JP2009057261A - Method for producing carbon molding material - Google Patents

Method for producing carbon molding material Download PDF

Info

Publication number
JP2009057261A
JP2009057261A JP2007227559A JP2007227559A JP2009057261A JP 2009057261 A JP2009057261 A JP 2009057261A JP 2007227559 A JP2007227559 A JP 2007227559A JP 2007227559 A JP2007227559 A JP 2007227559A JP 2009057261 A JP2009057261 A JP 2009057261A
Authority
JP
Japan
Prior art keywords
molding
powder
carbon
resin
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007227559A
Other languages
Japanese (ja)
Other versions
JP5120748B2 (en
Inventor
Takushi Iida
卓志 飯田
Mitsuo Enomoto
三男 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP2007227559A priority Critical patent/JP5120748B2/en
Publication of JP2009057261A publication Critical patent/JP2009057261A/en
Application granted granted Critical
Publication of JP5120748B2 publication Critical patent/JP5120748B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Producing Shaped Articles From Materials (AREA)
  • Ceramic Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a carbon molding material having low anisotropy in physical properties, which suppresses the anisotropy and strain caused by shrinkage upon firing in a molded body accompanying the flow of the molding material upon injection molding. <P>SOLUTION: The method for producing a carbon molding material is characterized in that, to 100 pts.wt. of carbon powder having the average particle diameter of 100 to 2,000 μm, pitch powder having the average particle diameter of ≤100 μm and whose softening point is higher by 30 to 250°C than the temperature of a die upon injection molding is mixed in a ratio of 3 to 30 pts.wt., a resin solution obtained by dissolving a molding assistant composed of a thermosetting resin having an actual carbon ratio of ≥40% and an organic substance whose melting point is 40 to 150°C into an organic solvent is added to the mixed powder, kneading is performed at quantitative ratios in which, to 100 pts.wt. of the carbon powder, the resin solid content in the thermosetting resin is controlled to 10 to 40 pts.wt. and the content of the molding assistant is controlled to 0.1 to 5 pts.wt., subsequently, the kneaded matter is dried and pulverized, so as to produce molding powder, the molding powder is molded by injection molding, injection compression molding or transfer molding, and the obtained molded body is subjected to setting treatment at 180 to 280°C, and is next subjected to firing treatment at ≥800°C in a nonoxidizing atmosphere. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、射出成形、射出圧縮成形あるいはトランスファ成形した成形体を焼成する炭素成形材料の製造方法に関し、特に、焼成時の収縮異方性が小さく、炭素材料の物性の異方性を低減化した炭素成形材料の製造方法に関する。   The present invention relates to a method for producing a carbon molding material for firing a molded article obtained by injection molding, injection compression molding or transfer molding, and in particular, shrinkage anisotropy during firing is small, and anisotropy of physical properties of the carbon material is reduced. The present invention relates to a method for producing a carbon molding material.

また、目標とする最終製品形状に近似した炭素成形材料を製造することができ、例えば異形、複雑形状の炭素成形材料を製造する際にも、後処理的に機械加工する部分を極力少なくでき、更に、焼成時に発生する膨れや割れなどの現象を抑制することのできる炭素成形材料の製造方法に関する。   In addition, it is possible to produce a carbon molding material that approximates the target final product shape, for example, when producing a deformed, complex shape carbon molding material, it is possible to minimize the part to be machined in post-processing, Furthermore, it is related with the manufacturing method of the carbon molding material which can suppress phenomena, such as a swelling and a crack which generate | occur | produce at the time of baking.

炭素材料は、非酸化性雰囲気において優れた耐熱性や高温強度を有し、また導電性、熱伝導性および化学的安定性も高く、このような特異な性質から電気、電子、機械、冶金、化学などの幅広い分野で広く使用されている。この炭素材料は、従来からコークス粉末などの炭素質粉末を骨材として、ピッチやタールなどの結合材を配合して加熱混練したのち
混練物を粉砕して原料粉を作製し、原料粉を押出し成形や冷間静水圧プレスなどによって成形し、成形体を焼成し、更にピッチ含浸、再焼成を繰り返し、必要に応じ黒鉛化することにより製造されている。
Carbon materials have excellent heat resistance and high temperature strength in a non-oxidizing atmosphere, and also have high electrical conductivity, thermal conductivity and chemical stability. Electricity, electronics, machinery, metallurgy, Widely used in a wide range of fields such as chemistry. Conventionally, this carbon material is made of carbonaceous powder such as coke powder, blended with a binder such as pitch or tar, heated and kneaded, then pulverized to produce the raw material powder, and the raw material powder is extruded. It is manufactured by molding, cold isostatic pressing or the like, firing the molded body, repeating pitch impregnation and refiring, and graphitizing as necessary.

この製造プロセスにおいて、特に焼成過程では主に結合材に由来する多量の揮発性ガスが発生し、発生したガスが成形体から円滑に揮散、排出されないと、膨れなどの変形や割れが生じ易い。そのため、焼成過程における昇温速度を極めて緩やかに加熱する必要があり、通常、焼成サイクルは1ヶ月以上もの長期間を要している。また、立体形状の最終製品を得るためにはブロック状の炭素材から所望の形状に機械加工するので、高価なものとなるなどの難点がある。   In this manufacturing process, particularly in the firing process, a large amount of volatile gas mainly derived from the binder is generated, and deformation and cracking such as swelling are likely to occur unless the generated gas is smoothly volatilized and discharged from the molded body. For this reason, it is necessary to heat the heating rate very slowly in the firing process, and the firing cycle usually requires a long period of one month or more. Further, in order to obtain a final product having a three-dimensional shape, machining is performed from a block-shaped carbon material to a desired shape, and thus there is a difficulty in that it becomes expensive.

一方、黒鉛などの炭素粉末と比較的炭化率の高い熱硬化性樹脂を結合材として混合、混練した後、乾燥、粉砕して成形粉とし、この成形粉を所望形状に成形した成形体を焼成、炭化する方法がある。   On the other hand, carbon powder such as graphite and a thermosetting resin with a relatively high carbonization rate are mixed and kneaded as a binder, then dried and pulverized to form a molded powder, and a molded body obtained by molding the molded powder into a desired shape is fired. There is a method to carbonize.

そして、成形法として、比較的に複雑形状の成形体を作製することのできる射出成形、射出圧縮成形、トランスファ成形などの成形方法があり、特に、複雑形状の成形体を作製することができ、成形サイクル時間の短い射出成形法が有用されている。例えば、特許文献1には炭素微粉末と熱硬化性樹脂を混合する際に、高い機械的エネルギーを加えてメカノケミカル現象により炭素微粉末の粒子表面に樹脂が高度に結合したペースト状組成物を得、この組成物を注型成形または射出成形して、焼成する製造方法が開示されている。   And, as a molding method, there are molding methods such as injection molding, injection compression molding, transfer molding, etc. that can produce a relatively complex shaped molded body, in particular, a complex shaped molded body can be produced, An injection molding method having a short molding cycle time is useful. For example, Patent Document 1 discloses a paste-like composition in which a resin is highly bonded to the particle surface of carbon fine powder due to a mechanochemical phenomenon by adding high mechanical energy when carbon fine powder and a thermosetting resin are mixed. A manufacturing method is disclosed in which the composition is cast or injection molded and fired.

しかし、成形時にペースト状組成物の流動性が重要であり、特に射出成形では流動性を高く保持する必要があるため熱硬化性樹脂量が多くならざるを得ない。例えば、上記特許文献1では、炭素粉末の平均粒径が100μm以下の微粉末であることもあって、結合材である熱硬化性樹脂量も多くなり、特に肉厚の厚い炭素製品では焼成時に膨れや割れが生じ易く、肉厚の厚い炭素製品を製造することは困難である。   However, the fluidity of the paste-like composition is important at the time of molding, and the amount of thermosetting resin is inevitably increased because it is necessary to maintain high fluidity particularly in injection molding. For example, in Patent Document 1, the carbon powder has an average particle size of 100 μm or less, and the amount of thermosetting resin as a binder increases. Swelling and cracking are likely to occur, and it is difficult to produce a thick carbon product.

そこで、特許文献2では炭素粉末100重量部にベンジリックエーテル型フェノール樹脂10〜50重量部を添加混練し、この混練物を射出成形または押出成形して成形体をつくり、これを非酸化性雰囲気下、600℃以上の温度で熱処理する炭素成形体の製造法が提案されている。   Therefore, in Patent Document 2, 10 to 50 parts by weight of a benzylic ether type phenol resin is added to and kneaded with 100 parts by weight of carbon powder, and this kneaded product is injection molded or extruded to form a molded body, which is made into a non-oxidizing atmosphere. A method for producing a carbon molded body that is heat-treated at a temperature of 600 ° C. or higher has been proposed.

特許文献2は樹脂の添加量が少なくても流動性のよい混練物が得られるベンジリックエーテル型フェノール樹脂を使用するもので、射出成形により複雑形状の成形体を効率よく作製できるとするものであるが、ベンジリックエーテル型フェノール樹脂は離形性が悪いので離形剤を添加する必要があり、更に、焼成炭化時に発生する揮発性ガスがフェノール樹脂などと比べて多い難点もあり、肉厚成形体を製造することが困難となる。   Patent Document 2 uses a benzylic ether type phenolic resin that can obtain a kneaded material having good fluidity even if the amount of resin added is small, and it is said that a molded body having a complicated shape can be efficiently produced by injection molding. However, benzylic ether type phenolic resin has poor releasability, so it is necessary to add a mold release agent, and there are also more difficult volatile gases generated during calcination carbonization than phenolic resin. It becomes difficult to manufacture a molded body.

特許文献3にはメソカーボン粉末と有機バインダーとの均一混合物を加熱し、射出成形するメソカーボン粉末成形体の製造方法が開示されている。しかし、使用するメソカーボン粉末の粒径が1〜80μmと小さく、成形時の流動性を改善するために可塑剤を配合するので、焼成過程で発生するガス量も多くなりカーボン焼結体の密度や強度が低くなる欠点がある。   Patent Document 3 discloses a method for producing a mesocarbon powder molded body in which a uniform mixture of mesocarbon powder and an organic binder is heated and injection molded. However, since the mesocarbon powder used has a small particle size of 1 to 80 μm and a plasticizer is added to improve the fluidity during molding, the amount of gas generated during the firing process increases, and the density of the carbon sintered body There is a drawback that the strength is lowered.

また、特許文献4にはオルト位結合/パラ位結合存在比が3以上のノボラック系フェノール樹脂50〜95質量%と、炭素質材料50〜5質量%とを主成分とする樹脂組成物を射出成形した成形体を炭化焼成したアモルファスカーボン成形体が開示されているが、炭素質材料の粒径が100μm以下の微粉を用いるので、樹脂組成物の樹脂量比が高く、焼成時に発生するガス量が多くなる難点がある。
特開昭59−195515号公報 特開平01−115869号公報 特開平08−113668号公報 特開2004−131527号公報
Patent Document 4 injects a resin composition mainly composed of 50 to 95% by mass of a novolac phenol resin having an ortho-position bond / para-position bond abundance ratio of 3 or more and a carbonaceous material of 50 to 5% by mass. An amorphous carbon molded body obtained by carbonizing and firing a molded body is disclosed, but since the fine particle having a carbonaceous material particle size of 100 μm or less is used, the resin amount ratio of the resin composition is high, and the amount of gas generated during firing There are many difficulties.
JP 59-195515 A Japanese Patent Laid-Open No. 01-115869 Japanese Patent Laid-Open No. 08-113668 JP 2004-131527 A

そこで、発明者らは上記の問題を解決すべく射出成形材料である樹脂組成物について種々の面から検討を行い、炭素粉末とバインダーである熱硬化性樹脂とを混合した樹脂組成物を射出成形などした成形体は、その表層面に樹脂分がリッチな層が形成され、この樹脂リッチ層が焼成炭化時に緻密な炭素層となって、樹脂成分の分解炭化時に発生するガスの排出が阻害されることを見出した。   Therefore, the inventors have studied the resin composition that is an injection molding material from various aspects to solve the above problems, and injection molded a resin composition in which carbon powder and a thermosetting resin that is a binder are mixed. In the molded body, a layer rich in resin is formed on the surface layer, and this resin-rich layer becomes a dense carbon layer during firing carbonization, and the discharge of gas generated during decomposition carbonization of the resin component is hindered. I found out.

この傾向は、炭素粉末の平均粒子径が小さく、熱硬化性樹脂の混合量比が高く、また成形体の肉厚が厚い場合に顕著となり、熱硬化性樹脂から発生する揮発性の分解ガスの排出が円滑に進まず、焼成炭化時に膨れや割れが発生することとなる。更に、成形体の焼成時には炭素粉末と熱硬化性樹脂の結合力が低下するので、分解ガスの圧力に耐えきれず、膨れや割れの発生が助長されることになる。   This tendency becomes prominent when the average particle size of the carbon powder is small, the mixing ratio of the thermosetting resin is high, and the thickness of the molded body is large, and the tendency of volatile decomposition gas generated from the thermosetting resin. The discharge does not proceed smoothly and blisters and cracks occur during firing carbonization. Furthermore, since the bonding force between the carbon powder and the thermosetting resin is reduced when the molded body is fired, it cannot withstand the pressure of the decomposition gas, and the occurrence of swelling and cracking is promoted.

また、射出成形、射出圧縮成形、トランスファ成形などでは成形材料が金型キャビティに入り込む際に、成形材料が広がりながら空気をまきこんで充填され、さらに後から充填されてくる成形材料によってまきこんだ空気を押しつぶすように充填されるので、成形体および焼成した炭素成形体には射出方向に物性の異方性が生じ易い。   In addition, in injection molding, injection compression molding, transfer molding, etc., when the molding material enters the mold cavity, the molding material spreads and is filled with air, and then the air entrained by the molding material that is filled later Since it is filled so as to be crushed, anisotropy of physical properties tends to occur in the injection direction in the molded body and the fired carbon molded body.

例えば、焼成後の炭素成形体の物性には射出する成形粉の流れ方向(X方向)に強度が低く、電気抵抗が高く、逆に、流れ方向と直角方向(Y方向)の物性には強度が高い、電気抵抗が低いなどという物性の異方性が現れる。   For example, the physical properties of the carbon molded body after firing have low strength in the flow direction (X direction) of the molding powder to be injected, high electrical resistance, and conversely, the physical properties in the direction perpendicular to the flow direction (Y direction) are strong. Anisotropy of physical properties such as high and low electrical resistance appears.

また、射出成形体には大きな残留応力が残存するので、硬化処理、焼成処理する過程で残留応力が開放されてスプリングバックにより射出方向に大きく膨張し、硬化、焼成時に歪みが生じ、割損する場合もある。   In addition, since a large residual stress remains in the injection-molded product, the residual stress is released in the process of curing and firing, and it expands greatly in the injection direction due to the springback, causing distortion during curing and firing, resulting in damage. There is also.

そこで、発明者らはこれらの問題点を解決すべく、原料となる炭素粉末の粒度およびピッチ粉末の粒度やその軟化点などを中心として、射出成形材料について鋭意検討を加えた結果、特に、射出成形時の成形金型の温度とピッチ粉末の軟化点との関係が重要であることを知見した。   In order to solve these problems, the inventors have intensively studied the injection molding material mainly on the particle size of the carbon powder as the raw material and the particle size of the pitch powder and its softening point. It was found that the relationship between the temperature of the mold during molding and the softening point of the pitch powder is important.

すなわち、本発明は、射出成形時などにおいて成形材料の流動に伴う成形体の異方性を低減し、また焼成時の収縮による歪みを抑制して焼成時の収縮異方性が小さく、炭素材料の物性の異方性を低減化した炭素成形材料の製造方法を提供することを目的とする。   That is, the present invention reduces the anisotropy of the molded body due to the flow of the molding material at the time of injection molding and the like, and suppresses the distortion due to the shrinkage at the time of firing, thereby reducing the shrinkage anisotropy at the time of firing. It aims at providing the manufacturing method of the carbon molding material which reduced the anisotropy of the physical property of this.

また、本発明は、異形、複雑形状の炭素材料を製造する際にも、後処理的に機械加工する部分が極力少ない最終製品形状に近似した炭素材料の製造方法、更に、焼成時に発生する膨れや割れなどの現象を低減化することのできる炭素成形材料の製造方法を提供することを目的とする。   The present invention also provides a method for producing a carbon material that approximates the shape of the final product, and the blisters that occur during firing, even when producing irregularly shaped and complex shaped carbon materials. It aims at providing the manufacturing method of the carbon molding material which can reduce phenomena, such as a crack.

上記の目的を達成するための本発明に係る炭素成形材料の製造方法は、平均粒子径が100〜2000μmの炭素粉末100重量部に対し、平均粒子径が100μm以下で軟化点が射出成形時の金型温度より30〜250℃高いピッチ粉末を3〜30重量部の割合で混合し、混合粉に残炭率40%以上の熱硬化性樹脂および融点が40〜150℃の有機物質からなる成形助剤を有機溶剤に溶解した樹脂溶液を加えて、炭素粉末100重量部に対し熱硬化性樹脂の樹脂固形分が10〜40重量部、成形助剤が0.1〜5重量部の量比に混練した後、混練物を乾燥、粉砕して成形粉を作製し、成形粉を射出成形、射出圧縮成形あるいはトランスファ成形により成形し、得られた成形体を180〜280℃の温度で硬化処理し、次いで、非酸化性雰囲気下800℃以上の温度で焼成処理することを構成上の特徴とする。   In order to achieve the above object, the method for producing a carbon molding material according to the present invention is based on 100 parts by weight of carbon powder having an average particle size of 100 to 2000 μm, the average particle size is 100 μm or less, and the softening point is at the time of injection molding. Pitch powder 30 to 250 ° C. higher than the mold temperature is mixed in a proportion of 3 to 30 parts by weight, and the mixed powder is formed of a thermosetting resin having a residual carbon ratio of 40% or more and an organic material having a melting point of 40 to 150 ° C. A resin solution in which an auxiliary agent is dissolved in an organic solvent is added, and the amount ratio of the resin solid content of the thermosetting resin to 10 to 40 parts by weight and the molding auxiliary to 0.1 to 5 parts by weight with respect to 100 parts by weight of the carbon powder. After kneading, the kneaded product is dried and pulverized to produce a molding powder. The molding powder is molded by injection molding, injection compression molding or transfer molding, and the resulting molded body is cured at a temperature of 180 to 280 ° C. And then non-oxidizing atmosphere A structural feature is that the baking treatment is performed at a temperature of 800 ° C. or higher.

成形助剤としては、ステアリン酸、ステアリン酸塩、オレイン酸、ポリエチレンワックス、カルナバワックス、有機リン酸エステル、架橋ポリオレフィンなどの化合物、もしくは、これらの2種以上の混合物が好ましく例示され、更に、炭素粉末100重量部に対し、セルロース繊維、レーヨン繊維、アクリル系樹脂、ポリスチレン系樹脂、コーンスターチ、クルミ粉などの焼成助剤を0〜10重量部添加することが好ましい。   As the molding aid, stearic acid, stearate, oleic acid, polyethylene wax, carnauba wax, organic phosphate ester, crosslinked polyolefin and the like, or a mixture of two or more of these are preferably exemplified, and carbon It is preferable to add 0 to 10 parts by weight of a baking aid such as cellulose fiber, rayon fiber, acrylic resin, polystyrene resin, corn starch or walnut powder with respect to 100 parts by weight of the powder.

本発明の炭素成形材料の製造方法は、原料として特定粒度の炭素粉末およびピッチ粉末を用いて、ピッチ粉末の軟化点を射出成形時の成形金型の温度との関係で特定範囲に設定し、この炭素粉末とピッチ粉末の重量比、更に、炭素粉末に対するバインダーとなる熱硬化性樹脂および成形助剤の重量比などを特定範囲に設定して混練し、混練物を乾燥、粉砕して作製した成形粉を射出成形、射出圧縮成形、トランスファ成形などにより成形することにより成形体の異方性が小さく、また焼成時の収縮による歪みを抑制して焼成時の収縮異方性が小さい、すなわち、物性の異方性を低減化し、更に、目的とする最終製品形状に近似した炭素成形材料を製造することが可能となる。   The method for producing a carbon molding material of the present invention uses carbon powder and pitch powder of a specific particle size as raw materials, sets the softening point of the pitch powder to a specific range in relation to the temperature of the molding die during injection molding, The weight ratio between the carbon powder and the pitch powder, and the weight ratio between the thermosetting resin and the molding aid as a binder with respect to the carbon powder were set in specific ranges and kneaded, and the kneaded product was dried and pulverized. By molding the molding powder by injection molding, injection compression molding, transfer molding, etc., the anisotropy of the molded body is small, and the strain anisotropy at the time of firing is small by suppressing distortion due to the shrinkage at the time of firing, It is possible to reduce the anisotropy of physical properties and to manufacture a carbon molding material that approximates the final shape of the target product.

そして、本発明によれば、例えば、帯電防止材、電磁波シールド材、摺動部材、放熱基盤、遠赤外線放射体、発熱体、電磁誘導などの発熱体などとして有用な炭素成形材料を効率よく製造することができる。   According to the present invention, for example, a carbon molding material that is useful as an antistatic material, an electromagnetic shielding material, a sliding member, a heat dissipation base, a far-infrared radiator, a heating element, a heating element such as electromagnetic induction, and the like is efficiently produced. can do.

原料の炭素粉末には樹脂を炭化した炭素やコークスを仮焼した炭素の粉砕品など各種の炭素粉末が用いられるが、黒鉛化度の高い黒鉛粉末は射出時の流動性が高く、成形性が良好で、ノズル詰まりやショートショットが少ないので、成形性の観点から人造黒鉛粉末や天然黒鉛粉末が好適である。   Various carbon powders are used as the raw material carbon powder, such as carbonized resin and pulverized carbon obtained by calcining coke. Graphite powder with a high degree of graphitization has high fluidity during injection and has high moldability. Artificial graphite powder and natural graphite powder are preferred from the viewpoint of moldability because they are good and have less nozzle clogging and short shots.

炭素粉末は、適宜な粉砕機で粉砕して平均粒子径が100〜2000μmに粒度調整したものが用いられ、好ましくは平均粒子径が400〜2000μmの炭素粉末が使用される。炭素粉末の平均粒子径が100μmを下回ると混練物の流動性が低下して成形性が悪化し、また平均粒子径が2000μmを越えると炭素成形材料の強度の低下を招き、更に射出成形時に金型のゲート付近で詰りが発生し易くなる。   The carbon powder is pulverized with a suitable pulverizer and the average particle size is adjusted to a particle size of 100 to 2000 μm, and carbon powder having an average particle size of 400 to 2000 μm is preferably used. If the average particle diameter of the carbon powder is less than 100 μm, the fluidity of the kneaded product is deteriorated and the moldability is deteriorated. If the average particle diameter is more than 2000 μm, the strength of the carbon molding material is reduced. Clogging is likely to occur near the mold gate.

炭素粉末と混合するピッチ粉末には石油系ピッチ、石炭系ピッチ、合成ピッチなど何れも使用することができるが、平均粒子径が100μm以下で、軟化点が射出成形時の金型温度より30〜250℃高いピッチ粉末を使用することが必要である。   Petroleum pitch, coal pitch, synthetic pitch, etc. can be used for the pitch powder mixed with the carbon powder, but the average particle size is 100 μm or less and the softening point is 30 to 30 ° C. higher than the mold temperature at the time of injection molding. It is necessary to use pitch powder that is 250 ° C higher.

ピッチ粉末は、その粒度が炭素粉末の粒度より小さいことが必要であり、平均粒子径が100μm以下のピッチ粉末を使用し、好ましくは10〜70μmの粉末が用いられる。ピッチ粉末の平均粒子径が100μmより大きくなると炭素粉末の表面にピッチ粉末がうまくまとわりつかず、また射出成形時に空気の巻き込みを抑えることができずに得られた成形体の物性に異方性が生じ易い。更に、焼成中に焼き締まりの効果が十分に発揮されないので、収縮異方性が大きくなって割損する場合がある。   The pitch powder is required to have a particle size smaller than that of the carbon powder, and pitch powder having an average particle size of 100 μm or less is used, and preferably 10 to 70 μm is used. When the average particle size of the pitch powder is larger than 100 μm, the pitch powder does not cling well to the surface of the carbon powder, and anisotropy occurs in the physical properties of the resulting molded body because air entrainment cannot be suppressed during injection molding. easy. Further, since the effect of baking tightening is not sufficiently exhibited during firing, shrinkage anisotropy may increase and breakage may occur.

また、使用するピッチ粉末は、その軟化点が射出成形時の金型温度より30〜250℃高いものが使用される。金型温度より低い軟化点のピッチ粉末を使用する、あるいは使用するピッチ粉末の軟化点より高い温度で射出成形すると、軟化したピッチ成分が射出成形体の表面に緻密層を形成するので焼成処理時に発生するガスが円滑に排出されず、したがってガスにより成形体に膨れが発生し、更に、熱硬化性樹脂の硬化速度を遅らせるので成形体が軟らかく、離型時に変形し易くなる。   The pitch powder used is one whose softening point is 30 to 250 ° C. higher than the mold temperature at the time of injection molding. When pitch powder with a softening point lower than the mold temperature is used, or when injection molding is performed at a temperature higher than the softening point of the pitch powder to be used, the softened pitch component forms a dense layer on the surface of the injection-molded product. The generated gas is not smoothly discharged, and hence the molded body is swollen by the gas. Further, since the curing rate of the thermosetting resin is delayed, the molded body is soft and easily deformed at the time of mold release.

そのため、ピッチ粉末の軟化点が射出成形時の金型温度より30℃以上高いものを使用する。しかし、ピッチ粉末の軟化点が高くなるとピッチの炭素化温度と焼成処理時の熱硬化性樹脂の熱分解温度とが近くなり、この温度域においてはガスの発生量が多くなるので発生ガスを速やかに揮散させることが困難となり、焼成中に成形体に膨れや割損が生じ易くなる。そこで、ピッチ粉末は軟化点が250℃以下のものが選定、使用される。   Therefore, a pitch powder whose softening point is 30 ° C. or higher than the mold temperature at the time of injection molding is used. However, as the softening point of the pitch powder increases, the carbonization temperature of the pitch and the thermal decomposition temperature of the thermosetting resin during the firing process become closer, and the amount of gas generated increases in this temperature range. It becomes difficult to volatilize, and the molded body tends to swell or break during firing. Therefore, pitch powder having a softening point of 250 ° C. or lower is selected and used.

なお、軟化点はJIS K2207「軟化点の試験方法(環球法)」に準拠して測定され、規定の環である内径15.9mm、深さ6.4mmのリングに試料を充填し、グリセリン浴中に水平に支えて、試料の中央に規定の0.5gの鋼球を乗せ、浴温を毎分5℃の速さで上昇させて、鋼球を包み込んだ試料が環台の底板に触れたときの温度を読み取り、軟化点とする。   The softening point was measured in accordance with JIS K2207 “Testing Method for Softening Point (Ring and Ball Method)”, a sample was filled in a ring having a specified ring inner diameter of 15.9 mm and depth of 6.4 mm, and a glycerin bath. Support the inside horizontally, place a specified 0.5 g steel ball in the center of the sample, raise the bath temperature at a rate of 5 ° C. per minute, and the sample enclosing the steel ball touches the bottom plate of the ring base. The temperature at that time is read and used as the softening point.

上記の炭素粉末とピッチ粉末は、炭素粉末100重量部に対してピッチ粉末を3〜30重量部の割合で混合して原料となる混合粉を得る。ピッチ粉末の混合割合が3重量部未満では射出成形時に空気の巻き込みが抑えられず、成形体に異方性が生じ易くなり、また焼成中に焼き締まりの効果が十分に発揮されないので収縮異方性が大きくなって割れ易くなる。一方、ピッチ粉末の混合割合が30重量部より多くなると成形粉の流動性が低下し、ショート成形になり易くなる。   The above carbon powder and pitch powder are mixed with pitch powder in a ratio of 3 to 30 parts by weight with respect to 100 parts by weight of carbon powder to obtain mixed powder as a raw material. If the mixing ratio of the pitch powder is less than 3 parts by weight, air entrainment cannot be suppressed during injection molding, and anisotropy tends to occur in the molded body, and the effect of shrinkage during firing is not sufficiently exhibited, so that the anisotropic shrinkage The property becomes large and it becomes easy to break. On the other hand, when the mixing ratio of the pitch powder is more than 30 parts by weight, the fluidity of the molding powder is lowered, and short molding tends to occur.

なお、炭素粉末とピッチ粉末は適宜な混合機、例えば万能混合攪拌機、ヘンシェルミキサー、V型ブレンダーなどの混合機でよく混合して混合粉を作製する。   Carbon powder and pitch powder are mixed well with a suitable mixer such as a universal mixing stirrer, Henschel mixer, V-type blender and the like to prepare mixed powder.

混合粉は、残炭率が40%以上の熱硬化性樹脂、および、融点が40〜150℃の有機物質からなる成形助剤を有機溶剤に溶解した樹脂溶液と混合する。なお、残炭率は、磁製ルツボにサンプルを入れ、135℃で1時間加熱、さらに250℃で5時間加熱後、磁製ルツボに蓋をして非酸化性雰囲気中でさらに1000℃で30分間加熱し、1000℃で30分間加熱後のサンプルの重量を、磁製ルツボに投入したサンプルの重量で除すことにより測定される。
残炭率(%)=(1000℃で30分間加熱後のサンプルの重量)/(磁製ルツボに投入したサンプルの重量)×100
The mixed powder is mixed with a resin solution obtained by dissolving a thermosetting resin having a residual carbon ratio of 40% or more and a molding aid made of an organic substance having a melting point of 40 to 150 ° C. in an organic solvent. The residual charcoal ratio is 30% at 1000 ° C. in a non-oxidizing atmosphere after putting the sample in a magnetic crucible, heating at 135 ° C. for 1 hour, further heating at 250 ° C. for 5 hours, then covering the magnetic crucible. It is measured by heating for 1 minute and dividing the weight of the sample after heating at 1000 ° C. for 30 minutes by the weight of the sample put in the porcelain crucible.
Residual carbon ratio (%) = (weight of sample after heating at 1000 ° C. for 30 minutes) / (weight of sample put in porcelain crucible) × 100

混合粉のバインダーとなる熱硬化性樹脂は常用される残炭率が40%以上のフェノール樹脂、エポキシ樹脂、ポリイミド樹脂、フラン樹脂、不飽和ポリエステル樹脂などが用いられ、成形性や価格面からフェノール樹脂あるいはエポキシ樹脂が好適である。   The thermosetting resin used as the binder of the mixed powder is phenol resin, epoxy resin, polyimide resin, furan resin, unsaturated polyester resin, etc. with a residual carbon ratio of 40% or more, which is commonly used. Resins or epoxy resins are preferred.

また、成形助剤は成形時の流動性、成形性および離形性を向上させるために機能するもので、融点が40〜150℃の有機物質が用いられる。融点が40℃より低いと、射出成形時に成形助剤のみが先にキャビティ表面に流れてしまうために射出成形体表面に成形助剤の薄膜が形成され、金型内で成形体を硬化させるときに発生するガスの排出が妨害されるので、成形体に膨れが発生する。また融点が150℃よりも高いと、成形粉を射出する際、成形助剤がノズル内で十分に溶融しないため成形粉の流動性が上がらず、ショートショットになり易くなる。   The molding aid functions to improve fluidity, moldability, and mold release during molding, and an organic substance having a melting point of 40 to 150 ° C. is used. When the melting point is lower than 40 ° C., only the molding aid flows to the cavity surface at the time of injection molding, so a thin film of the molding aid is formed on the surface of the injection molded product, and the molded product is cured in the mold. Since the discharge of the gas generated in this is hindered, the molded body is swollen. On the other hand, when the melting point is higher than 150 ° C., when the molding powder is injected, the molding aid is not sufficiently melted in the nozzle, so that the fluidity of the molding powder does not increase and short shots are likely to occur.

これらの熱硬化性樹脂および成形助剤はアルコール、エーテル、アセトンなどの適宜な有機溶剤に溶解して樹脂溶液を調製し、炭素粉末とピッチ粉末の混合粉に樹脂溶液を加えて、炭素粉末100重量部に対し、熱硬化性樹脂の樹脂固形分が10〜40重量部、成形助剤が0.1〜5重量部の量比になるように混合し、混練する。   These thermosetting resins and molding aids are dissolved in an appropriate organic solvent such as alcohol, ether, and acetone to prepare a resin solution, and the resin solution is added to a mixed powder of carbon powder and pitch powder to obtain carbon powder 100. The thermosetting resin is mixed and kneaded so that the resin solid content of the thermosetting resin is 10 to 40 parts by weight and the molding aid is 0.1 to 5 parts by weight.

混合割合が炭素粉末100重量部に対して、樹脂固形分が10重量部未満では成形粉を射出成形する際に流動性が低くなり、均質な成形体を得ることが難しい。一方、樹脂固形分が40重量部を越えると成形性は良いが、射出成形時に円滑にガス抜けができず、焼成時に膨れ、割れが発生し易くなる。   When the mixing ratio is less than 10 parts by weight with respect to 100 parts by weight of the carbon powder, the fluidity becomes low when injection molding the molding powder, and it is difficult to obtain a homogeneous molded body. On the other hand, when the resin solid content exceeds 40 parts by weight, the moldability is good, but gas cannot be smoothly released during injection molding, and the resin tends to swell and crack during firing.

また、成形助剤の混合割合が炭素粉末100重量部に対して、0.1重量部未満では混合原料の流動性が低下してショートショットになり易く、離形性も悪化する。しかし、混合割合が5重量部を越えると焼成時に成形助剤から発生する分解成分が多いため発生ガス量が多くなり、焼成時に膨れや割れが生じ易くなる。   On the other hand, when the mixing ratio of the molding aid is less than 0.1 parts by weight with respect to 100 parts by weight of the carbon powder, the fluidity of the mixed raw material is lowered and short shot is likely to occur, and the releasability is also deteriorated. However, if the mixing ratio exceeds 5 parts by weight, the amount of gas generated increases because of many decomposition components generated from the molding aid during firing, and blistering and cracking are likely to occur during firing.

この成形助剤は熱硬化性樹脂の分解前の焼成過程で、揮散して消失することが必要であり、成形助剤としては、ステアリン酸、ステアリン酸塩、オレイン酸、ポリエチレンワックス、カルナバワックス、有機リン酸エステル、架橋ポリオレフィンなどの化合物、もしくは、これらの2種以上の混合物が好適に使用される。   This molding aid needs to be volatilized and disappeared in the firing process before decomposition of the thermosetting resin. As the molding aid, stearic acid, stearate, oleic acid, polyethylene wax, carnauba wax, A compound such as an organic phosphate ester or a cross-linked polyolefin, or a mixture of two or more of these is preferably used.

更に、これらの原料系において焼成助剤を添加することが好ましく、焼成助剤は熱硬化性樹脂を焼成して樹脂成分が炭化される前に分解されて揮散し、樹脂成分の炭化に伴って発生するガスの流出路を形成してガスの揮散放出を容易にするために機能する。焼成助剤としては、セルロース繊維、レーヨン繊維、アクリル系樹脂、ポリスチレン系樹脂、コーンスターチ、クルミ粉などが例示される。   Furthermore, it is preferable to add a firing aid in these raw material systems, and the firing aid is decomposed and volatilized before the resin component is carbonized by firing the thermosetting resin. It functions to facilitate the volatilization and release of gas by forming the outflow path of the generated gas. Examples of the baking aid include cellulose fiber, rayon fiber, acrylic resin, polystyrene resin, corn starch, and walnut powder.

なお、焼成助剤は炭素粉末100重量部に対して0〜10重量部の割合で添加する。焼成助剤は焼成時に膨れや割れが発生しない場合には添加不要であるが、添加量比が10重量部を越えると炭素材料の物性が不均一化し、強度も低下することとなる。   The firing aid is added at a ratio of 0 to 10 parts by weight with respect to 100 parts by weight of the carbon powder. The baking aid does not need to be added if no blistering or cracking occurs during firing, but if the amount ratio exceeds 10 parts by weight, the physical properties of the carbon material become non-uniform and the strength also decreases.

炭素粉末、ピッチ粉末、熱硬化性樹脂、成形助剤および必要により焼成助剤などを所定の重量比に混合、混練する。混練はニーダー、加圧型ニーダー、2軸スクリュー混練機など適宜な混練機で十分に混練した後、混練物は真空乾燥や風乾などにより乾燥して有機溶剤分や低温度で揮散する揮発性成分を除去した後、粉砕して成形粉を作製する。   Carbon powder, pitch powder, thermosetting resin, molding aid and, if necessary, firing aid are mixed and kneaded at a predetermined weight ratio. After kneading with a kneader, a pressure kneader, or a suitable kneader such as a twin screw kneader, the kneaded product is dried by vacuum drying, air drying, etc. to remove organic solvents and volatile components that evaporate at a low temperature. After removing, it is pulverized to produce a molding powder.

なお、焼成助剤は予め炭素粉末、熱硬化性樹脂、成形助剤とミキサーなどにより混合することができるが、樹脂溶液を作製する際にカッターミキサーなどにより分散させると、均一な混合ができる。   The firing aid can be mixed beforehand with a carbon powder, a thermosetting resin, a molding aid and a mixer or the like. However, when the resin solution is prepared and dispersed with a cutter mixer or the like, uniform mixing can be performed.

成形粉は5mm以下の粒状に粉砕することが好ましく、成形法には射出成形、射出圧縮成形、トランスファ成形などの成形法が適用されるが、生産性や金型構造などを考慮すると射出成形法が好ましい。   The molding powder is preferably pulverized into particles of 5 mm or less, and molding methods such as injection molding, injection compression molding, transfer molding, etc. are applied as the molding method. Is preferred.

このようにして得られた成形体には表層面に樹脂分のリッチな層が形成され易い。この樹脂リッチ層は焼成処理時に樹脂分が炭化して組織が緻密なカーボン層(ガラス状カーボン層)に転化する。このカーボン層は硬化処理および焼成処理、特に焼成処理時に樹脂成分の炭化に伴って発生する樹脂の分解ガス、および成形助剤や焼成助剤から揮散されるガスの透過を妨げ、炭素材料の膨れや割れの原因となる。そこで、これらのガスの揮散を円滑に行うために成形体の表層面の一部を除去して樹脂リッチ層を予め取り除いておくことが好ましい。   In the molded body thus obtained, a resin-rich layer is easily formed on the surface. This resin-rich layer is converted into a carbon layer (glassy carbon layer) having a dense structure due to carbonization of the resin during the baking treatment. This carbon layer prevents the permeation of the resin decomposition gas generated by the carbonization of the resin component during the curing treatment and the firing treatment, and the gas emitted from the molding aid and firing aid, and the swelling of the carbon material. Cause cracks. Therefore, in order to smoothly volatilize these gases, it is preferable to remove a part of the surface layer of the molded body and remove the resin rich layer in advance.

樹脂リッチ層の除去量は、成形体の作製条件、成形体の大きさ、硬化処理、焼成処理などの条件にもよるが、通常、表層面を10μm以上、好適には40〜50μm程度除去すればよく、また、樹脂リッチ層の除去はサンドペーパーやサンドブラストなどによる研磨や研削による方法、あるいはバーナーなどで表面樹脂層を焼き飛ばす方法でも行うことができる。   The removal amount of the resin-rich layer depends on conditions such as the production conditions of the molded body, the size of the molded body, the curing process, and the baking process, but usually the surface layer is removed by 10 μm or more, preferably about 40 to 50 μm. The removal of the resin-rich layer may be performed by polishing or grinding with sandpaper or sandblast, or by burning the surface resin layer with a burner or the like.

成形体の表層面に形成された樹脂リッチ層を除去した後、常法により180〜280℃の温度に加熱して樹脂成分を硬化処理し、次いで、不活性ガスや窒素ガスなどの非酸化性雰囲気下で800℃以上の温度に加熱して樹脂成分を焼成処理して炭化し、更に、用途目的によっては3000℃程度の温度にまで加熱処理して黒鉛化することにより炭素成形材料が製造される。   After removing the resin-rich layer formed on the surface of the molded body, the resin component is cured by heating to a temperature of 180 to 280 ° C. by a conventional method, and then non-oxidizing such as inert gas or nitrogen gas A carbon molding material is produced by heating to 800 ° C. or higher in an atmosphere and baking the resin component to carbonize, and depending on the purpose of use, it is heat-treated to a temperature of about 3000 ° C. and graphitized. The

以下、実施例と比較例とを対比して、本発明を具体的に説明する。   Hereinafter, the present invention will be described in detail by comparing Examples and Comparative Examples.

実施例1〜6、比較例1〜12
炭素粉末として人造黒鉛を粉砕し、粒度調整して平均粒子径の異なる黒鉛粉末を使用した。また、ピッチ粉末としては軟化点の異なる合成ピッチを用い、粉砕し、粒度調整して平均粒子径の異なるピッチ粉末を調製し、黒鉛粉末100重量部に対し、ピッチ粉末を異なる重量部の割合で混合して混合粉を作製した。
Examples 1-6, Comparative Examples 1-12
Artificial graphite was pulverized as carbon powder, and the particle size was adjusted to use graphite powder having different average particle sizes. Also, as the pitch powder, synthetic pitches having different softening points are used, pulverized, and adjusted to a particle size to prepare pitch powders having different average particle diameters. Mixed powder was prepared by mixing.

熱硬化性樹脂には残炭率50%のフェノール樹脂(群栄化学工業 (株) 製、レヂトップPG−2411)を用い、成形助剤には融点が80℃のステアリン酸を用い、アセトンを有機溶剤に用いて、アセトンにフェノール樹脂およびステアリン酸を異なる濃度で溶解し、完全相溶させて樹脂溶液を調製した。なお、樹脂溶液を調製する際にフェノール樹脂の硬化剤であるヘキサミンを添加した。   Phenol resin (residue PG-2411 manufactured by Gunei Chemical Industry Co., Ltd.) with a residual carbon ratio of 50% is used as the thermosetting resin, stearic acid with a melting point of 80 ° C. is used as the molding aid, and acetone is organic. Using a solvent, a phenol resin and stearic acid were dissolved in acetone at different concentrations and completely dissolved to prepare a resin solution. In addition, when preparing a resin solution, the hexamine which is a hardening | curing agent of a phenol resin was added.

この樹脂溶液を黒鉛粉末とピッチ粉末の混合粉に加えて、黒鉛粉末100重量部に対して、フェノール樹脂の樹脂固形分およびステアリン酸の重量部が異なる量比となるように混合し、2軸ニーダーで60分間混練した。混練物を室温で風乾し、アセトンや揮発性成分を除去した後粉砕して、粒径3mm以下の成形粉を作製した。なお、実施例6においては、焼成助剤としてセルロース製の微小極細繊維を添加した。   This resin solution is added to the mixed powder of graphite powder and pitch powder, and mixed so that the resin solid content of the phenol resin and the weight part of stearic acid are different from each other in 100 parts by weight of the graphite powder. The kneader kneaded for 60 minutes. The kneaded product was air-dried at room temperature to remove acetone and volatile components and then pulverized to produce a molding powder having a particle size of 3 mm or less. In Example 6, cellulose microfibers were added as a baking aid.

これらの成形粉を150t汎用型の射出成形機を用いて、150×150×5tmmの金型により平板1枚取りの射出成形を行った。射出成形条件はシリンダ温度90℃、金型温度150、170、200℃、射出圧力および速度は成形粉の原料組成に合わせて最適条件を選択した。なお、成形体の表層面を1000番の紙ヤスリで研削して、表層面に形成された樹脂リッチ層を30μm研削除去した。   These molding powders were injection-molded by taking a single plate with a 150 × 150 × 5 tmm mold using a 150-t general-purpose injection molding machine. The injection molding conditions were a cylinder temperature of 90 ° C., a mold temperature of 150, 170, 200 ° C., and the injection pressure and speed were selected in accordance with the raw material composition of the molding powder. The surface layer surface of the molded body was ground with a # 1000 paper file, and the resin-rich layer formed on the surface layer surface was removed by 30 μm.

次いで、250℃の温度で5時間加熱して硬化処理した後、一旦常温に戻し、窒素雰囲気中で1000℃の温度で5時間加熱して焼成処理して炭素成形材料を製造した。しかし、成形時に膨れや変形が生じ、またはショート成形した比較例2、5、7、11、12については、焼成を行わなかった。これらの製造条件および成形性を表1に示した。   Next, after curing by heating at a temperature of 250 ° C. for 5 hours, the temperature was once returned to room temperature, and then heated at a temperature of 1000 ° C. for 5 hours in a nitrogen atmosphere to perform a baking treatment to produce a carbon molding material. However, in Comparative Examples 2, 5, 7, 11, and 12, which were swollen or deformed during molding, or were short-molded, firing was not performed. These production conditions and moldability are shown in Table 1.

Figure 2009057261
Figure 2009057261

次に、これらの炭素成形材料について、下記の方法で嵩比重、曲げ強度、固有抵抗および熱伝導率などを測定した。なお、物性の異方性を評価するために1枚の面内から射出方向のテストピースと、射出方向に対して直角方向のテストピースとを切出して、射出方向(X方向)と射出方向と直角方向(Y方向)の物性を各測定した。しかし、焼成しなかった比較例2、5、7、11、12については物性の測定を行わず、また、焼成により膨れや割れが発生した比較例6、8、9、10については固有抵抗と熱伝導率の測定は不可能であった。その結果を表2に示した。   Next, these carbon molding materials were measured for bulk specific gravity, bending strength, specific resistance, thermal conductivity and the like by the following methods. In order to evaluate the anisotropy of physical properties, a test piece in the injection direction and a test piece in a direction perpendicular to the injection direction are cut out from one plane, and the injection direction (X direction) and the injection direction are The physical properties in the perpendicular direction (Y direction) were measured. However, physical properties were not measured for Comparative Examples 2, 5, 7, 11, and 12 that were not fired, and specific resistance was measured for Comparative Examples 6, 8, 9, and 10 that were swollen or cracked by firing. Measurement of thermal conductivity was not possible. The results are shown in Table 2.

嵩比重 ;
アルキメデス法により、試料の乾燥重量および水中での重量を測定(室温25℃)して求めた。
Bulk specific gravity;
It was determined by measuring the dry weight of the sample and the weight in water (at room temperature of 25 ° C.) by the Archimedes method.

曲げ強度(MPa);
JIS K7203により、試験片サイズ90×10×5t(mm)、支点間距離80mm、クロスヘッドスピード0.5mm/分の条件で3点曲げ試験を行った。
Bending strength (MPa);
A three-point bending test was performed according to JIS K7203 under the conditions of a test piece size of 90 × 10 × 5 t (mm), a fulcrum distance of 80 mm, and a crosshead speed of 0.5 mm / min.

固有抵抗 (Ω.m);
JIS R7202の電圧降下法により、試験片サイズ90×10×5t(mm)の長手方向に直流電流0.5Aを流して、端子間距離67mmの電圧降下を測定(室温25℃)して算出した。
Specific resistance (Ω.m);
Calculated by measuring the voltage drop at a terminal distance of 67 mm (room temperature 25 ° C.) by passing a direct current of 0.5 A in the longitudinal direction of the test piece size 90 × 10 × 5 t (mm) by the voltage drop method of JIS R7202. .

熱伝導率(Wm−1−1);
レーザーフラッシュ法により測定した。測定装置は真空理工株式会社製TC−7000型を用い、試験片サイズ10φ×2t(mm)に所定エネルギーのレーザー光を当て、試験片の温度変化およびレーザー光と投射面の裏面の温度変化より、比熱容量および厚さ方向の熱拡散率を測定し、熱伝導率=比熱容量×熱拡散率×密度より算出した。
Thermal conductivity (Wm −1 K −1 );
Measured by laser flash method. TC-7000 type manufactured by Vacuum Riko Co., Ltd. is used as the measuring device. A laser beam with a predetermined energy is applied to a test piece size of 10φ × 2t (mm), and the temperature change of the test piece and the temperature change of the laser light and the back of the projection surface The specific heat capacity and the thermal diffusivity in the thickness direction were measured and calculated from thermal conductivity = specific heat capacity × thermal diffusivity × density.

Figure 2009057261
Figure 2009057261

実施例1〜6はいずれも成形性が良好で、また焼成処理しても膨れや割れが発生せず、
炭素成形材料の物性の異方性、特に曲げ強度の異方性が小さな炭素成形材料を製造できることが分かる。
Examples 1-6 are all good in moldability, and do not generate blisters or cracks even when fired.
It can be seen that a carbon molding material having a small anisotropy of physical properties of the carbon molding material, in particular, anisotropy of bending strength, can be produced.

比較例1はピッチ粉末を配合しなかったため、射出成形時に成形材料の広がりを抑制して抱き込みエアを少なくすることができず、得られた炭素成形材料には射出方向(X方向)と射出方向と直角方向(Y方向)の物性の異方性が大きくなった。また、ピッチ粉末が焼成炭化する際に炭素粉末同士を引き寄せて焼き締まる効果がないため、焼成中の収縮異方性を抑制できず、歪みによって割れてしまうものもあった。   Since Comparative Example 1 did not contain pitch powder, it was not possible to reduce the entrainment air by suppressing the spread of the molding material at the time of injection molding, and the obtained carbon molding material had an injection direction (X direction) and an injection. Anisotropy of physical properties in the direction perpendicular to the direction (Y direction) was increased. Moreover, since there is no effect of attracting and baking the carbon powders when the pitch powder is baked and carbonized, the shrinkage anisotropy during the firing cannot be suppressed, and there are some which are cracked by strain.

比較例2では黒鉛粉末の平均粒子径が50μmと小さかったために成形材料の流動性が悪く、ショート成形となった。   In Comparative Example 2, the average particle size of the graphite powder was as small as 50 μm, so the flowability of the molding material was poor and short molding was achieved.

比較例3では平均粒子径が2200μmと大きな黒鉛粉末を使用したので、成形材料の流動性は良く、成形体および焼成品の外観は良好であったが、強度が著しく低下した。   In Comparative Example 3, the graphite powder having a large average particle diameter of 2200 μm was used. Therefore, the flowability of the molding material was good, and the appearance of the molded body and the fired product was good, but the strength was significantly reduced.

平均粒子径が200μmと大きなピッチ粉末を使用した比較例4では、成形材料の流動性は良く、成形性は良好であったが、ピッチ粉末が黒鉛粉末に十分にまとわりつかず、射出成形時にエアの抱き込みを抑えることができないため、炭素成形体の強度の異方性が大きくなり、また焼成中の焼き締まり効果が発揮されず、収縮異方性が大きくなって割れてしまうものもあった。   In Comparative Example 4 in which a pitch powder having a large average particle size of 200 μm was used, the flowability of the molding material was good and the moldability was good, but the pitch powder was not sufficiently clinging to the graphite powder, so Since the holding cannot be suppressed, the strength anisotropy of the carbon molded body is increased, the shrinkage effect during firing is not exhibited, and the shrinkage anisotropy is increased and the carbon molded body is cracked.

比較例5では、ピッチ粉末の軟化点が射出成形時の金型温度より低かったため、射出成形時に軟化したピッチ成分が表面緻密層を作り、射出成形中に発生したガスにより成形体が膨れてしまったほか、溶融したピッチによりフェノール樹脂の硬化が遅くなり、離型時に成形体が軟らかく、変形した。   In Comparative Example 5, since the softening point of the pitch powder was lower than the mold temperature at the time of injection molding, the pitch component softened at the time of injection molding formed a dense surface layer, and the molded body was swollen by the gas generated during the injection molding. In addition, the cured pitch of the phenol resin was slowed by the melted pitch, and the molded product was soft and deformed when released.

軟化点が射出成形時の金型温度より著しく高いピッチ粉末を用いた比較例6では、成形性は良好であったが、フェノール樹脂の焼成温度とピッチ粉末の分解温度が近似してくるために、その温度域における分解ガス量が多くなり、円滑に揮散させることが困難となって、焼成中に膨れや割れが発生し、得られた炭素成形体も嵩比重が小さく、強度も低いものとなった。   In Comparative Example 6 using the pitch powder whose softening point is significantly higher than the mold temperature at the time of injection molding, the moldability was good, but the firing temperature of the phenol resin and the decomposition temperature of the pitch powder are close to each other. The amount of cracked gas in the temperature range increases, it is difficult to volatilize smoothly, swelling and cracks occur during firing, and the resulting carbon molded body has a low bulk specific gravity and low strength. became.

ピッチ粉末の配合量が35重量部と多い比較例7では混合粉中の微粉が多くなり、成形材料の流動性が低下し、ショート成形となった。   In Comparative Example 7 where the blending amount of the pitch powder was as large as 35 parts by weight, the amount of fine powder in the mixed powder increased, and the fluidity of the molding material decreased, resulting in short molding.

フェノール樹脂が8重量部と少ない比較例8では成形材料の流動性が悪く、成形体にウエルドラインが生じ、そのため焼成した炭素成形材料はウエルドラインに沿って割れ易くなった。   In Comparative Example 8 where the amount of phenol resin was as small as 8 parts by weight, the flowability of the molding material was poor, and a weld line was formed in the molded body.

比較例9では、フェノール樹脂量を45重量部と多くしたため流動性が向上し、成形性は良好であったが、射出成形体が緻密になり、焼成中の分解ガスの透過,揮散が十分でないので膨れが発生し、炭素成形材料の嵩比重が小さく、強度も低下した。   In Comparative Example 9, since the phenol resin amount was increased to 45 parts by weight, the fluidity was improved and the moldability was good, but the injection molded body became dense and the permeation and volatilization of the decomposition gas during firing was not sufficient. As a result, swelling occurred, the bulk density of the carbon molding material was small, and the strength was also lowered.

比較例10は、成形助剤を配合しなかったために成形材料の流動性が低下し、金型に成形材料が充填できずショート成形となった。そのため、焼成した炭素成形材料はウエルドラインに沿って折れ易く、強度が低かった。   In Comparative Example 10, since the molding aid was not blended, the fluidity of the molding material was lowered, and the molding material could not be filled into the mold, resulting in short molding. Therefore, the baked carbon molding material is easy to break along the weld line and has low strength.

比較例11では成形助剤を11重量部添加したため、成形材料の流動性は良好であったが成形体の表層に成形助剤が浮き出て膜を形成し、発生するガスをスムースに排出できず成形体が膨れた。   In Comparative Example 11, since 11 parts by weight of the molding aid was added, the flowability of the molding material was good, but the molding aid floated on the surface layer of the molded body to form a film, and the generated gas could not be discharged smoothly. The molded body swelled.

比較例12では、融点が30℃の成形助剤を1重量部添加して射出成形したが、射出成形時に成形助剤のみが先にキャビティ表面に流れてしまい、成形体表面に成形助剤の薄膜が形成され、硬化時に発生するガスの排出ができずに成形体に膨れが生じた。   In Comparative Example 12, 1 part by weight of a molding aid having a melting point of 30 ° C. was added and injection molding was performed. However, only the molding aid flowed first to the cavity surface during the injection molding, and the molding aid was formed on the surface of the molded body. A thin film was formed, and the gas generated during curing could not be discharged, and the molded body was swollen.

Claims (3)

平均粒子径が100〜2000μmの炭素粉末100重量部に対し、平均粒子径が100μm以下で軟化点が射出成形時の金型温度より30〜250℃高いピッチ粉末を3〜30重量部の割合で混合し、混合粉に残炭率40%以上の熱硬化性樹脂および融点が40〜150℃の有機物質からなる成形助剤を有機溶剤に溶解した樹脂溶液を加えて、炭素粉末100重量部に対し熱硬化性樹脂の樹脂固形分が10〜40重量部、成形助剤が0.1〜5重量部の量比に混練した後、混練物を乾燥、粉砕して成形粉を作製し、成形粉を射出成形、射出圧縮成形あるいはトランスファ成形により成形し、得られた成形体を180〜280℃の温度で硬化処理し、次いで、非酸化性雰囲気下800℃以上の温度で焼成処理することを特徴とする炭素成形材料の製造方法。   For 100 parts by weight of carbon powder having an average particle diameter of 100 to 2000 μm, pitch powder having an average particle diameter of 100 μm or less and a softening point of 30 to 250 ° C. higher than the mold temperature at the time of injection molding is 3 to 30 parts by weight. Mix and add a resin solution in which a molding aid made of a thermosetting resin having a residual carbon ratio of 40% or more and an organic substance having a melting point of 40 to 150 ° C. is dissolved in an organic solvent to the mixed powder, to 100 parts by weight of carbon powder. On the other hand, after the thermosetting resin is kneaded to a quantity ratio of 10 to 40 parts by weight of resin solids and 0.1 to 5 parts by weight of molding aid, the kneaded product is dried and pulverized to produce a molding powder and molded. The powder is molded by injection molding, injection compression molding or transfer molding, and the resulting molded body is cured at a temperature of 180 to 280 ° C, and then fired at a temperature of 800 ° C or higher in a non-oxidizing atmosphere. Characteristic carbon molding material Manufacturing method. 成形助剤が、ステアリン酸、ステアリン酸塩、オレイン酸、ポリエチレンワックス、カルナバワックス、有機リン酸エステル、架橋ポリオレフィンなどの化合物、もしくは、これらの2種以上の混合物である請求項1記載の炭素成形材料の製造方法。   2. The carbon molding according to claim 1, wherein the molding aid is a compound such as stearic acid, stearate, oleic acid, polyethylene wax, carnauba wax, organophosphate ester, crosslinked polyolefin, or a mixture of two or more thereof. Material manufacturing method. 炭素粉末100重量部に対し、セルロース繊維、レーヨン繊維、アクリル系樹脂、ポリスチレン系樹脂、コーンスターチ、クルミ粉などの焼成助剤を0〜10重量部添加する請求項1記載の炭素成形材料の製造方法。   The method for producing a carbon molding material according to claim 1, wherein 0 to 10 parts by weight of a baking aid such as cellulose fiber, rayon fiber, acrylic resin, polystyrene resin, corn starch, and walnut powder is added to 100 parts by weight of the carbon powder. .
JP2007227559A 2007-09-03 2007-09-03 Method for producing carbon molding material Active JP5120748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007227559A JP5120748B2 (en) 2007-09-03 2007-09-03 Method for producing carbon molding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007227559A JP5120748B2 (en) 2007-09-03 2007-09-03 Method for producing carbon molding material

Publications (2)

Publication Number Publication Date
JP2009057261A true JP2009057261A (en) 2009-03-19
JP5120748B2 JP5120748B2 (en) 2013-01-16

Family

ID=40553346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007227559A Active JP5120748B2 (en) 2007-09-03 2007-09-03 Method for producing carbon molding material

Country Status (1)

Country Link
JP (1) JP5120748B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110157378A (en) * 2019-06-24 2019-08-23 吕梁学院 Walnut shell biomass C/Fe3O4The preparation method of/Cu microwave absorbing material
KR101996205B1 (en) * 2019-01-28 2019-10-17 극동씰테크 주식회사 Eco-friendly carbon bearing using carbon fiber for vehicle transportation in vehicle production line and its manufacturing method
CN114478012A (en) * 2021-12-29 2022-05-13 宁波伏尔肯科技股份有限公司 Carbon part manufacturing method and carbon part manufactured by same
CN117342872A (en) * 2023-10-07 2024-01-05 浙江天喜厨电股份有限公司 Bamboo charcoal pot and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5767011A (en) * 1981-04-10 1982-04-23 Shinagawa Refract Co Ltd Manufacture of graphitic molding
JPH01320208A (en) * 1988-06-21 1989-12-26 Showa Denko Kk Production of molded glassy carbon plate
JPH08113668A (en) * 1994-10-14 1996-05-07 Osaka Gas Co Ltd Production of mesocarbon powder molding and production of carbon sinter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5767011A (en) * 1981-04-10 1982-04-23 Shinagawa Refract Co Ltd Manufacture of graphitic molding
JPH01320208A (en) * 1988-06-21 1989-12-26 Showa Denko Kk Production of molded glassy carbon plate
JPH08113668A (en) * 1994-10-14 1996-05-07 Osaka Gas Co Ltd Production of mesocarbon powder molding and production of carbon sinter

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101996205B1 (en) * 2019-01-28 2019-10-17 극동씰테크 주식회사 Eco-friendly carbon bearing using carbon fiber for vehicle transportation in vehicle production line and its manufacturing method
CN110157378A (en) * 2019-06-24 2019-08-23 吕梁学院 Walnut shell biomass C/Fe3O4The preparation method of/Cu microwave absorbing material
CN110157378B (en) * 2019-06-24 2022-05-17 吕梁学院 Walnut shell biomass C/Fe3O4Preparation method of/Cu microwave absorbing material
CN114478012A (en) * 2021-12-29 2022-05-13 宁波伏尔肯科技股份有限公司 Carbon part manufacturing method and carbon part manufactured by same
CN117342872A (en) * 2023-10-07 2024-01-05 浙江天喜厨电股份有限公司 Bamboo charcoal pot and manufacturing method thereof
CN117342872B (en) * 2023-10-07 2024-05-07 浙江天喜厨电股份有限公司 Bamboo charcoal pot and manufacturing method thereof

Also Published As

Publication number Publication date
JP5120748B2 (en) 2013-01-16

Similar Documents

Publication Publication Date Title
JPS6256105B2 (en)
JP5120748B2 (en) Method for producing carbon molding material
JP5041312B2 (en) Carbon material manufacturing method
CN102596851B (en) Carbon material and manufacture method thereof
CN105645960A (en) Method for preparing isotropic graphite from isotropic asphalt with high softening point through self-sintering
JP2001335695A (en) Thermosettable resin molding material and molded article using the same
JP4973917B2 (en) Carbon material manufacturing method
JP2010173876A (en) Method for producing carbon material
JP5057260B2 (en) Method for producing separator material for fuel cell
KR100781628B1 (en) Fuel cell separator using the graphite composite and preparing method thereof
JP2009249195A (en) Method for producing carbon molded product
JP3705211B2 (en) Carbonaceous powder molding material and carbonaceous molded product
JP2003213137A (en) Thermosetting resin molding material and molded article obtained by molding the same
JP2009242176A (en) Carbonaceous structure and its forming process
CN113511898A (en) Preparation method of weldable silicon carbide ceramic barrel
JP2007314870A (en) Method for producing hard alloy sintered compact, and hard alloy sintered compact
JP5093639B2 (en) Method for producing carbon / ceramic composite material
JP2003277028A (en) Amorphous carbon molding and method for manufacturing the same
JPS6013962B2 (en) Manufacturing method of isotropic special carbon material
JP2000319068A (en) Carbon/graphite composite molding
RU2174947C1 (en) Graphite-containing composition for making siliconized graphite-containing products
KR20170038704A (en) Method Of Isotropic carbon fiber forming body, Isotropic carbon fiber electrode including the Isotropic carbon fiber forming body and the preparing method
JPH0483752A (en) Mixture of sinterable substance
JPH0135767B2 (en)
JP2003306382A (en) Amorphous carbon molding and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121010

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5120748

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250