JP2009054462A - Lithium-ion secondary battery - Google Patents

Lithium-ion secondary battery Download PDF

Info

Publication number
JP2009054462A
JP2009054462A JP2007221248A JP2007221248A JP2009054462A JP 2009054462 A JP2009054462 A JP 2009054462A JP 2007221248 A JP2007221248 A JP 2007221248A JP 2007221248 A JP2007221248 A JP 2007221248A JP 2009054462 A JP2009054462 A JP 2009054462A
Authority
JP
Japan
Prior art keywords
secondary battery
ion secondary
lithium
negative electrode
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007221248A
Other languages
Japanese (ja)
Other versions
JP5184004B2 (en
Inventor
Yosuke Masuda
洋輔 増田
Masahiro Yamamoto
真裕 山本
Hidetoshi Abe
英俊 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2007221248A priority Critical patent/JP5184004B2/en
Publication of JP2009054462A publication Critical patent/JP2009054462A/en
Application granted granted Critical
Publication of JP5184004B2 publication Critical patent/JP5184004B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium-ion secondary battery in which elevation of voltage inside the battery caused by formation of hydrogen fluoride in an electrolytic liquid containing a fluorine based electrolyte and damage of an electrode can be suppressed, and rupture of the battery and leakage of the electrolytic liquid do not occur, and which has high safety and a long life. <P>SOLUTION: In the lithium-ion secondary battery which is equipped with a positive electrode that contains lithium ions and is chargeable and dischargeable, a negative electrode composed of a carbon material that stores or releases the lithium ions, a separator composed of porous polyethylene, and a non-aqueous electrolytic liquid in which the fluorine based electrolyte is dissolved, a negative electrode surface is covered with polymer gel having a fluoride ion trapping function. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は炭素材料を負極に用いるリチウムイオン二次電池に関し、負極に係るガス発生を抑制したリチウムイオン二次電池に関する。   The present invention relates to a lithium ion secondary battery using a carbon material as a negative electrode, and relates to a lithium ion secondary battery in which gas generation related to the negative electrode is suppressed.

現在、普及している携帯電話などの携帯機器に使用されているリチウムイオン二次電池は、正極活物質として、LiCoO
、LiNiO、LiMnや、これら活物質のCo、NiおよびMnの一部を他の金属元素で置換した三元系複合酸化物などを用い、負極には炭素材料、電解液として六フッ化燐酸リチウム(LiPF)などのフッ素系電解質を含むカーボネイト系非水電解液が使用されている。
このようなリチウムイオン二次電池は、高電圧と高エネルギー密度を兼ね備える優れた二次電池である。
Currently, lithium ion secondary batteries used in portable devices such widespread cellular phone, as a positive electrode active material, LiCoO 2
, LiNiO 2 , LiMn 2 O 4 , ternary composite oxides in which a part of these active materials Co, Ni, and Mn is substituted with other metal elements, etc. A carbonate non-aqueous electrolyte containing a fluorine-based electrolyte such as lithium fluorophosphate (LiPF 6 ) is used.
Such a lithium ion secondary battery is an excellent secondary battery having both high voltage and high energy density.

しかしながら、非水電解液中に含まれる微量な水分(HO)と電解質アニオンであるフッ素系電解質(例えば六フッ化燐酸リチウム:LiPF)との反応により、フッ化水素(HF)と三フッ化燐(PF)が生成し、更に、三フッ化燐は電解液の主成分であるカーボネイトの分解を促進し、有機フルオロ燐酸を発生させる。このような反応過程が連鎖的に生じることで、電池内圧を上昇させる原因となっている。 However, hydrogen fluoride (HF) and three kinds of water are caused by a reaction between a trace amount of water (H 2 O) contained in the non-aqueous electrolyte and a fluorine-based electrolyte (for example, lithium hexafluorophosphate: LiPF 6 ) that is an electrolyte anion. Phosphorus fluoride (PF 3 ) is generated, and phosphorous trifluoride further promotes the decomposition of carbonate, which is the main component of the electrolytic solution, and generates organic fluorophosphoric acid. Such a reaction process occurs in a chain, which increases the battery internal pressure.

更に、負極表面には固体電解質界面が存在することが知られている。その主成分は、非水電解質中の六フッ化燐酸リチウムが分解して生成されたフッ化リチウム(LiF)で、正極のリチウムイオンの有効利用の妨げとなる。
又、このときの副生成物である五フッ化燐(PF)は、電池内の微量水分と速やかに反応し、フッ化水素(HF)を主成分とする気体を発生させる。この五フッ化燐(PF)は、電解質アニオンの分解により負極近傍に偏在することから、水と五フッ化燐の反応生成物であるフッ化水素(HF)も負極近傍で発生することとなる。このフッ化水素(HF)は、電池内圧を上昇させるだけでなく正負電極の劣化も促進させることから、電池全体への拡散を防止することが望まれる。
Furthermore, it is known that a solid electrolyte interface exists on the negative electrode surface. Its main component is lithium fluoride (LiF) produced by decomposition of lithium hexafluorophosphate in the non-aqueous electrolyte, which hinders effective use of lithium ions in the positive electrode.
In addition, phosphorus pentafluoride (PF 5 ), which is a by-product at this time, reacts quickly with a small amount of moisture in the battery and generates a gas mainly composed of hydrogen fluoride (HF). Since this phosphorus pentafluoride (PF 5 ) is unevenly distributed in the vicinity of the negative electrode due to decomposition of the electrolyte anion, hydrogen fluoride (HF) which is a reaction product of water and phosphorus pentafluoride is also generated in the vicinity of the negative electrode. Become. Since this hydrogen fluoride (HF) not only increases the internal pressure of the battery but also promotes the deterioration of the positive and negative electrodes, it is desirable to prevent diffusion to the entire battery.

このような問題に対して、電池を製造する際に電池系内に持ち込まれる水分量を極力減らすことや電極に含まれる水分を真空加熱乾燥により減らす方法、水分量10ppm以下とした非水電解液を用いる方法、或いは電池の運用温度を規制し、電解質アニオンの分解を抑制する方法などが試みられている。
更に、炭素系負極に被膜を設けることで前記問題を解決する方法、例えば特許文献1で提案されたアクリル系樹脂膜による被覆、特許文献2における固体高分子電解質による被覆や特許文献3に提示されるLiSi被膜の形成、或いは特許文献4に記載されるフッ素化アニオン系界面活性剤から形成される電極保護膜などがある。特許文献5では非水電解液中の水分および遊離酸を除去するために電解液中にリチウム化合物を添加する方法も提案されている。
In response to such problems, a method of reducing the amount of moisture brought into the battery system when manufacturing a battery as much as possible, a method of reducing moisture contained in the electrode by vacuum heating and drying, a non-aqueous electrolyte having a moisture content of 10 ppm or less There have been attempts to use a method for suppressing the decomposition of the electrolyte anion by regulating the operating temperature of the battery.
Further, a method for solving the above problem by providing a film on the carbon-based negative electrode, for example, coating with an acrylic resin film proposed in Patent Document 1, coating with a solid polymer electrolyte in Patent Document 2, and Patent Document 3 Forming a Li x Si y O z film, or an electrode protective film formed from a fluorinated anionic surfactant described in Patent Document 4. Patent Document 5 also proposes a method of adding a lithium compound to the electrolytic solution in order to remove moisture and free acid in the nonaqueous electrolytic solution.

特開平8−195197号公報JP-A-8-195197 特開平7−235328号公報JP-A-7-235328 特開2000−67865号公報JP 2000-67865 A 特開平9−92280号公報JP-A-9-92280 特開平11−185811号公報Japanese Patent Laid-Open No. 11-185811

このような状況に鑑み、本発明が解決しようとする技術課題は、前記特許文献において提示されている課題と同様に、フッ素系電解質を含む非水電解液中におけるフッ化水素の生成による電池内圧の上昇および電極の損傷を抑制し、電池の破裂や電解液の液漏れなどが生じることのない安全性の高く、しかも長寿命なリチウムイオン二次電池の提供を目的とするものである。   In view of such circumstances, the technical problem to be solved by the present invention is similar to the problem presented in the above-mentioned patent document, and the internal pressure of the battery due to the generation of hydrogen fluoride in a non-aqueous electrolyte containing a fluorine-based electrolyte. The purpose of the present invention is to provide a lithium ion secondary battery with high safety and long life, in which the rise of the battery and damage to the electrode are suppressed, and the battery does not rupture or the electrolyte leaks.

請求項1記載の発明は、リチウムイオンを含有する充放電可能な正極と、リチウムイオンを吸蔵・放出する炭素材料からなる負極と、多孔性ポリエチレンからなるセパレーター、及びフッ素系電解質を溶解させた非水電解液を備えたリチウムイオン二次電池において、フッ化物イオン(F-)トラップ機能を有する高分子ゲルで負極表面を被覆したことを特徴とするリチウムイオン二次電池である。 The invention according to claim 1 is a non-charged solution in which a chargeable / dischargeable positive electrode containing lithium ions, a negative electrode made of a carbon material that absorbs and releases lithium ions, a separator made of porous polyethylene, and a fluorine-based electrolyte are dissolved. A lithium ion secondary battery comprising a water electrolyte, wherein the negative electrode surface is coated with a polymer gel having a fluoride ion (F ) trapping function.

請求項2記載の発明は、前記高分子ゲルが、フッ化物イオントラップ機能を有するモノマーの共重合体である請求項1記載のリチウムイオン二次電池である。   The invention described in claim 2 is the lithium ion secondary battery according to claim 1, wherein the polymer gel is a copolymer of monomers having a fluoride ion trap function.

請求項3記載の発明は、前記高分子ゲルが、メタクリル酸メチル、ジメタクリル酸エチレン、及びフッ化物イオントラップ機能を有するモノマーとの共重合体である請求項1記載のリチウムイオン二次電池である。   The invention according to claim 3 is the lithium ion secondary battery according to claim 1, wherein the polymer gel is a copolymer of methyl methacrylate, ethylene dimethacrylate, and a monomer having a fluoride ion trap function. is there.

請求項4記載の発明は、前記フッ化物イオントラップ機能を有するモノマーが、官能基の構造を崩すことなく付加重合が可能な二重結合を持つアミド基、ニトリル基、アリール基、ヘテロ環を有する化合物である請求項2乃至請求項3記載のいずれかのリチウムイオン二次電池である。   According to a fourth aspect of the present invention, the monomer having a fluoride ion trap function has an amide group, a nitrile group, an aryl group, or a heterocyclic ring having a double bond capable of addition polymerization without destroying the structure of the functional group. 4. The lithium ion secondary battery according to claim 2, wherein the lithium ion secondary battery is a compound.

請求項5記載の発明は、前記フッ化物イオントラップ機能を有するモノマーが、アクリルアミド系化合物モノマーである請求項2乃至請求項3記載のいずれかのリチウムイオン二次電池である。   The invention according to claim 5 is the lithium ion secondary battery according to any one of claims 2 to 3, wherein the monomer having a fluoride ion trap function is an acrylamide compound monomer.

請求項6記載の発明は、前記アクリルアミド系化合物モノマーが、アクリルアミド、メタクリルアミド及びポリアクリル酸エステルの1種又は2種以上から構成される請求項5記載のリチウムイオン二次電池である。   The invention according to claim 6 is the lithium ion secondary battery according to claim 5, wherein the acrylamide compound monomer is composed of one or more of acrylamide, methacrylamide and polyacrylic acid ester.

請求項7記載の発明は、前記高分子ゲルの合成前における前記アクリルアミド系化合物モノマーの物質量比が15から25%である請求項6記載のリチウムイオン二次電池である。   The invention according to claim 7 is the lithium ion secondary battery according to claim 6, wherein the substance amount ratio of the acrylamide compound monomer before the synthesis of the polymer gel is 15 to 25%.

本発明は、炭素負極の表面を、フッ化物イオンをトラップする機能を有する高分子ゲルで被覆することにより、高分子ゲルが備える官能基とフッ化物イオンとの二次的相互作用によりフッ化物イオンをトラップし、電池内のガス生成反応を抑制して電池内圧の上昇を抑えると同時に、電極の損傷も抑えるもので、電池の破裂や電解液の漏れなどの電池損傷のない安全性の高いリチウムイオン二次電池を提供する。   In the present invention, the surface of the carbon negative electrode is coated with a polymer gel having a function of trapping fluoride ions, whereby fluoride ions are obtained by secondary interaction between the functional groups provided in the polymer gel and fluoride ions. It suppresses the gas generation reaction in the battery and suppresses the increase in the internal pressure of the battery, and at the same time, suppresses the damage of the electrode, and is highly safe lithium without battery damage such as battery rupture or electrolyte leakage. An ion secondary battery is provided.

本発明に係るリチウムイオン二次電池は、フッ化物イオントラップ機能を有する高分子ゲルにより炭素負極を被覆することにより、負極表面上で起こるフッ化水素生成反応を抑制することで、気体の発生も少なく、高い安全性を有するリチウムイオン二次電池が得られるものである。   In the lithium ion secondary battery according to the present invention, the carbon negative electrode is coated with a polymer gel having a fluoride ion trap function, thereby suppressing the hydrogen fluoride generation reaction that occurs on the surface of the negative electrode. A lithium ion secondary battery having a small amount and high safety can be obtained.

本発明の骨子とするところは、化学平衡によるフッ化水素を固定することにあり、フッ化水素の固定においては、電池系内におけるフッ化物イオン濃度は、一定の濃度以上には変化しないので、水素イオンも同時に固定されるために水素の発生は伴わない。   The main point of the present invention is to fix hydrogen fluoride by chemical equilibrium, and in fixing hydrogen fluoride, the fluoride ion concentration in the battery system does not change beyond a certain concentration. Since hydrogen ions are also fixed at the same time, no hydrogen is generated.

その方法としては、有機合成分野でも広く知られたフッ化物イオンと官能基との二次的相互作用に着目したもので、例えばリチウム系二次電池では、フッ化水素の発生源となる電解液中の遊離酸及び水分を、電解液にリチウム化合物を添加することで除去する方法が特許文献5で提案されているが、本発明では、フッ化物イオンと反応する官能基(イオントラップ機能性官能基)を備える高分子ゲルで負極を被覆することで、負極近傍でフッ化物イオン及び水素イオンをトラップすることでフッ化水素の発生を抑える方法である。   The method focuses on the secondary interaction between a fluoride ion and a functional group, which is also widely known in the field of organic synthesis. For example, in a lithium secondary battery, an electrolytic solution that is a source of hydrogen fluoride Patent Document 5 proposes a method for removing free acid and moisture in the electrolyte by adding a lithium compound to the electrolytic solution. In the present invention, a functional group that reacts with fluoride ions (an ion trap functional functional group). In this method, the generation of hydrogen fluoride is suppressed by trapping fluoride ions and hydrogen ions in the vicinity of the negative electrode by coating the negative electrode with a polymer gel having a base.

なお、本発明では負極近傍で選択的にフッ化物イオンおよび水素イオンをトラップすることから、イオントラップ機能性置換基の近傍では、高い濃度のフッ化物イオンや水素イオンが存在し、これが正極と接触した場合、正極を溶解させるので、フッ化物イオントラップ機能を有する高分子ゲルは、正極から遠ざけて設ける。   In the present invention, fluoride ions and hydrogen ions are selectively trapped in the vicinity of the negative electrode. Therefore, there are high concentrations of fluoride ions and hydrogen ions in the vicinity of the ion trap functional substituent, which are in contact with the positive electrode. In this case, since the positive electrode is dissolved, the polymer gel having a fluoride ion trap function is provided away from the positive electrode.

以下、実施例を用いて詳細に説明する。なお、本発明は以下の実施例のみに限定されるものではない。
正極は、正極活物質にコバルト酸リチウム(LiCoO)、導電剤としてカーボンブラック、及び結着剤にポリフッ化ビニリデン(PVdF)を用い、それらを90:5:5の重量比で充分混合して、N−メチル−2−ピロリドン(NMP)を更に適量加えてスラリー状にした後、厚さ20μmアルミ箔上に塗布した。乾燥後、圧延して活物質面が一辺40mmの正方形となるように切り取り作製した。
Hereinafter, it demonstrates in detail using an Example. In addition, this invention is not limited only to a following example.
The positive electrode uses lithium cobaltate (LiCoO 2 ) as the positive electrode active material, carbon black as the conductive agent, and polyvinylidene fluoride (PVdF) as the binder, and these are mixed sufficiently in a weight ratio of 90: 5: 5. Further, an appropriate amount of N-methyl-2-pyrrolidone (NMP) was added to form a slurry, which was then applied onto a 20 μm thick aluminum foil. After drying, it was rolled and cut so that the active material surface was a square with a side of 40 mm.

負極は、負極活物質には人造黒鉛粉末を用い、増粘剤としてカルボキシメチルセルロースナトリウム塩(CMC)水溶液、及び結着剤としてSBRラテックスを用い、97:2:1の重量比で充分混合し、水を加えてスラリー状にした後、銅箔上に塗布して乾燥後、圧延して活物質面が一辺45mmの正方形となるように切り取り作製した。   The negative electrode uses artificial graphite powder as the negative electrode active material, carboxymethylcellulose sodium salt (CMC) aqueous solution as the thickener, and SBR latex as the binder, and sufficiently mixed at a weight ratio of 97: 2: 1. After adding water to form a slurry, the slurry was applied onto a copper foil, dried, and then rolled and cut so that the active material surface was a square having a side of 45 mm.

フッ化物イオントラップ機能性の高分子ゲルの作製は、フッ化物イオントラップ機能性モノマーとしては、アクリルアミド、4−ヒドロキシスチレン、アクリロニトリル、又は4−ビニルピリジンを用い、以下に示す合成方法により行った。
なお、アミドを用いた場合の二次的相互作用は、アミノ基とフッ化物イオンとの水素結合によるもので、この水素結合はカルボニル酸素由来の誘起効果により分子内分極が増大しているため、より強い結合となっている。
Preparation of the fluoride ion trap functional polymer gel was performed by the following synthesis method using acrylamide, 4-hydroxystyrene, acrylonitrile, or 4-vinylpyridine as the fluoride ion trap functional monomer.
The secondary interaction when using an amide is due to the hydrogen bond between the amino group and the fluoride ion, and this hydrogen bond has increased intramolecular polarization due to the induced effect derived from carbonyl oxygen. It is a stronger bond.

フッ化物イオントラップ機能性モノマーと、メタクリル酸メチルと、架橋材のジメタクリル酸エチレンとを15:75:10の物質量比で混合し、これらを溶解させるための重合開始剤である2−2´−アゾビスイソブチロニトリル(AIBN)を2000ppm溶解させた有機溶媒を適量加え、モノマー溶液とした。なお、前記有機溶媒はエチレンカーボネート、エチルメチルカーボネート、3:7の体積比で混合したものを用いた。
フッ化物イオントラップ機能性高分子ゲルは、このモノマー溶液を電気炉で加熱して共重合させて、3次元網目構造高分子を作成した。この高分子は、架橋され共重合されたメタクリル酸メチルが存在することで、電解液を浸潤させることでゲル化するものである。
2-2 is a polymerization initiator for mixing a fluoride ion trap functional monomer, methyl methacrylate, and ethylene dimethacrylate as a cross-linking material in a substance ratio of 15:75:10 and dissolving them. An appropriate amount of an organic solvent in which 2000 ppm of '-azobisisobutyronitrile (AIBN) was dissolved was added to obtain a monomer solution. The organic solvent used was a mixture of ethylene carbonate, ethyl methyl carbonate and a volume ratio of 3: 7.
The fluoride ion trap functional polymer gel was copolymerized by heating the monomer solution in an electric furnace to prepare a three-dimensional network polymer. This polymer is gelled by infiltrating the electrolytic solution due to the presence of cross-linked and copolymerized methyl methacrylate.

負極へのイオントラップ機能性高分子ゲルの被覆は、先のモノマー溶液を前記負極極板上に滴下し、スピンコート法により均一に塗布後、電気炉で80℃、20分の条件で重合させて高分子化して、本発明に係る負極を作製した。   The ion trap functional polymer gel is coated on the negative electrode by dropping the above monomer solution on the negative electrode plate, applying it uniformly by spin coating, and then polymerizing it in an electric furnace at 80 ° C. for 20 minutes. Thus, a negative electrode according to the present invention was produced.

試験セルは、アルミラミネート型セルを用い、片面に各活物質を塗工したタブ付きの正・負極を1枚ずつ、およびその間に多孔質ポリエチレン製セパレーターを層状に重ねて電極素子とし、それらを十分大きなアルミラミネート材で包み、注液部を除き、ヒートシールして密封した。その後、エチレンカーボネート、エチルメチルカーボネートを3:7の体積比で混合した溶媒に六フッ化燐酸リチウム1.0mol/Lを溶解させたものを電解液(総酸量10ppm以下)として、該注液部より1.72gをセルに注液した。
この電解液の注液により負極を覆う高分子がゲル化し、その被膜は、イオントラップ機能性高分子ゲルとなる。
The test cell uses an aluminum laminate type cell, one positive / negative electrode with tabs each coated with an active material on one side, and a porous polyethylene separator layered between them to form an electrode element. Wrapped with a sufficiently large aluminum laminate, the liquid injection part was removed, and it was heat sealed. Thereafter, a solution prepared by dissolving 1.0 mol / L of lithium hexafluorophosphate in a solvent in which ethylene carbonate and ethyl methyl carbonate are mixed at a volume ratio of 3: 7 is used as an electrolytic solution (total acid amount of 10 ppm or less). 1.72 g was injected into the cell from the part.
The polymer covering the negative electrode is gelled by the injection of the electrolytic solution, and the coating becomes an ion trap functional polymer gel.

注液後、該注液部を真空ヒートシーラーにて封をし、外部短絡を防止するための絶縁テープをタブの裏側に貼り、物理的衝撃の影響を避けるために電極素子が位置する部位を2枚のアクリル板で挟み、膨らみ試験に供した。   After injecting the liquid, seal the infusion part with a vacuum heat sealer and attach an insulating tape to the back of the tab to prevent external short circuit. The sample was sandwiched between two acrylic plates and subjected to a swelling test.

本発明セルNo.1はフッ化物イオントラップ機能性モノマーとしてアクリルアミドを用い、本発明セルNo.2は4−ヒドロキシスチレン、本発明セルNo.3はアクリロニトリル、本発明セルNo.4は4−ビニルピリジンをそれぞれフッ化物イオントラップ機能性モノマーとして用いたものであり、各セルは、フッ化物イオントラップ機能性モノマを変えたこと以外は上記実施例と同様にして作製した。   Invention cell No. No. 1 uses acrylamide as a fluoride ion trap functional monomer, and cell No. 1 of the present invention. 2 is 4-hydroxystyrene, cell No. of the present invention. 3 is acrylonitrile, cell No. of the present invention. 4 is one using 4-vinylpyridine as a fluoride ion trap functional monomer, and each cell was prepared in the same manner as in the above example except that the fluoride ion trap functional monomer was changed.

比較例として、人造黒鉛粉末100に対して2重量部のポリアクリロニトリル(PAN)を加え、N,Nジメチルホルムアミド(DMF)を適量加えてペースト状にし、温度200℃で真空乾燥を行い、乾燥後、乳鉢で軽く粉砕し、PANで被覆された炭素材料を得た。アクリル酸系樹脂で被覆された炭素材料に対して、ポリフッ化ビニリデン(PVdF)を結着剤として混合し、NMPを適量加えてペーストとし、銅箔上に塗布した。200℃での真空乾燥後、圧延したものを負極として用い、それ以外は本発明セルと同様にセルを作製し、比較セルNo.10とした。   As a comparative example, 2 parts by weight of polyacrylonitrile (PAN) is added to the artificial graphite powder 100, and an appropriate amount of N, N dimethylformamide (DMF) is added to form a paste, followed by vacuum drying at a temperature of 200 ° C. Then, the carbon material was lightly pulverized in a mortar to obtain a carbon material coated with PAN. A carbon material coated with an acrylic resin was mixed with polyvinylidene fluoride (PVdF) as a binder, and an appropriate amount of NMP was added to form a paste, which was applied onto a copper foil. After vacuum drying at 200 ° C., a rolled product was used as the negative electrode, and a cell was prepared in the same manner as the cell of the present invention except that, and comparative cell No. It was set to 10.

従来例として、モノマー溶液を塗布していない負極を用い、それ以外は本発明セルと同様にセルを作製し、従来セルNo.20とした。   As a conventional example, a negative electrode not coated with a monomer solution was used, and other than that, a cell was prepared in the same manner as the cell of the present invention. It was set to 20.

本発明セルの負極は、電解液が浸潤した高分子ゲルに覆われているのに対して、比較セルNo.10では、アクリル酸系樹脂(高分子)で被覆された炭素材料を、電極上に塗布後、200℃で真空乾燥することで負極極板としたもので、本発明セル、特に本発明セルNo.3は、フッ化物イオントラップ機能性モノマーとしてアクリロニトリルを用いており、比較セルNo.10のポリアクリロニトリルを用いており、前記するように、電解液が浸潤した高分子ゲルに覆われているものと、アクリル酸系樹脂(高分子)で被覆された炭素材料とで負極の構造が大きく異なっている。   The negative electrode of the cell of the present invention is covered with a polymer gel infiltrated with an electrolyte solution, whereas the comparative cell No. No. 10, a carbon material coated with an acrylic resin (polymer) was applied on an electrode and then vacuum-dried at 200 ° C. to obtain a negative electrode plate. . No. 3 uses acrylonitrile as a fluoride ion trap functional monomer. 10 polyacrylonitrile is used, and as described above, the structure of the negative electrode is composed of a material covered with a polymer gel infiltrated with an electrolyte and a carbon material coated with an acrylic resin (polymer). It is very different.

膨らみ試験は、作製したそれぞれのセルの充放電試験を30サイクル行い、充放電試験投入前および30サイクル後のセルの厚みを測定した。
測定はアクリル板がかかっていないラミ部、即ち、電極素子が位置する部位以外とし、その試験結果を表1に記した。
なお、試験をよりやり易くする為に、本発明セル、比較例セルおよび従来例セルととも、電極素子の同一方向に突出形成しているタブが付いている位置とは反対の位置の下方に比較的広い範囲のアルミラミネート材が存する様に、電極素子を十分大きなアルミラミネート材で包み、この電極素子が位置していない部位をラミ部として、測定したものである。
In the swelling test, the charge / discharge test of each produced cell was performed for 30 cycles, and the thickness of the cell before and after the charge / discharge test was measured was measured.
The measurement was performed at a portion other than the laminated portion where the acrylic plate was not applied, that is, the portion where the electrode element was located, and the test results are shown in Table 1.
In addition, in order to make the test easier, the cell of the present invention, the comparative example cell, and the conventional cell are below the position opposite to the position where the tabs projecting in the same direction of the electrode element are attached. The electrode element was wrapped with a sufficiently large aluminum laminate material so that a relatively wide range of aluminum laminate material existed, and the portion where this electrode element was not located was measured as a laminating portion.

膨らみ試験の初回充電条件は、電流0.1CA、電圧4.2Vの定電流定電圧充電とし、初回放電条件は、電流0.1CA、終止電圧2.7Vの定電流放電とした。その後の29サイクルは全て電流0.5CA、電圧4.2Vの定電流定電圧充電とし、放電条件は電流0.5CA、終止電圧2.7Vとし、試験温度は全て25℃とした。   The initial charging conditions of the bulge test were constant current and constant voltage charging with a current of 0.1 CA and a voltage of 4.2 V, and the initial discharging conditions were constant current discharge with a current of 0.1 CA and a final voltage of 2.7 V. The subsequent 29 cycles were constant current and constant voltage charging with a current of 0.5 CA and a voltage of 4.2 V, the discharge conditions were a current of 0.5 CA and a final voltage of 2.7 V, and the test temperatures were all 25 ° C.

表1から明らかなように、いずれも試験前後で各部位における厚みの変化が測定されたが、その厚みの変化量は異なり、本発明セルNo.1は0.33mm、本発明セルNo.2では0.31mm、本発明セルNo.3では0.43mm、本発明セルNo.4では0.28mmと、セルNo.3で、少し差が大きい値を示した以外は、0.3mm台と小さい。   As is clear from Table 1, the change in thickness at each part was measured before and after the test, but the amount of change in thickness was different. 1 is 0.33 mm, cell No. 1 of the present invention. 2 is 0.31 mm, the cell No. of the present invention. 3 is 0.43 mm, the cell No. of the present invention. 4 is 0.28 mm, cell No. 3, except for showing a slightly large difference, it is as small as 0.3 mm.

一方、比較セルNo.10では0.53mmと、明らかに本発明セルより差が大きくなったのが見られ、更に従来セルNo.20では0.70mmと更に大きな差が測定された。   On the other hand, the comparison cell No. No. 10 is 0.53 mm, which is clearly larger than the cell of the present invention. For example 20, a larger difference of 0.70 mm was measured.

表1の結果から、比較例及び従来例のセルは、本発明例のセルに比べて内圧が高くなったことを示している。
その内圧上昇の原因については、非水電解液の分解によるガスの発生が原因であることは明らかであり、本発明セルNo.1からNo.4は、比較セルNo.10及び従来セルNo.20と比べてガスの発生量が少なくなっている。
From the results shown in Table 1, the cells of the comparative example and the conventional example show that the internal pressure is higher than that of the cell of the present invention.
The cause of the increase in the internal pressure is apparently due to the generation of gas due to the decomposition of the non-aqueous electrolyte. 1 to No. 4 is a comparison cell No. 10 and conventional cell no. Compared to 20, the amount of gas generated is reduced.

従来セルNo.20と比較すると、本発明セルNo.1乃至No.4及び比較セルNo.10のいずれもガス発生量の抑制効果があると考えられるが、その抑制効果は、比較セルNo.10に比べて本発明セルのほうが高いことがわかる。
その理由については、官能基とフッ化物イオンの分子間力、およびそれらの接触面積が異なることがガス発生量の差として現れていると考えられる。
Conventional cell No. Compared with 20 of the present invention, cell No. 1 to No. 4 and comparative cell no. 10 is considered to have an effect of suppressing the amount of gas generated. It can be seen that the cell of the present invention is higher than 10.
About the reason, it is thought that the difference in the amount of gas generation is that the intermolecular force between the functional group and the fluoride ion and the contact area between them differ.

更に、本発明セルと負極に何も施されていない従来セルNo.20を比較すると、明らかにガス発生が抑制されていることがわかり、負極を被覆している高分子ゲルが副反応のガス発生を抑制する効果を示していることがわかる。   Furthermore, the conventional cell No. in which nothing is applied to the cell of the present invention and the negative electrode. Comparison of 20 shows that gas generation is clearly suppressed, and it can be seen that the polymer gel covering the negative electrode shows the effect of suppressing the side reaction gas generation.

なお、リチウムイオン二次電池における電解液の分解反応は連鎖反応であるため、一度反応が始まると、それを止めることは不可能であり、そのため最初の反応の時点で連鎖を起こす物質を作らせない方法をとる本発明はガス発生を抑える有効な手段である。   In addition, since the decomposition reaction of the electrolyte in a lithium ion secondary battery is a chain reaction, once the reaction starts, it is impossible to stop it, so a substance that causes a chain at the time of the first reaction is created. The present invention, which uses no method, is an effective means of suppressing gas generation.

Claims (7)

リチウムイオンを含有する充放電可能な正極と、リチウムイオンを吸蔵・放出する炭素材料からなる負極と、多孔性ポリエチレンからなるセパレーター、及びフッ素系電解質を溶解させた非水電解液を備えたリチウムイオン二次電池において、フッ化物イオントラップ機能を有する高分子ゲルで負極表面を被覆したことを特徴とするリチウムイオン二次電池。   Lithium ions comprising a chargeable / dischargeable positive electrode containing lithium ions, a negative electrode made of a carbon material that absorbs and releases lithium ions, a separator made of porous polyethylene, and a non-aqueous electrolyte in which a fluorine-based electrolyte is dissolved A lithium ion secondary battery, wherein the negative electrode surface is coated with a polymer gel having a fluoride ion trap function in a secondary battery. 前記高分子ゲルが、フッ化物イオントラップ機能を有するモノマーの共重合体である請求項1記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 1, wherein the polymer gel is a copolymer of monomers having a fluoride ion trap function. 前記高分子ゲルが、メタクリル酸メチル、ジメタクリル酸エチレン、及びフッ化物イオントラップ機能を有するモノマーとの共重合体である請求項1記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 1, wherein the polymer gel is a copolymer of methyl methacrylate, ethylene dimethacrylate, and a monomer having a fluoride ion trap function. 前記フッ化物イオントラップ機能を有するモノマーが、官能基の構造を崩すことなく付加重合が可能な二重結合を持つアミド基、ニトリル基、アリール基、ヘテロ環を有する化合物である請求項2乃至請求項3記載のいずれかのリチウムイオン二次電池。   The monomer having a fluoride ion trap function is a compound having an amide group, a nitrile group, an aryl group or a heterocycle having a double bond capable of addition polymerization without breaking the structure of the functional group. Item 5. The lithium ion secondary battery according to any one of Items 3 to 4. 前記フッ化物イオントラップ機能を有するモノマーが、アクリルアミド系化合物モノマーである請求項2乃至請求項3記載のいずれかのリチウムイオン二次電池。   The lithium ion secondary battery according to claim 2, wherein the monomer having a fluoride ion trap function is an acrylamide compound monomer. 前記アクリルアミド系化合物モノマーが、アクリルアミド、メタクリルアミド及びポリアクリル酸エステルの1種又は2種以上から構成される請求項5記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 5, wherein the acrylamide compound monomer is composed of one or more of acrylamide, methacrylamide, and polyacrylate. 前記高分子ゲルの合成前における前記アクリルアミド系化合物モノマーの物質量比が15から25%である請求項6記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 6, wherein a substance amount ratio of the acrylamide compound monomer before synthesis of the polymer gel is 15 to 25%.
JP2007221248A 2007-08-28 2007-08-28 Lithium ion secondary battery Active JP5184004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007221248A JP5184004B2 (en) 2007-08-28 2007-08-28 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007221248A JP5184004B2 (en) 2007-08-28 2007-08-28 Lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2009054462A true JP2009054462A (en) 2009-03-12
JP5184004B2 JP5184004B2 (en) 2013-04-17

Family

ID=40505362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007221248A Active JP5184004B2 (en) 2007-08-28 2007-08-28 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP5184004B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012174537A (en) * 2011-02-22 2012-09-10 Denso Corp Nonaqueous electrolyte secondary battery
JP2014123488A (en) * 2012-12-21 2014-07-03 Sumitomo Metal Mining Co Ltd Evaluation method of amount of gas generated in secondary battery
WO2014157418A1 (en) * 2013-03-26 2014-10-02 日産自動車株式会社 Nonaqueous electrolyte secondary battery
JPWO2015118988A1 (en) * 2014-02-06 2017-03-23 日産自動車株式会社 Nonaqueous electrolyte secondary battery
CN112786962A (en) * 2021-02-08 2021-05-11 凯博能源科技有限公司 Lithium ion battery and preparation method thereof
JP7462461B2 (en) 2019-04-15 2024-04-05 旭化成株式会社 Polyolefin laminated microporous membrane

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0765855A (en) * 1993-08-30 1995-03-10 Yuasa Corp Lithium battery
JPH08195197A (en) * 1995-01-17 1996-07-30 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JPH09298066A (en) * 1996-03-05 1997-11-18 Canon Inc Secondary battery
JPH1140163A (en) * 1997-07-23 1999-02-12 Yuasa Corp Non-aqueous secondary battery
JP2002190320A (en) * 2000-12-19 2002-07-05 Furukawa Electric Co Ltd:The Solid state electrolyte and battery using the electrolyte
JP2002324577A (en) * 2001-04-09 2002-11-08 Samsung Sdi Co Ltd Lithium secondary battery and manufacturing method therefor
JP2008146921A (en) * 2006-12-07 2008-06-26 Sony Corp Battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0765855A (en) * 1993-08-30 1995-03-10 Yuasa Corp Lithium battery
JPH08195197A (en) * 1995-01-17 1996-07-30 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JPH09298066A (en) * 1996-03-05 1997-11-18 Canon Inc Secondary battery
JPH1140163A (en) * 1997-07-23 1999-02-12 Yuasa Corp Non-aqueous secondary battery
JP2002190320A (en) * 2000-12-19 2002-07-05 Furukawa Electric Co Ltd:The Solid state electrolyte and battery using the electrolyte
JP2002324577A (en) * 2001-04-09 2002-11-08 Samsung Sdi Co Ltd Lithium secondary battery and manufacturing method therefor
JP2008146921A (en) * 2006-12-07 2008-06-26 Sony Corp Battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012174537A (en) * 2011-02-22 2012-09-10 Denso Corp Nonaqueous electrolyte secondary battery
JP2014123488A (en) * 2012-12-21 2014-07-03 Sumitomo Metal Mining Co Ltd Evaluation method of amount of gas generated in secondary battery
WO2014157418A1 (en) * 2013-03-26 2014-10-02 日産自動車株式会社 Nonaqueous electrolyte secondary battery
JP6004088B2 (en) * 2013-03-26 2016-10-05 日産自動車株式会社 Nonaqueous electrolyte secondary battery
JPWO2015118988A1 (en) * 2014-02-06 2017-03-23 日産自動車株式会社 Nonaqueous electrolyte secondary battery
JP7462461B2 (en) 2019-04-15 2024-04-05 旭化成株式会社 Polyolefin laminated microporous membrane
CN112786962A (en) * 2021-02-08 2021-05-11 凯博能源科技有限公司 Lithium ion battery and preparation method thereof

Also Published As

Publication number Publication date
JP5184004B2 (en) 2013-04-17

Similar Documents

Publication Publication Date Title
ES2821827T3 (en) Polymeric gel electrolyte, method of preparation thereof and electrochemical device comprising the same
KR102551090B1 (en) Composition for non-aqueous secondary battery adhesive layer, adhesive layer for non-aqueous secondary battery, laminate and non-aqueous secondary battery
ES2884725T3 (en) Reduction of gas formation in lithium titanate cells
JP5089595B2 (en) Novel polymer electrolytes and electrochemical devices
JP7231188B2 (en) Manufacturing method of lithium ion battery
CN103155218A (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
JP4050251B2 (en) Organic electrolyte and lithium battery using the same
JP2008300300A (en) Nonaqueous lithium ion secondary battery
JP2004146190A (en) Separator for lithium ion secondary battery and lithium ion secondary battery provided with same
JP5184004B2 (en) Lithium ion secondary battery
Suriyakumar et al. A flexible zirconium oxide based-ceramic membrane as a separator for lithium-ion batteries
CN109873208B (en) Gel polymer electrolyte secondary battery and preparation thereof
KR20170027403A (en) Secondary Battery Comprising Binder having High Swelling Ratio
Swiderska-Mocek Application of quaternary polymer electrolyte based on ionic liquid in LiFePO4/Li, Li4Ti5O12/Li and LiFePO4/Li4Ti5O12 batteries
JP2001319694A (en) Lithium-polymer secondary battery
KR100634901B1 (en) Non-aqueous electrolyte battery
JP2004095198A (en) Electrode paste and battery
TW201205920A (en) Lithium-ion secondary battery
JP2016072119A (en) Lithium secondary battery
JP2008140775A (en) Separator for lithium secondary battery and lithium secondary battery applying separator for lithium secondary battery
EP4358221A1 (en) Electrolyte, secondary battery, and electric device comprising secondary battery
US10490822B2 (en) Nonaqueous electrolyte secondary battery
KR20170111289A (en) Electrode for secondary battery
JP2020155378A (en) Electrolyte for lithium ion secondary battery, and lithium ion secondary battery
JP2015125950A (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130116

R150 Certificate of patent or registration of utility model

Ref document number: 5184004

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3