JP2009054641A - High-output diamond semiconductor element - Google Patents

High-output diamond semiconductor element Download PDF

Info

Publication number
JP2009054641A
JP2009054641A JP2007217414A JP2007217414A JP2009054641A JP 2009054641 A JP2009054641 A JP 2009054641A JP 2007217414 A JP2007217414 A JP 2007217414A JP 2007217414 A JP2007217414 A JP 2007217414A JP 2009054641 A JP2009054641 A JP 2009054641A
Authority
JP
Japan
Prior art keywords
diamond
layer
semiconductor element
electrode
junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007217414A
Other languages
Japanese (ja)
Other versions
JP5099486B2 (en
Inventor
Kazuhiro Ikeda
和寛 池田
Hitoshi Umezawa
仁 梅澤
Shinichi Shikada
真一 鹿田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007217414A priority Critical patent/JP5099486B2/en
Publication of JP2009054641A publication Critical patent/JP2009054641A/en
Application granted granted Critical
Publication of JP5099486B2 publication Critical patent/JP5099486B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a diamond semiconductor element capable of preventing electric field concentration around the edge of an electrode and operating up to a high voltage with low leak current even in a high electric field. <P>SOLUTION: The high-output diamond semiconductor element consists of a Schottky electrode, a diamond p<SP>-</SP>-drift layer, a diamond p<SP>+</SP>-ohmic layer and an ohmic electrode while using the Schottky electrode as a cathode and the ohmic electrode as an anode. In the high-output diamond semiconductor element, a pn-junction layer is provided on one part of a junction surface between the Schottky electrode and the diamond p<SP>-</SP>-drift layer. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、高出力ダイヤモンド半導体素子に関し、とくにダイヤモンドショットキーバリアダイオードなどの高出力ダイヤモンド半導体素子に好適に用いることが出来る高出力ダイヤモンド半導体素子に関する。   The present invention relates to a high-power diamond semiconductor element, and more particularly to a high-power diamond semiconductor element that can be suitably used for a high-power diamond semiconductor element such as a diamond Schottky barrier diode.

ダイヤモンド半導体は、大きなバンドギャップ(5.5eV)、高いアバランシェ破壊電界(10MV/cm)、高い飽和キャリア移動度(4,000cm2/Vs)、高い熱伝導率(20W/cmK)を有し、高温度や放射線曝露環境下で実用動作可能な素子として期待されている。これまでにこれらの特徴を生かした電子素子を開発するため、ダイヤモンドダイオードの構造および作製方法が提案されている。
一般に高電圧動作ダイオードでは、電極縁辺に発生する電界集中を抑えるため、pn接合を用いたガードリング構造(非特許文献1参照)、フィールドプレート構造(非特許文献2参照)もしくはこれらを組み合わせた構造(非特許文献3参照)などが用いられる。ダイヤモンドにおいては、p型およびn型ドーピングが実現しておりpn接合が実現しているが、n型ドーピングは極めて難しく、形成したpn接合界面でのリーク電流値も大きい(非特許文献4及び非特許文献5参照)ため、高電圧で低リーク電流を実現する電極縁辺電界緩和技術は得られていない。
Diamond semiconductor has a large band gap (5.5 eV), high avalanche breakdown electric field (10 MV / cm), high saturation carrier mobility (4,000 cm 2 / Vs), high thermal conductivity (20 W / cmK), high temperature It is expected to be a device that can be used practically in environments exposed to radiation and radiation. In order to develop an electronic device taking advantage of these characteristics, a structure and a manufacturing method of a diamond diode have been proposed.
In general, in a high voltage operating diode, a guard ring structure using a pn junction (see Non-Patent Document 1), a field plate structure (see Non-Patent Document 2) or a combination of these is used in order to suppress electric field concentration occurring at the electrode edge. (See Non-Patent Document 3). In diamond, p-type and n-type doping is realized and a pn junction is realized. However, n-type doping is extremely difficult, and a leak current value at the formed pn junction interface is large (Non-Patent Document 4 and Non-Patent Document 4). Therefore, an electrode edge electric field relaxation technique that realizes a low leakage current at a high voltage has not been obtained.

S.M.Sze “Physicsof Semiconductor Devices” 2nd ed. Wiley-Interscience, (1996).S.M.Sze “Physicsof Semiconductor Devices” 2nd ed. Wiley-Interscience, (1996). N.Mohan,T.M.Undeland, W.P.Robbins, “Power Electronics” 3rded. John Wiley & Sons inc. (2003).N.Mohan, T.M.Undeland, W.P.Robbins, “Power Electronics” 3rded. John Wiley & Sons inc. (2003). K. Kinoshita etal. “GuardRing Assisted RESURF”, Proc. 14th ISPSD (2002) p.253.K. Kinoshita etal. “GuardRing Assisted RESURF”, Proc. 14th ISPSD (2002) p.253. S.Koizumi et al. “Formationof diamond p-n junction and its optical emission characteristics”,Diam. Relat. Mater. 11 (2002) p.307.S. Koizumi et al. “Formation of diamond p-n junction and its optical emission characteristics”, Diam. Relat. Mater. 11 (2002) p. 307. T.Makino et al. “Electricaland optical characterization of (001)-oriented homoepitaxial diamond p-njunction”,Diam. Relat. Mater. 15 (2005) p.513.T. Makino et al. “Electrical and optical characterization of (001) -oriented homoepitaxial diamond p-njunction”, Diam. Relat. Mater. 15 (2005) p.513.

本発明は、p型ダイヤモンド上の選択領域に半絶縁性窒素ドープダイヤモンド層を形成することにより、電極縁辺の電界集中を抑えることが可能となり、高電界でも低リーク電流で高い電圧まで動作するダイヤモンド素子を提供する。   In the present invention, by forming a semi-insulating nitrogen-doped diamond layer in a selected region on p-type diamond, it becomes possible to suppress electric field concentration at the electrode edge, and diamond that operates to a high voltage with a low leakage current even in a high electric field. An element is provided.

上記目的を達成するために本発明は、ショットキー電極とダイヤモンドpドリフト層の接合面の一部に、pn接合層を設けることにより、カソード電極付近の電界を緩和する構造を見出した。
すなわち、本発明は、ショットキー電極をカソードとし、オーミック電極をアノードとするショットキー電極、ダイヤモンドpドリフト層、ダイヤモンドpオーミック層、オーミック電極からなる構造の高出力ダイヤモンド半導体素子において、ショットキー電極とダイヤモンドpドリフト層の接合面の一部に、pn接合層を設けることを特徴とする高出力ダイヤモンド半導体素子である。
また、本発明においては、上記のpn接合層を、窒素ドープn型ダイヤモンド層とすることができる。
さらに、本発明においては、窒素ドープの濃度を、1e15〜1e18/cm3とすることができる。
また、さらに本発明においては、pn接合層を、窒素ドープn型ダイヤモンド層であり、かつ、選択成長させたダイヤモンド層とすることができる。
さらに、本発明においては、ショットキー電極に接合するダイヤモンドは、ダイヤモンド表面が酸素終端のダイヤモンドが特に好ましい。
In order to achieve the above object, the present invention has found a structure that relaxes the electric field in the vicinity of the cathode electrode by providing a pn junction layer on a part of the junction surface between the Schottky electrode and the diamond p - drift layer.
That is, the present invention relates to a high-power diamond semiconductor element having a structure including a Schottky electrode having a Schottky electrode as a cathode and an ohmic electrode as an anode, a diamond p - drift layer, a diamond p + ohmic layer, and an ohmic electrode. The high-power diamond semiconductor element is characterized in that a pn junction layer is provided on a part of the junction surface between the electrode and the diamond p - drift layer.
In the present invention, the pn junction layer can be a nitrogen-doped n-type diamond layer.
Furthermore, in the present invention, the concentration of nitrogen dope can be set to 1e 15 to 1e 18 / cm 3 .
In the present invention, the pn junction layer can be a nitrogen-doped n-type diamond layer and a selectively grown diamond layer.
Furthermore, in the present invention, the diamond bonded to the Schottky electrode is particularly preferably a diamond whose diamond surface has an oxygen termination.

本技術により、高出力ダイヤモンド半導体素子の高電界印加時におけるリーク電流が減少し、また動作可能電圧を高くすることができる。   According to the present technology, the leakage current when a high electric field is applied to the high-power diamond semiconductor element is reduced, and the operable voltage can be increased.

本発明において用いるショットキー電極は、周知の材料を用いて、周知の方法により作成することができる。
本発明で用いる高出力ダイヤモンド半導体においては、ダイヤモンドpドリフト層、ダイヤモンドpオーミック層、ダイヤモンドpn接合層は、ダイヤモンドならどのタイプのものでも良い。例えば、ダイヤモンド結晶構造に関しては、結晶構造(001)、(111)、(110)などが挙げられ、ダイヤモンド表面では、炭素終端ダイヤモンド、水素終端ダイヤモンド、酸素終端のダイヤモンドなどが挙げられる。
しかし、少なくともショットキー電極に接合するダイヤモンドは、ダイヤモンド表面が酸素終端のダイヤモンドが特に適していることが判明している。
The Schottky electrode used in the present invention can be manufactured by a known method using a known material.
In the high-power diamond semiconductor used in the present invention, the diamond p drift layer, the diamond p + ohmic layer, and the diamond pn junction layer may be any type of diamond. For example, regarding the diamond crystal structure, crystal structures (001), (111), (110) and the like can be cited. On the diamond surface, carbon-terminated diamond, hydrogen-terminated diamond, oxygen-terminated diamond and the like can be cited.
However, it has been found that at least diamond bonded to the Schottky electrode is particularly suitable for diamond whose diamond surface is oxygen-terminated.

さらに、本発明におけるpn接合層は、メタンと水素と酸素原子を含んだガスとを原料ガスとするマイクロ波プラズマCVD法により形成することができる。
また、pn接合層は、pもしくはp-型ダイヤモンド上に選択合成もしくはイオン注入法により窒素ドープダイヤモンド領域を形成することができる。
Furthermore, the pn junction layer in the present invention can be formed by a microwave plasma CVD method using methane, hydrogen, and a gas containing oxygen atoms as source gases.
In the pn junction layer, a nitrogen-doped diamond region can be formed on p or p-type diamond by selective synthesis or ion implantation.

pn接合に逆方向バイアス、すなわち、カソード側に正の電圧を印加すると、n型、p型領域それぞれに於いて、多数キャリアが少数キャリアの注入によって減少する。これによって空乏層幅が増大する。このように、空乏層を十分に増大させるためには窒素ドープがp型(ボロンドープ)に対して同程度以上なものであることが望ましい。窒素ドープのほか、リンのドーピングはn型ダイヤモンド半導体を作るために有効だと考えらるが、リンのドーピングを使ったPN接合では漏れ電流が大きくなるので、好ましくない。その点Nドープは、比較的簡単に得られるうえ、絶縁性も良好であるので、Nドープが好ましい。
本発明について実施例を用いてさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。
When a reverse bias is applied to the pn junction, that is, a positive voltage is applied to the cathode side, majority carriers are reduced by minority carrier injection in each of the n-type and p-type regions. This increases the depletion layer width. Thus, in order to sufficiently increase the depletion layer, it is desirable that the nitrogen doping is equal to or higher than the p-type (boron doping). In addition to nitrogen doping, phosphorus doping is considered to be effective for making an n-type diamond semiconductor, but a PN junction using phosphorus doping is not preferable because the leakage current increases. In this respect, N-doping is preferable because it can be obtained relatively easily and has good insulating properties.
The present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

図1(a)の構造はp-基板をSiO2マスク等を用いることでエッチングし、エッチングを施した部位にN2ドープ半絶縁性ダイヤモンドを選択成長させることで実現する。あるいは、p-基板上にイオン打ち込み技術を使ってN2をドーピングすることで実現することができる。そのようにしてできたPN接合上にマスクを施し、ショットキー電極を設けることで耐圧構造を持つショットキーバリアダイオードとなる。
図1(b)の構造はp-基板にマスクを施し、N2ドープ半絶縁性ダイヤモンドを選択成長させることで作成される。そのようにしてできたPN接合上にマスクを施し、ショットキー電極を設けることで耐圧構造を持つショットキーバリアダイオードとなる。
The structure shown in FIG. 1 (a) is realized by etching the p-substrate using a SiO2 mask or the like and selectively growing N2 doped semi-insulating diamond in the etched portion. Alternatively, it can be realized by doping N 2 on the p-substrate using an ion implantation technique. A Schottky barrier diode having a withstand voltage structure is obtained by masking the PN junction thus formed and providing a Schottky electrode.
The structure of FIG. 1 (b) subjecting the mask to the p- substrate, is prepared by selectively growing the N 2 doped semi-insulating diamond. A Schottky barrier diode having a withstand voltage structure is obtained by masking the PN junction thus formed and providing a Schottky electrode.

図1(a),(b)において、10ミクロンのドリフト層を設け、その活性ボロン濃度は5×1015とし、電極サイズはΦ30ミクロンとした。初期の破壊電圧(1)は、なだれ破壊による絶縁破壊を主なパラメータとし、並行平板モデルで考えたときに最大4.3MV/cm程度の電界を想定したところ、880Vの破壊電圧となった。窒素ドープn型ドープ層を設けたところ、その破壊電圧はおよそ倍程度にすることができることがわかった。図2(2)および(3)にその逆方向バイアス特性を示している。それぞれ、図1(a),(b)に対応するものであるが、両者とも非終端電極に対して大幅な改善が見られる。 In FIGS. 1 (a) and 1 (b), a drift layer of 10 microns is provided, the active boron concentration is 5 × 10 15 , and the electrode size is Φ30 microns. The initial breakdown voltage (1) was a breakdown voltage of 880 V assuming an electric field of about 4.3 MV / cm when considering the dielectric breakdown due to avalanche breakdown as the main parameter and considering the parallel plate model. When a nitrogen-doped n-type doped layer was provided, it was found that the breakdown voltage can be approximately doubled. 2 (2) and 2 (3) show the reverse bias characteristics. Each corresponds to FIGS. 1 (a) and 1 (b), but both show significant improvements over the non-terminated electrodes.

高出力ダイヤモンド半導体素子は、とくにダイヤモンドショットキーバリアダイオードに適しているが、その他、ダイヤモンドpnダイオード、ダイヤモンドサイリスタ、ダイヤモンドトランジスタ、ダイヤモンド電界効果トランジスタなど幅広く応用することが出来るので、産業上の利用可能性が高いものである。   High-power diamond semiconductor devices are particularly suitable for diamond Schottky barrier diodes, but they can also be used in a wide range of applications such as diamond pn diodes, diamond thyristors, diamond transistors, and diamond field effect transistors, so that they can be used industrially. Is expensive.

窒素ドープダイヤモンド領域を用いたダイオードの断面図Cross section of diode using nitrogen doped diamond region 窒素ドープダイヤモンド領域を縁辺電界緩和層に用いた構造および用いない構造での逆方向リーク特性比較(シミュレーション結果)Comparison of reverse leakage characteristics between structures with and without nitrogen-doped diamond region in the electric field relaxation layer (simulation results)

Claims (5)

ショットキー電極をカソードとし、オーミック電極をアノードとするショットキー電極、ダイヤモンドpドリフト層、ダイヤモンドpオーミック層、オーミック電極からなる構造の高出力ダイヤモンド半導体素子において、ショットキー電極とダイヤモンドpドリフト層の接合面の一部に、pn接合層を設けることを特徴とする高出力ダイヤモンド半導体素子。 In a high-power diamond semiconductor device having a structure including a Schottky electrode having a Schottky electrode as a cathode and an ohmic electrode as an anode, a diamond p - drift layer, a diamond p + ohmic layer, and an ohmic electrode, the Schottky electrode and the diamond p - drift A high-power diamond semiconductor element, wherein a pn junction layer is provided on a part of the junction surface of the layer. pn接合層が、窒素ドープn型ダイヤモンド層である請求項1に記載した高出力ダイヤモンド半導体素子。   The high-power diamond semiconductor element according to claim 1, wherein the pn junction layer is a nitrogen-doped n-type diamond layer. 窒素ドープの濃度が、1e15〜1e18/cm3である請求項2に記載した高出力ダイヤモンド半導体素子。 The high-power diamond semiconductor element according to claim 2, wherein the concentration of nitrogen dope is 1e 15 to 1e 18 / cm 3 . pn接合層が、窒素ドープn型ダイヤモンド層であり、かつ、選択成長させたダイヤモンド層である請求項2又は請求項3に記載した高出力ダイヤモンド半導体素子。   The high-power diamond semiconductor element according to claim 2 or 3, wherein the pn junction layer is a nitrogen-doped n-type diamond layer and a diamond layer selectively grown. ショットキー電極に接合するダイヤモンドが、ダイヤモンド表面が酸素終端のダイヤモンド請求項2ないし請求項4のいずれかに記載した高出力ダイヤモンド半導体素子。   The high-power diamond semiconductor element according to any one of claims 2 to 4, wherein the diamond bonded to the Schottky electrode has a diamond surface with an oxygen-terminated diamond.
JP2007217414A 2007-08-23 2007-08-23 High power diamond semiconductor device Expired - Fee Related JP5099486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007217414A JP5099486B2 (en) 2007-08-23 2007-08-23 High power diamond semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007217414A JP5099486B2 (en) 2007-08-23 2007-08-23 High power diamond semiconductor device

Publications (2)

Publication Number Publication Date
JP2009054641A true JP2009054641A (en) 2009-03-12
JP5099486B2 JP5099486B2 (en) 2012-12-19

Family

ID=40505496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007217414A Expired - Fee Related JP5099486B2 (en) 2007-08-23 2007-08-23 High power diamond semiconductor device

Country Status (1)

Country Link
JP (1) JP5099486B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012050157A1 (en) * 2010-10-13 2012-04-19 独立行政法人産業技術総合研究所 Diamond electronic element and process for production thereof
JP2012084702A (en) * 2010-10-13 2012-04-26 National Institute Of Advanced Industrial & Technology Diamond electronic element and manufacturing method thereof
JP2012084703A (en) * 2010-10-13 2012-04-26 National Institute Of Advanced Industrial & Technology Diamond electronic element and manufacturing method thereof
WO2015079671A1 (en) * 2013-11-29 2015-06-04 株式会社デンソー Semiconductor device using diamond
US9331150B2 (en) 2014-02-17 2016-05-03 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6727928B2 (en) 2016-05-30 2020-07-22 株式会社東芝 Semiconductor device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0426161A (en) * 1990-05-21 1992-01-29 Sumitomo Electric Ind Ltd Forming method of schottky junction
JPH0467527A (en) * 1990-07-06 1992-03-03 Canon Inc Semiconductor electron emitting element
JPH07321317A (en) * 1994-05-25 1995-12-08 Sony Corp Mis field effect transistor and its manufacture
JPH1092296A (en) * 1996-09-12 1998-04-10 Toshiba Corp Electron emitting element and its manufacture
JP2007095975A (en) * 2005-09-29 2007-04-12 National Institute Of Advanced Industrial & Technology Diamond power semiconductor device and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0426161A (en) * 1990-05-21 1992-01-29 Sumitomo Electric Ind Ltd Forming method of schottky junction
JPH0467527A (en) * 1990-07-06 1992-03-03 Canon Inc Semiconductor electron emitting element
JPH07321317A (en) * 1994-05-25 1995-12-08 Sony Corp Mis field effect transistor and its manufacture
JPH1092296A (en) * 1996-09-12 1998-04-10 Toshiba Corp Electron emitting element and its manufacture
JP2007095975A (en) * 2005-09-29 2007-04-12 National Institute Of Advanced Industrial & Technology Diamond power semiconductor device and manufacturing method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012050157A1 (en) * 2010-10-13 2012-04-19 独立行政法人産業技術総合研究所 Diamond electronic element and process for production thereof
JP2012084702A (en) * 2010-10-13 2012-04-26 National Institute Of Advanced Industrial & Technology Diamond electronic element and manufacturing method thereof
JP2012084703A (en) * 2010-10-13 2012-04-26 National Institute Of Advanced Industrial & Technology Diamond electronic element and manufacturing method thereof
WO2015079671A1 (en) * 2013-11-29 2015-06-04 株式会社デンソー Semiconductor device using diamond
JP2015106650A (en) * 2013-11-29 2015-06-08 株式会社デンソー Semiconductor device
US9711638B2 (en) 2013-11-29 2017-07-18 Denso Corporation Semiconductor device using diamond
US9331150B2 (en) 2014-02-17 2016-05-03 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
EP2908349B1 (en) * 2014-02-17 2017-05-31 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same

Also Published As

Publication number Publication date
JP5099486B2 (en) 2012-12-19

Similar Documents

Publication Publication Date Title
Zhou et al. High-Performance Vertical $\beta $-Ga 2 O 3 Schottky Barrier Diode With Implanted Edge Termination
Ohta et al. Vertical GaN pn junction diodes with high breakdown voltages over 4 kV
Kizilyalli et al. 3.7 kV vertical GaN PN diodes
Niwa et al. 21.7 kV 4H-SiC PiN diode with a space-modulated junction termination extension
US8154026B2 (en) Silicon carbide bipolar semiconductor device
JP4929882B2 (en) Semiconductor device
US8618557B2 (en) Wide-band-gap reverse-blocking MOS-type semiconductor device
JP6658137B2 (en) Semiconductor device and manufacturing method thereof
US10090417B2 (en) Silicon carbide semiconductor device and fabrication method of silicon carbide semiconductor device
Zhou et al. High-voltage quasi-vertical GaN junction barrier Schottky diode with fast switching characteristics
JP6690198B2 (en) Method for manufacturing silicon carbide semiconductor device
JP5099486B2 (en) High power diamond semiconductor device
US10079282B2 (en) Semiconductor device and method of manufacturing the same
US20140034965A1 (en) Semiconductor device and method for manufacturing same
JP4873448B2 (en) Rectifier diode
US20230100453A1 (en) Silicon carbide semiconductor device
KR20130076314A (en) Power devices and method for manufacturing the same
JP2008130699A (en) Wideband gap semiconductor device and manufacturing method therefor
JP2014063830A (en) Semiconductor device, and method of manufacturing the same
JP5682102B2 (en) Vertical gallium nitride semiconductor device with reverse breakdown voltage
WO2019053204A1 (en) Feeder design with high current capability
Li et al. Simulation study of vertical diamond Schottky barrier diode with field plate assisted junction termination extension
JP2009054640A (en) High-output diamond semiconductor element
JP2017098318A (en) Semiconductor device and manufacturing method of the same
JP2012094889A (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees