JP2009056410A - Waste-gas treatment catalyst for ship and waste-gas treatment method for ship - Google Patents

Waste-gas treatment catalyst for ship and waste-gas treatment method for ship Download PDF

Info

Publication number
JP2009056410A
JP2009056410A JP2007226736A JP2007226736A JP2009056410A JP 2009056410 A JP2009056410 A JP 2009056410A JP 2007226736 A JP2007226736 A JP 2007226736A JP 2007226736 A JP2007226736 A JP 2007226736A JP 2009056410 A JP2009056410 A JP 2009056410A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
ship
gas treatment
honeycomb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007226736A
Other languages
Japanese (ja)
Other versions
JP4948331B2 (en
Inventor
Hiroki Tsutsumi
広樹 堤
Mitsuharu Hagi
光晴 萩
Shinya Kitaguchi
真也 北口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2007226736A priority Critical patent/JP4948331B2/en
Publication of JP2009056410A publication Critical patent/JP2009056410A/en
Application granted granted Critical
Publication of JP4948331B2 publication Critical patent/JP4948331B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a waste-gas treatment catalyst for a ship and a waste-gas treatment method for a ship which effectively use the catalyst in a limited space such as a ship inside so that the treatment efficiency of the catalyst and the durability for a poisoning substance in a waste gas are improved. <P>SOLUTION: The waste-gas treatment catalyst is a honeycomb type catalyst having a thickness of a honeycomb inner wall of 0.10-0.44 mm, wherein a honeycomb has preferably 1,600-10,000 cells/150 mm<SP>N</SP>(cells/150 mm<SP>N</SP>shows a cell number per a square of side 150 mm). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、船舶排ガス用処理触媒及び船舶排ガスの処理方法である。 The present invention relates to a ship exhaust gas treatment catalyst and a ship exhaust gas treatment method.

船舶排ガス処理については本格的な規制がなく、排ガス処理に関しては単に触媒を用いて処理しうることが記載されていることが提案されるに過ぎない。船舶排ガスの処理は船舶という特殊条件、船舶のピッチング、ローリングによる触媒の破損の防止、限られたスペースであること等の条件における設置方法について各種提案がされているに過ぎないものである。   There is no full-scale regulation for ship exhaust gas treatment, and it is only suggested that the exhaust gas treatment is simply described that it can be treated using a catalyst. There are only various proposals for the installation of the exhaust gas under the conditions such as special conditions of the ship, pitching of the ship, prevention of damage to the catalyst due to rolling, and limited space.

排ガス中の窒素酸化物の除去処理方法としては、アンモニアまたは尿素などの還元剤を用いて排ガス中の窒素酸化物(NOx等)を脱硝触媒上で接触還元し、無害な窒素と水とに分解する選択的触媒還元(SCR)法が一般的である。   As a method for removing nitrogen oxides in exhaust gas, nitrogen oxides (NOx, etc.) in exhaust gas are catalytically reduced on a denitration catalyst using a reducing agent such as ammonia or urea, and decomposed into harmless nitrogen and water. A selective catalytic reduction (SCR) process is common.

これに適用される窒素酸化物除去用触媒(脱硝触媒)としては、チタン−バナジウム系触媒などがよく知られている(特開平10−235206号)。
このような脱硝触媒の用途の一つとして、例えば、船舶から発生する燃焼排ガスの処理が挙げられるが、これらの排ガス浄化装置は触媒自体が大きくなりすぎ、スペースの限られる船舶内での使用は難しいものである。また船舶用燃料にはC重油が使用されため排ガス中の硫黄分、ダストが多く触媒が被毒され易くなるものである。
As a nitrogen oxide removing catalyst (denitration catalyst) applied to this, a titanium-vanadium catalyst is well known (Japanese Patent Laid-Open No. 10-235206).
One of the uses of such a denitration catalyst is, for example, treatment of combustion exhaust gas generated from a ship, but these exhaust gas purification apparatuses are used in ships where the catalyst itself becomes too large and space is limited. It is difficult. In addition, heavy fuel oil C is used as marine fuel, so that the catalyst is easily poisoned due to a large amount of sulfur and dust in the exhaust gas.

先に述べた従来公知の脱硝触媒等は、優れた除去性能を有するものであるが、劣化成分が多く含まれる等の排ガス条件によっては、未だ充分な処理性能を発揮できないこともあるため、さらに高い性能を有する窒素酸化物除去用触媒の開発が望まれている。   The previously known denitration catalysts described above have excellent removal performance, but depending on the exhaust gas conditions such as containing a lot of deteriorating components, sufficient treatment performance may still not be exhibited. Development of a nitrogen oxide removal catalyst having high performance is desired.

特開平10−235206号公報Japanese Patent Laid-Open No. 10-235206

本発明は、船舶内という限られたスペースにおいて触媒を有効活用すること目的とし触媒の処理効率の向上と、排ガスの被毒物質に対しての耐久性の向上を図るものである。更に当該触媒を用いることで単にハニカム自体の幾何学的表面積の増加による触媒活性の増加分よりも、大きな拡散効率の増加による触媒活性向上を得ることができる。   An object of the present invention is to effectively use a catalyst in a limited space in a ship, and to improve the processing efficiency of the catalyst and improve the durability of exhaust gas against poisonous substances. Furthermore, by using the catalyst, it is possible to obtain an improvement in catalytic activity due to an increase in diffusion efficiency which is larger than the increase in catalytic activity due to an increase in the geometric surface area of the honeycomb itself.

本発明者は、上記課題を解決するべく鋭意検討を行い、種々の推測および実験繰り返した。その結果、船舶排ガス処理用の触媒として、ハニカム型触媒であって当該ハニカム内壁厚さが、0.10〜0.44mmであるハニカム型触媒を用いることで、劣化成分が多く含まれる等の厳しい排ガス条件等においても優れた触媒性能を発揮することができ、効果的に排ガス中の窒素酸化物を除去処理できることを見出し、上記課題を一挙かつ容易に解決できることを確認して、本発明を完成した。好ましくは、1600〜10000セル/150mmのハニカムを用いた船舶排ガス処理触媒(セル/150mmは一辺150mmの正方形当たりのセル数を表す。)である。更に好ましくは触媒の比表面積(BET比表面積)が、1〜200m/gであることを特徴とする。当該触媒の触媒組成が、チタン、ケイ素、バナジウム、モリブデン、タングステンからなる群から選ばれる少なくとも1種であることを特徴とする。 The present inventor has intensively studied to solve the above-mentioned problems, and repeated various estimations and experiments. As a result, the use of a honeycomb type catalyst having a honeycomb inner wall thickness of 0.10 to 0.44 mm as a catalyst for ship exhaust gas treatment makes it difficult to contain many deterioration components. The present inventors completed the present invention by confirming that excellent catalyst performance can be exhibited even under exhaust gas conditions, and that nitrogen oxides in exhaust gas can be effectively removed, and that the above problems can be solved easily and easily. did. Preferably, it is a ship exhaust gas treatment catalyst (cell / 150 mm represents the number of cells per square with a side of 150 mm) using a honeycomb of 1600 to 10,000 cells / 150 mm . More preferably, the specific surface area (BET specific surface area) of the catalyst is 1 to 200 m 2 / g. The catalyst composition of the catalyst is at least one selected from the group consisting of titanium, silicon, vanadium, molybdenum, and tungsten.

本発明にかかる排ガス処理方法は、上記本発明の排ガス処理用触媒を用いて窒素酸化物を含む排ガスを処理することを特徴とする。   The exhaust gas treatment method according to the present invention is characterized by treating exhaust gas containing nitrogen oxides using the exhaust gas treatment catalyst of the present invention.

本発明にかかる排ガス処理用触媒、および、これを用いた排ガス処理方法によれば、排ガス中のNOx等の窒素酸化物を、非常に効率良く十分に除去することができる。   According to the exhaust gas treatment catalyst and the exhaust gas treatment method using the same according to the present invention, nitrogen oxides such as NOx in the exhaust gas can be removed very efficiently and sufficiently.

当該触媒を用いることで単にハニカム自体の幾何学的表面積の増加による触媒活性の増加分よりも、大きな拡散効率の増加による触媒活性向上を得ることができる。   By using the catalyst, it is possible to obtain an improvement in catalytic activity due to an increase in diffusion efficiency which is larger than an increase in catalytic activity simply due to an increase in the geometric surface area of the honeycomb itself.

本発明にかかる第一の発明は、船舶排ガス処理用の触媒として、ハニカム型触媒であって当該ハニカム内壁厚さが、0.10〜0.44mmであるハニカム型触媒を用いることで、劣化成分が多く含まれる等の厳しい排ガス条件等においても優れた触媒性能を発揮することができ、効果的に排ガス中の窒素酸化物を除去処理できることを見出し、上記課題を一挙かつ容易に解決できることを確認して本発明を完成した。好ましくは、1600〜10000セル/150mmのハニカムを用いた船舶排ガス処理触媒(セル/150mmは一辺150mmの正方形当たりのセル数を表す)である。更に好ましくは触媒の比表面積(BET比表面積)が、1〜200m/gであることを特徴とする。当該触媒の触媒組成が、チタン、ケイ素、バナジウム、モリブデン、タングステンからなる群から選ばれる少なくとも1種であることを特徴とする。 The first invention according to the present invention uses a honeycomb type catalyst having a honeycomb inner wall thickness of 0.10 to 0.44 mm as a catalyst for ship exhaust gas treatment. It has been found that it can exhibit excellent catalytic performance even under severe exhaust gas conditions such as containing a large amount of nitrogen, and can effectively remove nitrogen oxides in exhaust gas, and confirms that the above problems can be solved all at once. Thus, the present invention has been completed. Preferably, it is a ship exhaust gas treatment catalyst using a honeycomb of 1600 to 10,000 cells / 150 mm (cell / 150 mm represents the number of cells per square of 150 mm on a side). More preferably, the specific surface area (BET specific surface area) of the catalyst is 1 to 200 m 2 / g. The catalyst composition of the catalyst is at least one selected from the group consisting of titanium, silicon, vanadium, molybdenum, and tungsten.

本発明にかかる第二の発明は、当該触媒を用いて船舶用機関から発生する排ガスを処理することを特徴とする船舶排ガスの処理方法である。好ましくは当該排ガスが硫黄酸化物、窒素酸化物(NOx)、煤塵を含むものである。以下、第一の発明及び第二の発明を詳細に説明する。   2nd invention concerning this invention is a processing method of the ship exhaust gas characterized by processing the exhaust gas emitted from a marine engine using the said catalyst. Preferably, the exhaust gas contains sulfur oxide, nitrogen oxide (NOx), and dust. Hereinafter, the first invention and the second invention will be described in detail.

ハニカム内壁厚は、0.10〜0.44mm、好ましくは0.20〜0.44mmである。かかる範囲にすることで排ガス中に含まれる硫黄分であるSOの酸化を抑制することができるからである。 The honeycomb inner wall thickness is 0.10 to 0.44 mm, preferably 0.20 to 0.44 mm. This is because, within this range, it is possible to suppress oxidation of SO 2 that is a sulfur content contained in the exhaust gas.

当該ハニカムは、1600〜10000セル/150mm、好ましくは1600〜4900セル/150mmである。10000セル/150mmを超えるときは排ガス中のダスト成分により触媒の目詰まりが起こり易く、また、耐振動性が少なくなり強度的に脆く欠けやすい。1600セル/150mm未満であるときは触媒の幾何学的表面積が減少し脱硝率が低下するからである。当該セルを有することで単にハニカム自体の幾何学的表面積の増加による触媒活性の増加分よりも、大きな拡散効率の増加による触媒活性向上を得ることができるものである。 The honeycomb has 1600 to 10,000 cells / 150 mm , preferably 1600 to 4900 cells / 150 mm . When it exceeds 10,000 cells / 150 mm , the catalyst is likely to be clogged by dust components in the exhaust gas, and the vibration resistance is reduced, so that it is brittle in strength and easily chipped. This is because when it is less than 1600 cells / 150 mm , the geometric surface area of the catalyst decreases and the denitration rate decreases. By having such a cell, the catalyst activity can be improved by increasing the diffusion efficiency which is larger than the increase in catalyst activity simply by increasing the geometric surface area of the honeycomb itself.

当該ハニカムの長さは200〜2000mm、好ましくは300〜1000mmである。当該ハニカムは単独でも複数個直列、複数個並列に並べて使用することができる。   The length of the honeycomb is 200 to 2000 mm, preferably 300 to 1000 mm. The honeycombs can be used alone or in a plurality in series or in parallel.

当該触媒の比表面積(BET比表面積)が、1〜200m/gであることが好ましい。 The specific surface area (BET specific surface area) of the catalyst is preferably 1 to 200 m 2 / g.

当該触媒の触媒組成が、チタン、ケイ素、バナジウム、モリブデン、タングステンからなる群から選ばれる少なくとも1種であることが好ましく、使用に際しては個々の単独酸化物、個々の酸化物の混合物、各元素の複合酸化物を用いることができる他、各元素間の使用比率も変更使用できる。これらは排ガスの成分により適宜変更使用することができる。これらのうちで好ましい組成は、各元素の酸化物換算質量比で、ケイ素酸化物は10〜50質量%、チタン酸化物は10〜90質量%、タングステン酸化物は1〜25質量%、バナジウム酸化物は0.1〜15質量%であるのが好ましい(合計で100質量%)。   The catalyst composition of the catalyst is preferably at least one selected from the group consisting of titanium, silicon, vanadium, molybdenum, and tungsten. In use, individual single oxides, mixtures of individual oxides, In addition to the use of complex oxides, the use ratios between elements can be changed and used. These can be appropriately changed depending on the components of the exhaust gas. Among these, the preferred composition is an oxide-converted mass ratio of each element, 10 to 50% by mass of silicon oxide, 10 to 90% by mass of titanium oxide, 1 to 25% by mass of tungsten oxide, and vanadium oxide. It is preferable that a thing is 0.1-15 mass% (a total of 100 mass%).

上記触媒の供給原料として、ケイ素源としては、コロイド状シリカ、水ガラス、微粒子ケイ素、四塩化ケイ素などの無機ケイ素化合物およびテトラエチルシリケートなどの有機ケイ素化合物から適宜選択して使用することができる。チタン源としては、焼成してチタン酸化物を生成するものであれば、無機および有機のいずれの化合物も使用可能で、例えば、四塩化チタン、硫酸チタンなどの無機チタン化合物または蓚酸チタン、テトライソプロピルチタネートなどの有機チタン化合物を用いることができる。また、タングステン源およびバナジウム源、モリブデン源については、焼成により酸化物を生成するものであれば、無機および有機のいずれの化合物でもよく、例えば、各々の金属を含む水酸化物、アンモニウム塩、蓚酸塩、ハロゲン化物、硫酸塩、硝酸塩などから適宜用いることができる。   As the feedstock of the catalyst, the silicon source can be appropriately selected from inorganic silicon compounds such as colloidal silica, water glass, fine particle silicon and silicon tetrachloride, and organic silicon compounds such as tetraethyl silicate. As the titanium source, any inorganic or organic compound can be used as long as it can be baked to produce a titanium oxide. For example, an inorganic titanium compound such as titanium tetrachloride and titanium sulfate, titanium oxalate, tetraisopropyl, etc. An organic titanium compound such as titanate can be used. The tungsten source, vanadium source, and molybdenum source may be any inorganic or organic compound as long as they generate oxides by firing, such as hydroxides, ammonium salts, and oxalic acid containing each metal. A salt, halide, sulfate, nitrate or the like can be used as appropriate.

触媒の調製方法としては、特に限定はなく、従来公知の製造技術が適用される。具体的には、(1)各種触媒成分の原料となる化合物を水媒体に溶解した後に、当該液にアンモニア等を添加することで、各触媒成分の水酸化物を沈殿物として得、ろ過・洗浄し、当該水酸化物を乾燥・焼成することで触媒を得る方法(沈殿法)、(2)表面積の高い酸化物に、各触媒成分化合物を水生液とし沈着させた後、乾燥・焼成することで触媒を得る方法(沈着法)、(3)各触媒成分化合物を水性媒体中で十分に混練し乾燥・焼成することで触媒を得る方法(混練法)があり、(1)から(3)により得られた触媒を公知方法によりハニカムに成形することで排ガス処理触媒とすることができる。(4)ハニカム形状の担体に触媒成分を被覆させることで排ガス触媒を得る方法(含浸法)を採用することもできる。以下にチタンとケイ素の複合酸化物(Ti−Si複合酸化物)を例として用い更に触媒の調製方法を具体的に示す。   The method for preparing the catalyst is not particularly limited, and conventionally known production techniques are applied. Specifically, (1) After dissolving the compounds as raw materials for various catalyst components in an aqueous medium, by adding ammonia or the like to the liquid, the hydroxide of each catalyst component is obtained as a precipitate, and filtered, A method of obtaining a catalyst by washing, drying and baking the hydroxide (precipitation method), (2) depositing each catalyst component compound as an aquatic liquid on an oxide having a high surface area, and then drying and baking There is a method for obtaining a catalyst (deposition method), and (3) a method for obtaining a catalyst by sufficiently kneading each catalyst component compound in an aqueous medium, followed by drying and firing (kneading method). The catalyst obtained by (1) can be formed into a honeycomb by a known method to obtain an exhaust gas treatment catalyst. (4) A method (impregnation method) of obtaining an exhaust gas catalyst by coating a honeycomb-shaped carrier with a catalyst component can also be employed. Hereinafter, a method for preparing a catalyst will be specifically described using a composite oxide of titanium and silicon (Ti-Si composite oxide) as an example.

Ti−Si複合酸化物の調製に関しては、特に限定はなく、従来公知の製造技術が適用される。具体的には、沈殿法、沈着法および混練法などの調製法が適用でき、例えば、シリカゾルのアンモニア水溶液に、硫酸チタニルの硫酸水溶液を中和混合して沈殿を生成せしめ、この沈殿を洗浄、120〜250℃で乾燥した後、硝酸バリウムの水溶液の中に得られた乾燥粉体を添加し、過、洗浄後乾燥し300〜650℃で焼成せしめる方法。   The preparation of the Ti—Si composite oxide is not particularly limited, and conventionally known production techniques are applied. Specifically, preparation methods such as a precipitation method, a deposition method, and a kneading method can be applied.For example, a sulfuric acid aqueous solution of titanyl sulfate is neutralized and mixed with an aqueous ammonia solution of silica sol to form a precipitate, and the precipitate is washed. A method of drying at 120 to 250 ° C., adding the dry powder obtained in an aqueous solution of barium nitrate, drying after washing, drying at 300 to 650 ° C.

微粒子ケイ素のアンモニア水溶液に、硫酸チタニルの硫酸水溶液を中和混合して沈殿を生成せしめ、この沈殿を洗浄、120〜250℃で乾燥した後、硝酸バリウムの水溶液の中に得られた乾燥粉体を添加し、過、洗浄後乾燥し300〜650℃で焼成せしめる方法。   Neutralized and mixed aqueous solution of titanyl sulfate with sulfuric acid aqueous solution of fine particle silicon to produce precipitate, washed this precipitate, dried at 120-250 ° C, and then dried powder obtained in aqueous barium nitrate solution Is added, and after washing, drying and baking at 300 to 650 ° C.

この方法は以下のごとく実施される。すなわち、所定量のチタンを含む硫酸チタニルの硫酸水溶液をチタンの酸化物換算で1〜100g/の濃度として準備する。また一方、所定量のシリカを含む水溶液に中和に必要な量のアンモニアを加えシリカの酸化物換算で1〜100g/の濃度とした後、撹拌下、前記の硫酸チタニル水溶液を徐々に中和熱を除熱しながら添加し、チタンおよびケイ素からなる共沈化合物を生成せしめ、別し洗浄したのち80〜250℃で1〜10時間乾燥し粉砕する。得られたTiO−SiO乾燥粉体中には通常SO−2として0.1〜8重量%の硫黄酸化物が含まれている。 This method is carried out as follows. That is, a sulfuric acid aqueous solution of titanyl sulfate containing a predetermined amount of titanium is prepared at a concentration of 1 to 100 g / in terms of titanium oxide. On the other hand, after adding an amount of ammonia necessary for neutralization to an aqueous solution containing a predetermined amount of silica to a concentration of 1 to 100 g / in terms of silica oxide, the aqueous titanyl sulfate solution is gradually neutralized with stirring. Heat is added while removing heat to form a coprecipitation compound composed of titanium and silicon, washed separately, dried at 80 to 250 ° C. for 1 to 10 hours, and pulverized. The obtained TiO 2 —SiO 2 dry powder usually contains 0.1 to 8 wt% of sulfur oxide as SO 4 -2.

本発明にかかる触媒調製法として一例を示せば、TiO−SiOとバナジウムおよびタングステンを含む場合、モノエタノールアミンもしくは蓚酸の水溶液に所定量のメタバナジン酸アンモニウムおよびパラタングステン酸アンモニウムを溶解させ、得られたバナジウム、タングステンを含む水溶液に前記の方法で予め調製されたTiO−SiOの粉体を成型助剤とともに加え、混合、混練し、押し出し成型機でハニカム状に成型する。成型物を50〜120℃で乾燥後、300〜650℃好ましくは350〜550℃で1〜10時間、好ましくは2〜6時間空気流通下で焼成して触媒を得ることができる。また別法としてTiO−SiOの粉体を予めハニカム状に成型、焼成した後に、バナジウム、タングステンを含む水溶液を含浸担持させる方法も採用できる。また、さらに担体を使用することも可能である。担体としては、例えば、アルミナ、シリカ、シリカアルミナ、ベントナイト、ケイソウ土、シリコンカーバイド、チタニア、ジルコニア、マグネシア、コーデイライト、ムライト、軽石、活性炭、無機繊維などを、混練法、担持法等により用いることができる。もちろん触媒調製法はこれらの方法に限定されるものでない。 As an example of the catalyst preparation method according to the present invention, when TiO 2 —SiO 2 , vanadium and tungsten are contained, a predetermined amount of ammonium metavanadate and ammonium paratungstate are dissolved in an aqueous solution of monoethanolamine or oxalic acid. TiO 2 —SiO 2 powder prepared in advance by the above method is added to the aqueous solution containing vanadium and tungsten together with a molding aid, mixed and kneaded, and formed into a honeycomb shape with an extrusion molding machine. After the molded product is dried at 50 to 120 ° C., the catalyst can be obtained by calcination at 300 to 650 ° C., preferably 350 to 550 ° C. for 1 to 10 hours, preferably 2 to 6 hours under air flow. As another method, a method in which a powder of TiO 2 —SiO 2 is previously formed into a honeycomb shape and fired, and then impregnated with an aqueous solution containing vanadium and tungsten can be employed. It is also possible to use a carrier. As the carrier, for example, alumina, silica, silica alumina, bentonite, diatomaceous earth, silicon carbide, titania, zirconia, magnesia, cordierite, mullite, pumice, activated carbon, inorganic fibers, etc. are used by a kneading method, a supporting method, etc. Can do. Of course, the catalyst preparation method is not limited to these methods.

触媒形状としては上記のハニカム状にとどまらず、円柱状、円筒状、板状、リボン状、波板状、パイプ状、ドーナツ状、格子状、その他一体化成型されたものが適宜選ばれる。   The catalyst shape is not limited to the honeycomb shape described above, and a columnar shape, a cylindrical shape, a plate shape, a ribbon shape, a corrugated plate shape, a pipe shape, a donut shape, a lattice shape, and other integrally formed shapes are appropriately selected.

本発明にかかる第二の発明は、当該触媒を用いて船舶用機関から発生する排ガスを処理することを特徴とする船舶排ガスの処理方法である。好ましくは当該排ガスが硫黄酸化物、窒素酸化物(NOx)、煤塵を含むものである。   2nd invention concerning this invention is a processing method of the ship exhaust gas characterized by processing the exhaust gas emitted from a marine engine using the said catalyst. Preferably, the exhaust gas contains sulfur oxide, nitrogen oxide (NOx), and dust.

当該触媒が対象とする排ガスは船舶用機関から発生する排ガスであり、好ましくは当該排ガスが硫黄酸化物、窒素酸化物(NOx)、煤塵を含むものである。具体的には、本発明により製造された脱硝触媒は、ボイラ、焼却炉、ガスタービン、ディーゼルエンジンおよび各種工業プロセスから排出される窒素酸化物の分解活性に優れ、これら窒素酸化物を含む排ガス処理に好適に用いられる。さらには、これらの排ガス中には、一般に二酸化硫黄が含まれており、二酸化硫黄が三酸化硫黄に酸化された場合、装置の腐食などの不具合が生じるが、本発明の脱硝触媒は、二酸化硫黄の三酸化硫黄への酸化能が低いため、より好適に用いられる。   The exhaust gas targeted by the catalyst is exhaust gas generated from a marine engine. Preferably, the exhaust gas contains sulfur oxide, nitrogen oxide (NOx), and soot and dust. Specifically, the denitration catalyst produced by the present invention is excellent in the decomposition activity of nitrogen oxides emitted from boilers, incinerators, gas turbines, diesel engines, and various industrial processes, and exhaust gas treatment containing these nitrogen oxides Is preferably used. Further, these exhaust gases generally contain sulfur dioxide, and when the sulfur dioxide is oxidized to sulfur trioxide, problems such as corrosion of the device occur. However, the denitration catalyst of the present invention is sulfur dioxide. Is more preferably used because of its low ability to oxidize to sulfur trioxide.

本発明の触媒が使用される処理の対象となる排ガスの組成としては、通常SOx10〜2000ppm、酸素1〜20容量%、水蒸気5〜10容量%、煤塵50〜300g/NmおよびNOx(主にNO)100〜2000ppmの程度に含有するものである。通常のディーゼルエンジン排ガスはこの範囲に入るが、特にガス組成を限定しない。本発明の触媒は、例えばSOxを含まない含NOx排ガス、およびハロゲン化合物を含む含NOx排ガス等の特殊な排ガスをも処理することができるからである。 The composition of the exhaust gas to be treated in which the catalyst of the present invention is used is usually SOx 10 to 2000 ppm, oxygen 1 to 20% by volume, water vapor 5 to 10% by volume, soot 50 to 300 g / Nm 3 and NOx (mainly NO) is contained in an amount of about 100 to 2000 ppm. Normal diesel engine exhaust gas falls within this range, but the gas composition is not particularly limited. This is because the catalyst of the present invention can treat special exhaust gases such as NOx-containing exhaust gas containing no SOx and NOx-containing exhaust gas containing a halogen compound.

本発明により製造された脱硝触媒を用いて脱硝を行うには、該脱硝触媒をアンモニアや尿素などの還元剤の存在下、排ガスと接触させ、排ガス中の窒素酸化物を還元除去する。この際の条件については、特に制限がなく、この種の反応に一般的に用いられている条件で実施することができる。具体的には、排ガスの種類、性状、要求される窒素酸化物の分解率などを考慮して適宜決定すればよい。   In order to perform denitration using the denitration catalyst produced according to the present invention, the denitration catalyst is brought into contact with exhaust gas in the presence of a reducing agent such as ammonia or urea, and nitrogen oxides in the exhaust gas are reduced and removed. The conditions at this time are not particularly limited, and can be carried out under conditions generally used for this type of reaction. Specifically, it may be appropriately determined in consideration of the type and properties of exhaust gas, the required decomposition rate of nitrogen oxides, and the like.

本発明の方法において、各種排ガスの処理を行う場合の排ガスの空間速度は、通常、100〜100000Hr−1(STP)であり、好ましくは200〜50000Hr−1(STP)である。上記空間速度が100Hr−1未満であると、一般的に、処理装置が大きくなり過ぎて非効率となり、100000Hr−1を超える場合は、各種排ガス中の有害成分の分解・除去の効率が低下するおそれがある。 In the method of the present invention, the space velocity of the exhaust gas in the case of performing the processing of various exhaust gas is usually 100~100000Hr -1 (STP), preferably 200~50000Hr -1 (STP). When the space velocity is less than 100 Hr −1 , in general, the processing apparatus becomes too large and becomes inefficient, and when it exceeds 100000 Hr −1 , the efficiency of decomposition and removal of harmful components in various exhaust gases decreases. There is a fear.

また、処理対象とする各種排ガスの温度については、100〜500℃であることが好ましく、より好ましくは150〜500℃であり、更に好ましくは250〜450℃である。   Moreover, about the temperature of the various waste gas made into a process target, it is preferable that it is 100-500 degreeC, More preferably, it is 150-500 degreeC, More preferably, it is 250-450 degreeC.

以下に実施例により本発明を詳細に説明するが本発明の趣旨に反しないかぎり、実施例に限定されるものではない。   Hereinafter, the present invention will be described in detail by way of examples. However, the present invention is not limited to the examples unless it is contrary to the spirit of the present invention.

(実施例1)
上記方法により得られた、バナジウムとタングステンを含むTi−Si複合酸化物を以下のハニカム型に成形し排ガス触媒とし下記ガス組成において脱硝率、SO酸化率を測定した。当該各触媒組成は触媒に対して酸化バナジウムが7.6質量%、酸化タングステンが5.4質量%、酸化チタン(TiO2換算)が65.8質量%及び酸化ケイ素(SiO2換算)が21.2質量%である。当該排ガス触媒の形状は、1600〜4900セル/150mm(セル/150mmは一辺150mmの正方形当たりのセル数を表す。)のハニカムである。当該ハニカムの他の形状・物性は表1に示す。次のような方法で脱硝率およびSO酸化率を求めた。ハニカム触媒を溶融塩浴に浸漬された内径38mmのステンレス製反応管に充填し、触媒の空孔のみにディーゼルエンジン排ガスに近似した下記組成の合成ガスにNHを下記の通り添加しつつ、AV=50Nm/mHrで触媒層に導入し、反応温度350℃における脱硝率およびSO酸化率を求めた。
ガス組成
NO 900ppm
SO500ppm
15容量%
O 10容量%

NH900ppm
脱硝率は触媒層入口および出口のNOx濃度をNOx計(化学発光式、YANAKO製ECL−88A0)により測定し、次式に従い求めた。
脱硝率(%)=
(入口NOx濃度)−(出口NOx濃度)/(入口NOx濃度)×100
SO酸化率はまず触媒層出口の排ガス中の全SOxを5%の過酸化水素水に一定時間吸収せしめ硫酸水溶液として捕集し、その一部を秤量しイソプロピルアルコールと混合し、指示薬としてアルセナゾを用いて、所定の濃度で調整した酢酸バリウム水溶液で滴定することで、全SOxの濃度を求めておき、次に排ガス中のSOをゴクソイヤーらの方法(H.GOKSφYR、他、J、Ins.Fuel、35巻、177頁、1961年)により硫酸として捕集し、前記方法によりSO濃度を求め、次式に従いSO酸化率を求めた。
SO酸化率(%)=(出口SO濃度)/(全SOx濃度)×100
得られた結果を表1に示す。
(Example 1)
The Ti—Si composite oxide containing vanadium and tungsten obtained by the above method was molded into the following honeycomb type to form an exhaust gas catalyst, and the denitration rate and SO 2 oxidation rate were measured at the following gas composition. Each catalyst composition was 7.6% by mass of vanadium oxide, 5.4% by mass of tungsten oxide, 65.8% by mass of titanium oxide (in terms of TiO 2), and 21.2% in terms of silicon oxide (in terms of SiO 2). % By mass. The shape of the exhaust gas catalyst is a honeycomb of 1600 to 4900 cells / 150 mm (cell / 150 mm represents the number of cells per square of 150 mm on a side). Other shapes and physical properties of the honeycomb are shown in Table 1. The denitration rate and SO 2 oxidation rate were determined by the following method. A honeycomb reaction tube with an inner diameter of 38 mm immersed in a molten salt bath was filled with a honeycomb catalyst, and NH 3 was added to a synthesis gas having the following composition approximated to diesel engine exhaust gas only in the catalyst pores, while = 50 Nm 3 / m 2 Hr was introduced into the catalyst layer, and the denitration rate and SO 2 oxidation rate at a reaction temperature of 350 ° C. were determined.
Gas composition NO 900ppm
SO 2 500ppm
O 2 15% by volume
H 2 O 10% by volume
N 2 residual NH 3 900 ppm
The NOx removal rate was determined according to the following equation by measuring the NOx concentration at the inlet and outlet of the catalyst layer with a NOx meter (chemiluminescence type, ECL-88A0 manufactured by YANAKO).
Denitration rate (%) =
(Inlet NOx concentration) − (Outlet NOx concentration) / (Inlet NOx concentration) × 100
The SO 2 oxidation rate is as follows. First, all SOx in the exhaust gas at the catalyst layer outlet is absorbed in 5% hydrogen peroxide solution for a certain period of time and collected as a sulfuric acid aqueous solution. A part of this is weighed and mixed with isopropyl alcohol. The concentration of total SOx is obtained by titrating with an aqueous barium acetate solution adjusted to a predetermined concentration, and then SO 3 in the exhaust gas is determined by the method of Goxoyear et al. (H. GOKSφYR, et al., J, Ins Fuel, 35, 177, 1961), the SO 3 concentration was determined by the above method, and the SO 2 oxidation rate was determined according to the following formula.
SO 2 oxidation rate (%) = (outlet SO 3 concentration) / (total SOx concentration) × 100
The obtained results are shown in Table 1.

Figure 2009056410
脱硝活性比とは、比較例4の排ガス触媒における幾何学的表面積の脱硝率を1としたとき、他の排ガス触媒における幾何学的表面積が比較例4のそれとの増減率に対して脱硝率の増減を示したものである。単純に幾何学的表面積の増加・減少により脱硝率が増加・減少すれば脱硝活性率が1なる。
Figure 2009056410
The denitration activity ratio means that when the denitration rate of the geometric surface area in the exhaust gas catalyst of Comparative Example 4 is 1, the geometric surface area of the other exhaust gas catalyst is the denitration rate relative to the rate of increase / decrease with that of Comparative Example 4 It shows the increase or decrease. If the denitration rate increases / decreases simply by increasing / decreasing the geometric surface area, the denitration activity rate becomes 1.

Figure 2009056410
本発明にかかる触媒の性能が選択性にすぐれていることがわかる。
Figure 2009056410
It can be seen that the performance of the catalyst according to the present invention is excellent in selectivity.

(実施例2〜5)
実施例1において、排ガス触媒の形状・物性を変えた以外は実施例1と同様にして触媒の評価を行った。当該形状、物性及び評価は表2に示す。以下の結果により、これら本発明にかかる排ガス触媒は単に幾何学的表面積を増加させただけよりも更に高い脱硝性能であり(脱硝活性比)、かつSO酸化活性が極めて低く、良好な物であることが分かる。
(Examples 2 to 5)
In Example 1, the catalyst was evaluated in the same manner as in Example 1 except that the shape and physical properties of the exhaust gas catalyst were changed. The shape, physical properties and evaluation are shown in Table 2. From the following results, these exhaust gas catalysts according to the present invention have a higher denitration performance (denitration activity ratio) than that obtained by simply increasing the geometric surface area, and have a very low SO 2 oxidation activity and are good. I understand that there is.

Figure 2009056410
(比較例1〜4)
実施例1において、排ガス触媒の形状・物性を変えた以外は実施例1と同様にして触媒の評価を行った。当該形状、物性及び評価は表3に示す。ハニカム内壁が本発明の範囲外なる排ガス触媒は脱硝活性比が低く幾何学的表面積が少なくなったより以上に活性が低下することが分かった。
Figure 2009056410
(Comparative Examples 1-4)
In Example 1, the catalyst was evaluated in the same manner as in Example 1 except that the shape and physical properties of the exhaust gas catalyst were changed. The shape, physical properties and evaluation are shown in Table 3. It has been found that an exhaust gas catalyst having a honeycomb inner wall outside the scope of the present invention has a lower denitration activity ratio and a lower activity than when the geometric surface area is reduced.

Figure 2009056410
Figure 2009056410

本発明は船舶排ガス用処理触媒及び船舶排ガスの処理方法である。スペースの限られた系において効果的に排ガスを処理することが望まれる分野に用いることができる技術である。   The present invention is a ship exhaust gas treatment catalyst and a ship exhaust gas treatment method. This is a technique that can be used in fields where it is desired to effectively treat exhaust gas in a system with limited space.

Claims (6)

ハニカム型触媒であって当該ハニカム内壁厚さが、0.10〜0.44mmであるハニカム型触媒であることを特徴とする船舶排ガス処理触媒。 A marine exhaust gas treatment catalyst characterized by being a honeycomb type catalyst having a honeycomb inner wall thickness of 0.10 to 0.44 mm. 請求項1記載の1600〜10000セル/150mmのハニカムを用いたことを特徴とする請求項1記載の船舶排ガス処理触媒。
(セル/150mmは一辺150mmの正方形当たりのセル数を表す)
The ship exhaust gas treatment catalyst according to claim 1, wherein the honeycomb of 1600 to 10000 cells / 150mm □ according to claim 1 is used.
(Cell / 150mm represents the number of cells per square with a side of 150mm)
請求項1記載の触媒の比表面積(BET比表面積)が、1〜200m/gであることを特徴とする請求項1記載の船舶排ガス処理触媒。 2. The ship exhaust gas treatment catalyst according to claim 1, wherein the catalyst according to claim 1 has a specific surface area (BET specific surface area) of 1 to 200 m 2 / g. 請求項1記載の触媒の触媒組成が、チタン、ケイ素、バナジウム、モリブデン、タングステンからなる群から選ばれる少なくとも1種であることを特徴とする請求項1記載の船舶排ガス処理触媒。 The ship exhaust gas treatment catalyst according to claim 1, wherein the catalyst composition of the catalyst according to claim 1 is at least one selected from the group consisting of titanium, silicon, vanadium, molybdenum, and tungsten. 請求項1〜4記載の触媒を用いて船舶用機関から発生する窒素酸化物を含む排ガスを処理することを特徴とする船舶排ガスの処理方法。 A method for treating ship exhaust gas, comprising treating exhaust gas containing nitrogen oxides generated from a marine engine using the catalyst according to claim 1. 請求項5記載の排ガスが硫黄酸化物、窒素酸化物(NOx)、煤塵を含むことを特徴とする船舶排ガスの処理方法。 The exhaust gas according to claim 5 contains sulfur oxides, nitrogen oxides (NOx), and soot, and a processing method for marine exhaust gas.
JP2007226736A 2007-08-31 2007-08-31 Ship exhaust gas treatment method Active JP4948331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007226736A JP4948331B2 (en) 2007-08-31 2007-08-31 Ship exhaust gas treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007226736A JP4948331B2 (en) 2007-08-31 2007-08-31 Ship exhaust gas treatment method

Publications (2)

Publication Number Publication Date
JP2009056410A true JP2009056410A (en) 2009-03-19
JP4948331B2 JP4948331B2 (en) 2012-06-06

Family

ID=40552650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007226736A Active JP4948331B2 (en) 2007-08-31 2007-08-31 Ship exhaust gas treatment method

Country Status (1)

Country Link
JP (1) JP4948331B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106536883A (en) * 2014-07-25 2017-03-22 曼柴油机和涡轮机欧洲股份公司 Catalyst unit and exhaust gas catalyst

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH105600A (en) * 1996-06-26 1998-01-13 Matsushita Electric Ind Co Ltd Exhaust gas filter
JP2001342818A (en) * 2000-06-05 2001-12-14 Shuya Nagayama Exhaust gas fine particle filter
JP2005120980A (en) * 2003-10-20 2005-05-12 Honda Motor Co Ltd Exhaust emission control device for internal combustion engine
JP2007130624A (en) * 2005-10-14 2007-05-31 Matsushita Electric Ind Co Ltd Exhaust gas purification filter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH105600A (en) * 1996-06-26 1998-01-13 Matsushita Electric Ind Co Ltd Exhaust gas filter
JP2001342818A (en) * 2000-06-05 2001-12-14 Shuya Nagayama Exhaust gas fine particle filter
JP2005120980A (en) * 2003-10-20 2005-05-12 Honda Motor Co Ltd Exhaust emission control device for internal combustion engine
JP2007130624A (en) * 2005-10-14 2007-05-31 Matsushita Electric Ind Co Ltd Exhaust gas purification filter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106536883A (en) * 2014-07-25 2017-03-22 曼柴油机和涡轮机欧洲股份公司 Catalyst unit and exhaust gas catalyst
JP2017521596A (en) * 2014-07-25 2017-08-03 マン・ディーゼル・アンド・ターボ・エスイー Catalyst unit and exhaust gas catalytic converter
US10077701B2 (en) 2014-07-25 2018-09-18 Man Energy Solutions Se Catalyst unit and exhaust gas catalyst

Also Published As

Publication number Publication date
JP4948331B2 (en) 2012-06-06

Similar Documents

Publication Publication Date Title
JP4813830B2 (en) Exhaust gas treatment catalyst, exhaust gas treatment method and exhaust gas treatment device
JPH064126B2 (en) Exhaust gas purification method
JPS6214339B2 (en)
JP2008119651A (en) Catalyst for nitrogen oxide removal, and exhaust gas treating method
JP2730987B2 (en) Catalyst for removing nitrogen oxides and method for removing nitrogen oxides using the catalyst
JP2013091045A (en) Exhaust gas treating method
KR20110055533A (en) Nox removal catalyst for high-temperature flue gas, manufacturing method thereof, and nox removal method for high-temperature flue gas
KR100456748B1 (en) Catalyst for purification of exhaust gases, production process therefor, and process for purification of exhaust gases
KR20150023523A (en) Scr catalyst and method of preparation thereof
JP2015182067A (en) Catalyst and method for treating marine exhaust gas
JP4204692B2 (en) Nitrogen oxide removal catalyst, method for producing the same, and method for removing nitrogen oxides using the catalyst
JP2005081189A (en) Catalyst for denitrifying high temperature waste gas
JP5804980B2 (en) NOx removal catalyst for exhaust gas treatment and exhaust gas treatment method
JP4948331B2 (en) Ship exhaust gas treatment method
JPH0587291B2 (en)
KR20180064929A (en) NOx Removal Catalyst using Porous Ceramic Structures with Three-Dimensional Network for Exhaust Gases Discharged from Marine Engine and Process for Preparing the Same
JP6261260B2 (en) Ship exhaust gas treatment catalyst and exhaust gas treatment method
JPH0824651A (en) Ammonia decomposition catalyst and method for decomposing ammonia using the same
JP3749078B2 (en) NOx removal catalyst and NOx removal method
JP3838415B2 (en) NOx removal catalyst and exhaust gas treatment method using the same
JP2982623B2 (en) Detoxification method of ammonia-containing exhaust gas
JP4499511B2 (en) Method for treating exhaust gas containing nitrogen oxides
JP2002113331A (en) Method of denitration from exhaust gas and its system
JP6016572B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JP2012206058A (en) Denitration catalyst and denitrification method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120306

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4948331

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150