JP2009054695A - Circuit wiring board and manufacturing method therefor - Google Patents

Circuit wiring board and manufacturing method therefor Download PDF

Info

Publication number
JP2009054695A
JP2009054695A JP2007218319A JP2007218319A JP2009054695A JP 2009054695 A JP2009054695 A JP 2009054695A JP 2007218319 A JP2007218319 A JP 2007218319A JP 2007218319 A JP2007218319 A JP 2007218319A JP 2009054695 A JP2009054695 A JP 2009054695A
Authority
JP
Japan
Prior art keywords
conductive
wiring board
insulating substrate
conductive layer
via hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007218319A
Other languages
Japanese (ja)
Inventor
Shoichi Takenaka
尚一 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2007218319A priority Critical patent/JP2009054695A/en
Publication of JP2009054695A publication Critical patent/JP2009054695A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a circuit wiring board that improves thermal-cycle resistance of a contact interface part between a conductive via and a conductive layer especially in a multilayer wiring board, thus achieving high connection reliability, and also to provide its manufacturing method. <P>SOLUTION: The circuit wiring board has an insulating substrate 2a, a via hole VH2 formed such that it runs through the insulating substrate, a conductive via 2d formed by filling a conductive paste into the via hole, and conductive layers 1b and 2b for circuit wiring that are arranged on both sides of the insulating substrate and respectively connected to each end surface of the conductive via, wherein at least one of the two conductive layers has a concave portion C formed in an inter-layer contact part 2bc corresponding to the via hole. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、回路配線基板及びその製造方法に関し、特に多層配線基板における層間接続用の導電ビアと配線用導電層との高い接続信頼性を得ることができる回路配線基板及びその製造方法に関する。   The present invention relates to a circuit wiring board and a method for manufacturing the circuit wiring board, and more particularly to a circuit wiring board capable of obtaining high connection reliability between a conductive via for interlayer connection and a wiring conductive layer in a multilayer wiring board and a method for manufacturing the circuit wiring board.

近年、携帯電話やノートブック型パソコンに代表される各種デジタル電子機器等の小型化・軽量化及び多機能化が急速に進展している。これらの電子機器に装着される各種電子部品間の配線距離はできる限り短くすることが望まれているため、電子部品を実装する配線基板は高密度配線、高多層化の方向に進み、多層プリント配線基板のような積層配線基板技術を採用する傾向が益々高まってきている。   In recent years, various digital electronic devices such as mobile phones and notebook computers have been rapidly reduced in size, weight, and functionality. Since it is desired to reduce the wiring distance between the various electronic components mounted on these electronic devices as much as possible, the wiring board on which electronic components are mounted has progressed in the direction of high-density wiring and high multi-layers. There is a growing trend to adopt laminated wiring board technology such as wiring boards.

この種の積層配線基板に係わる従来技術の具体例としては、次の従来技術1や従来技術2が知られている。   The following prior art 1 and prior art 2 are known as specific examples of the prior art relating to this type of multilayer wiring board.

<従来技術1>:(一例として特許文献1参照)
フィルム状絶縁体表面に導電パターンを形成した配線基板材を複数枚積層し、各導電パターン層間接続のために、前記各フィルム状絶縁体に所望の位置関係で形成されたIVH(Interstitial Via Hole)に導電性ペースト(導電ビア)を充填する技術。このIVH利用技術によれば、各配線基板材の任意の位置で層間接続ができ、各配線基板材に設けられる各導電ビアを上下スタック状態に配置することも可能であり、積層配線基板としての配線の自由度が高く、高密度配線に対応できるために、次世代実装基板として開発が盛んに行われている。
<Prior Art 1>: (See Patent Document 1 as an example)
IVH (Interstitial Via Hole) formed by laminating a plurality of wiring board materials having a conductive pattern formed on the surface of the film-like insulator and forming a desired positional relationship on each of the film-like insulators for each conductive pattern interlayer connection A technology that fills with conductive paste (conductive via). According to this IVH utilization technique, interlayer connection can be made at an arbitrary position of each wiring board material, and each conductive via provided in each wiring board material can also be arranged in a vertically stacked state. Because of the high degree of freedom of wiring and compatibility with high-density wiring, it is being actively developed as a next-generation mounting board.

<従来技術2>:(一例として特許文献2参照)
従来技術1と同様の分野において、導電ペースト充填による導電ビアと導電パターンとの接続抵抗の低減や耐熱信頼性の改善を目的として、前記導電ビアの端面に接触する導電パターンの接触表面を粗面化し、その表面粗さと前記導電ペーストに使用される導電性粉体の直径との関係を調整する技術。
<Prior Art 2>: (See Patent Document 2 as an example)
In the same field as prior art 1, the contact surface of the conductive pattern contacting the end surface of the conductive via is roughened for the purpose of reducing the connection resistance between the conductive via and the conductive pattern by filling the conductive paste and improving the heat resistance reliability. To adjust the relationship between the surface roughness and the diameter of the conductive powder used in the conductive paste.

ところで、多層配線基板の電気的な層間接続の接続信頼性を評価するために、その一手法としての耐熱衝撃試験が行われる。この試験は多層配線基板を低温−高温環境下に交互に晒して回路抵抗値の変化を測定するものである。このような低温−高温サイクル中において、前記フィルム状絶縁体を含む各配線基板材は膨張−収縮を繰り返すため、前記導電ペースト(導電ビア)と導電パターンとの接触界面に応力が集中する。その結果、特に前記導電ペーストの接触界面付近の部分が応力劣化して界面剥離による断線或いは接続抵抗値の著しい上昇を惹き起こし耐熱衝撃試験に不合格となることがある。   By the way, in order to evaluate the connection reliability of the electrical interlayer connection of the multilayer wiring board, a thermal shock test is performed as one method. In this test, the change in circuit resistance value is measured by alternately exposing a multilayer wiring board to a low temperature-high temperature environment. During such a low temperature-high temperature cycle, each wiring board material including the film-like insulator repeatedly expands and contracts, so that stress concentrates on the contact interface between the conductive paste (conductive via) and the conductive pattern. As a result, particularly in the vicinity of the contact interface of the conductive paste, stress deterioration may cause disconnection due to interface peeling or a significant increase in connection resistance value, resulting in failure of the thermal shock test.

前記従来技術1及び2の積層配線基板は、いずれにおいても、特に層間接続に最も重要な部分であるビアホール内の前記導電ペースト端面と導電パターン内面との接触界面が、その周囲のフィルム絶縁体と導電パターンとの接触界面と同一平面に揃った状態となっている。従って、前記各従来技術では、前述のような耐熱衝撃試験が行われる際に、前記導電ペースト端面と導電パターン内面との接触界面への前記低温−高温サイクルによる剪断応力の集中が避け難いために、前記層間接触界面部分の熱サイクル耐性及び接続信頼性が低下するという問題がある。
特開2000−38464号公報 特開2001−24328号公報
In any of the multilayer wiring boards of the prior arts 1 and 2, the contact interface between the conductive paste end face and the conductive pattern inner surface in the via hole, which is the most important part particularly for interlayer connection, has a film insulator around it. The contact interface with the conductive pattern is in the same plane. Therefore, in each of the conventional technologies, when the thermal shock test as described above is performed, it is difficult to avoid the concentration of shear stress due to the low temperature-high temperature cycle at the contact interface between the end surface of the conductive paste and the inner surface of the conductive pattern. There is a problem that the heat cycle resistance and connection reliability of the interlayer contact interface portion are lowered.
JP 2000-38464 A JP 2001-24328 A

本発明は、前記従来の問題点を解決するものであり、特に、多層配線基板における導電ビアと配線用導電層との層間接触界面部分の熱サイクル耐性を向上してその高い接続信頼性を得ることができる回路配線基板及びその製造方法を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and in particular, improves the thermal cycle resistance of the interlayer contact interface portion between the conductive via and the conductive layer for wiring in the multilayer wiring board and obtains its high connection reliability. An object of the present invention is to provide a circuit wiring board that can be used and a manufacturing method thereof.

請求項1に記載の本発明の回路配線基板は、絶縁基板と、前記絶縁基板を貫通して形成されたビアホールと、前記ビアホールに導電性ペーストを充填して形成された導電ビアと、前記絶縁基板の両面にそれぞれ配置され前記導電ビアの両端面に各々接続された回路配線用の導電層とを備え、前記両方の導電層の少なくとも一方は、前記ビアホールに対応する層間コンタクト部に形成された凹部を有することを特徴とする。   The circuit wiring board of the present invention according to claim 1 includes an insulating substrate, a via hole formed through the insulating substrate, a conductive via formed by filling the via hole with a conductive paste, and the insulation Circuit wiring conductive layers disposed on both sides of the substrate and connected to both end surfaces of the conductive via, respectively, at least one of the two conductive layers being formed in an interlayer contact portion corresponding to the via hole It has a recessed part.

請求項2に記載の本発明は、層間接続用の導電ビアを有する少なくとも1つの配線基板材を含む複数の配線基板材を積層してなる回路配線基板であって、前記導電ビアを有する配線基板材は、絶縁基板と、前記絶縁基板を貫通して形成されたビアホールと、前記ビアホールに導電性ペーストを充填して形成された導電ビアと、前記絶縁基板の少なくとも一方の面に配置され前記導電ビアの端面に接続された回路配線用の導電層とを備え、前記導電層は、前記ビアホールに対応する層間コンタクト部に形成された凹部を有することを特徴とする。   The present invention according to claim 2 is a circuit wiring board formed by laminating a plurality of wiring board materials including at least one wiring board material having conductive vias for interlayer connection, wherein the wiring board having the conductive vias is provided. The plate material is disposed on at least one surface of the insulating substrate, the via hole formed through the insulating substrate, the conductive via formed by filling the via hole with a conductive paste, and the conductive material. And a conductive layer for circuit wiring connected to the end face of the via, wherein the conductive layer has a recess formed in an interlayer contact portion corresponding to the via hole.

請求項3に記載の本発明は、請求項1または請求項2に記載の回路配線基板において、前記導電層の凹部の底面と前記導電ビア端面との接触界面は、その周囲の前記導電層と絶縁基板との接触界面から前記絶縁基板の厚さ方向に偏位していることを特徴とする。   According to a third aspect of the present invention, in the circuit wiring board according to the first or second aspect, the contact interface between the bottom surface of the concave portion of the conductive layer and the end face of the conductive via is the same as the conductive layer around it. It is deviated from the contact interface with the insulating substrate in the thickness direction of the insulating substrate.

請求項4に記載の本発明は、請求項1〜請求項3のうちいずれか1つに記載の回路配線基板において、前記凹部は、前記導電層の厚さをt、前記凹部の深さをdとするとき、前記深さdが0.5μm≦d≦(t−1)μmの関係で形成されていることを特徴とする。   According to a fourth aspect of the present invention, in the circuit wiring board according to any one of the first to third aspects, the concave portion has a thickness t of the conductive layer and a depth of the concave portion. When d, the depth d is formed in a relationship of 0.5 μm ≦ d ≦ (t−1) μm.

請求項5に記載の本発明の回路配線基板の製造方法は、絶縁基板の少なくとも一方の面に配線用導電層を形成する工程と、前記絶縁基板の層間接続予定部分を貫通し前記配線用導電層を露出させるビアホールを形成する工程と、前記配線用導電層の層間コンタクト部に凹部形成する工程とを備え、前記ビアホール及び前記凹部の形成は、前記絶縁基板及び配線用導電層に対するレーザ照射による連続操作加工によって形成されることを特徴とする。   According to a fifth aspect of the present invention, there is provided a method for manufacturing a circuit wiring board according to the present invention, comprising: forming a wiring conductive layer on at least one surface of an insulating substrate; Forming a via hole exposing the layer, and forming a recess in an interlayer contact portion of the wiring conductive layer, wherein the via hole and the recess are formed by laser irradiation on the insulating substrate and the wiring conductive layer. It is formed by continuous operation processing.

本発明の回路配線基板によれば、前記絶縁基板の両面にそれぞれ配置された回路配線用の導電層の少なくとも一方が、前記ビアホールに対応する凹部を有しているために、配線基板の熱衝撃試験等のに際しても、特に導電ビアと導電層との接触界面部分の熱サイクル耐性を向上し、その高い接続信頼性を得ることができる。   According to the circuit wiring board of the present invention, since at least one of the conductive layers for circuit wiring respectively disposed on both surfaces of the insulating substrate has the recess corresponding to the via hole, In testing and the like, in particular, the thermal cycle resistance of the contact interface portion between the conductive via and the conductive layer can be improved, and the high connection reliability can be obtained.

また、本発明の回路配線基板の製造方法によれば、ビアホール及び凹部をレーザ照射による連続操作加工によって簡単に形成することができるので、回路配線基板の製造が容易であり、製造コストが改善されるという効果を奏することができる。   Further, according to the method for manufacturing a circuit wiring board of the present invention, the via hole and the recess can be easily formed by continuous operation processing by laser irradiation, so that the circuit wiring board can be easily manufactured and the manufacturing cost can be improved. It is possible to produce an effect that.

以下、本発明に係わる回路配線基板及びその製造方法の一実施形態について、図1及び図2を参照して説明する。ここで、図1(a)は本発明に係わる回路配線基板の一実施形態を示す一部切欠断面図、図1(b)は図1(a)の一部拡大断面図であり、図2は本発明に係わる回路配線基板の製造方法の一実施形態を説明するために図1に示された回路配線基板の一部を抜粋して表す工程別断面図である。   Hereinafter, an embodiment of a circuit wiring board and a manufacturing method thereof according to the present invention will be described with reference to FIGS. Here, FIG. 1A is a partially cutaway sectional view showing an embodiment of a circuit wiring board according to the present invention, FIG. 1B is a partially enlarged sectional view of FIG. FIG. 3 is a cross-sectional view by process showing a part of the circuit wiring board shown in FIG. 1 in order to explain one embodiment of the method for manufacturing a circuit wiring board according to the present invention.

まず、図1に示された前記回路配線基板の一実施形態について説明すると、第1配線基板材1は、ここでは、最下層に位置していて、フィルム状の第1絶縁基板1a、及びその一方の面(上面)に所望の回路配線パターンで形成された配線用の第1導電層1bを有している。   First, an embodiment of the circuit wiring board shown in FIG. 1 will be described. The first wiring board material 1 is here located in the lowermost layer, and is a film-like first insulating board 1a, and its The first conductive layer 1b for wiring formed with a desired circuit wiring pattern is provided on one surface (upper surface).

前記第1配線基板材1上に積層された第2配線基板材2は、フィルム状の第2絶縁基板2a、その一方の面(上面)に形成された所望のパターン形状の配線用の第2導電層2b、第2絶縁基板2aの他方の面(下面)に設けられた接着層2c、前記第2絶縁基板2a及び接着層2cを貫通して設けられた複数(図示では2箇所)のビアホールVH2、及び前記各ビアホールVH2に充填された導電性ペーストからなる導電ビア2dを有している。   The second wiring board material 2 laminated on the first wiring board material 1 is a film-like second insulating substrate 2a and a second wiring for wiring having a desired pattern shape formed on one surface (upper surface) thereof. A conductive layer 2b, an adhesive layer 2c provided on the other surface (lower surface) of the second insulating substrate 2a, and a plurality (two locations in the figure) of via holes provided through the second insulating substrate 2a and the adhesive layer 2c. VH2 and conductive vias 2d made of conductive paste filled in the via holes VH2 are provided.

そして、前記第2導電層2bは、層間接続を予定している部分(領域)に層間コンタクト部2bcを有し、前記層間コンタクト部2bcは、前記ビアホールVH2及び導電ビア2dに対応した位置関係にある。前記層間コンタクト部2bcには、前記ビアホールVH2側に開口する凹部Cが形成されていて、前記凹部Cの内部空間は、前記ビアホールVH2の筒状空間と連通して共通の筒状空間を構成している。   The second conductive layer 2b has an interlayer contact portion 2bc in a portion (region) where the interlayer connection is planned, and the interlayer contact portion 2bc has a positional relationship corresponding to the via hole VH2 and the conductive via 2d. is there. The interlayer contact portion 2bc is formed with a recess C that opens to the via hole VH2 side, and the internal space of the recess C communicates with the cylindrical space of the via hole VH2 to form a common cylindrical space. ing.

前記凹部Cの形状は、例えば円筒状のビアホールVH2に続く筒状空間を形成するように、フラットな円形底面部分とその周縁に立ち上がる円筒部分を有する形状に窪まされていて、前記凹部C底面は、その周辺の第3絶縁基板3a上面と前記第3導電層3b下面との接触界面から前記ビアホールVH2とは反対側の厚さ方向に遠ざかるように偏位した位置となっている。   The shape of the concave portion C is recessed into a shape having a flat circular bottom portion and a cylindrical portion rising at the periphery thereof so as to form a cylindrical space following the cylindrical via hole VH2, for example. The position is shifted so as to move away from the contact interface between the upper surface of the third insulating substrate 3a and the lower surface of the third conductive layer 3b in the thickness direction opposite to the via hole VH2.

前記ビアホールVH2及び凹部Cは、例えばレーザ照射によって形成される。第1ステップでのレーザ照射は、例えば30kHz及び0.09Wのレーザ出力をもって、接着層2c側から第2導電層2bの方向に穿孔して前記層間コンタクト部2bc下面に達するビアホールVH2を形成する。引き続く第2ステップでのレーザ照射は、その出力を例えば30kHz及び0.80Wに上昇させて層間コンタクト部2bc下面を切削することによって凹部Cを形成する。このように前記ビアホールVH2及び凹部Cはレーザ出力を変化させるだけの連続操作加工によって簡単に形成できる。   The via hole VH2 and the recess C are formed by, for example, laser irradiation. The laser irradiation in the first step forms a via hole VH2 that drills in the direction of the second conductive layer 2b from the adhesive layer 2c side with a laser output of 30 kHz and 0.09 W, for example, and reaches the lower surface of the interlayer contact portion 2bc. In the subsequent laser irradiation in the second step, the output is increased to 30 kHz and 0.80 W, for example, and the recess C is formed by cutting the lower surface of the interlayer contact portion 2bc. As described above, the via hole VH2 and the concave portion C can be easily formed by continuous operation processing only by changing the laser output.

従って、前記導電ビア2dは、ビアホールVH2及び凹部Cによる前記筒状空間内に導電性ペーストを充填して形成され、その一端部(上端)が前記第2導電層2bの層間コンタクト部2bcの凹部C内面に接続されている。また、前記導電ビア2dの他端部(下端)は前記第1配線基板材1の第1導電層1b上面に接続される。   Therefore, the conductive via 2d is formed by filling the cylindrical space with the via hole VH2 and the concave portion C with the conductive paste, and one end portion (upper end) of the conductive via 2d is a concave portion of the interlayer contact portion 2bc of the second conductive layer 2b. C is connected to the inner surface. The other end (lower end) of the conductive via 2 d is connected to the upper surface of the first conductive layer 1 b of the first wiring board material 1.

前記第2配線基板材2上に積層された第3配線基板材3は、前記第2配線基板材2と同様に、フィルム状の第3絶縁基板3a、その一方の面(上面)の配線用の第3導電層3b、第3絶縁基板3aの他方の面(下面)の接着層3c、第2絶縁基板2a及び接着層2cを貫通する複数(図示では2箇所)のビアホールVH3、及び前記各ビアホールVH3に充填された導電性ペーストからなる導電ビア3dを有している。   The third wiring board material 3 laminated on the second wiring board material 2 is, like the second wiring board material 2, a film-like third insulating substrate 3a, and wiring for one surface (upper surface) thereof. A third conductive layer 3b, an adhesive layer 3c on the other surface (lower surface) of the third insulating substrate 3a, a plurality (two in the figure) of via holes VH3 penetrating the second insulating substrate 2a and the adhesive layer 2c, A conductive via 3d made of a conductive paste filled in the via hole VH3 is provided.

ところで、前記第3配線基板材3の層間接続手段に係わる部分の構造について、図1(b)を参照して説明すると、前記第3導電層3bは、層間接続を予定している部分(領域)に、前記ビアホールVH3及び導電ビア3dに対応した位置関係にある層間コンタクト部3bcを有する。前記層間コンタクト部3bcには、前記ビアホールVH3側に開口する凹部Cが形成されていて、前記凹部Cの内部空間は、前記ビアホールVH3の筒状空間と連通して共通の筒状空間を構成している。   By the way, the structure of the portion related to the interlayer connection means of the third wiring board material 3 will be described with reference to FIG. 1B. The third conductive layer 3b is a portion (region) where the interlayer connection is planned. ) Have an interlayer contact portion 3bc in a positional relationship corresponding to the via hole VH3 and the conductive via 3d. The interlayer contact portion 3bc is formed with a recess C that opens to the via hole VH3 side, and the internal space of the recess C communicates with the cylindrical space of the via hole VH3 to form a common cylindrical space. ing.

前記層間コンタクト部3bcに形成された凹部Cは、前記第2導電層2bの層間コンタクト部2bcに形成された凹部Cと同様に、フラットな円形底面部分とその周縁に立ち上がる円筒部分を有する形状に窪まされた形状であり、前記凹部C底面は、その周辺の第3絶縁基板3a上面と前記第3導電層3b下面との接触界面から前記ビアホールVH3とは反対側に厚さ方向に遠ざかるように偏位した位置とされている。前記第3配線基板材3の構成は、後述の図2(a)〜図2(f)に示された工程図及びその関連記載文によってより一層詳細に説明される。   The concave portion C formed in the interlayer contact portion 3bc has a shape having a flat circular bottom surface portion and a cylindrical portion rising on the periphery thereof, like the concave portion C formed in the interlayer contact portion 2bc of the second conductive layer 2b. The bottom surface of the recess C is recessed from the contact interface between the upper surface of the third insulating substrate 3a and the lower surface of the third conductive layer 3b in the thickness direction away from the via hole VH3. The position is deviated. The configuration of the third wiring board material 3 will be described in more detail with reference to the process diagrams shown in FIG. 2A to FIG.

そして、積層回路配線基板は、前記第1〜第3配線基板材1〜3をこの順序で位置合わせして積み重ねられ例えば真空中或いは減圧中において一括加熱プレスすることによって熱硬化された前記接着層2c及び3cにより各配線基板材相互を接着して一体化形成されている。   Then, the laminated circuit wiring board is stacked by aligning the first to third wiring board materials 1 to 3 in this order, and thermally cured by, for example, batch heating or pressing in vacuum or reduced pressure. Each wiring board material is bonded and integrated by 2c and 3c.

また、前記第2配線基板材2の導電ビア2dの下端面が、第1配線基板材1の第1導電層1bの層間コンタクト部1bc上面に、前記第3配線基板材3の導電ビア3dの下端面が、第2配線基板材2の第2導電層2bの層間コンタクト部2bc上面にそれぞれ接続されることによって前記導電ビア2d、3dによる層間接続が達成されている。   Further, the lower end surface of the conductive via 2d of the second wiring board material 2 is on the upper surface of the interlayer contact portion 1bc of the first conductive layer 1b of the first wiring board material 1, and the conductive via 3d of the third wiring board material 3 is formed. The lower end surface is connected to the upper surface of the interlayer contact portion 2bc of the second conductive layer 2b of the second wiring board material 2, whereby the interlayer connection by the conductive vias 2d and 3d is achieved.

ところで、前記第1〜第3配線基板材1〜3は、いずれも出発材料として、図2(a)に示すような片面銅箔付き配線基板材用基材(銅箔厚12μm及びポリイミド樹脂厚25μmの新日鐵化学株式会社製の製品型名MC12-25-00CEM)が用いられている。   By the way, as for the said 1st-3rd wiring board materials 1-3, as a starting material, the base material for copper board | substrates with a single-sided copper foil as shown to Fig.2 (a copper foil thickness of 12 micrometers and polyimide resin thickness) A product type MC12-25-00CEM) manufactured by Nippon Steel Chemical Co., Ltd. having a thickness of 25 μm is used.

このような一実施形態によれば、前記第2及び第3配線基板材2、3に各々設けられた各導電ビア2d及び3dの一端部(上端部)は、第2及び第3導電層2b、3bの各凹部Cの底面及び側周面に密着して嵌め込まれた状態になる。従って、導電ビア2d、3dと導電層2b、3bの凹部C内面との接触面積が、前記従来技術に比して大きくなり、接触抵抗並びに接続抵抗が低減された層間接続形態を得ることができる。   According to such an embodiment, one end portions (upper end portions) of the respective conductive vias 2d and 3d provided in the second and third wiring board materials 2 and 3 are formed on the second and third conductive layers 2b. 3b is in close contact with the bottom surface and the side surface of each recess C. Therefore, the contact area between the conductive vias 2d and 3d and the inner surface of the concave portion C of the conductive layers 2b and 3b is larger than that in the prior art, and an interlayer connection configuration with reduced contact resistance and connection resistance can be obtained. .

また、図1(b)に拡大して示すように、前記第3導電層3bに形成された凹部Cの底面と導電ビア3dの一端面(上端面)との接触界面は、第3絶縁基板3aと前記第3導電層3bとの接触界面に対して凹部Cの深さdに相当して偏位しているので、前述の耐熱衝撃試験における低温−高温サイクルにによる剪断応力の集中が避けられ、層間接触界面部分の熱サイクル耐性及び接続信頼性が向上する。なお、図1(b)には、前記第3導電層3bの厚さtが銅箔の素材厚さとして、前記凹部Cの深さdがその開口端面から底面までの寸法としてそれぞれ表されている。   1B, the contact interface between the bottom surface of the recess C formed in the third conductive layer 3b and one end surface (upper end surface) of the conductive via 3d is the third insulating substrate. 3a and the third conductive layer 3b are offset from the contact interface corresponding to the depth d of the recess C, so that concentration of shear stress due to the low temperature-high temperature cycle in the thermal shock test is avoided. Therefore, the heat cycle resistance and connection reliability of the interlayer contact interface portion are improved. In FIG. 1B, the thickness t of the third conductive layer 3b is expressed as the material thickness of the copper foil, and the depth d of the concave portion C is expressed as the dimension from the opening end surface to the bottom surface. Yes.

ところで、図1(b)中破線で示すように、前記第2導電層2bの上面に前述同様の凹部CXを形成し、前記第3導電層3bに接続された導電ビア3dの下端部を前記凹部CXの内面に密着して接触させてもよく、この場合は、更に層間接続抵抗を低減することができる。   By the way, as indicated by a broken line in FIG. 1B, the same concave portion CX is formed on the upper surface of the second conductive layer 2b, and the lower end portion of the conductive via 3d connected to the third conductive layer 3b is The inner surface of the recess CX may be brought into close contact with each other, and in this case, the interlayer connection resistance can be further reduced.

なお、この一実施形態における積層回路配線基板は、導電ビアのない第1配線基板材1の上に、導電ビアを有する2つの配線基板材を構成する第2及び第3配線基板材2、3を積層したが、導電ビアを有する配線基板材は、1つにしても、3つ以上にしてもよい。即ち、導電ビアを有する少なくとも1つの配線基板材を任意の配線基板材上に積層すればよい。   In the laminated circuit wiring board according to this embodiment, the second and third wiring board materials 2 and 3 constituting two wiring board materials having conductive vias on the first wiring board material 1 having no conductive vias. However, the number of wiring board materials having conductive vias may be one or three or more. That is, at least one wiring board material having conductive vias may be laminated on an arbitrary wiring board material.

また、前記第1配線基板材1は片面配線基板構造とされているが、両面配線基板構造としてもよい。そして、前記第1配線基板材1を両面配線基板構造にした場合は、前記第1配線基板材1の反対面に前記第2及び第3配線基板材2、3と同様に形成された他の配線基板材を積層してもよい。この場合の前記第1配線基板材1は、導電ビアを設けたり、コア基板として使用したりすることもできる。   Moreover, although the said 1st wiring board material 1 is made into the single-sided wiring board structure, it is good also as a double-sided wiring board structure. And when the said 1st wiring board material 1 is made into the double-sided wiring board structure, the other side formed similarly to the said 2nd and 3rd wiring board materials 2 and 3 on the opposite surface of the said 1st wiring board material 1 A wiring board material may be laminated. In this case, the first wiring board material 1 can be provided with a conductive via or used as a core board.

そこで、図2を参照して前記積層回路配線基板の製造方法の一実施形態について説明する。まず、図2(a)〜図(f)に示された前記第3配線基板3の製造工程について説明すると、図2(a)に示すように、例えばポリイミド樹脂製のフィルム状第3絶縁基板3aの一方の面(上面)に例えば銅箔製の金属導電層3Bを設けた片面銅箔付き配線基板材用基材Xを出発材料として用意する。ここでは、前記配線基板材用基材Xとして銅箔厚12μm及びポリイミド樹脂厚25μmの新日鐵化学株式会社製の製品型名MC12-25-00CEMを用いた。   An embodiment of the method for manufacturing the laminated circuit wiring board will be described with reference to FIG. First, the manufacturing process of the third wiring board 3 shown in FIGS. 2A to 2F will be described. As shown in FIG. 2A, for example, a film-like third insulating substrate made of polyimide resin. A substrate X for a wiring board material with a single-sided copper foil provided with a metal conductive layer 3B made of, for example, copper foil on one surface (upper surface) of 3a is prepared as a starting material. Here, product type name MC12-25-00CEM manufactured by Nippon Steel Chemical Co., Ltd. having a copper foil thickness of 12 μm and a polyimide resin thickness of 25 μm was used as the substrate X for wiring board material.

次に、図2(b)の工程において、前記金属導電層3Bをサブトラクティブ法によりエッチングして回路配線パターンを有する配線用の第3導電層3bを前記第3絶縁基板3a上面にパターンニング形成する。   Next, in the step of FIG. 2B, the metal conductive layer 3B is etched by a subtractive method to form a third conductive layer 3b for wiring having a circuit wiring pattern on the upper surface of the third insulating substrate 3a. To do.

図2(c)の工程では、前記第3絶縁基板3aの他方の面(下面或いは裏面)に例えばエポキシ系の接着材を真空中で加熱プレスして接着することによって例えば厚さ25μmの接着層3cを形成する。前記エポキシ系接着材としては、例えばニッカン工業株式会社製の製品型名SAFD25μmを使用した。   In the step of FIG. 2C, an adhesive layer having a thickness of, for example, 25 μm is formed by bonding, for example, an epoxy adhesive to the other surface (lower surface or back surface) of the third insulating substrate 3a by heating and pressing in vacuum. 3c is formed. As the epoxy adhesive, for example, product type name SAFD 25 μm manufactured by Nikkan Kogyo Co., Ltd. was used.

図2(d)の工程では、重ね合わせ接着状態の前記第3絶縁基板3a及び接着層3cを共に貫通するビアホールVH3を例えば直径100μmの円筒状の貫通孔として形成する。このビアホールVH3は、例えばUV−YAGレーザにより第1ステップとしての30kHz及び0.09Wの出力をもって、接着層3c側から第3導電層の方向に穿孔して形成される。その穿孔深さは、前記第3絶縁基板3a及び接着層3cの合計厚さ寸法と同一で、前記第3導電層3bの層間コンタクト部3bcを前記ビアホールVH3内に丁度露出させる程度の深さとされる。従って、結果的には、前記ビアホールVH3は、一端が前記第3導電層3bによって塞がれ他端が開口された形状であり、所謂有底開口形状を呈している。   In the step of FIG. 2D, the via hole VH3 penetrating both the third insulating substrate 3a and the adhesive layer 3c in a superposed and bonded state is formed as a cylindrical through hole having a diameter of 100 μm, for example. The via hole VH3 is formed by, for example, drilling in the direction from the adhesive layer 3c toward the third conductive layer with an output of 30 kHz and 0.09 W as a first step using a UV-YAG laser. The perforation depth is the same as the total thickness of the third insulating substrate 3a and the adhesive layer 3c, and the depth is such that the interlayer contact portion 3bc of the third conductive layer 3b is just exposed in the via hole VH3. The Therefore, as a result, the via hole VH3 has a shape in which one end is closed by the third conductive layer 3b and the other end is opened, and has a so-called bottomed opening shape.

次に、図2(e)の工程では、前記UV−YAGレーザの前記第1ステップに引き続く第2ステップとして、そのレーザ出力を上げ、30kHz及び0.80Wの出力をもって、ビアホールVH3内に露出された前記第3導電層3bの層間コンタクト部3bc表面を切削することによって凹部Cを形成する。   Next, in the process of FIG. 2E, as a second step subsequent to the first step of the UV-YAG laser, the laser output is increased and exposed to the via hole VH3 with outputs of 30 kHz and 0.80 W. Further, the recess C is formed by cutting the surface of the interlayer contact portion 3bc of the third conductive layer 3b.

前記凹部Cは、ビアホールVH3に続く共通の筒状空間を形成するように、フラットな円形底面部分とその周縁に立ち上がる円筒部分を有する形状に窪まされていて、前記凹部C底面は、その周辺の第3絶縁基板3a上面と前記第3導電層3b下面との接触界面から前記ビアホールVH3とは反対側に厚さ方向に遠ざかるように偏位した位置とされている。また、前記凹部Cの深さdは、前記第3導電層3b(銅箔)の切削量がレーザ照射パルス数にほぼ比例するので、前記照射パルス数を制御することにより0〜11μmの範囲での制御が行われる。この工程後、例えばプラズマディスミア処理によってクリーニングを行う。   The concave portion C is recessed into a shape having a flat circular bottom surface portion and a cylindrical portion rising on the periphery thereof so as to form a common cylindrical space following the via hole VH3. The position is deviated from the contact interface between the upper surface of the third insulating substrate 3a and the lower surface of the third conductive layer 3b so as to move away from the via hole VH3 in the thickness direction. Further, the depth d of the concave portion C is within a range of 0 to 11 μm by controlling the number of irradiation pulses because the cutting amount of the third conductive layer 3b (copper foil) is substantially proportional to the number of laser irradiation pulses. Is controlled. After this process, cleaning is performed, for example, by plasma smearing.

その後、図2(f)の工程で、共通の筒状空間を構成する前記ビアホールVH3及び前記凹部C内に導電性ペーストを例えばスクリーン印刷法により充填することによって、前記筒状空間を満たした層間接続用の円柱状の導電ビア3dを形成する。このような工程を経て第3配線基板材が作製されるが、前記導電ビア3dは、その一端面(上端面)が前記層間コンタクト部3bcの凹部Cの底面及び周壁面に亘って広い面積をもって密着して接続され、その他端面が他の配線基板材の導電層との接続を可能とするように、ビアホールVH3外に露出されている。従って、前記第3導電層3bの層間コンタクト部3bcの凹部C底面と前記導電ビア3dの上端面との接触界面は、第3絶縁基板3aと前記第3導電層3bとの接触界面に対して第3絶縁基板3a表面の上方に偏位している。   Thereafter, in the step of FIG. 2 (f), the via hole VH3 constituting the common cylindrical space and the recess C are filled with a conductive paste by, for example, screen printing, thereby filling the interlayer space. A cylindrical conductive via 3d for connection is formed. The third wiring board material is manufactured through such a process. The conductive via 3d has one end face (upper end face) having a wide area over the bottom surface and the peripheral wall surface of the recess C of the interlayer contact portion 3bc. The other end face is exposed outside the via hole VH3 so as to be connected to the conductive layer of another wiring board material. Accordingly, the contact interface between the bottom surface of the recess C of the interlayer contact portion 3bc of the third conductive layer 3b and the upper end surface of the conductive via 3d is relative to the contact interface between the third insulating substrate 3a and the third conductive layer 3b. It is deviated above the surface of the third insulating substrate 3a.

なお、後述するように複数の配線基板材を積層して各導電ビアで層間接続する際にその接続強度を増すために、前記導電ビア3dの柱高を幾分高めにして前記接着層3c表面から突出させるよう柱高を調節する場合がある。その場合は、例えば図2(c)の工程で更に接着層3cの下面に所望厚さの樹脂フィルム(図示せず)を設けた状態で図2(d)以降の工程を実施し、図2(f)の導電性ペースト充填後、前記樹脂フィルムを剥離する。前記樹脂フィルム剥離後は、図示してないが、導電ビア3dの下端部が前記樹脂フィルムの厚さ分だけ、前記接着層3cの下面から突出した状態になる。   As will be described later, in order to increase the connection strength when a plurality of wiring board materials are stacked and interlayer connection is made with each conductive via, the surface of the adhesive layer 3c is slightly increased by increasing the column height of the conductive via 3d. The column height may be adjusted to protrude from the wall. In that case, for example, in the process of FIG. 2 (c), the process after FIG. 2 (d) is carried out with a resin film (not shown) having a desired thickness provided on the lower surface of the adhesive layer 3c. After filling the conductive paste of (f), the resin film is peeled off. Although not shown after the resin film is peeled off, the lower end of the conductive via 3d protrudes from the lower surface of the adhesive layer 3c by the thickness of the resin film.

ところで、前記導電性ペーストには、熱硬化性樹脂接着剤に銀、銅などの高導電性金属及び錫などの低融点金属の各粒子或いは粉体を混合したものが用いられ、前記前記第3導電層3b(銅箔)とも合金を形成して良好な電気的導通を得られるように混合される金属材料の選択がなされている。前記導電性ペーストとして熱硬化性樹脂接着剤に銀、銅などの高導電性金属の各粒子或いは粉体を混合したものを用いてもよいが、前述のように銅に拡散し易い錫を更に混合した方が合金化を促進させることできる。そして、図2(f)に示すまでの工程においては、前記導電性ペースト3d並びに前記接着層3cは、未硬化或いは半硬化状態にある。   By the way, the conductive paste is obtained by mixing a thermosetting resin adhesive with particles or powders of a high conductive metal such as silver or copper and a low melting point metal such as tin. A metal material to be mixed is selected so as to form an alloy with the conductive layer 3b (copper foil) to obtain good electrical conduction. As the conductive paste, a thermosetting resin adhesive mixed with particles or powders of highly conductive metals such as silver and copper may be used. However, as described above, tin that easily diffuses into copper is further added. Mixing can promote alloying. In the process up to the step shown in FIG. 2F, the conductive paste 3d and the adhesive layer 3c are in an uncured or semi-cured state.

図2(g)の工程では、まず、前記第3配線基板材3の他に第1配線基板材1及び第2配線基板材2を用意し、これら第1〜第3配線基板材1〜3をこの順序で順次位置合わせして積み重ね配置する。前記第1配線基板材1は、最下層に位置しているために、この例では、接着層や導電ビアを設けることなく、第1絶縁基板1aの上面に所望の回路配線パターンをもってパターンニングされた第1導電層1bを設けて構成されている。勿論、接着層や導電ビアを必要に応じて設けてもよい。   2G, first, in addition to the third wiring board material 3, a first wiring board material 1 and a second wiring board material 2 are prepared, and these first to third wiring board materials 1 to 3 are prepared. Are sequentially stacked in this order. Since the first wiring board material 1 is located in the lowermost layer, in this example, the first wiring board material 1 is patterned with a desired circuit wiring pattern on the upper surface of the first insulating board 1a without providing an adhesive layer or a conductive via. The first conductive layer 1b is provided. Of course, an adhesive layer or a conductive via may be provided as necessary.

前記第2配線基板材2は、第2絶縁基板2a、その上面に形成された所望パターンの配線用の第2導電層2b、前記第2導電層2bの層間コンタクト部2bcの内面に形成された凹部C、前記層間コンタクト部2bcに対応して貫通形成されたビアホールVH2、及び前記ビアホールVH2から前記凹部Cに通じる共通空間に充填された導電性ペーストからなる第2導電ビア2dを有している。   The second wiring board material 2 is formed on the inner surface of the second insulating substrate 2a, the second conductive layer 2b for wiring having a desired pattern formed on the upper surface thereof, and the interlayer contact portion 2bc of the second conductive layer 2b. A concave portion C, a via hole VH2 penetratingly formed corresponding to the interlayer contact portion 2bc, and a second conductive via 2d made of a conductive paste filled in a common space extending from the via hole VH2 to the concave portion C are provided. .

また、前記第2配線基板材2は、前記第3配線基板材3と比較して、主に第2導電層2bのパターン形状及び第2導電ビア2dの形成位置について独自に設計されるが、前述の図2(a)〜図2(f)に示された各工程と同様の各工程を経て製作されている。更に、ここでは、前記1〜第3配線基板材1〜3の相互に対応する各部材は、互いに同一材料が使用されている。   In addition, the second wiring board material 2 is uniquely designed mainly with respect to the pattern shape of the second conductive layer 2b and the formation position of the second conductive via 2d as compared with the third wiring board material 3. It is manufactured through the same steps as those shown in FIGS. 2 (a) to 2 (f). Further, here, the members corresponding to each other of the first to third wiring board members 1 to 3 are made of the same material.

図2(h)の工程では、前述のように相互に位置合わせして積層された第1〜第3配線基板材1〜3を、真空中または減圧中において一括加熱プレスすることによって、積層配線基板を作製する。前記加熱プレスにおいて、前記第2導電ビア2dの下端面が第1導電層1bの層間コンタクト部上面に、前記第3導電ビア3dの下端面が第2導電層2bの層間コンタクト部2bc上面にそれぞれ押圧された状態で、熱硬化した導電性ペーストからなる導電ビア2d、3dが層間接続を達成する。前記加熱プレスにおいて、前記接着層2c及び3cもまた熱硬化して前記配線基板材1〜3相互を接着して一体化する。   In the process of FIG. 2 (h), the first to third wiring board materials 1 to 3 laminated in alignment with each other as described above are collectively heated and pressed in a vacuum or reduced pressure to obtain a laminated wiring. A substrate is produced. In the heating press, the lower end surface of the second conductive via 2d is on the upper surface of the interlayer contact portion of the first conductive layer 1b, and the lower end surface of the third conductive via 3d is on the upper surface of the interlayer contact portion 2bc of the second conductive layer 2b. In the pressed state, the conductive vias 2d and 3d made of a heat-cured conductive paste achieve interlayer connection. In the heating press, the adhesive layers 2c and 3c are also thermally cured to bond and integrate the wiring board materials 1-3.

次に、このような一実施形態により作製された前記積層配線基板に適用した耐熱信頼性試験について説明する。評価パターンとしては100ビアを直列に接続したデイジーチェーン回路を用い試験前後の抵抗値を測定して抵抗変化率を算出する方法を採用した。そうして、温度条件150℃で500時間の高温放置試験を行った結果、抵抗変化率が許容値である10%以下であった。ちなみに特許文献2の従来技術によれば、抵抗変化率10%以下を保てるのは、温度条件150℃で100時間程度であり、かなり短時間のうちに抵抗変化率が大きくなり、実用に供し得ない。   Next, a heat resistance reliability test applied to the multilayer wiring board manufactured according to such an embodiment will be described. As an evaluation pattern, a daisy chain circuit in which 100 vias were connected in series was used to measure the resistance value before and after the test and calculate the resistance change rate. Then, as a result of conducting a high temperature standing test for 500 hours under a temperature condition of 150 ° C., the resistance change rate was 10% or less which is an allowable value. Incidentally, according to the prior art of Patent Document 2, the resistance change rate of 10% or less can be maintained for about 100 hours at a temperature condition of 150 ° C., and the resistance change rate increases within a considerably short time, and can be put to practical use. Absent.

同様にはんだ耐熱試験として30℃−60%RHで195時間放置後、260℃−10秒の熱処理を3サイクル行った結果においても抵抗変化率が許容値である10%以下であった。ちなみに特許文献2の従来技術で抵抗変化率10%以下を保てるのは、はんだ漕浸漬後10秒程度であり、極めて短時間で抵抗変化率が大きくなる。   Similarly, the resistance change rate was 10% or less, which is an allowable value, in the result of performing the heat treatment at 260 ° C. for 10 seconds for 3 cycles after leaving for 195 hours at 30 ° C.-60% RH as the solder heat resistance test. Incidentally, the resistance change rate of 10% or less can be maintained in the prior art of Patent Document 2 for about 10 seconds after immersion in the soldering iron, and the resistance change rate increases in a very short time.

更に、前記はんだ耐熱試験を前処理として耐熱衝撃試験(低温条件;−25℃の温度で9分間、高温条件;+125℃の温度で9分間)を低温−高温サイクル3000サイクルに亘って行い、図3に示すような結果を得た。図3には、12μmの厚さtを有する前記導電層(銅箔)に対して種々の凹部深さd(μm)を形成した複数種の配線基板を対象として、凹部深さd(μm)毎の低温−高温サイクル数と抵抗値変化率(%)との関係が表されている。   Further, with the solder heat resistance test as a pretreatment, a thermal shock test (low temperature condition: 9 minutes at a temperature of −25 ° C., high temperature condition; 9 minutes at a temperature of + 125 ° C.) is performed over 3000 low temperature-high temperature cycles. The results as shown in 3 were obtained. FIG. 3 shows a recess depth d (μm) for a plurality of types of wiring boards in which various recess depths d (μm) are formed on the conductive layer (copper foil) having a thickness t of 12 μm. The relationship between the number of low temperature-high temperature cycles and the resistance value change rate (%) is shown.

即ち、前記凹部深さd=0(凹部なし)では、1000サイクル未満において、急激な抵抗値上昇を起こし、その後、断線不良となった。この試験後、断線不良の配線基板のビアホール部分の断面を観察したところ、図4(a)に示されているように、絶縁基板A上の配線用導電層(銅箔)Bと導電性ペーストDとの界面にペースト剥離による空間Eがみられた。凹部深さd≧0.5μmでは抵抗値上昇が著しく抑制され、低温−高温サイクルが1000サイクル程度でも抵抗値変化率が許容範囲である20%以下に維持されている。凹部深さd=1.0μmでは2000サイクル程度でも抵抗値変化率が20%以下に維持され、凹部深さd=2.0μmでは3000サイクルを超えてもなお抵抗値変化率が20%以下に維持された。   That is, at the recess depth d = 0 (no recess), the resistance value suddenly increased in less than 1000 cycles, and then a disconnection failure occurred. After this test, the cross-section of the via hole portion of the wiring board with poor disconnection was observed, and as shown in FIG. 4 (a), the wiring conductive layer (copper foil) B on the insulating substrate A and the conductive paste. Space E was observed at the interface with D due to the peeling of the paste. When the recess depth is d ≧ 0.5 μm, the increase in resistance value is remarkably suppressed, and the resistance value change rate is maintained at 20% or less which is an allowable range even when the low temperature-high temperature cycle is about 1000 cycles. When the recess depth d = 1.0 μm, the resistance value change rate is maintained at 20% or less even at about 2000 cycles, and when the recess depth d = 2.0 μm, the resistance value change rate is still 20% or less even after 3000 cycles. Maintained.

凹部深さdを前記導電層(銅箔)の厚さ12μmに近づかせ、前記凹部深さdが11μmを超えた深さになった時点で、図4(b)に示されているように、絶縁基板A上の配線用導電層(銅箔)Bの層間接続部となる凹部底壁BCの厚さが薄くなり過ぎて凹部底壁BCが破損剥離し断線不良を惹き起こした。また、このとき、導電性ペーストD上端は前記凹部底壁BCを押し退けるように充填範囲が広がるが、前記凹部底壁BC破損に伴いペーストDの内部押圧力が低下して、ペーストD内の単位体積当たりの導電性粒子の密度を高めることができず、内部抵抗を低減できないことがある。   As shown in FIG. 4B, when the concave portion depth d is brought close to the thickness of 12 μm of the conductive layer (copper foil) and the concave portion depth d reaches a depth exceeding 11 μm. The thickness of the recess bottom wall BC, which becomes the interlayer connection portion of the wiring conductive layer (copper foil) B on the insulating substrate A, was too thin, and the recess bottom wall BC was damaged and peeled to cause disconnection failure. At this time, the upper end of the conductive paste D expands the filling range so as to push away the recess bottom wall BC, but the internal pressing force of the paste D decreases with the breakage of the recess bottom wall BC, and the unit in the paste D The density of the conductive particles per volume cannot be increased, and the internal resistance may not be reduced.

図5は前記凹部深さd(μm)に対する抵抗値変化率%を表すグラフであり、抵抗値変化率%が許容範囲の20%以下を得るためには、前記凹部深さdは0.5μm以上でt−1μm以下の範囲であることが望まれる。即ち、前記凹部の形成は、0.5μm≦d≦(t−1)μmの範囲で深さが調整されることによって発明の効果が確実に発揮される。   FIG. 5 is a graph showing the resistance value change rate% with respect to the recess depth d (μm). In order to obtain the resistance value change rate% of 20% or less of the allowable range, the recess depth d is 0.5 μm. As described above, it is desired to be in the range of t-1 μm or less. In other words, the formation of the concave portion can reliably exhibit the effects of the invention by adjusting the depth within the range of 0.5 μm ≦ d ≦ (t−1) μm.

次に、前記一実施形態の積層配線基板における前記配線用導電層の層間接続部に形成される凹部C(図1(b)参照)に関連する他の実施形態について、図6を参照して説明する。   Next, with reference to FIG. 6, another embodiment related to the recess C (see FIG. 1B) formed in the interlayer connection portion of the wiring conductive layer in the multilayer wiring board of the embodiment will be described. explain.

即ち、配線用導電層3bzの層間コンタクト部3bcに形成された凹部CZは、例えば2段の複数階段状の底面形状にされている。この場合、前記凹部CZの2段階の底面は、いずれも前記導電層3bzと絶縁基板3aとの接触界面からその面に垂直な方向に変位しているために、前記熱サイクルにおける剪断応力の集中が避けられる。また、前記凹部CZの周縁部における深さが浅く、導電層3bzが厚く残っていて、導電層3bzの薄厚の凹部中央部の面積が縮小されているので、前記凹部CZに対応した導電層の部分の強度が保たれ、図4(b)で示されているような導電層の破損や断線不良の問題を避けることができる。   That is, the concave portion CZ formed in the interlayer contact portion 3bc of the wiring conductive layer 3bz has, for example, a two-step bottom shape of a plurality of steps. In this case, since the bottom surface of the two steps of the recess CZ is displaced from the contact interface between the conductive layer 3bz and the insulating substrate 3a in a direction perpendicular to the surface, the concentration of shear stress in the thermal cycle is increased. Can be avoided. Further, since the depth at the peripheral edge of the recess CZ is shallow and the conductive layer 3bz remains thick, and the area of the thin recess central portion of the conductive layer 3bz is reduced, the conductive layer corresponding to the recess CZ The strength of the portion is maintained, and problems such as breakage of the conductive layer and poor disconnection as shown in FIG. 4B can be avoided.

また、前記凹部CやCZは、いずれも平面的にみた場合、円形に限らず楕円、矩形、菱形など種々の形状とすることができる。   Further, the recesses C and CZ can have various shapes such as an ellipse, a rectangle, and a rhombus as well as a circle when viewed in plan.

ところで、前記各配線基板材1〜3は、前記ポリイミド樹脂或いはこれに代えて液晶ポリマーなどを絶縁基板1a〜3aに用いたフレキシブル配線基板(FPC)またはガラスエポキシ樹脂等のプリプレグを絶縁基板1a〜3aに用いたリジッド配線基板(RPC)によって形成することができる。   By the way, each of the wiring board materials 1 to 3 is formed of a flexible wiring board (FPC) using the polyimide resin or a liquid crystal polymer instead of the polyimide resin or the insulating boards 1a to 3a or a prepreg such as a glass epoxy resin. It can be formed by the rigid wiring board (RPC) used in 3a.

前記接着層2c、3cは、エポキシ系の他にポリイミド系やオレフィン系などの各種樹脂系接着材が使用可能である。   As the adhesive layers 2c and 3c, various resin adhesives such as polyimide and olefin can be used in addition to epoxy.

また、前記絶縁基板1a〜3aとして、例えば繊維性絶縁基材に接着剤を含浸させるなどでにより接着機能が付与された絶縁基材を用いることもできる。この場合は、前記接着層2c、3cを省略することができ、接着剤塗布工程或いは接着フイルムの貼着工程を省略することができる。更に、前記接着層2c、3cは、接着フイルムの貼着の代わりに、接着材を絶縁基板に塗布して形成してもよい。従って、複数の配線基板材を接着する手法としては、前記接着剤の含浸、接着フィルムの貼着及び接着材の塗布のいずれを利用してもよいので、このような接着手法を施した絶縁基板は、本発明においては、少なくとも一方の面に接着機能を有する絶縁基板ということができる。   Moreover, as the insulating substrates 1a to 3a, for example, insulating base materials provided with an adhesive function by impregnating a fibrous insulating base material with an adhesive may be used. In this case, the adhesive layers 2c and 3c can be omitted, and the adhesive application step or the adhesive film sticking step can be omitted. Further, the adhesive layers 2c and 3c may be formed by applying an adhesive to an insulating substrate instead of adhering an adhesive film. Therefore, as a technique for adhering a plurality of wiring board materials, any of the above-mentioned adhesive impregnation, adhesion film adhesion, and adhesive application may be used. In the present invention, it can be said that it is an insulating substrate having an adhesive function on at least one surface.

なお、図2(d)の工程に示されるビアホールの形成は、前記各配線基板材1〜3の基材の種類に応じて、UV−YAGレーザ以外に、CO2ガスレーザやエキシマレーザの使用が可能である。図2(e)の工程に示されるビアホールの形成にはUV−YAGやエキシマレーザの使用が好適である。また、前記凹部Cを形成する手段としては、前記導電層(銅箔)をマスキングフィルムで保護した後、塩化鉄溶液などの化学エッチング液によって、ビアホールVH2、VH3の底となる前記導電層(銅箔)の層間接続部2bc、3bcをエッチングする方法を適用することもできる。   In addition, the formation of the via hole shown in the step of FIG. 2D can use a CO2 gas laser or an excimer laser in addition to the UV-YAG laser, depending on the type of the base material of each of the wiring board materials 1 to 3. It is. For the formation of the via hole shown in the step of FIG. 2E, it is preferable to use UV-YAG or excimer laser. Further, as means for forming the recess C, the conductive layer (copper foil) is protected by a masking film, and then the conductive layer (copper copper) serving as the bottom of the via holes VH2 and VH3 by a chemical etching solution such as an iron chloride solution is used. A method of etching the interlayer connection portions 2bc and 3bc of the foil) can also be applied.

前記各配線基板材1〜3の積層一体化は、前記一実施形態において説明したように、一括加熱プレスによる一括積層方式の他に、各配線基板材を1枚ずつ同様な手法で多層化していく逐次積層方式によって行うことも可能である。   As described in the above embodiment, the wiring substrate materials 1 to 3 are laminated and integrated by layering each wiring board material one by one by the same method in addition to the batch lamination method by batch heating press. It is also possible to carry out by various sequential lamination methods.

本発明の一実施形態に係る積層配線基板を説明するための断面図であり、(a)はその一部切欠断面図、(b)は(a)の一部拡大断面図である。It is sectional drawing for demonstrating the laminated wiring board which concerns on one Embodiment of this invention, (a) is the partially notched sectional view, (b) is the partially expanded sectional view of (a). 本発明の一実施形態に係る図1における積層配線基板の製造方法を説明するための図であり、(a)〜(h)は製造工程別断面図である。It is a figure for demonstrating the manufacturing method of the multilayer wiring board in FIG. 1 which concerns on one Embodiment of this invention, (a)-(h) is sectional drawing according to a manufacturing process. 本発明の一実施形態に係る積層配線基板の耐熱衝撃試験結果を示すグラフでである。It is a graph which shows the thermal shock test result of the multilayer wiring board which concerns on one Embodiment of this invention. 本発明の一実施形態に係る積層配線基板の配線用導電層の厚さtと凹部深さdとの関係における層間接続状態を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the interlayer connection state in the relationship between the thickness t of the wiring conductive layer of the laminated wiring board which concerns on one Embodiment of this invention, and the recessed part depth d. 本発明の一実施形態に係る積層配線基板の配線用導電層の厚さtと凹部深さdとの関係における抵抗値変化率を示すグラフである。It is a graph which shows the resistance value change rate in the relationship between the thickness t of the conductive layer for wiring of the laminated wiring board which concerns on one Embodiment of this invention, and the recessed part depth d. 本発明の積層配線基板の配線用導電層に設けられた凹部の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of the recessed part provided in the conductive layer for wiring of the multilayer wiring board of this invention.

符号の説明Explanation of symbols

1〜3 第1〜第3配線基板基材
1a〜3a、A 絶縁基板
1b〜3b、3by、3bz 導電層
1bc〜3bc、BC 層間コンタクト部
2c、3c 接着層
2d、3d、D 導電ビア(導電性ペースト)
C、CX、CZ 凹部
VH、VH2、VH3 ビアホール
1-3 1st-3rd wiring board base materials 1a-3a, A Insulation board 1b-3b, 3by, 3bz Conductive layer 1bc-3bc, BC Interlayer contact part 2c, 3c Adhesive layer 2d, 3d, D Conductive via (conductive Sex paste)
C, CX, CZ Recessed VH, VH2, VH3 Via hole

Claims (5)

絶縁基板と、前記絶縁基板を貫通して形成されたビアホールと、前記ビアホールに導電性ペーストを充填して形成された導電ビアと、前記絶縁基板の両面にそれぞれ配置され前記導電ビアの両端面に各々接続された回路配線用の導電層とを備え、前記両方の導電層の少なくとも一方は、前記ビアホールに対応する層間コンタクト部に形成された凹部を有することを特徴とする回路配線基板。   An insulating substrate, a via hole formed through the insulating substrate, a conductive via formed by filling the via hole with a conductive paste, and disposed on both sides of the insulating substrate, on both end surfaces of the conductive via A circuit wiring board comprising: a conductive layer for circuit wiring connected to each other, wherein at least one of the two conductive layers has a recess formed in an interlayer contact portion corresponding to the via hole. 層間接続用の導電ビアを有する少なくとも1つの配線基板材を含む複数の配線基板材を積層してなる回路配線基板であって、前記導電ビアを有する配線基板材は、絶縁基板と、前記絶縁基板を貫通して形成されたビアホールと、前記ビアホールに導電性ペーストを充填して形成された導電ビアと、前記絶縁基板の少なくとも一方の面に配置され前記導電ビアの端面に接続された回路配線用の導電層とを備え、前記導電層は、前記ビアホールに対応する層間コンタクト部に形成された凹部を有することを特徴とする積層形の回路配線基板。   A circuit wiring board formed by laminating a plurality of wiring board materials including at least one wiring board material having conductive vias for interlayer connection, wherein the wiring board material having conductive vias includes an insulating substrate and the insulating substrate. A circuit board connected to an end face of the conductive via disposed on at least one surface of the insulating substrate, a via hole formed by penetrating through the conductive substrate, a conductive via formed by filling the via hole with a conductive paste, and A laminated circuit wiring board, wherein the conductive layer has a recess formed in an interlayer contact portion corresponding to the via hole. 前記導電層の凹部の底面と前記導電ビア端面との接触界面は、その周囲の前記導電層と絶縁基板との接触界面から前記絶縁基板の厚さ方向に偏位していることを特徴とする請求項1または請求項2に記載の回路配線基板。   The contact interface between the bottom surface of the concave portion of the conductive layer and the end surface of the conductive via is deviated in the thickness direction of the insulating substrate from the contact interface between the conductive layer and the insulating substrate around it. The circuit wiring board according to claim 1 or 2. 前記凹部は、前記導電層の厚さをt、前記凹部の深さをdとするとき、前記深さdが0.5μm≦d≦(t−1)μmの関係で形成されていることを特徴とする請求項1〜請求項3のうちいずれか1つに記載の回路配線基板。   The recess is formed such that the depth d is 0.5 μm ≦ d ≦ (t−1) μm, where t is the thickness of the conductive layer and d is the depth of the recess. The circuit wiring board according to any one of claims 1 to 3, wherein the circuit wiring board is any one of claims 1 to 3. 絶縁基板の少なくとも一方の面に配線用導電層を形成する工程と、前記絶縁基板の層間接続予定部分を貫通し前記配線用導電層を露出させるビアホールを形成する工程と、前記配線用導電層の層間コンタクト部に凹部形成する工程とを備え、前記ビアホール及び前記凹部の形成は、前記絶縁基板及び配線用導電層に対するレーザ照射による連続操作加工によって形成されることを特徴とする回路配線基板の製造方法。   Forming a conductive layer for wiring on at least one surface of the insulating substrate; forming a via hole penetrating an interlayer connection scheduled portion of the insulating substrate to expose the conductive layer for wiring; and Forming a recess in the interlayer contact portion, and forming the via hole and the recess is formed by continuous operation processing by laser irradiation on the insulating substrate and the conductive layer for wiring. Method.
JP2007218319A 2007-08-24 2007-08-24 Circuit wiring board and manufacturing method therefor Pending JP2009054695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007218319A JP2009054695A (en) 2007-08-24 2007-08-24 Circuit wiring board and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007218319A JP2009054695A (en) 2007-08-24 2007-08-24 Circuit wiring board and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2009054695A true JP2009054695A (en) 2009-03-12

Family

ID=40505535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007218319A Pending JP2009054695A (en) 2007-08-24 2007-08-24 Circuit wiring board and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2009054695A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014086605A (en) * 2012-10-25 2014-05-12 Ngk Spark Plug Co Ltd Wiring board and method of manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5254172A (en) * 1975-10-28 1977-05-02 Siemens Ag Method of producing microminiature multiilayer wiring
JP2003008225A (en) * 2001-06-26 2003-01-10 Kyocera Corp Multilayer wiring substrate and method of manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5254172A (en) * 1975-10-28 1977-05-02 Siemens Ag Method of producing microminiature multiilayer wiring
JP2003008225A (en) * 2001-06-26 2003-01-10 Kyocera Corp Multilayer wiring substrate and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014086605A (en) * 2012-10-25 2014-05-12 Ngk Spark Plug Co Ltd Wiring board and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP5013973B2 (en) Printed wiring board and method for manufacturing the same, electronic component housing board using the printed wiring board, and method for manufacturing the same
US8256112B2 (en) Method of manufacturing high density printed circuit board
JP4767269B2 (en) Method for manufacturing printed circuit board
TW200904291A (en) Laminated wiring board and method for manufacturing the same
TWI601468B (en) Method for filling conductive paste and method for manufacturing multilayer printed wiring board
JP2008124398A (en) Semiconductor package and its manufacturing method
WO2006118141A1 (en) Multilayer wiring board and method for producing same
KR101304359B1 (en) Method of manufacturing a cavity printed circuit board
JP2005340686A (en) Laminated substrate and its manufacturing method, and electronic apparatus having such laminated substrate
KR100657410B1 (en) Manufacturing multi-layer pcb
JP2009054695A (en) Circuit wiring board and manufacturing method therefor
KR20190124616A (en) Method of manufacturing the printed circuit board
JP2005072061A (en) Wiring board and its manufacturing method
JP4443349B2 (en) Manufacturing method of multilayer wiring board
KR100722604B1 (en) Manufacturing method of printed circuit board
JP2006339440A (en) Substrate with through-via and its manufacturing method
EP2757865A1 (en) Method for manufacturing substrate with built-in component and substrate with built-in component using same
JP4899409B2 (en) Multilayer printed wiring board and manufacturing method thereof
JP5836019B2 (en) Component built-in substrate and manufacturing method thereof
KR20120019144A (en) Method for manufacturing a printed circuit board
JP2016219452A (en) Multilayer substrate and manufacturing method for multilayer substrate
JP2007299943A (en) Multilayer printed circuit board, and manufacturing method thereof
JP2007035716A (en) Manufacturing method of printed circuit board
JP2006179833A (en) Wiring board and its manufacture
JP2005045008A (en) Multilayer body and its producing process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111215

A131 Notification of reasons for refusal

Effective date: 20111220

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20120508

Free format text: JAPANESE INTERMEDIATE CODE: A02