がある。詳細には、調心面を凸曲面とした場合、凹部の内周縁を如何なる形状としても、軸部とフランジ部の線接触状態を確保しつつも、両者間の芯出しおよび直角度修正が同時に行い得る。これに対し、調心面をテーパ面とした場合に軸部とフランジ部の線接触状態を確保しつつも、両者間の芯出しおよび直角度修正を同時に実現しようとすると、凹部の内周縁を凸曲面(R面)とする必要がある。以上のことから、調心面をテーパ面又は凸曲面とするかは、調心面の加工容易性のみを考慮して一義的に決定するのではなく、軸部とフランジ部の形成材料等、すなわち軸部材全体の加工コスト等を考慮して、任意に選択することができる。   The alignment surface can be formed by a tapered surface or a convex curved surface. In consideration of the ease of processing (processing cost) of the aligning surface, it is advantageous that the aligning surface is a tapered surface. On the other hand, as described above, the alignment mechanism referred to in the present invention is a mechanism that realizes a relationship in which either one of the shaft portion and the flange portion can swing with respect to the other, that is, centering of the shaft portion and the flange portion. It is a mechanism that can correct not only the perpendicularity between the two. Therefore, in consideration of such matters, it may be advantageous that the alignment surface is a convex curved surface. Specifically, when the alignment surface is a convex curved surface, the inner peripheral edge of the concave portion can have any shape, and while the line contact state between the shaft portion and the flange portion is ensured, centering and perpendicularity correction between the two can be performed simultaneously. Can be done. On the other hand, when the alignment surface is a tapered surface, while securing the line contact state between the shaft portion and the flange portion, and trying to achieve centering and perpendicularity correction at the same time, the inner peripheral edge of the recess is It needs to be a convex curved surface (R surface). From the above, whether the alignment surface is a tapered surface or a convex curved surface is not uniquely determined considering only the ease of processing of the alignment surface, but the forming material of the shaft portion and the flange portion, etc. That is, it can be arbitrarily selected in consideration of the processing cost of the entire shaft member.

上記構成において、軸部とフランジ部とは、凹部の内部で溶接固定することができる。このように凹部の内部で両者を溶接固定すれば、溶接時の熱影響が軸部のラジアル軸受面やフランジ部のスラスト軸受面に及び難くなり、両軸受面の面精度等が悪化するのを極力回避することができる。また、溶接痕が軸部の外周やフランジ部の一端に突出して軸受性能に悪影響が及ぶのを効果的に回避することができる。さらに、両者をレーザ溶接する場合には、レーザの照射に伴って溶解物が飛散し、これがフランジ部の端面に付着するおそれがあるが、凹部の内部で両者を溶接すれば、溶接部位を凹部で覆うことができるので、溶解物がフランジ部の端面(スラスト軸受面)等へ付着する可能性を減じることができる。   In the above configuration, the shaft portion and the flange portion can be fixed by welding inside the recess. If both of them are welded and fixed inside the recesses in this way, the heat effect during welding becomes difficult to reach the radial bearing surface of the shaft portion and the thrust bearing surface of the flange portion, and the surface accuracy of both bearing surfaces deteriorates. It can be avoided as much as possible. Further, it is possible to effectively avoid that the welding mark protrudes to the outer periphery of the shaft portion or one end of the flange portion and adversely affects the bearing performance. Furthermore, when both are laser-welded, the melted material scatters along with the laser irradiation, and this may adhere to the end face of the flange portion. Therefore, the possibility that the melted material adheres to the end surface (thrust bearing surface) of the flange portion can be reduced.

上記の軸部材は、軸部とフランジ部とが高精度かつ高強度に組み付けられたものであるから、この軸部材と、これを内周に収容した軸受スリーブとを備える流体軸受装置は、軸受隙間を高精度に管理することができ、高い回転性能が安定して維持される。   Since the shaft member has a shaft portion and a flange portion assembled with high accuracy and high strength, a hydrodynamic bearing device including the shaft member and a bearing sleeve that accommodates the shaft member in an inner periphery is a bearing. The gap can be managed with high accuracy, and high rotation performance is stably maintained.

以上に示すように、本発明によれば、高精度かつ高強度な流体軸受装置用の軸部材を提供することができる。   As described above, according to the present invention, a highly accurate and high-strength shaft member for a hydrodynamic bearing device can be provided.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、流体軸受装置を組み込んだ情報機器用スピンドルモータの一構成例を概念的に示している。このスピンドルモータは、HDD等のディスク駆動装置に用いられるもので、軸部材2を回転自在に支持する流体軸受装置1と、軸部材2に装着されたディスクハブ3と、例えば半径方向のギャップを介して対向させたステータコイル4aおよびロータマグネット4bとを備えている。ステータコイル4aはブラケット5の外周に取付けられ、ロータマグネット4bはディスクハブ3の内周に取付けられる。流体軸受装置1のハウジング7は、ブラケット5の内周に装着される。ディスクハブ3には、磁気ディスク等のディスク6が一又は複数枚保持される。ステータコイル4aに通電すると、ステータコイル4aとロータマグネット4bとの間の電磁力でロータマグネット4bが回転し、それによって、ディスクハブ3およびこれに保持されたディスク6が軸部材2と一体に回転する。   FIG. 1 conceptually shows one configuration example of a spindle motor for information equipment incorporating a fluid dynamic bearing device. This spindle motor is used for a disk drive device such as an HDD, and has a hydrodynamic bearing device 1 that rotatably supports a shaft member 2, a disk hub 3 mounted on the shaft member 2, and a radial gap, for example. And a stator magnet 4a and a rotor magnet 4b that are opposed to each other. The stator coil 4 a is attached to the outer periphery of the bracket 5, and the rotor magnet 4 b is attached to the inner periphery of the disk hub 3. The housing 7 of the hydrodynamic bearing device 1 is attached to the inner periphery of the bracket 5. The disk hub 3 holds one or a plurality of disks 6 such as magnetic disks. When the stator coil 4a is energized, the rotor magnet 4b is rotated by the electromagnetic force between the stator coil 4a and the rotor magnet 4b, whereby the disk hub 3 and the disk 6 held thereby rotate together with the shaft member 2. To do.

図2は、本発明の第1実施形態に係る流体軸受装置1を示している。同図に示す流体軸受装置1は、軸受スリーブ8と、軸受スリーブ8の内周に挿入された軸部材2と、軸受スリーブ8および軸部材2を内周に収容したハウジング7と、ハウジング7の一端開口を封止する蓋部材9と、ハウジング7の他端開口をシールするシール部材10とを備える。なお、説明の便宜上、シール部材10の側を上側、これとは軸方向反対側を下側として、以下説明を進める。   FIG. 2 shows the hydrodynamic bearing device 1 according to the first embodiment of the present invention. The hydrodynamic bearing device 1 shown in FIG. 1 includes a bearing sleeve 8, a shaft member 2 inserted in the inner periphery of the bearing sleeve 8, a housing 7 that houses the bearing sleeve 8 and the shaft member 2 in the inner periphery, A lid member 9 for sealing one end opening and a seal member 10 for sealing the other end opening of the housing 7 are provided. For convenience of explanation, the following explanation will be given with the side of the seal member 10 as the upper side and the opposite side to the axial direction as the lower side.

ハウジング7は、黄銅等の金属材料あるいは樹脂材料で円筒状に形成される。ハウジング7の内周面は軸方向で相対的に大径の大径内周面7aと相対的に小径の小径内周面7bとに区画され、大径内周面7aには軸受スリーブ8が、小径内周面7bには蓋部材9が、それぞれ例えば、接着、圧入、溶着等の適宜の手段で固定される。   The housing 7 is formed in a cylindrical shape with a metal material such as brass or a resin material. The inner peripheral surface of the housing 7 is divided into a large-diameter inner peripheral surface 7a having a relatively large diameter in the axial direction and a relatively small-diameter inner peripheral surface 7b. A bearing sleeve 8 is provided on the large-diameter inner peripheral surface 7a. The lid member 9 is fixed to the small-diameter inner peripheral surface 7b by appropriate means such as adhesion, press-fitting, and welding.

軸受スリーブ8は、例えば銅を主成分とする焼結金属の多孔質体で円筒状に形成される。軸受スリーブ8は、焼結金属以外にも、例えば黄銅等の軟質金属材料や焼結金属ではない他の多孔質体(例えば、多孔質樹脂)で形成することも可能である。   The bearing sleeve 8 is formed in a cylindrical shape with a porous body of sintered metal whose main component is copper, for example. Besides the sintered metal, the bearing sleeve 8 can be formed of a soft metal material such as brass or another porous body (for example, a porous resin) that is not a sintered metal.

軸受スリーブ8の内周面8aには、図3(A)に示すように、ラジアル動圧発生部として、複数の動圧溝8a1、8a2をヘリングボーン形状に配列した領域が上下二箇所に離隔して形成される。本実施形態において、上側の動圧溝8a1は、軸方向中心m(上下の傾斜溝間領域の軸方向中央)に対して軸方向非対称に形成されており、軸方向中心mより上側領域の軸方向寸法X1が下側領域の軸方向寸法X2よりも大きくなっている。一方、下側の動圧溝8a2は軸方向対称に形成され、その上下領域の軸方向寸法はそれぞれ上記軸方向寸法X2と等しくなっている。なお、動圧溝は、後述する軸部21のラジアル軸受面Aに形成することもでき、またその形状は、スパイラル形状等公知のその他の形状とすることもできる。   On the inner peripheral surface 8a of the bearing sleeve 8, as shown in FIG. 3 (A), a region in which a plurality of dynamic pressure grooves 8a1 and 8a2 are arranged in a herringbone shape as a radial dynamic pressure generating portion is separated at two upper and lower positions. Formed. In the present embodiment, the upper dynamic pressure groove 8a1 is formed axially asymmetric with respect to the axial center m (the axial center of the upper and lower inclined groove regions), and the axis in the upper region from the axial center m. The direction dimension X1 is larger than the axial direction dimension X2 of the lower region. On the other hand, the lower dynamic pressure groove 8a2 is formed symmetrically in the axial direction, and the axial dimensions of the upper and lower regions thereof are respectively equal to the axial dimension X2. The dynamic pressure groove may be formed on a radial bearing surface A of the shaft portion 21 described later, and the shape thereof may be other known shapes such as a spiral shape.

軸受スリーブ8の下側端面8bには、図3(B)に示すように、スラスト動圧発生部として、複数の動圧溝8b1をスパイラル形状に配列した環状領域が形成される。なお、動圧溝(スラスト動圧発生部)は、後述するフランジ部22のスラスト軸受面Bに形成することもでき、またその形状は、ヘリングボーン形状等公知のその他の形状とすることもできる。   As shown in FIG. 3B, an annular region in which a plurality of dynamic pressure grooves 8b1 are arranged in a spiral shape is formed on the lower end surface 8b of the bearing sleeve 8 as a thrust dynamic pressure generating portion. The dynamic pressure groove (thrust dynamic pressure generating portion) can be formed on a thrust bearing surface B of the flange portion 22 to be described later, and the shape thereof can be other known shapes such as a herringbone shape. .

軸受スリーブ8の外周面8cには、両端面に開口した軸方向溝8c1が1又は複数本形成される。また、軸受スリーブ8の上側端面8dには、円環溝8d1と、円環溝8d1の内径側に接続された径方向溝8d2が1又は複数本形成される。   On the outer peripheral surface 8c of the bearing sleeve 8, one or a plurality of axial grooves 8c1 opened at both end surfaces are formed. The upper end surface 8d of the bearing sleeve 8 is formed with one or more annular grooves 8d1 and one or more radial grooves 8d2 connected to the inner diameter side of the annular groove 8d1.

蓋部材9は、例えば金属材料や樹脂材料で円盤状に形成される。この蓋部材9の上側端面9aには、図示は省略するが、スラスト動圧発生部として、複数の動圧溝をスパイラル形状あるいはヘリングボーン形状に配列した環状領域が形成される。動圧溝は、後述するフランジ部22のスラスト軸受面Cに形成してもよい。   The lid member 9 is formed in a disk shape from, for example, a metal material or a resin material. Although not shown in the drawings, the upper end surface 9a of the lid member 9 is formed with an annular region in which a plurality of dynamic pressure grooves are arranged in a spiral shape or a herringbone shape as a thrust dynamic pressure generating portion. The dynamic pressure groove may be formed on a thrust bearing surface C of the flange portion 22 described later.

シール部材10は、例えば、黄銅等の軟質金属材料やその他の金属材料、あるいは樹脂材料でリング状に形成され、ハウジング7の内周面7aの上端部に接着、圧入等の適宜の手段で固定される。このシール部材10の内周面10aと、軸部21の外周面21aとの間には所定のシール空間Sが形成される。シール空間Sは、流体軸受装置1に充満される潤滑油の温度変化に伴う容積変化量を吸収するバッファ機能を有し、想定される温度変化の範囲内で、潤滑油の油面は常時シール空間Sの範囲内にある。   The seal member 10 is formed in a ring shape from, for example, a soft metal material such as brass, another metal material, or a resin material, and is fixed to the upper end portion of the inner peripheral surface 7a of the housing 7 by an appropriate means such as adhesion or press fitting. Is done. A predetermined seal space S is formed between the inner peripheral surface 10 a of the seal member 10 and the outer peripheral surface 21 a of the shaft portion 21. The seal space S has a buffer function that absorbs the volume change accompanying the temperature change of the lubricating oil filled in the hydrodynamic bearing device 1, and the oil level of the lubricating oil is always sealed within the assumed temperature change range. It is within the space S.

軸部材2は、軸部21と、軸部21の外径側に張り出したフランジ部22とからなり、軸部21とフランジ部22の双方は金属材料、ここでは両者共にステンレス鋼で形成される。軸部21の外周面21aには、平滑な円筒面状をなし、軸受スリーブ8の内周面8aに設けた動圧溝8a1、8a2形成領域とラジアル方向に対向するラジアル軸受面A,Aが軸方向に離隔して二箇所形成されている。両ラジアル軸受面A,A間には、ラジアル軸受面Aよりも小径のヌスミ部21bが形成されている。   The shaft member 2 includes a shaft portion 21 and a flange portion 22 protruding to the outer diameter side of the shaft portion 21. Both the shaft portion 21 and the flange portion 22 are formed of a metal material, here both are made of stainless steel. . The outer peripheral surface 21a of the shaft portion 21 has a smooth cylindrical surface shape, and radial bearing surfaces A and A that are opposed to the formation regions of the dynamic pressure grooves 8a1 and 8a2 provided on the inner peripheral surface 8a of the bearing sleeve 8 in the radial direction. Two locations are formed apart in the axial direction. Between both the radial bearing surfaces A and A, a sumi portion 21b having a smaller diameter than the radial bearing surface A is formed.

フランジ部22の上側端面22aには、軸受スリーブ8の下側端面8bに設けた動圧溝8b1形成領域とスラスト方向に対向するスラスト軸受面Bが設けられ、また、下側端面22bには、蓋部材9の上側端面9aに設けた動圧溝形成領域とスラスト方向に対向するスラスト軸受面Cが設けられる。両スラスト軸受面B,Cは、動圧溝等のない平滑な平坦面とされる。   The upper end surface 22a of the flange portion 22 is provided with a thrust bearing surface B opposed to the dynamic pressure groove 8b1 formation region provided in the lower end surface 8b of the bearing sleeve 8 in the thrust direction, and the lower end surface 22b includes A thrust bearing surface C facing the dynamic pressure groove forming region provided in the upper end surface 9a of the lid member 9 in the thrust direction is provided. Both thrust bearing surfaces B and C are smooth flat surfaces having no dynamic pressure grooves or the like.

軸部21とフランジ部22とは、両者間に調心機構11を介在させて、かつ両者を線接触させた状態で溶接固定されている。本実施形態において、調心機構11は、軸部21の下端に形成されたフランジ部22側(下側)に向かって漸次縮径する凸曲面状(球面状)の調心面12と、フランジ部22に形成され、軸部21の調心面12の先端を収容する凹部13とで構成される。なお、本実施形態で、凹部13は、フランジ部22の両端面22a、22bに開口した貫通孔とされ、軸部21とフランジ部22は、フランジ部22の凹部13の内部に形成した溶接部14で溶接固定される。この軸部材2の製造方法は後に詳述する。   The shaft portion 21 and the flange portion 22 are welded and fixed with the alignment mechanism 11 interposed therebetween and in a state where they are in line contact with each other. In the present embodiment, the aligning mechanism 11 includes a convex curved surface (spherical) aligning surface 12 that gradually decreases in diameter toward the flange portion 22 side (lower side) formed at the lower end of the shaft portion 21, and a flange. The recess 22 is formed in the portion 22 and accommodates the tip of the alignment surface 12 of the shaft portion 21. In the present embodiment, the recess 13 is a through hole opened in both end faces 22 a and 22 b of the flange portion 22, and the shaft portion 21 and the flange portion 22 are welded portions formed inside the recess 13 of the flange portion 22. 14 is fixed by welding. The method for manufacturing the shaft member 2 will be described in detail later.

流体軸受装置1は以上の構成部材からなり、シール部材10でシールされたハウジング7の内部空間には、軸受スリーブ8の内部気孔も含め潤滑油が充満される。   The hydrodynamic bearing device 1 includes the above-described components, and the internal space of the housing 7 sealed with the seal member 10 is filled with lubricating oil including the internal pores of the bearing sleeve 8.

以上の構成からなる流体軸受装置1において、軸部材2が回転すると、軸受スリーブ8の動圧溝8a1,8a2形成領域と、軸部21のラジアル軸受面A,Aとの間にはラジアル軸受隙間が形成される。そして、軸部材2の回転に伴って、ラジアル軸受隙間に形成される油膜は、動圧溝8a1,8a2の動圧作用によってその油膜剛性を高められ、この圧力によって軸部材2がラジアル方向に回転自在に非接触支持される。これにより、軸部材2をラジアル方向に回転自在に非接触支持するラジアル軸受部R1,R2が軸方向の二箇所に離隔形成される。   In the hydrodynamic bearing device 1 having the above configuration, when the shaft member 2 rotates, a radial bearing gap is formed between the dynamic pressure groove 8a1 and 8a2 formation region of the bearing sleeve 8 and the radial bearing surfaces A and A of the shaft portion 21. Is formed. As the shaft member 2 rotates, the oil film formed in the radial bearing gap is enhanced in its rigidity by the dynamic pressure action of the dynamic pressure grooves 8a1 and 8a2, and the shaft member 2 rotates in the radial direction by this pressure. It is supported non-contact freely. As a result, radial bearing portions R1 and R2 that support the shaft member 2 in a non-contact manner so as to be rotatable in the radial direction are spaced apart at two locations in the axial direction.

また、これと同時に、フランジ部22のスラスト軸受面B,Cと、軸受スリーブ8の下側端面8bおよび蓋部材9の上側端面9aとの間にはスラスト軸受隙間がそれぞれ形成される。そして、軸部材2の回転に伴って、両スラスト軸受隙間に形成される油膜は、動圧溝の動圧作用によってその油膜剛性を高められ、この圧力によって軸部材2が両スラスト方向に回転自在に非接触支持される。これにより、軸部材2を両スラスト方向に回転自在に非接触支持する第1スラスト軸受部T1と第2スラスト軸受部T2とが形成される。   At the same time, a thrust bearing gap is formed between the thrust bearing surfaces B and C of the flange portion 22 and the lower end surface 8 b of the bearing sleeve 8 and the upper end surface 9 a of the lid member 9. As the shaft member 2 rotates, the oil film formed in the thrust bearing gaps has its oil film rigidity increased by the dynamic pressure action of the dynamic pressure grooves, and the shaft member 2 can rotate in both thrust directions by this pressure. Is supported in a non-contact manner. Thereby, the 1st thrust bearing part T1 and the 2nd thrust bearing part T2 which support the shaft member 2 in a non-contact manner so as to be rotatable in both thrust directions are formed.

また、軸部材2の回転時には、上述のように、シール空間Sが、ハウジング7の内部側に向かって漸次縮小したテーパ形状を呈しているため、シール空間S内の潤滑油は毛細管力による引き込み作用により、シール空間が狭くなる方向、すなわちハウジング7の内部側に向けて引き込まれる。これにより、ハウジング7の内部からの潤滑油の漏れ出しが効果的に防止される。   In addition, when the shaft member 2 rotates, as described above, the seal space S has a tapered shape that gradually decreases toward the inside of the housing 7, so that the lubricating oil in the seal space S is drawn by capillary force. By the action, the seal space is drawn in the direction of narrowing, that is, toward the inside of the housing 7. Thereby, the leakage of the lubricating oil from the inside of the housing 7 is effectively prevented.

また、上述したように、上側の動圧溝8a1は、軸方向中心mに対して軸方向非対称に形成されており、軸方向中心mより上側領域の軸方向寸法X1が下側領域の軸方向寸法X2よりも大きくなっている。そのため、軸部材2の回転時、動圧溝8a1による潤滑油の引き込み力(ポンピング力)は上側領域が下側領域に比べて相対的に大きくなる。そして、この引き込み力の差圧によって、軸受スリーブ8の内周面8aと軸部21の外周面21aとの間の隙間に満たされた潤滑油は下方に流動し、軸受スリーブ8の下側端面8bとフランジ部22の上側端面22aとの間の隙間→軸受スリーブ8の軸方向溝8c1によって形成される流体通路→シール部材10の径方向溝10b1によって形成される流体通路→軸受スリーブ8の円環溝8d1および径方向溝8d2によって形成される流体通路という経路を循環して、第1ラジアル軸受部R1のラジアル軸受隙間に再び引き込まれる。   Further, as described above, the upper dynamic pressure groove 8a1 is formed axially asymmetric with respect to the axial center m, and the axial dimension X1 of the upper region from the axial center m is the axial direction of the lower region. It is larger than the dimension X2. Therefore, when the shaft member 2 rotates, the lubricating oil pulling force (pumping force) by the dynamic pressure groove 8a1 is relatively larger in the upper region than in the lower region. Then, due to the differential pressure of the pulling force, the lubricating oil filled in the gap between the inner peripheral surface 8a of the bearing sleeve 8 and the outer peripheral surface 21a of the shaft portion 21 flows downward, and the lower end surface of the bearing sleeve 8 8b and the gap between the upper end surface 22a of the flange portion 22 → the fluid passage formed by the axial groove 8c1 of the bearing sleeve 8 → the fluid passage formed by the radial groove 10b1 of the seal member 10 → the circle of the bearing sleeve 8 It circulates through a path called a fluid passage formed by the annular groove 8d1 and the radial groove 8d2, and is drawn into the radial bearing gap of the first radial bearing portion R1 again.

このように、潤滑油がハウジング7の内部空間を流動循環するように構成することで、潤滑油の圧力バランスが保たれると同時に、局部的な負圧の発生に伴う気泡の生成、気泡の生成に起因する潤滑油の漏れや振動の発生等の問題を解消することができる。上記の循環経路には、シール空間Sが連通しているので、何らかの理由で潤滑油中に気泡が混入した場合でも、気泡が潤滑油に伴って循環する際にシール空間S内の潤滑油の油面(気液界面)から外気に排出される。従って、気泡による悪影響はより一層効果的に防止される。   In this way, by configuring the lubricating oil to flow and circulate in the internal space of the housing 7, the pressure balance of the lubricating oil is maintained, and at the same time, the generation of bubbles accompanying the generation of local negative pressure, Problems such as leakage of lubricating oil and generation of vibration due to generation can be solved. Since the sealing space S communicates with the above circulation path, even if bubbles are mixed in the lubricating oil for some reason, when the bubbles circulate with the lubricating oil, the lubricating oil in the sealing space S It is discharged from the oil surface (gas-liquid interface) to the outside air. Therefore, adverse effects due to air bubbles can be more effectively prevented.

次に、上記軸部材2の製造方法を図4に基づいて詳述する。   Next, the manufacturing method of the said shaft member 2 is explained in full detail based on FIG.

図4(A)(B)は、軸部材2の製造工程を概念的に示している。同図に示す組立装置は、第1治具31と、第1治具31に同軸配置された第2治具32と、第2治具32の上方からレーザ33を照射する図示しないレーザ照射装置とを主要な構成として備える。第1治具31および第2治具32は、図示しない駆動機構によって軸方向に相対移動可能とされ、本実施形態では、第1治具31が固定側、第2治具32が可動側である。   4A and 4B conceptually show the manufacturing process of the shaft member 2. The assembly apparatus shown in FIG. 1 includes a first jig 31, a second jig 32 arranged coaxially with the first jig 31, and a laser irradiation apparatus (not shown) that irradiates a laser 33 from above the second jig 32. And as a main component. The first jig 31 and the second jig 32 can be moved relative to each other in the axial direction by a drive mechanism (not shown). In this embodiment, the first jig 31 is on the fixed side and the second jig 32 is on the movable side. is there.

第1治具31は、軸部21を挿入可能で、かつ挿入した軸部21を保持する保持孔31aを有する。第2治具32は、フランジ部22の下側端面22b(スラスト軸受面C)に下端面32a2が当接する小径部32aと、内周にフランジ部22を収容する大径部32bとを有する。レーザ照射装置には、YAGレーザ、炭酸ガスレーザ、半導体レーザ、ファイバレーザ等、公知のレーザを使用可能であるが、照射されるレーザ33のビーム品質や経済性、さらには溶接強度や溶接容易性等を考慮するとYAGレーザや炭酸ガスレーザが好適である。レーザ33の照射方式としては、連続式またはパルス式の何れであっても良い。   The 1st jig | tool 31 has the holding hole 31a which can insert the axial part 21, and hold | maintains the inserted axial part 21. FIG. The second jig 32 has a small-diameter portion 32a in which the lower end surface 32a2 contacts the lower end surface 22b (thrust bearing surface C) of the flange portion 22, and a large-diameter portion 32b that accommodates the flange portion 22 on the inner periphery. As the laser irradiation apparatus, a known laser such as a YAG laser, a carbon dioxide gas laser, a semiconductor laser, or a fiber laser can be used. However, the beam quality and economical efficiency of the irradiated laser 33, and further, the welding strength, ease of welding, etc. In view of the above, a YAG laser or a carbon dioxide laser is preferable. The irradiation method of the laser 33 may be either a continuous type or a pulse type.

なお、図示は省略しているが、レーザ照射装置と第2治具32との間に、レーザ33のビーム径を調整するためのビーム径調整手段を配設することも可能である。かかるビーム径調整手段を設けることにより、形成すべき溶接部14の形成範囲等を容易に調整することが可能となる。また同様に図示は省略しているが、溶接作業中に溶接部14の形成部近傍が酸化するのを防止するため、周囲の空気を遮断するためのアルゴンガスや窒素ガス等の不活性ガスを吹き付けるシールドガス噴射装置を配設することもできる。   Although not shown, a beam diameter adjusting means for adjusting the beam diameter of the laser 33 can be disposed between the laser irradiation device and the second jig 32. By providing such a beam diameter adjusting means, it is possible to easily adjust the formation range of the welded portion 14 to be formed. Similarly, although not shown, in order to prevent the vicinity of the formation part of the welded part 14 from being oxidized during the welding operation, an inert gas such as argon gas or nitrogen gas is used to block the surrounding air. It is also possible to arrange a shield gas injection device for spraying.

ところで、この種のフランジ付軸部材では、軸部21のラジアル軸受面Aに対するフランジ部22のスラスト軸受面B,Cの直角度が軸受性能を左右する。そのため、これら軸受面間における所定の直角度を確保すべく、第1治具31の保持孔31aの内周面に対する第2治具32の小径部下端面32a2の直角度、第1治具31の上端面31bに対する第2治具32の小径部下端面32a2の平行度等は、予め十分に高めておくのが望ましい。   By the way, in this type of shaft member with flange, the perpendicularity of the thrust bearing surfaces B and C of the flange portion 22 with respect to the radial bearing surface A of the shaft portion 21 affects the bearing performance. Therefore, in order to ensure a predetermined squareness between these bearing surfaces, the perpendicularity of the lower end surface 32a2 of the small diameter portion of the second jig 32 with respect to the inner peripheral surface of the holding hole 31a of the first jig 31, It is desirable that the degree of parallelism or the like of the small-diameter lower end surface 32a2 of the second jig 32 with respect to the upper end surface 31b is sufficiently increased in advance.

以上の構成において、まず図4(A)に示すように、第1治具31の保持孔31aに軸部21を挿入した後、軸部21に設けた調心面12の先端部を凹部13内に収容するようにしてフランジ部22を軸部21(の調心面12上)に載置する。軸部21に設けた調心面12は凸曲面に形成されていることから、軸部21にフランジ部22を載置すると、両者は全周に亘ってリング状に線接触した状態を保持しつつ、フランジ部22が軸部21に対して首振り揺動可能となる。   In the above configuration, first, as shown in FIG. 4A, after inserting the shaft portion 21 into the holding hole 31a of the first jig 31, the tip portion of the alignment surface 12 provided on the shaft portion 21 is recessed with the concave portion 13. The flange portion 22 is placed on the shaft portion 21 (on the alignment surface 12) so as to be accommodated in the inner portion. Since the alignment surface 12 provided on the shaft portion 21 is formed in a convex curved surface, when the flange portion 22 is placed on the shaft portion 21, both of them maintain a line contact state in a ring shape over the entire circumference. Meanwhile, the flange portion 22 can swing and swing with respect to the shaft portion 21.

次いで、図4(B)に示すように、第2治具32を第1治具31に接近させ、第2治具32の大径部32bの下端面32b1を第1治具31の上端面31bに当接させる。第2治具32を第1治具31に接近させる際、フランジ部22の下側端面22bに第2治具32の小径部下端面32a2が接触すると、軸部21の調心面12上でフランジ部22が揺動し、軸部21に対するフランジ部22の姿勢が規定のものに矯正される。上述のとおり、第1,第2治具31,32の各面間では所定の直角度等が確保されていることから、第1治具31と第2治具32とが当接した時点において、軸部21とフランジ部22の間の芯出しが行われるのと同時に、軸部21のラジアル軸受面Aとフランジ部22のスラスト軸受面B,Cとの間で所定の直角度が確保される。   Next, as shown in FIG. 4B, the second jig 32 is brought close to the first jig 31, and the lower end surface 32 b 1 of the large diameter portion 32 b of the second jig 32 is set to the upper end surface of the first jig 31. It is made to contact 31b. When the second jig 32 is brought closer to the first jig 31, if the lower end surface 32 a 2 of the small diameter portion of the second jig 32 comes into contact with the lower end surface 22 b of the flange portion 22, the flange is formed on the alignment surface 12 of the shaft portion 21. The portion 22 swings, and the posture of the flange portion 22 with respect to the shaft portion 21 is corrected to a specified one. As described above, since a predetermined squareness or the like is secured between the surfaces of the first and second jigs 31 and 32, the first jig 31 and the second jig 32 are in contact with each other. At the same time as the centering between the shaft portion 21 and the flange portion 22 is performed, a predetermined squareness is ensured between the radial bearing surface A of the shaft portion 21 and the thrust bearing surfaces B and C of the flange portion 22. The

次いで、図示しないレーザ照射装置から第2治具32の小径部32a内周を通過させるようにして軸部21とフランジ部22の環状接触部にレーザ33を照射して環状の溶接部14を形成する。そして、レーザ33の照射を停止して第2治具32を原点復帰させた後、軸部21を第1治具31から取り出すと、図2に示す完成品としての軸部材2が得られる。   Next, an annular contact portion between the shaft portion 21 and the flange portion 22 is irradiated with a laser 33 so as to pass through the inner circumference of the small diameter portion 32a of the second jig 32 from a laser irradiation device (not shown) to form the annular welded portion 14. To do. Then, after the irradiation of the laser 33 is stopped and the second jig 32 is returned to the origin, when the shaft portion 21 is taken out from the first jig 31, the shaft member 2 as a finished product shown in FIG. 2 is obtained.

以上に示すように、本発明では、軸部21とフランジ部22との間に調心機構11が介在し、軸部21に対してフランジ部22が首振り揺動可能となるので、治具31,32で軸部21およびフランジ部22の相対姿勢を規制するだけで軸部21とフランジ部22の調心を行って両者間の芯出しを精度良く行うことができる。また、このように治具31,32で両者の相対姿勢を規制できるので、両者をリング状に線接触させた状態で溶接固定することができ(溶接部14をリング状に形成することができ)、溶接強度を高めることができる。従って、高精度かつ高強度な軸部材2が容易に製造可能となる。特に本実施形態においては、接触面積によって接合強度に差異(ばらつき)が生じる抵抗溶接ではなく、レーザ溶接で両者を溶接固定したので、安定した溶接強度が得られる。   As described above, in the present invention, the alignment mechanism 11 is interposed between the shaft portion 21 and the flange portion 22, and the flange portion 22 can swing and swing relative to the shaft portion 21. By just restricting the relative posture of the shaft portion 21 and the flange portion 22 with the shafts 31 and 32, the shaft portion 21 and the flange portion 22 can be aligned and the centering between them can be accurately performed. In addition, since the relative postures of the jigs 31 and 32 can be regulated in this way, they can be welded and fixed in a state where they are in line contact with each other (the welded portion 14 can be formed in a ring shape). ), Welding strength can be increased. Therefore, the highly accurate and high-strength shaft member 2 can be easily manufactured. In particular, in the present embodiment, since both are welded and fixed by laser welding rather than resistance welding in which a difference (variation) occurs in the bonding strength depending on the contact area, a stable welding strength can be obtained.

また、調心機構11を、軸部21に設けた調心面12と、フランジ部22に設けた凹部13とで構成したので、両者の調心を別部材で行う場合に懸念されるコスト増の問題を効果的に防止することができる。   Further, since the aligning mechanism 11 is composed of the aligning surface 12 provided in the shaft portion 21 and the recess 13 provided in the flange portion 22, the cost increase which is a concern when aligning both with separate members. This problem can be effectively prevented.

また、本実施形態では調心面12を凸曲面(球面)に形成したので、凹部13をいかなる形状に形成しても軸部21とフランジ部22とが線接触の状態で首振り揺動自在となる。そのため、両治具31,32を当接させると、軸部21とフランジ部22の間の同軸度のみならず、軸部21のラジアル軸受面Aに対するフランジ部22のスラスト軸受面B,Cの直角度確保も容易に行い得る。   In the present embodiment, since the alignment surface 12 is formed in a convex curved surface (spherical surface), the shaft portion 21 and the flange portion 22 can swing freely in a line contact state regardless of the shape of the concave portion 13. It becomes. Therefore, when the jigs 31 and 32 are brought into contact with each other, not only the coaxiality between the shaft portion 21 and the flange portion 22 but also the thrust bearing surfaces B and C of the flange portion 22 with respect to the radial bearing surface A of the shaft portion 21. The perpendicularity can be easily secured.

また、軸部21とフランジ部22とを、凹部13の内部で溶接固定したので、溶接時の熱影響により、軸部21のラジアル軸受面Aやフランジ部22のスラスト軸受面B、Cの面精度が悪化するのを極力回避することができる。また、溶接痕が軸部21の外周やフランジ部22の端部側、すなわちラジアル軸受隙間やスラスト軸受隙間に突出して、軸受性能に悪影響が生じるのを効果的に回避することができる。さらに、溶接部14をレーザ33の照射によって形成する本実施形態の構成では、レーザ33の照射に伴う溶解物の飛散が懸念されるが、軸部21とフランジ部22を凹部13の内部で溶接すれば、凹部13の内壁面(フランジ部22の内周面)で溶接部位を覆うことができので、溶解物が飛散し、これがフランジ部22の端面22a、22b等に付着するのを効果的に防止することができる。   Further, since the shaft portion 21 and the flange portion 22 are welded and fixed inside the concave portion 13, the surfaces of the radial bearing surface A of the shaft portion 21 and the thrust bearing surfaces B and C of the flange portion 22 due to the heat effect during welding. It is possible to avoid the deterioration of accuracy as much as possible. Further, it is possible to effectively avoid the adverse effect on the bearing performance due to the welding mark projecting to the outer periphery of the shaft portion 21 or the end portion side of the flange portion 22, that is, the radial bearing gap or the thrust bearing gap. Furthermore, in the configuration of the present embodiment in which the welded portion 14 is formed by the irradiation of the laser 33, there is a concern about the scattering of the melt accompanying the irradiation of the laser 33, but the shaft portion 21 and the flange portion 22 are welded inside the recess 13. Then, the welded portion can be covered with the inner wall surface of the recess 13 (the inner peripheral surface of the flange portion 22), so that it is effective that the melted material scatters and adheres to the end surfaces 22a, 22b, etc. of the flange portion 22. Can be prevented.

なお、本実施形態では、軸部21およびフランジ部22を同種のステンレス鋼で形成したが、レーザ溶接であれば、抵抗溶接では高い溶接強度を確保するのが難しい異種金属間においても高い溶接強度を確保することができる。そのため、軸部材2に必要とされる強度を確保し得る限りにおいて、軸部21とフランジ部22の形成材料の選択肢を広げることが、すなわち要求品質に応じた最適材料を選択使用することができ、この点から軸部材2の低コスト化を図ることが可能である。例えば、軸部21をステンレス鋼で形成する一方、フランジ部23を黄銅等で形成することができる。   In the present embodiment, the shaft portion 21 and the flange portion 22 are formed of the same kind of stainless steel. However, if laser welding is used, high welding strength can be obtained even between dissimilar metals where it is difficult to ensure high welding strength by resistance welding. Can be secured. Therefore, as long as the strength required for the shaft member 2 can be ensured, the choice of the material for forming the shaft portion 21 and the flange portion 22 can be expanded, that is, the optimum material corresponding to the required quality can be selected and used. From this point, the cost of the shaft member 2 can be reduced. For example, the shaft portion 21 can be formed of stainless steel, while the flange portion 23 can be formed of brass or the like.

軸部21とフランジ部22の間の芯出し、および軸受面間の直角度確保を可能とする限りにおいて、軸部21およびフランジ部22の形状は任意に変更可能である。   As long as the centering between the shaft portion 21 and the flange portion 22 and the perpendicularity between the bearing surfaces can be secured, the shapes of the shaft portion 21 and the flange portion 22 can be arbitrarily changed.

例えば、図5(A)に示すように、軸部21に、調芯面12から下方に延び、フランジ部22の凹部13(貫通孔)内周に収容される小径部21cをさらに設けることも可能である。かかる構成とすれば、フランジ部22の内周に形成される空間を小径部21cで埋めることができるため、図2に示す構成に比べて軸受内部に充満すべき潤滑油の油量を低減することができる。そのため、シール空間Sの軸方向寸法を縮小して流体軸受装置のコンパクト化を図ることが可能となる。   For example, as shown in FIG. 5A, the shaft portion 21 may further be provided with a small-diameter portion 21c that extends downward from the alignment surface 12 and is accommodated in the inner periphery of the concave portion 13 (through hole) of the flange portion 22. Is possible. With this configuration, the space formed in the inner periphery of the flange portion 22 can be filled with the small diameter portion 21c, and therefore the amount of lubricating oil to be filled in the bearing is reduced compared to the configuration shown in FIG. be able to. Therefore, it is possible to reduce the size of the seal space S in the axial direction and reduce the size of the hydrodynamic bearing device.

また、例えば、図5(B)に示すように、フランジ部22に設けた凹部13を貫通孔ではなく窪み状に形成することも可能である。この場合、軸部21とフランジ部22とは、軸部21の調心面12とフランジ部22の上側端面22aとの間に形成される環状隙間に溶接部13を形成することによって溶接固定することができる。   Further, for example, as shown in FIG. 5B, the recess 13 provided in the flange portion 22 can be formed in a hollow shape instead of a through hole. In this case, the shaft portion 21 and the flange portion 22 are welded and fixed by forming the welded portion 13 in an annular gap formed between the alignment surface 12 of the shaft portion 21 and the upper end surface 22a of the flange portion 22. be able to.

以上では、軸部21に設けた調心面12と、フランジ部22に設けた凹部13とで調心機構11を構成した場合について説明を行ったが、フランジ部22に設けた調心面12と、軸部21に設けた凹部13とで調心機構11を構成することも可能である。具体的には、例えば図5(C)(D)に示すように、フランジ部22に、軸部21側に向かって縮径する凸球面状に形成された調芯面12を設けると共に、軸部21に貫通孔もしくは窪み状の凹部13を設けることにより、軸部21とフランジ部22とをリング状に接触させた状態で溶接固定することができる。   The case where the alignment mechanism 11 is configured by the alignment surface 12 provided on the shaft portion 21 and the concave portion 13 provided on the flange portion 22 has been described above, but the alignment surface 12 provided on the flange portion 22 has been described. It is also possible to configure the alignment mechanism 11 with the recess 13 provided in the shaft portion 21. Specifically, as shown in FIGS. 5C and 5D, for example, the flange portion 22 is provided with an alignment surface 12 formed in a convex spherical shape whose diameter is reduced toward the shaft portion 21 side, and the shaft By providing the through hole or the recessed recess 13 in the portion 21, the shaft portion 21 and the flange portion 22 can be welded and fixed in a ring shape.

なお、図2および図5(A)(C)では、凹部13の内部に溶接部14を形成することによって軸部21とフランジ部22とを溶接固定しているが、図5(B)(D)と同様に、軸部21の下端面とフランジ部22の上側端面22aとの間の環状隙間に溶接部14を形成しても良い。またあるいは、軸部材2の一層の高強度化を目的として、凹部13の内部と、前記環状隙間の双方に溶接部14を形成することによって、軸部21とフランジ部22を溶接固定することもできる。   2 and 5 (A) and 5 (C), the shaft portion 21 and the flange portion 22 are welded and fixed by forming the welded portion 14 inside the concave portion 13, but FIG. Similarly to (D), the welded portion 14 may be formed in an annular gap between the lower end surface of the shaft portion 21 and the upper end surface 22a of the flange portion 22. Alternatively, for the purpose of further increasing the strength of the shaft member 2, the shaft portion 21 and the flange portion 22 may be welded and fixed by forming the welded portion 14 both inside the recess 13 and in the annular gap. it can.

以上、本発明の一実施形態について説明を行ったが、本発明に係る軸部材2は、上記構成の流体軸受装置に限定適用されるものではない。以下、本発明に係る軸部材2を適用可能な流体軸受装置の他の実施形態を図面に基づいて説明する。なお、以下では、以上で説明したものに準じる構成には共通の参照番号を付して重複説明を省略する。   Although one embodiment of the present invention has been described above, the shaft member 2 according to the present invention is not limited to the hydrodynamic bearing device having the above-described configuration. Hereinafter, other embodiments of the hydrodynamic bearing device to which the shaft member 2 according to the present invention can be applied will be described with reference to the drawings. In the following description, components similar to those described above are denoted by common reference numerals, and redundant description is omitted.

図6は、本発明に係る軸部材2を組み込んだ流体軸受装置の第2実施形態を示すものである。同図に示す流体軸受装置が図2に示すものと異なる主な点は、軸部材2のスラスト部材22の下側端面22bにスラスト軸受面Cは形成されず、第2スラスト軸受部T2が、軸部21の上端に固定されたディスクハブ3の円盤部3aの下側端面3a1とハウジング7の上側端面7cとの間に設けられた点、およびシール空間Sが、ハウジング7のテーパ状外周面7dとディスクハブ3の円筒部3bの内周面3b1との間に設けられる点にある。なお、図示例では、図2と同様の軸部材2を用いた構成としているが、もちろん、図5(A)〜(D)に示す構成の軸部材2を使用することも可能である。   FIG. 6 shows a second embodiment of a hydrodynamic bearing device incorporating the shaft member 2 according to the present invention. The main difference of the hydrodynamic bearing device shown in FIG. 2 from that shown in FIG. 2 is that the thrust bearing surface C is not formed on the lower end surface 22b of the thrust member 22 of the shaft member 2, and the second thrust bearing portion T2 is The point provided between the lower end surface 3 a 1 of the disk portion 3 a of the disk hub 3 fixed to the upper end of the shaft portion 21 and the upper end surface 7 c of the housing 7, and the seal space S are the tapered outer peripheral surface of the housing 7. 7d and the inner peripheral surface 3b1 of the cylindrical portion 3b of the disc hub 3. In the illustrated example, the same shaft member 2 as that shown in FIG. 2 is used. Of course, the shaft member 2 having the configuration shown in FIGS. 5A to 5D can also be used.

図7は、本発明に係る軸部材2を組み込んだ流体軸受装置の第3実施形態を示すものである。同図に示す流体軸受装置では、軸部材2が、軸部21の軸方向略中央部に固定された第2のフランジ部42をさらに備え、第2スラスト軸受部T2が、第2のフランジ部42と軸受スリーブ8の上側端面8dとの間に設けられる点、および両フランジ部22,42の外周面22c,42cが、ハウジング7の内周面7aとの間にシール空間Sを形成する点で、図2および図6に示す実施形態と構成を異にする。このように2つのフランジ部22,42を軸部21に設けた軸部材2を用いる場合であっても、軸部21と、軸部21の下端に設けたフランジ部22との一体品に関しては、上記本発明の構成を適用することができる。もちろん、本実施形態においても、図5(A)〜(D)に示す構成の軸部材2を使用することも可能である。   FIG. 7 shows a third embodiment of a hydrodynamic bearing device incorporating the shaft member 2 according to the present invention. In the hydrodynamic bearing device shown in the figure, the shaft member 2 further includes a second flange portion 42 fixed to a substantially central portion of the shaft portion 21 in the axial direction, and the second thrust bearing portion T2 is a second flange portion. 42 and the upper end surface 8 d of the bearing sleeve 8, and the outer peripheral surfaces 22 c and 42 c of both flange portions 22 and 42 form a seal space S between the inner peripheral surface 7 a of the housing 7. Thus, the configuration is different from that of the embodiment shown in FIGS. As described above, even when the shaft member 2 having the two flange portions 22 and 42 provided on the shaft portion 21 is used, an integrated product of the shaft portion 21 and the flange portion 22 provided on the lower end of the shaft portion 21 is used. The above-described configuration of the present invention can be applied. Of course, also in this embodiment, it is possible to use the shaft member 2 having the configuration shown in FIGS.

以上では、凸曲面状(球面状)に形成された調心面12を有する軸部材2、およびこれを組み込んだ流体軸受装置1について説明を行ったが、調心面12は、図8に示すようなテーパ面に形成することも可能である。この場合、凹部13の内周縁、厳密には、少なくとも調心面12が導入される側の内周縁(図示例では、フランジ部22の上端内周縁)13aは、凸曲面(R面)に形成するのが望ましい。かかる構成とすることによって、軸部21とフランジ部22とが、以上で説明した実施形態と同様に首振り揺動自在な関係となり、軸部21とフランジ部22とを溶接する際に、両者間の同軸度のみならず、直角度も同時確保することが可能となる。かかる構成は、以上で説明を行った何れの実施形態においても好適に採用可能である。   The shaft member 2 having the aligning surface 12 formed in a convex curved surface (spherical shape) and the hydrodynamic bearing device 1 incorporating the same have been described above. The aligning surface 12 is shown in FIG. It is also possible to form such a tapered surface. In this case, the inner peripheral edge of the recess 13, strictly speaking, at least the inner peripheral edge on the side on which the alignment surface 12 is introduced (in the illustrated example, the upper inner peripheral edge of the flange portion 22) 13 a is formed on a convex curved surface (R surface). It is desirable to do. By adopting such a configuration, the shaft portion 21 and the flange portion 22 are in a swingable relationship as in the embodiment described above, and when the shaft portion 21 and the flange portion 22 are welded, It is possible to ensure not only the coaxiality between them but also a perpendicularity at the same time. Such a configuration can be suitably employed in any of the embodiments described above.

なお、調心面12の加工容易性(加工コスト)を考慮すると、調心面12は凸曲面に形成するよりもテーパ面に形成した方が有利であるが、軸部21とフランジ部22の溶接固定時に、両者の同軸度および直角度を同時に確保しようとすると、上記のとおり凹部13の内周縁13aをR面に加工する必要が生じる。加工コストは、軸部21およびフランジ部22の形成材料や加工方法等によっても左右されるので、何れの構成を採用するかは、使用材料等によって適宜選択すれば良い。   In consideration of ease of processing (processing cost) of the aligning surface 12, it is more advantageous to form the aligning surface 12 into a tapered surface than to form it into a convex curved surface. If it is attempted to secure both the coaxiality and perpendicularity at the same time during welding and fixing, it is necessary to process the inner peripheral edge 13a of the recess 13 into an R surface as described above. The processing cost depends on the forming material of the shaft portion 21 and the flange portion 22, the processing method, and the like. Therefore, which configuration is to be adopted may be appropriately selected depending on the material used.

また、以上で説明を行った流体軸受装置は、何れも、ハウジング7と軸受スリーブ8とを別体品としたものであるが、両者を一体化した流体軸受装置にも本発明に係る軸部材2を好適に採用することができる。また、特に図2に示す流体軸受装置にあっては、さらに、蓋部材9又はシール部材10をハウジング7に一体化することも可能である。   In addition, in any of the fluid dynamic bearing devices described above, the housing 7 and the bearing sleeve 8 are separate components. However, the shaft member according to the present invention is also applied to the fluid dynamic bearing device in which both are integrated. 2 can be preferably employed. In particular, in the hydrodynamic bearing device shown in FIG. 2, the lid member 9 or the seal member 10 can be further integrated with the housing 7.

また、以上では、ラジアル軸受部R1、R2およびスラスト軸受部T1、T2として、ヘリングボーン形状やスパイラル形状の動圧溝により潤滑油の動圧作用を発生させる構成を例示しているが、ラジアル軸受部R1、R2として、いわゆるステップ軸受、多円弧軸受、あるいは非真円軸受を、スラスト軸受部T1、T2として、いわゆるステップ軸受や波形軸受を採用しても良い。また、以上では、ラジアル軸受部を軸方向2箇所に設けた構成を例示しているが、ラジアル軸受部を軸方向の1箇所あるいは3箇所以上に設けることもできる。   In the above description, the radial bearing portions R1 and R2 and the thrust bearing portions T1 and T2 are exemplified by the configuration in which the dynamic pressure action of the lubricating oil is generated by the dynamic pressure grooves having a herringbone shape or a spiral shape. So-called step bearings, multi-arc bearings, or non-circular bearings may be used as the portions R1 and R2, and so-called step bearings and corrugated bearings may be employed as the thrust bearing portions T1 and T2. Moreover, although the structure which provided the radial bearing part in the axial direction two places was illustrated above, a radial bearing part can also be provided in the axial direction one place or three places or more.

また、以上では、ラジアル軸受部R1、R2の双方を動圧軸受で構成した場合について説明を行ったが、ラジアル軸受部R1、R2の一方又は双方をこれ以外の軸受で構成することもできる。例えば図示は省略するが、軸部材2のラジアル軸受面Aを真円状に形成すると共に、対向する軸受スリーブ8の内周面8aを真円状内周面とすることで、いわゆる真円軸受を構成することもできる。   Moreover, although the case where both radial bearing part R1, R2 was comprised with the dynamic pressure bearing was demonstrated above, one or both of radial bearing part R1, R2 can also be comprised with a bearing other than this. For example, although not shown in the drawings, the radial bearing surface A of the shaft member 2 is formed in a perfect circle shape, and the inner peripheral surface 8a of the bearing sleeve 8 that is opposed is a perfect circular inner peripheral surface. Can also be configured.

流体軸受装置を組み込んだ情報機器用スピンドルモータの一例を概念的に示す断面図である。It is sectional drawing which shows notionally an example of the spindle motor for information devices incorporating the hydrodynamic bearing apparatus. 流体軸受装置の第1実施形態を示す断面図である。It is sectional drawing which shows 1st Embodiment of a hydrodynamic bearing apparatus. (A)図は軸受スリーブの断面図、(B)図は軸受スリーブの下側端面を示す図である。(A) is a sectional view of the bearing sleeve, and (B) is a diagram showing a lower end surface of the bearing sleeve. 軸部材の製造工程を概念的に示す断面図である。It is sectional drawing which shows notionally the manufacturing process of a shaft member. (A)〜(D)図は、軸部材の変形例を示す要部拡大断面図である。(A)-(D) figure is a principal part expanded sectional view which shows the modification of a shaft member. 流体軸受装置の第2実施形態を示す断面図である。It is sectional drawing which shows 2nd Embodiment of a hydrodynamic bearing apparatus. 流体軸受装置の第3実施形態を示す断面図である。It is sectional drawing which shows 3rd Embodiment of a hydrodynamic bearing apparatus. 軸部材の他例を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the other example of a shaft member.

符号の説明Explanation of symbols

1 流体軸受装置
2 軸部材
11 調心機構
12 調心面
13 凹部
14 溶接部
21 軸部
22 フランジ部
31 第1治具
32 第2治具
33 レーザ
A ラジアル軸受面
B、C スラスト軸受面
R1、R2 ラジアル軸受部
T1、T2 スラスト軸受部
DESCRIPTION OF SYMBOLS 1 Fluid dynamic bearing apparatus 2 Shaft member 11 Alignment mechanism 12 Alignment surface 13 Recess 14 Welded portion 21 Shaft portion 22 Flange portion 31 First jig 32 Second jig 33 Laser A Radial bearing surface B, C Thrust bearing surface R1, R2 Radial bearing part T1, T2 Thrust bearing part

Claims (6)

ラジアル軸受面を有する軸部と、スラスト軸受面を有し、軸部の一端に設けられたフランジ部とを備える流体軸受装置用軸部材において、
軸部とフランジ部が、両者間に調心機構を介在させて、かつ両者を線接触させた状態で溶接固定されていることを特徴とする流体軸受装置用軸部材。
In a fluid dynamic bearing device shaft member comprising a shaft portion having a radial bearing surface, and a flange portion having a thrust bearing surface and provided at one end of the shaft portion,
A shaft member for a hydrodynamic bearing device, wherein the shaft portion and the flange portion are welded and fixed with a centering mechanism interposed between the shaft portion and the flange portion and in a state in which both are in line contact.
調心機構が、軸部とフランジ部の何れか一方に形成され、他方側の部材に向けて縮径した調心面と、他方の部材に設けられ、調心面の先端を収容する凹部とを有する請求項1記載の流体軸受装置用軸部材。   An alignment mechanism is formed on one of the shaft portion and the flange portion and has a diameter reduced toward the other member, and a recess provided on the other member that accommodates the tip of the alignment surface. The shaft member for a hydrodynamic bearing device according to claim 1. 調心面がテーパ面で形成された請求項2記載の流体軸受装置用軸部材。   The shaft member for a hydrodynamic bearing device according to claim 2, wherein the alignment surface is a tapered surface. 調芯面が凸曲面で形成された請求項2記載の流体軸受装置用軸部材。   The shaft member for a hydrodynamic bearing device according to claim 2, wherein the alignment surface is a convex curved surface. 凹部の内部で軸部とフランジ部とが溶接固定された請求項2〜4の何れか一項記載の流体軸受装置用軸部材。   The shaft member for a hydrodynamic bearing device according to any one of claims 2 to 4, wherein the shaft portion and the flange portion are fixed by welding inside the recess. 請求項1〜5の何れか一項記載の軸部材と、内周に軸部材を収容した軸受スリーブとを備える流体軸受装置。   A hydrodynamic bearing device comprising: the shaft member according to any one of claims 1 to 5; and a bearing sleeve that houses the shaft member on an inner periphery thereof.
JP2007224257A 2007-08-20 2007-08-30 Shaft member for fluid bearing device Withdrawn JP2009058006A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007224257A JP2009058006A (en) 2007-08-30 2007-08-30 Shaft member for fluid bearing device
US12/670,437 US8297844B2 (en) 2007-08-20 2008-08-12 Fluid dynamic bearing device
PCT/JP2008/064446 WO2009025202A1 (en) 2007-08-20 2008-08-12 Fluid bearing device
CN200880102673.0A CN101779047B (en) 2007-08-20 2008-08-12 Fluid bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007224257A JP2009058006A (en) 2007-08-30 2007-08-30 Shaft member for fluid bearing device

Publications (1)

Publication Number Publication Date
JP2009058006A true JP2009058006A (en) 2009-03-19

Family

ID=40553934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007224257A Withdrawn JP2009058006A (en) 2007-08-20 2007-08-30 Shaft member for fluid bearing device

Country Status (1)

Country Link
JP (1) JP2009058006A (en)

Similar Documents

Publication Publication Date Title
JP2002369438A (en) Spindle motor and method of assembling the same
JP5207657B2 (en) Method for manufacturing hydrodynamic bearing device
JP2007263228A (en) Dynamic pressure bearing device
JP5312895B2 (en) Hydrodynamic bearing device
US8297844B2 (en) Fluid dynamic bearing device
JP2007024267A (en) Fluid bearing device and motor equipped with the same
JP2008130208A (en) Hydrodynamic bearing device and its manufacturing method
JP4657734B2 (en) Hydrodynamic bearing device
JP2009108877A (en) Fluid bearing device and its manufacturing method
JP4800047B2 (en) Hydrodynamic bearing device and manufacturing method thereof, spindle motor and recording / reproducing device
JP2009058006A (en) Shaft member for fluid bearing device
JP5274902B2 (en) Hydrodynamic bearing device
JP2009097672A (en) Manufacturing method of bearing parts
JP4588561B2 (en) Hydrodynamic bearing device
JP5231095B2 (en) Hydrodynamic bearing device
JP5122205B2 (en) Method for assembling hydrodynamic bearing device
JP2008298238A (en) Fluid bearing device
JP2005210896A (en) Spindle motor of disc drive
JP2007092783A (en) Method for manufacturing fluid dynamic bearing, fluid dynamic bearing, and spindle motor
JP4498932B2 (en) Hydrodynamic bearing device
JP2007263232A (en) Fluid bearing device
JP2006214542A (en) Fluid bearing device
JP2010048309A (en) Fluid bearing device and motor equipped with the same
JP2020153386A (en) Fluid dynamic pressure bearing device
JP2010270905A (en) Bearing mechanism, motor, and disk drive device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091104

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20101102