JP2002324577A - Lithium secondary battery and manufacturing method therefor - Google Patents

Lithium secondary battery and manufacturing method therefor

Info

Publication number
JP2002324577A
JP2002324577A JP2001110350A JP2001110350A JP2002324577A JP 2002324577 A JP2002324577 A JP 2002324577A JP 2001110350 A JP2001110350 A JP 2001110350A JP 2001110350 A JP2001110350 A JP 2001110350A JP 2002324577 A JP2002324577 A JP 2002324577A
Authority
JP
Japan
Prior art keywords
electrolyte
negative electrode
lithium secondary
secondary battery
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001110350A
Other languages
Japanese (ja)
Other versions
JP4149681B2 (en
Inventor
Ryuichi Shimizu
竜一 清水
Takitaro Yamaguchi
滝太郎 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Priority to JP2001110350A priority Critical patent/JP4149681B2/en
Priority to KR1020010071248A priority patent/KR100669314B1/en
Priority to US10/119,868 priority patent/US7008728B2/en
Priority to CNB02105908XA priority patent/CN1278444C/en
Publication of JP2002324577A publication Critical patent/JP2002324577A/en
Application granted granted Critical
Publication of JP4149681B2 publication Critical patent/JP4149681B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium secondary battery capable of suppressing reaction between a negative electrode and an electrolyte without degrading characteristics as a battery, and reducing the generated gas. SOLUTION: There are provided a positive electrode and a negative electrode capable of occlusion/release of lithium, and an electrolyte. Polyethylene glycol dimetacrylate (denoted as PEGDMA) or polyethylene glycol diacrylate (denoted as PEGDA) is added by 0.5-10 wt.% to the electrolyte. Acrylonitrile (denoted as AN) is added by 0.1-2 wt.%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電池
及びその製造方法に関するものである。
The present invention relates to a lithium secondary battery and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年、携帯電話、カムコーダ、ノート型
パソコン等のポータブル電子機器の普及に伴い、エネル
ギー密度の高い電池が求められ、リチウム二次電池の需
要が高まっている。特に、有機電解液やポリマー電解質
等の電解質を具備してなるリチウム二次電池において
は、高い電池性能を発現させるために、負極と電解質と
の反応を抑制することが重要である。特に、充電時に卑
な電位になる負極は、電解質を分解しやすく、電池性
能、特に電池容量、電池保存特性、サイクル特性、低温
特性等に大きな影響を与える。
2. Description of the Related Art In recent years, with the spread of portable electronic devices such as mobile phones, camcorders, and notebook personal computers, batteries with high energy density have been demanded, and demand for lithium secondary batteries has been increasing. In particular, in a lithium secondary battery including an electrolyte such as an organic electrolyte solution or a polymer electrolyte, it is important to suppress the reaction between the negative electrode and the electrolyte in order to exhibit high battery performance. In particular, a negative electrode that has a low potential when charged easily decomposes the electrolyte, and greatly affects battery performance, particularly battery capacity, battery storage characteristics, cycle characteristics, low-temperature characteristics, and the like.

【0003】そこで、リチウム二次電池の電解質として
は、特に負極との反応性を考慮した選定が行われ、負極
との反応で電池性能が劣化しない溶媒あるいはその組合
せが多数検討されている。さらに、溶媒の選定には電解
液の支持塩の溶解性、正極との反応性、イオン伝導性、
コスト等が考慮される。具体的には、リチウム二次電池
の非水溶媒としては、エチレンカーボネート、ブチレン
カーボネート、ジメチルカーボネート、メチルエチルカ
ーボネート、ジエチルカーボネート、γ−ブチロラクト
ン、プロピオン酸メチル、プロピオン酸ブチル、プロピ
オン酸エチル等の有機溶媒が単独あるいは複数種を組み
合わせて用いられる。また、更に特定の化合物を添加剤
として電解質に含有させることにより、負極と電解質の
反応を抑制して電池性能を向上させる試みも多数行われ
ている。
[0003] Therefore, as the electrolyte of the lithium secondary battery, selection is made in consideration of the reactivity with the negative electrode in particular, and a number of solvents or combinations thereof that do not deteriorate the battery performance due to the reaction with the negative electrode have been studied. Furthermore, the selection of the solvent depends on the solubility of the supporting salt of the electrolyte, the reactivity with the positive electrode, the ion conductivity,
Cost and the like are taken into account. Specifically, examples of the non-aqueous solvent for the lithium secondary battery include organic solvents such as ethylene carbonate, butylene carbonate, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, γ-butyrolactone, methyl propionate, butyl propionate, and ethyl propionate. A solvent is used alone or in combination of two or more. Further, many attempts have been made to improve the battery performance by suppressing the reaction between the negative electrode and the electrolyte by adding a specific compound to the electrolyte as an additive.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記の添加剤
によっては、充放電反応に悪影響を与え、電池としての
本来の電圧、あるいは電流が得られない場合がほとんど
であった。例えば、特開平8−96852号公報には、
金属リチウムまたはリチウムをドープ・脱ドープするこ
とが可能な材料を有する負極を用いた電池において、非
水溶媒中にビニレンカーボネートを含有させた電池が開
示されているが、炭素質材料を負極とする電池にこのビ
ニレンカーボネートを用いた場合、被膜形成能が充分で
はなく、充分な電池特性の向上が望めなかった。更に、
ビニレンカーボネートを添加した場合、初充電時のガス
発生量が多くなり、電池の形状によっては電池の内圧の
上昇による電池の変形が起きる場合があった。このガス
発生の原因としては、初充電の被膜形成の際に電解質の
分解が同時に起きているためと考えられており、このガ
ス発生によって電解質の変質が生じ、これが電池特性の
低下の一因になっている可能性があった。
However, in some cases, the above-mentioned additives adversely affect the charge / discharge reaction and do not provide the original voltage or current of the battery. For example, JP-A-8-96852 discloses that
In a battery using a negative electrode having a material capable of doping and undoping lithium metal or lithium, a battery containing vinylene carbonate in a nonaqueous solvent is disclosed, but a carbonaceous material is used as the negative electrode. When this vinylene carbonate was used for a battery, the film-forming ability was not sufficient, and a sufficient improvement in battery characteristics could not be expected. Furthermore,
When vinylene carbonate is added, the amount of gas generated at the time of initial charging increases, and depending on the shape of the battery, the battery may be deformed due to an increase in the internal pressure of the battery. It is believed that this gas generation is caused by the simultaneous decomposition of the electrolyte during the formation of the film for the first charge, and this gas generation causes the deterioration of the electrolyte, which is one of the causes of the deterioration of the battery characteristics. Could have become.

【0005】本発明は、上記事情に鑑みてなされたもの
であって、電池としての特性を低下させずに負極と電解
質との反応の抑制が可能であり、更にガス発生が少ない
リチウム二次電池を提供することを目的とする。
The present invention has been made in view of the above circumstances, and it is possible to suppress the reaction between a negative electrode and an electrolyte without deteriorating the characteristics as a battery, and to further reduce gas generation. The purpose is to provide.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は以下の構成を採用した。本発明のリチウ
ム二次電池は、リチウムを吸蔵、放出が可能な正極及び
負極と、電解質とを具備してなり、前記電解質中にポリ
エチレングリコールジメタクリレート(以下PEGDMAと表
記)またはポリエチレングリコールジアクリレート(以
下PEGDAと表記)が0.5〜10重量%の範囲で添加さ
れ、アクリロニトリル(以下ANと表記)が0.1〜2重
量%の範囲で添加されていることを特徴とする。
In order to achieve the above object, the present invention employs the following constitution. The lithium secondary battery of the present invention comprises a positive electrode and a negative electrode capable of inserting and extracting lithium, and an electrolyte, wherein the electrolyte contains polyethylene glycol dimethacrylate (hereinafter referred to as PEGDMA) or polyethylene glycol diacrylate ( (Hereinafter referred to as PEGDA) in an amount of 0.5 to 10% by weight, and acrylonitrile (hereinafter referred to as AN) in an amount of 0.1 to 2% by weight.

【0007】係るリチウム二次電池によれば、初充電時
の初期にPEGDMAまたはPEGDAが重合して電解質を形成す
るとともに、PEGDMAまたはPEGDA及びANが重合して負極
表面に有機質被膜が形成されるため、その後、充電の進
行により充電電圧が上昇した場合でも、この有機質被膜
によって負極表面上での電解質の分解反応が抑制される
ので、電解質の分解によるガス発生や電解質自体の変質
が低減され、リチウム二次電池の充放電容量の低下を防
止し、サイクル特性を向上することが可能となり、更に
電池の変形も防止可能となる。また、有機質被膜による
電解質分解の抑制効果によって、リチウム二次電池の高
温貯蔵特性が向上する。また、PEGDMAまたはPEGDA及びA
Nの添加量が上記の範囲であれば、電解質の分解抑制に
十分な有機質被膜を形成させることが可能になる。
According to the lithium secondary battery, PEGDMA or PEGDA is polymerized to form an electrolyte at the initial stage of the first charge, and PEGDMA or PEGDA and AN are polymerized to form an organic film on the surface of the negative electrode. Then, even when the charging voltage increases due to the progress of charging, the decomposition reaction of the electrolyte on the negative electrode surface is suppressed by the organic coating, so that gas generation due to the decomposition of the electrolyte and deterioration of the electrolyte itself are reduced, and lithium It is possible to prevent a decrease in the charge / discharge capacity of the secondary battery, improve the cycle characteristics, and prevent the battery from being deformed. Further, the high temperature storage characteristics of the lithium secondary battery are improved by the effect of suppressing the decomposition of the electrolyte by the organic coating. PEGDMA or PEGDA and A
When the amount of N added is in the above range, it is possible to form an organic film sufficient to suppress the decomposition of the electrolyte.

【0008】また、本発明のリチウム二次電池は、先に
記載のリチウム二次電池であって、前記電解質中にアセ
トニトリル(以下ACNと表記)が0.1〜5重量%の範
囲で添加されていることを特徴とする。
Further, the lithium secondary battery of the present invention is the lithium secondary battery described above, wherein acetonitrile (hereinafter referred to as ACN) is added to the electrolyte in a range of 0.1 to 5% by weight. It is characterized by having.

【0009】係るリチウム二次電池によれば、電解質中
にACNを添加することにより、有機質被膜の形成時にACN
が有機質被膜に取り込まれ、これにより有機質被膜のリ
チウムイオン伝導性が向上するので、低温特性を更に向
上させることが可能になる。
According to such a lithium secondary battery, by adding ACN to the electrolyte, ACN is formed during the formation of the organic film.
Is taken into the organic coating, thereby improving the lithium ion conductivity of the organic coating, so that the low-temperature characteristics can be further improved.

【0010】次に、本発明のリチウム二次電池は、リチ
ウムを吸蔵、放出が可能な正極及び負極と、電解質とを
具備してなり、前記電解質は、ポリエチレングリコール
ジメタクリレートまたはポリエチレングリコールジアク
リレートからなる重合体に有機電解液が含浸されてな
り、前記負極の表面に、ポリエチレングリコールジメタ
クリレートまたはポリエチレングリコールジアクリレー
トとアクリロニトリルとからなる有機質被膜が形成され
てなることを特徴とする。
Next, the lithium secondary battery of the present invention comprises a positive electrode and a negative electrode capable of inserting and extracting lithium, and an electrolyte, wherein the electrolyte is made of polyethylene glycol dimethacrylate or polyethylene glycol diacrylate. And a polymer film made of polyethylene glycol dimethacrylate or polyethylene glycol diacrylate and acrylonitrile is formed on the surface of the negative electrode.

【0011】係るリチウム二次電池によれば、負極の表
面にPEGDMAまたはPEGDA及びANからなる有機質被膜が形
成されており、この有機質被膜によって負極表面上での
電解質の分解反応が抑制されるので、電解質の分解によ
るガス発生や電解質自体の変質が低減され、リチウム二
次電池の充放電容量の低下を防止し、サイクル特性を向
上することが可能となり、更に電池の変形も防止可能と
なる。また、有機質被膜による電解質分解の抑制効果に
よって、リチウム二次電池の高温貯蔵特性が向上する。
According to the lithium secondary battery, an organic film made of PEGDMA or PEGDA and AN is formed on the surface of the negative electrode, and the decomposition reaction of the electrolyte on the surface of the negative electrode is suppressed by the organic film. Gas generation due to the decomposition of the electrolyte and deterioration of the electrolyte itself are reduced, the reduction of the charge / discharge capacity of the lithium secondary battery can be prevented, the cycle characteristics can be improved, and the battery can be prevented from being deformed. Further, the high temperature storage characteristics of the lithium secondary battery are improved by the effect of suppressing the decomposition of the electrolyte by the organic coating.

【0012】また、本発明のリチウム二次電池は、先に
記載のリチウム二次電池であって、有機質被膜中にアセ
トニトリルが少なくとも含まれていることを特徴とす
る。
Further, a lithium secondary battery according to the present invention is the above-described lithium secondary battery, characterized in that at least acetonitrile is contained in the organic coating.

【0013】係るリチウム二次電池によれば、有機質被
膜にACNが含まれているので、有機質被膜のリチウムイ
オン伝導性が向上し、リチウム二次電池の充放電効率が
高くなって低温特性を更に向上させることが可能にな
る。
According to such a lithium secondary battery, since ACN is contained in the organic coating, the lithium ion conductivity of the organic coating is improved, the charge / discharge efficiency of the lithium secondary battery is increased, and the low-temperature characteristics are further improved. Can be improved.

【0014】次に本発明のリチウム二次電池の製造方法
は、リチウムを吸蔵、放出が可能な正極及び負極と、電
解質とを具備してなるリチウム二次電池の製造方法であ
り、前記電解質にポリエチレングリコールジメタクリレ
ートを0.5〜10重量%の範囲で添加するとともにア
クリロニトリルを0.1〜2重量%の範囲で添加した状
態で、該電解質を少なくとも前記正極及び前記負極の間
に配置して40〜120℃の範囲で熱処理を行う工程
と、金属リチウムを参照極とした場合の前記負極の電位
が、0.8V以上1.3V以下の範囲に到達するまで定
電流充電を行った後に、負極の電位を維持したままで
0.1〜8時間の定電圧充電を行う第1充電工程とから
なることを特徴とする。また、前記第1充電工程の後
に、前記負極の電位が、0V以上0.1V以下の範囲に
到達するまで定電流充電を行った後に、負極の電位を維
持したままで1〜8時間の定電圧充電を行う第2充電工
程を行うことが好ましい。
Next, a method for manufacturing a lithium secondary battery according to the present invention is a method for manufacturing a lithium secondary battery comprising a positive electrode and a negative electrode capable of inserting and extracting lithium, and an electrolyte. In a state where polyethylene glycol dimethacrylate is added in a range of 0.5 to 10% by weight and acrylonitrile is added in a range of 0.1 to 2% by weight, the electrolyte is disposed at least between the positive electrode and the negative electrode. Performing a heat treatment at a temperature in the range of 40 to 120 ° C., and performing constant current charging until the potential of the negative electrode when metal lithium is used as the reference electrode reaches a range of 0.8 V or more and 1.3 V or less. A first charging step of performing constant voltage charging for 0.1 to 8 hours while maintaining the potential of the negative electrode. After the first charging step, constant current charging is performed until the potential of the negative electrode reaches the range of 0 V or more and 0.1 V or less. It is preferable to perform a second charging step of performing voltage charging.

【0015】係るリチウム二次電池の製造方法によれ
ば、熱処理することによりPEGDMAまたはPEGDAを熱重合
させて電解質を形成するとともに、PEGDMAまたはPEGDA
及びANを負極表面に吸着させ、次に第1充電工程により
吸着したPEGDMAまたはPEGDA及びANを重合させて有機質
被膜を形成するので、先に形成した電解質が分解する前
に負極の表面上に有機質被膜を形成することができる。
また、第1充電工程における定電圧充電が比較的長時間
に渡って行われるので、PEGDMAまたはPEGDA及びANの重
合反応が十分に行われ、有機質被膜の反応収率が高くな
り、十分な有機質被膜が形成される。また、有機質被膜
の形成によって、第2充電工程における電解質の分解を
抑制することが可能となり、ガス発生及び電解質の変質
を防止できる。また、第1充電工程を行うことによって
電解質の一部が有機質被膜に吸収されるので、有機質被
膜と電解質との親和性が向上し、充放電効率を向上させ
ることが可能になる。尚、PEGDMAまたはPEGDA及びANの
添加量が上記の範囲であれば、電解質の分解抑制に十分
な有機質被膜を形成させることが可能になる。
According to the method for manufacturing a lithium secondary battery, PEGDMA or PEGDA is thermally polymerized by heat treatment to form an electrolyte.
And AN are adsorbed on the surface of the negative electrode, and then the PEGDMA or PEGDA and AN adsorbed in the first charging step are polymerized to form an organic film, so that the organic material formed on the surface of the negative electrode before the previously formed electrolyte decomposes. A coating can be formed.
In addition, since the constant voltage charging in the first charging step is performed for a relatively long time, the polymerization reaction of PEGDMA or PEGDA and AN is sufficiently performed, the reaction yield of the organic coating is increased, and the sufficient organic coating is obtained. Is formed. Further, the formation of the organic coating makes it possible to suppress the decomposition of the electrolyte in the second charging step, thereby preventing gas generation and deterioration of the electrolyte. Further, by performing the first charging step, a part of the electrolyte is absorbed by the organic coating, so that the affinity between the organic coating and the electrolyte is improved, and the charge / discharge efficiency can be improved. If the amount of PEGDMA or PEGDA and AN is within the above range, it is possible to form an organic film sufficient to suppress the decomposition of the electrolyte.

【0016】また本発明のリチウム二次電池の製造方法
は、リチウムを吸蔵、放出が可能な正極及び負極と、電
解質とを具備してなるリチウム二次電池の製造方法であ
り、前記正極の活物質が、コバルト、マンガン、ニッケ
ルから選ばれる少なくとも一種とリチウムとの複合酸化
物のいずれか1種以上であり、前記電解質にポリエチレ
ングリコールジメタクリレートまたはポリエチレングリ
コールジアクリレートを0.5〜10重量%の範囲で添
加するとともにアクリロニトリルを0.1〜2重量%の
範囲で添加した状態で、該電解質を少なくとも前記正極
及び前記負極の間に配置して40〜120℃の範囲で熱
処理を行う工程と、電池電圧が2.5V以上3.1V以
下の範囲に到達するまで定電流充電を行った後に、電池
電圧を維持したままで0.1〜8時間の定電圧充電を行
う第1充電工程とからなることを特徴とする。また、前
記第1充電工程の後に、電池電圧が4.0V以上4.3
V以下の範囲に到達するまで定電流充電を行った後に、
電池電圧を維持したままで1〜8時間の定電圧充電を行
う第2充電工程を行うことが好ましい。
The method for manufacturing a lithium secondary battery according to the present invention is a method for manufacturing a lithium secondary battery comprising a positive electrode and a negative electrode capable of inserting and extracting lithium, and an electrolyte. The substance is at least one of a composite oxide of lithium and at least one selected from cobalt, manganese, and nickel, and the electrolyte contains 0.5 to 10% by weight of polyethylene glycol dimethacrylate or polyethylene glycol diacrylate. A step of performing a heat treatment at a temperature of 40 to 120 ° C. by disposing the electrolyte at least between the positive electrode and the negative electrode while adding acrylonitrile in a range of 0.1 to 2% by weight while adding acrylonitrile in a range of 0.1 to 2% by weight; After performing constant current charging until the battery voltage reaches a range of 2.5 V or more and 3.1 V or less, the battery voltage is maintained. In which it characterized in that it consists of a first charging step of performing constant-voltage charging at 0.1 to 8 hours. Further, after the first charging step, the battery voltage is 4.0 V or more and 4.3 or more.
After performing constant current charging until the voltage reaches the range of V or less,
It is preferable to perform the second charging step of performing constant voltage charging for 1 to 8 hours while maintaining the battery voltage.

【0017】また本発明のリチウム二次電池の製造方法
は、先に記載のリチウム二次電池の製造方法であって、
前記電解質中にアセトニトリルを0.1〜5重量%の範
囲で添加することを特徴とする。
Further, a method of manufacturing a lithium secondary battery according to the present invention is the method of manufacturing a lithium secondary battery described above,
Acetonitrile is added to the electrolyte in a range of 0.1 to 5% by weight.

【0018】係るリチウム二次電池の製造方法によれ
ば、電解質中にACNを添加することにより、有機質被膜
の形成時にACNを有機質被膜に取り込ませることがで
き、これにより有機質被膜のリチウムイオン伝導性が向
上するので、リチウム二次電池の低温特性を向上させる
ことが可能になる。
According to the method of manufacturing a lithium secondary battery, ACN can be incorporated into the organic film at the time of forming the organic film by adding ACN to the electrolyte, and thereby the lithium ion conductivity of the organic film can be improved. Therefore, the low temperature characteristics of the lithium secondary battery can be improved.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。本発明のリチウム二次電池は、リ
チウムを吸蔵、放出が可能な正極及び負極と、電解質と
を具備してなり、負極表面に有機質被膜が形成されてい
ない状態で、前記電解質中にポリエチレングリコールジ
メタクリレート(以下PEGDMAと表記)またはポリエチレ
ングリコールジアクリレート(以下PEGDAと表記)及び
アクリロニトリル(以下ANと表記)が含まれてなるもの
である。また前記電解質中にアセトニトリル(以下ACN
と表記)が含まれていても良い。
Embodiments of the present invention will be described below with reference to the drawings. The lithium secondary battery of the present invention comprises a positive electrode and a negative electrode capable of inserting and extracting lithium, and an electrolyte, and a polyethylene glycol dilute in the electrolyte in a state where an organic film is not formed on the surface of the negative electrode. It contains methacrylate (hereinafter referred to as PEGDMA) or polyethylene glycol diacrylate (hereinafter referred to as PEGDA) and acrylonitrile (hereinafter referred to as AN). Acetonitrile (hereinafter ACN) is contained in the electrolyte.
May be included).

【0020】また本発明のリチウム二次電池は、リチウ
ムを吸蔵、放出が可能な正極及び負極と、電解質とを具
備してなり、前記電解質は、ポリエチレングリコールジ
メタクリレートまたはポリエチレングリコールジアクリ
レートからなる重合体に有機電解液が含浸されてなり、
前記負極の表面に、PEGDMAまたはPEGDAとANとからなる
有機質被膜が形成されてなるものである。また前記有機
質被膜中にACNが少なくとも含まれていてもよい。
The lithium secondary battery of the present invention comprises a positive electrode and a negative electrode capable of inserting and extracting lithium, and an electrolyte, wherein the electrolyte is made of polyethylene glycol dimethacrylate or polyethylene glycol diacrylate. The organic electrolyte is impregnated in the coalescence,
An organic film composed of PEGDMA or PEGDA and AN is formed on the surface of the negative electrode. Further, at least ACN may be contained in the organic coating.

【0021】PEGDMAは、下記式(1)で示す構造をも
ち、炭素-炭素間の二重結合が分子内に2つ存在するい
わゆる二官能のアクリル酸エステル誘導体である。この
PEGDMAは、アニオン重合を行うアニオン付加重合性モノ
マーであり、加熱するとラジカル重合して重合体を形成
する。また充電時に卑な電位を示す負極表面上で有機質
被膜を形成する。このPEGDMAがアニオン重合すると、分
子内の2つの二重結合が開裂してそれぞれ別のPEGDMAと
結合する反応が連鎖的に起こり、負極表面上にPEGDMAが
重合してなる被膜が形成する。また、PEGDAは、下記式
(2)で示す構造をもち、PEGDMAと同様に二官能のアク
リル酸エステル誘導体であり、アニオン重合を行うアニ
オン付加重合性モノマーであり、加熱するとラジカル重
合して重合体を形成する。また、充電時に卑な電位を示
す負極表面上で有機質被膜を形成する。
PEGDMA is a so-called bifunctional acrylate derivative having a structure represented by the following formula (1) and having two carbon-carbon double bonds in the molecule. this
PEGDMA is an anion addition polymerizable monomer that performs anionic polymerization, and undergoes radical polymerization to form a polymer when heated. In addition, an organic film is formed on the surface of the negative electrode that exhibits a low potential during charging. When this PEGDMA undergoes anionic polymerization, two double bonds in the molecule are cleaved, and a reaction in which each of the double bonds is bonded to another PEGDMA occurs in a chain, and a film formed by polymerization of PEGDMA is formed on the negative electrode surface. PEGDA has a structure represented by the following formula (2), is a bifunctional acrylate derivative similarly to PEGDMA, and is an anion-addition polymerizable monomer that performs anionic polymerization. To form Further, an organic film is formed on the surface of the negative electrode which exhibits a low potential during charging.

【0022】[0022]

【化1】 Embedded image

【0023】[0023]

【化2】 Embedded image

【0024】また、PEGDMAまたはPEGDAは、ANが共存す
る状態でANとともに本発明に係る有機質被膜を形成す
る。この皮膜形成の機構は、PEGDMAまたはPEGDAがそれ
ぞれ単独の場合と同様で、充電時に卑な電位を示す負極
表面上でアニオン重合を行い、本発明に係る有機質被膜
を形成する。この有機質被膜の詳細な構造は不明である
が、おそらくPEGDMAまたはPEGDAとANとの共重合体であ
ると考えられる。PEGDMAまたはPEGDAとANからなる有機
質被膜は、リチウムのイオン伝導度が高く、4.2V以
上の電圧が印加された状態でも電気分解しない強固な被
膜である。
Further, PEGDMA or PEGDA forms an organic film according to the present invention together with AN in a state where AN coexists. The mechanism of this film formation is the same as in the case where PEGDMA or PEGDA is used alone, and anion polymerization is carried out on the negative electrode surface showing a negative potential during charging to form the organic film according to the present invention. Although the detailed structure of this organic coating is unknown, it is likely to be a copolymer of PEGDMA or PEGDA with AN. The organic coating composed of PEGDMA or PEGDA and AN has a high lithium ion conductivity and is a strong coating that does not undergo electrolysis even when a voltage of 4.2 V or more is applied.

【0025】また、本発明に係る有機質被膜には、PEGD
MAまたはPEGDA及びANの他に、ACNが含まれていても良
い。ACNを含む有機質被膜は、ACNが含まれない場合より
もリチウムのイオン伝導度が向上し、電池の内部インピ
ーダンスが低減されて充放電効率が向上する。ACNは、P
EGDMAまたはPEGDA及びANと共に反応して有機質被膜中に
存在するか、あるいはPEGDMAまたはPEGDA及びANのみか
らなる共重合体中に溶解した状態で有機質被膜中に存在
するか、のいずれか一方または両方の状態にあると考え
られる。尚、第1充電工程における被膜の形成に伴って
電解質中に含まれる未反応のPEGDMAまたはPEGDA及びAN
の濃度は著しく減少する。従って残留モノマーが電池特
性を劣化させることがない。
Further, the organic coating according to the present invention may comprise PEGD
ACN may be included in addition to MA or PEGDA and AN. The organic coating containing ACN improves the ionic conductivity of lithium as compared with the case where ACN is not included, reduces the internal impedance of the battery, and improves the charging / discharging efficiency. ACN is P
Either reacting with EGDMA or PEGDA and AN and present in the organic coating, or present in the organic coating dissolved in a copolymer consisting of PEGDMA or PEGDA and AN alone, or both It is considered to be in a state. The unreacted PEGDMA or PEGDA and AN contained in the electrolyte with the formation of the coating in the first charging step.
Is significantly reduced. Therefore, the residual monomer does not deteriorate the battery characteristics.

【0026】有機質被膜の厚さは、数〜数十nm程度で
あり、極めて薄い膜である。膜厚が数μmのオーダーに
なると、リチウムイオンを透過させることが困難にな
り、充放電反応が円滑に行えないので好ましくない。ま
た、厚さが例えば1nm以下程度になると、膜としての
形状を維持するのが困難になるので好ましくない。
The thickness of the organic film is about several to several tens of nm, and is an extremely thin film. When the film thickness is on the order of several μm, it is difficult to allow lithium ions to pass therethrough, and the charge / discharge reaction cannot be performed smoothly. Further, when the thickness is, for example, about 1 nm or less, it is difficult to maintain the shape of the film, which is not preferable.

【0027】上記の有機質被膜は負極表面上に形成され
るので、負極と電解質との直接の接触を防ぐ機能を果た
す。これにより、負極表面での電解質の還元分解反応が
抑制され、電解質の分解によりガス発生が低減されると
とともに電解質自体の変質が防止される。このガス発生
の低減によって電池の内圧が上昇せず、電池が変形する
ことがない。更に電解質の変質防止により、電解質量が
減少することがなく、充放電反応が円滑に進行して充放
電効率が高くなり、サイクル特性が向上する。更にま
た、電解質と負極との反応が抑制されるので、電池を高
温で長期間貯蔵した場合でも電解質の変質が起きること
がなく、充放電効率やサイクル特性等の電池特性が低下
することがない。
Since the organic coating is formed on the surface of the negative electrode, it functions to prevent direct contact between the negative electrode and the electrolyte. As a result, the reductive decomposition reaction of the electrolyte on the negative electrode surface is suppressed, the generation of gas due to the decomposition of the electrolyte is reduced, and the deterioration of the electrolyte itself is prevented. Due to this reduction in gas generation, the internal pressure of the battery does not increase, and the battery does not deform. Further, by preventing the deterioration of the electrolyte, the charge / discharge reaction proceeds smoothly without reducing the electrolytic mass, the charge / discharge efficiency is increased, and the cycle characteristics are improved. Furthermore, since the reaction between the electrolyte and the negative electrode is suppressed, even when the battery is stored at a high temperature for a long period of time, the electrolyte does not deteriorate, and the battery characteristics such as charge / discharge efficiency and cycle characteristics do not deteriorate. .

【0028】また、上記の有機質被膜はリチウムのイオ
ン伝導性に優れるので、電解質と負極との間でリチウム
イオンを輸送する機能も果たす。従って、負極表面が有
機質被膜で覆われたとしても、リチウムイオンの輸送に
何ら障害になることがなく、充放電反応が円滑に進行し
て充放電効率が高くなり、サイクル特性が向上する。ま
た電池の内部インピーダンスが増加することがなく、充
放電容量が大幅に低下することがない。
Further, since the above-mentioned organic coating has excellent lithium ion conductivity, it also has a function of transporting lithium ions between the electrolyte and the negative electrode. Therefore, even if the negative electrode surface is covered with the organic coating, there is no hindrance to the transport of lithium ions, the charge / discharge reaction proceeds smoothly, the charge / discharge efficiency is increased, and the cycle characteristics are improved. Also, the internal impedance of the battery does not increase, and the charge / discharge capacity does not significantly decrease.

【0029】上記の電解質は、PEGDMAまたはPEGDAから
なる重合体に有機電解液が含浸したポリマー電解質であ
る。有機電解液としては、例えば、非プロトン性溶媒に
リチウム塩が溶解されてなる有機電解液を例示できる。
非プロトン性溶媒としては、プロピレンカーボネート、
エチレンカーボネート、ブチレンカーボネート、ベンゾ
ニトリル、アセトニトリル、テトラヒドロフラン、2−
メチルテトラヒドロフラン、γ−ブチロラクトン、ジオ
キソラン、4−メチルジオキソラン、N、N−ジメチル
ホルムアミド、ジメチルアセトアミド、ジメチルスルホ
キシド、ジオキサン、1,2−ジメトキシエタン、スル
ホラン、ジクロロエタン、クロロベンゼン、ニトロベン
ゼン、ジメチルカーボネート、メチルエチルカーボネー
ト、ジエチルカーボネート、メチルプロピルカーボネー
ト、メチルイソプロピルカーボネート、エチルブチルカ
ーボネート、ジプロピルカーボネート、ジイソプロピル
カーボネート、ジブチルカーボネート、ジエチレングリ
コール、ジメチルエーテル等の非プロトン性溶媒、ある
いはこれらの溶媒のうちの二種以上を混合した混合溶
媒、さらにリチウム二次電池用の溶媒として従来から知
られているものを例示でき、特にプロピレンカーボネー
ト、エチレンカーボネート、ブチレンカーボネートのい
ずれか1つを含むとともにジメチルカーボネート、メチ
ルエチルカーボネート、ジエチルカーボネートのいずれ
か1つを含むものが好ましい。
The above-mentioned electrolyte is a polymer electrolyte obtained by impregnating a polymer made of PEGDMA or PEGDA with an organic electrolyte. Examples of the organic electrolyte include an organic electrolyte obtained by dissolving a lithium salt in an aprotic solvent.
As aprotic solvents, propylene carbonate,
Ethylene carbonate, butylene carbonate, benzonitrile, acetonitrile, tetrahydrofuran, 2-
Methyltetrahydrofuran, γ-butyrolactone, dioxolane, 4-methyldioxolane, N, N-dimethylformamide, dimethylacetamide, dimethylsulfoxide, dioxane, 1,2-dimethoxyethane, sulfolane, dichloroethane, chlorobenzene, nitrobenzene, dimethylcarbonate, methylethyl carbonate Aprotic solvents such as diethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, ethyl butyl carbonate, dipropyl carbonate, diisopropyl carbonate, dibutyl carbonate, diethylene glycol, dimethyl ether, or a mixture of two or more of these solvents Examples of solvents and those already known as solvents for lithium secondary batteries Can, in particular propylene carbonate, ethylene carbonate, dimethyl carbonate with including any one of butylene carbonate, methyl ethyl carbonate, those comprising any one of the diethyl carbonate preferred.

【0030】また、リチウム塩としては、LiPF6
LiBF4、LiSbF6、LiAsF6、LiClO4
LiCF3SO3、Li(CF3SO22N、LiC49
SO3、LiSbF6、LiAlO4、LiAlCl4、Li
N(Cx2x+1SO2)(Cy2 y十1SO2)(ただし
x、yは自然数)、LiCl、LiI等のうちの1種ま
たは2種以上のリチウム塩を混合させてなるものや、リ
チウム二次電池用のリチウム塩として従来から知られて
いるものを例示でき、特にLiPF6、LiBF4のいず
れか1つを含むものが好ましい。
As the lithium salt, LiPF 6 ,
LiBF 4, LiSbF 6, LiAsF 6 , LiClO 4,
LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 N, LiC 4 F 9
SO 3 , LiSbF 6 , LiAlO 4 , LiAlCl 4 , Li
One or more lithium salts of N (C x F 2x + 1 SO 2 ) (C y F 2 y10 1 SO 2 ) (where x and y are natural numbers), LiCl, LiI, etc. are mixed. And those conventionally known as lithium salts for lithium secondary batteries can be exemplified. Particularly, those containing any one of LiPF 6 and LiBF 4 are preferable.

【0031】またポリマー電解質の別の例として、上記
の有機電解液と、上記の有機電解液に対して膨潤性が高
いPEO、PPO、PAN、PVDF、PMA、PMM
A等のポリマーあるいはその重合体が混合してなるポリ
マー電解質を例示できる。
Further, as another example of the polymer electrolyte, the above-mentioned organic electrolyte and PEO, PPO, PAN, PVDF, PMA, PMM having a high swelling property with respect to the above-mentioned organic electrolyte.
A polymer such as A or a polymer electrolyte obtained by mixing the polymer can be exemplified.

【0032】PEGDMAまたはPEGDAは、有機質被膜の形成
前の時点で、上記の電解質中に0.5〜10重量%の範
囲で添加されていることが好ましい。PEGDMAまたはPEGD
Aの添加量が0.5重量%未満であると、有機質被膜が
充分に形成されないので好ましくなく、添加量が10重
量%を越えると、有機質被膜の厚さが増大して内部イン
ピーダンスが増加してしまうので好ましくない。またAN
は、有機質被膜の形成前の時点で、上記の電解質中に
0.1〜2重量%の範囲で添加されていることが好まし
い。ANの添加量が0.1重量%未満であると、有機質被
膜が充分に形成されないので好ましくなく、添加量が2
重量%を越えると、有機質被膜の厚さが増大して内部イ
ンピーダンスが増加してしまうので好ましくない。更に
ACNは、有機質被膜の形成前の時点で、上記の電解質中
に0.1〜5重量%の範囲で添加されていることが好ま
しい。ACNの添加量が0.1重量%未満であると、有機
質被膜のリチウムのイオン伝導度を充分に高めることが
できなくなるので好ましくなく、添加量が5重量%を越
えると、高温時の電解液の蒸気圧が高くなるので好まし
くない。
It is preferable that PEGDMA or PEGDA is added to the above electrolyte in a range of 0.5 to 10% by weight before the formation of the organic film. PEGDMA or PEGD
If the addition amount of A is less than 0.5% by weight, the organic film is not sufficiently formed, which is not preferable. If the addition amount exceeds 10% by weight, the thickness of the organic film increases and the internal impedance increases. Is not preferred. Also AN
Is preferably added to the above electrolyte in a range of 0.1 to 2% by weight before the formation of the organic film. If the amount of AN is less than 0.1% by weight, an organic film is not sufficiently formed, which is not preferable.
Exceeding the weight percent is not preferred because the thickness of the organic coating increases and the internal impedance increases. Further
ACN is preferably added to the above electrolyte in a range of 0.1 to 5% by weight before the formation of the organic film. If the addition amount of ACN is less than 0.1% by weight, it is not preferable because the ionic conductivity of lithium in the organic coating cannot be sufficiently increased, and if the addition amount exceeds 5% by weight, the electrolyte solution at high temperature Is unfavorable because the vapor pressure becomes high.

【0033】次に負極は、リチウムを吸蔵・放出が可能
な負極活物質粉末に、ポリフッ化ビニリデン等の結着材
と、場合によってカーボンブラック等の導電助材を混合
してシート状、扁平円板状等に成形したものを例示でき
る。負極活物質としては、人造黒鉛、天然黒鉛、黒鉛化
炭素繊維、黒鉛化メソカーボンマイクロビーズ、非晶質
炭素等の炭素質材料を例示できる。また、リチウムと合
金化が可能な金属質物単体やこの金属質物と炭素質材料
を含む複合物も負極活物質として例示できる。リチウム
と合金化が可能な金属としては、Al、Si、Sn、P
b、Zn、Bi、In、Mg、Ga、Cd等を例示でき
る。また負極として金属リチウム箔も使用できる。
Next, the negative electrode is formed into a sheet-shaped, flat circular shape by mixing a binder such as polyvinylidene fluoride and a conductive auxiliary material such as carbon black with a negative electrode active material powder capable of absorbing and releasing lithium. One molded into a plate or the like can be exemplified. Examples of the negative electrode active material include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber, graphitized mesocarbon microbeads, and amorphous carbon. Further, a simple substance of a metal which can be alloyed with lithium or a composite containing this metal and a carbonaceous material can also be exemplified as the negative electrode active material. Metals that can be alloyed with lithium include Al, Si, Sn, P
Examples thereof include b, Zn, Bi, In, Mg, Ga, and Cd. Further, a metal lithium foil can be used as the negative electrode.

【0034】有機質被膜が負極表面に形成される具体的
な形態としては、例えば、前記の負極活物質の表面に有
機質被膜が形成した状態や、金属リチウム箔の表面に有
機質被膜が形成した状態が考えられる。
Examples of the form in which the organic film is formed on the surface of the negative electrode include, for example, a state in which the organic film is formed on the surface of the negative electrode active material and a state in which the organic film is formed on the surface of the metallic lithium foil. Conceivable.

【0035】次に正極は、正極活物質粉末にポリフッ化
ビニリデン等の結着材とカーボンブラック等の導電助材
を混合してシート状、扁平円板状等に成形したものを例
示できる。上記の正極活物質としては、コバルト、マン
ガン、ニッケルから選ばれる少なくとも一種とリチウム
との複合酸化物のいずれか1種以上のものが好ましく、
具体的には、LiMn24、LiCoO2、LiNi
2、LiFeO2、V2 5、が好ましい。また、Ti
S、MoS、有機ジスルフィド化合物または有機ポリス
ルフィド化合物等のリチウムを吸蔵・放出が可能なもの
を用いても良い。
Next, the positive electrode was prepared by adding polyfluoride to the positive electrode active material powder.
Binder such as vinylidene and conductive assistant such as carbon black
Example of mixing into a sheet, flat disk, etc. by mixing
Can be shown. As the positive electrode active material, cobalt, man
At least one selected from gun and nickel and lithium
And any one or more of the complex oxides with
Specifically, LiMnTwoOFour, LiCoOTwo, LiNi
OTwo, LiFeOTwo, VTwoO FiveIs preferred. Also, Ti
S, MoS, organic disulfide compound or organic police
Those capable of absorbing and releasing lithium such as sulfide compounds
May be used.

【0036】次に本発明のリチウム二次電池の製造方法
について説明する。本発明のリチウム二次電池の製造方
法は、PEGDMAまたはPEGDA及びANを添加した電解質を正
極及び負極の間に配置して熱処理する工程と、第1充電
工程と、第2充電工程とからなる。
Next, a method for manufacturing the lithium secondary battery of the present invention will be described. The method for manufacturing a lithium secondary battery according to the present invention includes a step of placing an electrolyte to which PEGDMA or PEGDA and AN is added between a positive electrode and a negative electrode and performing a heat treatment, a first charging step, and a second charging step.

【0037】まず最初に、PEGDMAまたはPEGDA及びANを
添加して電解質を調製する。この電解質は前述したよう
に、PEGDMAまたはPEGDA及びANを、前記の有機電解液に
添加して調製する。またPEGDMAまたはPEGDA及びANとと
もにACNを添加しても良い。PEGDMAまたはPEGDAの添加量
は、0.5〜10重量%の範囲が好ましく、2〜5重量
%の範囲がより好ましい。またANの添加量は、0.1〜
2重量%の範囲が好ましく、0.2〜0.5重量%の範
囲がより好ましい。更にACNの添加量は、0.1〜5重
量%の範囲が好ましく、0.2〜1重量%の範囲がより
好ましい。
First, an electrolyte is prepared by adding PEGDMA or PEGDA and AN. This electrolyte is prepared by adding PEGDMA or PEGDA and AN to the above-mentioned organic electrolyte as described above. ACN may be added together with PEGDMA or PEGDA and AN. The addition amount of PEGDMA or PEGDA is preferably in the range of 0.5 to 10% by weight, and more preferably in the range of 2 to 5% by weight. The amount of AN added is 0.1 to
A range of 2% by weight is preferable, and a range of 0.2 to 0.5% by weight is more preferable. Further, the addition amount of ACN is preferably in the range of 0.1 to 5% by weight, and more preferably in the range of 0.2 to 1% by weight.

【0038】次に、この電解質を正極と負極の間に配置
する。電解質が有機電解液の場合は、正極と負極の間に
セパレータを介在させた状態で、これらに有機電解液を
含浸させればよい。また、電解質がポリマー電解質の場
合は、正極と負極の間にポリマー電解質を挟めばよく、
更に有機電解液をポリマー電解質とは別個に正、負極に
含浸させても良い。
Next, this electrolyte is disposed between the positive electrode and the negative electrode. When the electrolyte is an organic electrolyte, these may be impregnated with an organic electrolyte while a separator is interposed between the positive electrode and the negative electrode. When the electrolyte is a polymer electrolyte, the polymer electrolyte may be sandwiched between the positive electrode and the negative electrode,
Further, the positive and negative electrodes may be impregnated with the organic electrolyte separately from the polymer electrolyte.

【0039】次に、PEGDMAまたはPEGDA及びAN並びにACN
を含む電解質を正、負極間に配置した状態で、40〜1
20℃の温度範囲で熱処理を行う。この熱処理により、
電解質中のPEGDMAがラジカル重合して重合体を形成し、
この重合体に有機電解液が含浸されて電解質が形成され
る。尚、加熱温度が40℃未満であると、PEGDMAまたは
PEGDAのラジカル重合が十分に進まないので好ましくな
い。また、加熱温度が120℃を越えると、電解質が変
質して電池特性を悪化させるので好ましくない。
Next, PEGDMA or PEGDA and AN and ACN
In the state where the electrolyte containing
Heat treatment is performed in a temperature range of 20 ° C. By this heat treatment,
PEGDMA in the electrolyte radically polymerizes to form a polymer,
The polymer is impregnated with an organic electrolyte to form an electrolyte. If the heating temperature is lower than 40 ° C., PEGDMA or
It is not preferable because radical polymerization of PEGDA does not sufficiently proceed. On the other hand, if the heating temperature exceeds 120 ° C., it is not preferable because the electrolyte is altered and the battery characteristics are deteriorated.

【0040】次に、第1充電工程では、金属リチウムを
参照極とした場合の負極の電位が、0.8V以上1.3
V以下の範囲に到達するまで定電流充電を行った後に、
負極の電圧を維持したままで0.1〜8時間の定電圧充
電を行う。定電流充電時の電流は、0.01〜0.3C
程度が好ましい。この第1充電工程により、電解質の還
元分解が起きる前に、PEGDMAまたはPEGDA及びANがアニ
オン重合して負極表面上に有機質被膜を形成する。即
ち、PEGDMAまたはPEGDA及びANは、金属リチウムを参照
極とした場合の負極の示す電位が0.8〜1.3Vの範
囲のときにアニオン付加重合を行い、また電位が0.8
V以上では電解質の還元分解が起きないため、充電電圧
の下限を0.8Vに限定する必要がある。また、この負
極表面におけるアニオン重合は反応の進行が比較的遅い
ことから、重合反応を十分に進行させるべく、上記の充
電電圧を維持した状態で1〜8時間の定電圧充電が必要
になる。なお負極の電位が0.8V未満では、電解質の
還元分解反応が併発するので好ましくない。
Next, in the first charging step, the potential of the negative electrode when metal lithium is used as the reference electrode is 0.8 V or more and 1.3 V or more.
After performing constant current charging until the voltage reaches the range of V or less,
The constant voltage charging is performed for 0.1 to 8 hours while the voltage of the negative electrode is maintained. The current at the time of constant current charging is 0.01-0.3C
The degree is preferred. In the first charging step, PEGDMA or PEGDA and AN are anionically polymerized to form an organic film on the surface of the negative electrode before reductive decomposition of the electrolyte occurs. That is, PEGDMA or PEGDA and AN perform anion addition polymerization when the potential of the negative electrode in the case where metal lithium is used as the reference electrode is in the range of 0.8 to 1.3 V, and the potential is 0.8
Above V, the electrolyte does not undergo reductive decomposition, so the lower limit of the charging voltage must be limited to 0.8V. In addition, since the progress of the anion polymerization on the surface of the negative electrode is relatively slow, constant voltage charging is required for 1 to 8 hours while maintaining the above charging voltage in order to sufficiently advance the polymerization reaction. If the potential of the negative electrode is less than 0.8 V, it is not preferable because a reductive decomposition reaction of the electrolyte occurs simultaneously.

【0041】また、定電流充電における負極の電位が
1.3Vを越えると、PEGDMAまたはPEGDA及びANの重合
反応が開始しないので好ましくない。次に定電圧充電に
おける充電時間が0.1時間未満では、PEGDMAまたはPE
GDA及びANの重合反応が充分に進行せず、有機質被膜に
欠陥が発生するおそれがあるので好ましくなく、充電時
間が8時間を超えると重合反応がほぼ終了するため、上
記の電圧範囲でこれ以上の時間で充電を行う実益がな
い。
On the other hand, if the potential of the negative electrode exceeds 1.3 V during constant current charging, the polymerization reaction of PEGDMA or PEGDA and AN does not start, which is not preferable. Next, if the charging time in constant voltage charging is less than 0.1 hour, PEGDMA or PE
Since the polymerization reaction of GDA and AN does not proceed sufficiently, there is a possibility that a defect may occur in the organic coating, which is not preferable. There is no real benefit of charging in a time.

【0042】尚、上記の第1充電工程では、正極をLi
CoO2、LiNiO2、LiMn24のいずれか1種以
上とした場合、電池電圧が2.5V以上3.1V以下の
範囲に到達するまで定電流充電を行った後に、電池電圧
を維持したままで0.1〜8時間の定電圧充電を行うこ
とが好ましい。
In the first charging step, the positive electrode is Li
When any one of CoO 2 , LiNiO 2 , and LiMn 2 O 4 was used, the battery voltage was maintained after constant-current charging was performed until the battery voltage reached a range of 2.5 V or more and 3.1 V or less. It is preferable to perform constant voltage charging for 0.1 to 8 hours as it is.

【0043】また、有機電解液にPEGDMAまたはPEGDA及
びANと共にACNを添加した場合は、PEGDMAまたはPEGDA及
びANとともにACNを含む有機質被膜が形成される。ACNが
含まれると、有機質被膜のリチウムのイオン伝導度が向
上し、電池の内部インピーダンスが低減されて充放電効
率が向上する。ACNは、PEGDMAまたはPEGDA及びANと共に
反応して有機質被膜中に存在するか、あるいはPEGDMAま
たはPEGDA及びANのみからなる共重合体中に溶解した状
態で有機質被膜中に存在するか、のいずれか一方または
両方の状態にあると考えられる。尚、被膜の形成に伴っ
て電解質中に含まれるPEGDMAまたはPEGDA、AN及びACNの
濃度は著しく減少する。
When ACN is added to the organic electrolyte together with PEGDMA or PEGDA and AN, an organic film containing ACN together with PEGDMA or PEGDA and AN is formed. When ACN is contained, the lithium ion conductivity of the organic coating is improved, the internal impedance of the battery is reduced, and the charge / discharge efficiency is improved. ACN reacts with PEGDMA or PEGDA and AN and is present in the organic coating, or is present in the organic coating dissolved in a copolymer consisting of PEGDMA or PEGDA and AN alone. Or it is considered to be in both states. Incidentally, the concentration of PEGDMA or PEGDA, AN and ACN contained in the electrolyte is significantly reduced with the formation of the film.

【0044】次に、第2充電工程では、金属リチウムを
参照極とした場合の負極の電位が、0.0V以上0.1
V以下の範囲に到達するまで定電流充電を行った後に、
負極電位を0.0V以上0.1V以下に維持したままで
1〜8時間の定電圧充電を行う。定電流充電時の電流
は、0.1〜0.5C程度が好ましい。この第2充電工
程においては、既に有機質被膜が形成しているため、電
解質と負極とが直接に接触することなく、電解質の還元
分解が抑制される。定電流充電における負極の電位が
0.1Vを越えると、電池容量が不十分になるので好ま
しくなく、0.0V未満であると正極の結晶構造が破壊
されるおそれがあるので好ましくない。また、定電圧充
電における充電時間が1時間未満であると、充電が不十
分になるので好ましくなく、充電時間が8時間を越える
と、過充電状態になって正極が劣化するので好ましくな
い。
Next, in the second charging step, the potential of the negative electrode when metal lithium is used as the reference electrode is 0.0V or more and 0.1V or less.
After performing constant current charging until the voltage reaches the range of V or less,
Constant voltage charging is performed for 1 to 8 hours while maintaining the negative electrode potential at 0.0 V or more and 0.1 V or less. The current during constant current charging is preferably about 0.1 to 0.5C. In the second charging step, since the organic film has already been formed, the electrolyte does not come into direct contact with the negative electrode, and the reductive decomposition of the electrolyte is suppressed. If the potential of the negative electrode exceeds 0.1 V during constant current charging, the battery capacity becomes insufficient, which is not preferable. If it is less than 0.0 V, the crystal structure of the positive electrode may be broken, which is not preferable. Further, if the charging time in the constant voltage charging is less than 1 hour, the charging becomes insufficient, which is not preferable. If the charging time exceeds 8 hours, the positive electrode deteriorates due to overcharging, which is not preferable.

【0045】尚、上記の第2充電工程では、正極をLi
CoO2、LiNiO2、LiMn24のいずれか1種以
上とした場合、電池電圧が4.0V以上4.3V以下の
範囲に到達するまで定電流充電を行った後に、電池電圧
を維持したままで1〜8時間の定電圧充電を行うことが
好ましい。また、第1充電工程と第2充電工程の間に、
1〜8時間程度の休止時間を設けることが、第1充電時
間が十分長くない場合に重合反応を充分に進行させる点
で好ましい。
In the second charging step, the positive electrode is Li
When any one of CoO 2 , LiNiO 2 , and LiMn 2 O 4 was used, constant current charging was performed until the battery voltage reached a range of 4.0 V to 4.3 V, and then the battery voltage was maintained. It is preferable to perform constant voltage charging for 1 to 8 hours as it is. Also, between the first charging step and the second charging step,
Providing a rest time of about 1 to 8 hours is preferable in that the polymerization reaction sufficiently proceeds when the first charging time is not sufficiently long.

【0046】上記のリチウム二次電池の製造方法によれ
ば、熱処理することによりPEGDMAまたはPEGDAをラジカ
ル重合させて重合体を形成させるとともにこの重合体に
有機電解液が含浸して電解質を形成し、またPEGDMAまた
はPEGDA及びANを負極表面に吸着させ、次に第1充電工
程により吸着したPEGDMAまたはPEGDA及びANを重合させ
て有機質被膜を形成するので、生成した電解質が分解前
する前に負極の表面上に有機質被膜を形成することがで
きる。また、第1充電工程における定電圧充電が比較的
長時間に渡って行われるので、PEGDMAまたはPEGDA及びA
Nの重合反応が十分に行われ、有機質被膜の反応収率が
高くなり、十分な有機質被膜が形成できる。また、有機
質被膜の形成によって、第2充電工程における電解質の
分解を抑制することが可能となり、ガス発生及び電解質
の変質を防止できる。
According to the method for producing a lithium secondary battery described above, PEGDMA or PEGDA is radically polymerized by heat treatment to form a polymer, and the polymer is impregnated with an organic electrolyte to form an electrolyte. In addition, PEGDMA or PEGDA and AN are adsorbed on the surface of the negative electrode, and then the PEGDMA, PEGDA and AN adsorbed in the first charging step are polymerized to form an organic film. Therefore, the surface of the negative electrode is formed before the generated electrolyte is decomposed. An organic coating can be formed thereon. Further, since the constant voltage charging in the first charging step is performed for a relatively long time, PEGDMA or PEGDA and A
The polymerization reaction of N is sufficiently performed, the reaction yield of the organic film is increased, and a sufficient organic film can be formed. Further, the formation of the organic coating makes it possible to suppress the decomposition of the electrolyte in the second charging step, thereby preventing gas generation and deterioration of the electrolyte.

【0047】また、電解質中にACNを添加することによ
り、有機質被膜の形成時にACNを有機質被膜に取り込ま
せることができ、これにより有機質被膜のリチウムイオ
ン伝導性が向上し、充放電効率が高くなってサイクル特
性を更に向上させることができる。
Further, by adding ACN to the electrolyte, ACN can be taken into the organic film at the time of forming the organic film, thereby improving the lithium ion conductivity of the organic film and increasing the charge / discharge efficiency. Thus, the cycle characteristics can be further improved.

【0048】[0048]

【実施例】[実施例1〜4のリチウム二次電池の製造]
まず、平均分子量550のPEGDMAを4.95重量%、AN
を0.5重量%及び重合開始剤AIBNを0.05重量%並
びに有機電解液を94.5重量%の割合で混合し、30
分間混合して電解質前駆体を調製した。有機電解液の組
成は、エチレンカーボネート(EC)とジメチルカーボネー
ト(DEC)の体積比3:7の混合溶媒に1モル/LのLi
PF6を混合したものを用いた。次に、LiCoO2を正
極活物質とする正極及び炭素繊維を負極活物質とする負
極を電池容器に挿入し、先程の電解質を注入した後に電
池容器を封口して、幅30mm、高さ60mm、厚さ4
mmの角形電池を製造した。
EXAMPLES [Production of lithium secondary batteries of Examples 1 to 4]
First, 4.95% by weight of PEGDMA having an average molecular weight of 550, AN
Were mixed at a ratio of 0.5% by weight, 0.05% by weight of a polymerization initiator AIBN, and 94.5% by weight of an organic electrolyte,
The mixture was mixed for minutes to prepare an electrolyte precursor. The composition of the organic electrolytic solution is such that 1 mol / L of Li is added to a mixed solvent of ethylene carbonate (EC) and dimethyl carbonate (DEC) in a volume ratio of 3: 7.
Using a mixture of the PF 6. Next, a positive electrode using LiCoO 2 as a positive electrode active material and a negative electrode using carbon fiber as a negative electrode active material were inserted into a battery container, and after the electrolyte was injected, the battery container was sealed, and the width was 30 mm, the height was 60 mm, Thickness 4
mm square batteries were manufactured.

【0049】得られた角形電池に対し、70℃、5時間
の条件で熱処理を行うことにより、PEGDMAをラジカル重
合させてPEGDMA重合体及び有機電解液からなる電解質を
形成した後、0.2Cの電流で電池電圧が3V(金属リ
チウムに対する負極の電位が0.8V)に達するまで定
電流充電を行った後に4時間の定電圧充電を行う第1充
電工程により、未反応のPEGDMAとANを重合させて有機質
被膜を形成した。次に、0.2Cの電流で電池電圧が
4.2V(金属リチウムに対する負極の電位が0.1V)に
達するまで定電流充電を行った後に9時間の定電圧充電
を行う第2充電工程をすることにより、実施例1〜2の
リチウム二次電池を製造した。尚、実施例2の電池につ
いては第2充電工程の終了後に電池の内部ガスを放出さ
せる処理を行った。
The obtained prismatic battery was subjected to a heat treatment at 70 ° C. for 5 hours to radically polymerize PEGDMA to form an electrolyte comprising a PEGDMA polymer and an organic electrolyte. Unreacted PEGDMA and AN are polymerized in the first charging step in which constant current charging is performed until the battery voltage reaches 3 V (the potential of the negative electrode with respect to lithium metal is 0.8 V) and then constant voltage charging is performed for 4 hours. Thus, an organic film was formed. Next, a second charging step of performing constant-current charging at a current of 0.2 C until the battery voltage reaches 4.2 V (the potential of the negative electrode with respect to metallic lithium is 0.1 V) and then performing constant-voltage charging for 9 hours is performed. Thereby, the lithium secondary batteries of Examples 1 and 2 were manufactured. Note that the battery of Example 2 was subjected to a process of releasing the internal gas of the battery after the completion of the second charging step.

【0050】また、ANを0.2重量%、有機電解液を9
4.8重量%とした以外は上記と同様にして実施例3の
電池を製造した。更に、ANを0.2重量%、ACNを1重
量%、重合開始剤AIBNを0.05重量%並びに有機電解
液を93.8重量%の割合で混合し、30分間混合して
電解質前駆体を調製したこと以外は上記と同様にして実
施例4の電池を製造した。尚、有機電解液に5重量%以
下のACNを添加したときのイオン伝導度の変化はほとん
どないことを確認した。
Further, 0.2% by weight of AN and 9% of organic electrolyte were used.
A battery of Example 3 was manufactured in the same manner as described above except that the amount was changed to 4.8% by weight. Furthermore, 0.2% by weight of AN, 1% by weight of ACN, 0.05% by weight of polymerization initiator AIBN, and 93.8% by weight of an organic electrolyte were mixed, and mixed for 30 minutes to prepare an electrolyte precursor. Was prepared in the same manner as described above, except that was prepared. In addition, it was confirmed that there was almost no change in ionic conductivity when 5% by weight or less of ACN was added to the organic electrolytic solution.

【0051】[比較例1〜3のリチウム二次電池の製
造]平均分子量550のPEGDMAを4.95重量%、重合
開始剤AIBNを0.05重量%並びに有機電解液を95重
量%の割合で混合し、30分間混合したこと以外は実施
例1と同様にして電解質前駆体を調製し、更に実施例1
と同様にして角形電池を製造した。得られた角形電池に
対し、70℃、5時間の条件で熱処理を行うことによ
り、PEGDMAをラジカル重合させてPEGDMA重合体及び有機
電解液からなる電解質を形成した後、0.2Cの電流で
電池電圧が4.2V(金属リチウムに対する負極の電位
が0.1V)に達するまで定電流充電を行った後に9時
間の4.2V定電圧充電を行うことにより、比較例1及
び2のリチウム二次電池を製造した。尚、比較例1の電
池については充電終了後に電池の内部ガスを放出させる
処理を行った。
[Production of lithium secondary batteries of Comparative Examples 1 to 3] 4.95% by weight of PEGDMA having an average molecular weight of 550, 0.05% by weight of a polymerization initiator AIBN, and 95% by weight of an organic electrolyte were used. An electrolyte precursor was prepared in the same manner as in Example 1 except for mixing and mixing for 30 minutes.
A prismatic battery was manufactured in the same manner as described above. The obtained prismatic battery is subjected to a heat treatment at 70 ° C. for 5 hours to radically polymerize PEGDMA to form an electrolyte composed of a PEGDMA polymer and an organic electrolyte. By performing constant-current charging until the voltage reaches 4.2 V (the potential of the negative electrode with respect to metallic lithium is 0.1 V) and then performing 4.2-hour constant-voltage charging for 9 hours, lithium secondary batteries of Comparative Examples 1 and 2 were obtained. A battery was manufactured. The battery of Comparative Example 1 was subjected to a process of releasing the internal gas of the battery after charging was completed.

【0052】また、比較例1〜2と同様にして角形電池
を製造し、この角形電池に対し、0.2Cの電流で電池
電圧が3V(金属リチウムに対する負極の電位が0.8
V)に達するまで定電流充電を行い、次に75℃、4時
間の条件で熱処理を行い、更に0.2Cの電流で電池電
圧が4.2V(金属リチウムに対する負極の電位が0.
1V)に達するまで定電流を行った後に9時間の定電圧
充電を行うことにより、比較例3のリチウム二次電池を
製造した。
A prismatic battery was manufactured in the same manner as in Comparative Examples 1 and 2, and a battery voltage of 3 V (current of the negative electrode with respect to metallic lithium of 0.8
V), and then heat-treated at 75 ° C. for 4 hours. Further, at a current of 0.2 C, the battery voltage becomes 4.2 V (when the potential of the negative electrode with respect to lithium metal is 0.1 V).
The lithium secondary battery of Comparative Example 3 was manufactured by performing a constant current charge until the voltage reached 1 V) and then performing a constant voltage charge for 9 hours.

【0053】[比較例4のリチウム二次電池の製造]ま
ず、PEGDMA、AN及びAIBNを添加しなかったこと以外は実
施例1〜3と同様にして角形電池を製造した。この角形
電池に対し、0.2Cの電流で電池電圧が3V(金属リ
チウムに対する負極の電位が0.8V)に達するまで定
電流充電を行い、次に75℃、4時間の条件で熱処理を
行い、更に0.2Cの電流で電池電圧が4.2V(金属
リチウムに対する負極の電位が0.1V)に達するまで
定電流を行った後に9時間の定電圧充電を行うことによ
り、比較例4のリチウム二次電池を製造した。
[Production of Lithium Secondary Battery of Comparative Example 4] First, a prismatic battery was produced in the same manner as in Examples 1 to 3, except that PEGDMA, AN and AIBN were not added. This prismatic battery is charged at a constant current of 0.2 C until the battery voltage reaches 3 V (the potential of the negative electrode with respect to lithium metal is 0.8 V), and then heat-treated at 75 ° C. for 4 hours. Further, a constant current was performed at a current of 0.2 C until the battery voltage reached 4.2 V (the potential of the negative electrode with respect to lithium metal was 0.1 V), and then a constant voltage charge was performed for 9 hours. A lithium secondary battery was manufactured.

【0054】実施例1〜2及び比較例1〜4のリチウム
二次電池について、製造直後の電池の厚さ及び内部イン
ピーダンス、85℃で24時間貯蔵した前後の放電容
量、残存容量及び回復容量を調査した。結果を表1に示
す。また、図1及び図2に、実施例1及び2と比較例1
〜4について、熱処理後の第1、第2充電工程における
充電電圧に対するクーロン効率を示す。更に、実施例1
及び2と、比較例1及び2について、充放電電流1C、
充電終止電圧4.2V、放電終止電圧2.5Vの条件で
サイクル特性試験を行った。結果を図3に示す。また実
施例3及び4と比較例1について、-20℃での放電容
量を測定した。結果を表2に示す。
Regarding the lithium secondary batteries of Examples 1 and 2 and Comparative Examples 1 to 4, the thickness and internal impedance of the batteries immediately after production, the discharge capacity before and after storage at 85 ° C. for 24 hours, the remaining capacity and the recovery capacity were as follows. investigated. Table 1 shows the results. 1 and 2 show Examples 1 and 2 and Comparative Example 1.
4 shows the Coulomb efficiency with respect to the charging voltage in the first and second charging steps after the heat treatment. Further, Example 1
And 2 and Comparative Examples 1 and 2, the charge / discharge current 1C,
A cycle characteristic test was performed under the conditions of a charge end voltage of 4.2 V and a discharge end voltage of 2.5 V. The results are shown in FIG. Further, the discharge capacity at −20 ° C. of Examples 3 and 4 and Comparative Example 1 was measured. Table 2 shows the results.

【0055】[0055]

【表1】 [Table 1]

【0056】[0056]

【表2】 [Table 2]

【0057】図1に示すように、実施例1及び2では、
第1充電工程において、充電電圧が2.9〜3.0V付
近にPEGDMAとANの重合反応に対応するピークが観察され
ている。そして、第2充電工程では充電電圧の向上に伴
ってクーロン効率がなだらかに上昇しており、電解質の
分解が抑制されているものと考えられる。一方、図1及
び図2に示すように比較例1〜4では、3.2V〜3.
5Vの範囲で大きなピークが観察され、電解質の分解が
起きているものと考えられる。従って、実施例1及び2
では、第1充電工程により負極表面に有機質被膜が形成
され、この有機質被膜の存在によって電解質の分解が抑
制されているものと考えられる。
As shown in FIG. 1, in the first and second embodiments,
In the first charging step, a peak corresponding to the polymerization reaction of PEGDMA and AN is observed at a charging voltage of around 2.9 to 3.0 V. Then, in the second charging step, it is considered that the Coulomb efficiency is gradually increased with the improvement of the charging voltage, and the decomposition of the electrolyte is suppressed. On the other hand, as shown in FIG. 1 and FIG.
A large peak was observed in the range of 5 V, which indicates that the decomposition of the electrolyte had occurred. Therefore, Examples 1 and 2
Thus, it is considered that an organic film is formed on the negative electrode surface by the first charging step, and the decomposition of the electrolyte is suppressed by the presence of the organic film.

【0058】以上のことは電池の厚さの比較からも裏付
けられる。即ち表1に示すように、各電池の厚さを比較
すると、内部ガス除去をしていない実施例1の厚さは、
内部ガス除去していない比較例2の厚さより少ないとと
もに、内部ガスを除去した比較例1の厚さとほぼ同じで
ある。これらの比較から実施例1では、PEGDMA及びANの
添加によって有機質被膜が形成され、電解質の分解が抑
制されたために内部ガスの発生が著しく少なくなったも
のと考えられる。また比較例3では、PEGDMA及びANを添
加したものの、電池の厚さが大きくなっていることがわ
かる。これは、熱処理を充電の途中で行ったため、有機
質被膜が充分に形成されず、電解質が分解してガスが多
量に発生したためと考えられる。
The above is supported by a comparison of battery thickness. That is, as shown in Table 1, when comparing the thickness of each battery, the thickness of Example 1 without internal gas removal was as follows:
The thickness is smaller than the thickness of Comparative Example 2 from which the internal gas has not been removed, and is substantially the same as the thickness of Comparative Example 1 from which the internal gas has been removed. From these comparisons, it is considered that in Example 1, the organic film was formed by the addition of PEGDMA and AN, and the decomposition of the electrolyte was suppressed, so that the generation of internal gas was significantly reduced. Further, in Comparative Example 3, although PEGDMA and AN were added, the thickness of the battery was found to be large. This is presumably because the heat treatment was performed during the charging, the organic film was not sufficiently formed, and the electrolyte was decomposed to generate a large amount of gas.

【0059】次に、内部インピーダンスを比較すると、
実施例1〜2と比較例1及び2では内部インピーダンス
に大差がなく、有機質被膜による内部インピーダンスの
増加が見られないことがわかる。
Next, comparing the internal impedance,
It can be seen that there is no significant difference in the internal impedance between Examples 1 and 2 and Comparative Examples 1 and 2, and no increase in the internal impedance due to the organic coating is observed.

【0060】次に、85℃で24時間貯蔵後の残存容量
を比較すると、実施例1〜2の残存容量が比較例1〜3
より高くなっている。また回復容量についても、実施例
1〜2が比較例1〜3より高くなっている。従って、PE
GDMA及びANを添加して有機質被膜を形成することによ
り、負極と電解質との接触が妨げられて電解質の還元分
解が抑制され、高温貯蔵特性が向上することがわかる。
Next, when the remaining capacity after storage at 85 ° C. for 24 hours was compared, the remaining capacity of Examples 1 and 2 was
Is higher. Also, the recovery capacities of Examples 1 and 2 are higher than Comparative Examples 1 to 3. Therefore, PE
It can be seen that by adding GDMA and AN to form an organic film, contact between the negative electrode and the electrolyte is prevented, reductive decomposition of the electrolyte is suppressed, and high-temperature storage characteristics are improved.

【0061】次に図3に示すように、サイクル特性につ
いては、サイクルの初期では実施例1,2と比較例1,
2との間に大差がないが、50回を越えた付近から実施
例1,2と比較例1,2との間の差が徐々に大きくな
り、200回付近では実施例1、2の方が比較例1,2
よりも放電容量が大きくなっている。これは、実施例
1,2の場合は有機質被膜の存在によって電解質の分解
が抑制され、電解質の変質が起きることなく、充放電効
率が高くなるためと考えられる。一方、比較例1,2で
は、負極と電解質が直接に接しているためサイクル回数
の増加に伴って電解質が徐々に変質し、充放電効率が低
下したことが原因であると考えられる。
Next, as shown in FIG. 3, the cycle characteristics of Examples 1 and 2 and Comparative Examples 1 and 2
2, the difference between Examples 1 and 2 and Comparative Examples 1 and 2 gradually increased from around 50 times, and the difference between Examples 1 and 2 near 200 times. Are Comparative Examples 1 and 2.
The discharge capacity is larger than that. This is considered to be because in the case of Examples 1 and 2, the decomposition of the electrolyte was suppressed by the presence of the organic coating, and the charge and discharge efficiency was increased without causing the deterioration of the electrolyte. On the other hand, in Comparative Examples 1 and 2, it is considered that the reason is that the electrolyte was gradually deteriorated with an increase in the number of cycles because the anode was in direct contact with the electrolyte, and the charge / discharge efficiency was lowered.

【0062】次に表2から、実施例3及び実施例4で
は、比較例1よりも-20℃における放電容量が向上
し、特にACNを添加した実施例4で-20℃の放電容量が
大幅に増加していることがわかる。これにより、ACNの
添加による低温特性の向上が図れることがわかる。
Next, from Table 2, it can be seen that in Examples 3 and 4, the discharge capacity at −20 ° C. was improved as compared with Comparative Example 1, and the discharge capacity at −20 ° C. was particularly large in Example 4 to which ACN was added. It can be seen that the number has increased. This shows that the low-temperature characteristics can be improved by adding ACN.

【0063】[0063]

【発明の効果】以上、詳細に説明したように、本発明の
リチウム二次電池によれば、初充電時の初期にPEGDMAま
たはPEGDA及びANが重合して負極表面に有機質被膜が早
期に形成されるため、その後、充電の進行により充電電
圧が上昇した場合でも、この有機質被膜によって負極表
面上での電解質の分解反応が抑制されるので、電解質の
分解によるガス発生や電解質自体の変質が低減され、サ
イクル特性を向上することができ、更に電池の変形も防
止できる。また、有機質被膜による電解質分解の抑制効
果によって、リチウム二次電池の高温貯蔵特性を向上で
きる。
As described above in detail, according to the lithium secondary battery of the present invention, PEGDMA, PEGDA and AN are polymerized at the initial stage of the initial charge, and an organic film is formed on the negative electrode surface at an early stage. Therefore, even when the charging voltage increases due to the progress of charging, the decomposition reaction of the electrolyte on the negative electrode surface is suppressed by the organic coating, so that gas generation due to decomposition of the electrolyte and deterioration of the electrolyte itself are reduced. In addition, cycle characteristics can be improved, and deformation of the battery can be prevented. Further, the high temperature storage characteristics of the lithium secondary battery can be improved by the effect of suppressing the decomposition of the electrolyte by the organic coating.

【0064】また、本発明のリチウム二次電池によれ
ば、電解質中にACNを添加することにより、有機質被膜
の形成時にACNが有機質被膜に取り込まれ、これにより
有機質被膜のリチウムイオン伝導性が向上するので、リ
チウム二次電池の充放電効率が高くなってサイクル特性
を更に向上させることができる。
Further, according to the lithium secondary battery of the present invention, by adding ACN to the electrolyte, ACN is taken into the organic film when the organic film is formed, thereby improving the lithium ion conductivity of the organic film. Therefore, the charge / discharge efficiency of the lithium secondary battery is increased, and the cycle characteristics can be further improved.

【0065】また本発明のリチウム二次電池の製造方法
によれば、熱処理することによりPEGDMAまたはPEGDAと
有機電解液とのより電解質を形成するとともにPEGDMAま
たはPEGDA及びANを負極表面に吸着させ、次に第1充電
工程により吸着したPEGDMAまたはPEGDA及びANを重合さ
せて有機質被膜を形成するので、先に形成された電解質
が分解する前に負極の表面上に有機質被膜を形成するこ
とができる。また、第1充電工程における定電圧充電が
比較的長時間に渡って行われるので、PEGDMA及びANの重
合反応が十分に行われ、有機質被膜の反応収率が高くな
り、十分な有機質被膜が形成される。また、有機質被膜
の形成によって、第2充電工程における電解質の分解を
抑制することが可能となり、ガス発生及び電解質の変質
を防止できる。また、第2充電工程を行うことによって
電解質の一部が有機質被膜に吸着するので、有機質被膜
と電解質との親和性が向上し、充放電効率を向上でき
る。
Further, according to the method for producing a lithium secondary battery of the present invention, a heat treatment is performed to form a more electrolyte of PEGDMA or PEGDA and an organic electrolyte, and PEGDMA or PEGDA and AN are adsorbed on the negative electrode surface. Then, the organic film is formed by polymerizing PEGDMA or PEGDA and AN adsorbed in the first charging step, so that the organic film can be formed on the surface of the negative electrode before the previously formed electrolyte is decomposed. In addition, since the constant voltage charging in the first charging step is performed for a relatively long time, the polymerization reaction of PEGDMA and AN is sufficiently performed, the reaction yield of the organic coating increases, and a sufficient organic coating is formed. Is done. Further, the formation of the organic coating makes it possible to suppress the decomposition of the electrolyte in the second charging step, thereby preventing gas generation and deterioration of the electrolyte. Further, by performing the second charging step, a part of the electrolyte is adsorbed to the organic coating, so that the affinity between the organic coating and the electrolyte is improved, and the charge / discharge efficiency can be improved.

【0066】また本発明のリチウム二次電池の製造方法
によれば、電解質中にACNを添加することにより、有機
質被膜の形成時にACNを有機質被膜に取り込ませること
ができ、これにより有機質被膜のリチウムイオン伝導性
が向上するので、リチウム二次電池の充放電効率が高く
なってサイクル特性を更に向上できる。
Further, according to the method of manufacturing a lithium secondary battery of the present invention, by adding ACN to the electrolyte, ACN can be incorporated into the organic film at the time of forming the organic film. Since the ion conductivity is improved, the charge and discharge efficiency of the lithium secondary battery is increased, and the cycle characteristics can be further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例1,2及び比較例1、2の充電電圧に
対するクーロン効率を示す図である。
FIG. 1 is a diagram showing Coulomb efficiencies with respect to charging voltage in Examples 1 and 2 and Comparative Examples 1 and 2.

【図2】 比較例3及び4の充電電圧に対するクーロン
効率を示す図である。
FIG. 2 is a diagram illustrating Coulomb efficiency with respect to charging voltage in Comparative Examples 3 and 4.

【図3】 実施例1,2及び比較例1、2のサイクル回
数と放電容量との関係を示す図である。
FIG. 3 is a diagram showing the relationship between the number of cycles and discharge capacity in Examples 1 and 2 and Comparative Examples 1 and 2.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H029 AJ03 AJ04 AJ05 AJ07 AL06 AM03 AM05 AM07 BJ02 BJ13 CJ02 CJ16 CJ22 CJ28 DJ09 DJ11 EJ12 HJ00 HJ01 HJ14 HJ18 5H050 AA07 AA08 AA09 AA13 BA17 CA08 CA09 CB07 DA03 DA13 EA23 FA18 GA02 GA18 GA22 GA26 GA27 HA01 HA14 HA18 HA20  ──────────────────────────────────────────────────続 き Continued on the front page F-term (reference) GA26 GA27 HA01 HA14 HA18 HA20

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 リチウムを吸蔵、放出が可能な正極及び
負極と、電解質とを具備してなり、 前記電解質中にポリエチレングリコールジメタクリレー
トまたはポリエチレングリコールジアクリレートが0.
5〜10重量%の範囲で添加され、アクリロニトリルが
0.1〜2重量%の範囲で添加されていることを特徴と
するリチウム二次電池。
1. An electrolyte comprising: a positive electrode and a negative electrode capable of inserting and extracting lithium; and an electrolyte, wherein the electrolyte contains polyethylene glycol dimethacrylate or polyethylene glycol diacrylate.
A lithium secondary battery characterized in that it is added in a range of 5 to 10% by weight and acrylonitrile is added in a range of 0.1 to 2% by weight.
【請求項2】 前記電解質中にアセトニトリルが0.1
〜5重量%の範囲で添加されていることを特徴とする請
求項1に記載のリチウム二次電池。
2. An acetonitrile containing 0.1% of acetonitrile in the electrolyte.
2. The lithium secondary battery according to claim 1, wherein the lithium secondary battery is added in an amount of about 5% by weight. 3.
【請求項3】 リチウムを吸蔵、放出が可能な正極及び
負極と、電解質とを具備してなり、 前記電解質は、ポリエチレングリコールジメタクリレー
トまたはポリエチレングリコールジアクリレートからな
る重合体に有機電解液が含浸されてなり、 前記負極の表面に、ポリエチレングリコールジメタクリ
レートまたはポリエチレングリコールジアクリレートと
アクリロニトリルとからなる有機質被膜が形成されてな
ることを特徴とするリチウム二次電池。
3. An electrolyte comprising: a positive electrode and a negative electrode capable of inserting and extracting lithium; and an electrolyte, wherein the electrolyte is obtained by impregnating a polymer made of polyethylene glycol dimethacrylate or polyethylene glycol diacrylate with an organic electrolyte. A lithium secondary battery, wherein an organic coating comprising polyethylene glycol dimethacrylate or polyethylene glycol diacrylate and acrylonitrile is formed on the surface of the negative electrode.
【請求項4】 前記有機質被膜中にアセトニトリルが少
なくとも含まれていることを特徴とする請求項3に記載
のリチウム二次電池。
4. The lithium secondary battery according to claim 3, wherein the organic coating contains at least acetonitrile.
【請求項5】 リチウムを吸蔵、放出が可能な正極及び
負極と、電解質とを具備してなるリチウム二次電池の製
造方法であり、 前記電解質にポリエチレングリコールジメタクリレート
またはポリエチレングリコールジアクリレートを0.5
〜10重量%の範囲で添加するとともにアクリロニトリ
ルを0.1〜2重量%の範囲で添加した状態で、該電解
質を少なくとも前記正極及び前記負極の間に配置して4
0〜120℃の範囲で熱処理を行う工程と、 金属リチウムを参照極とした場合の前記負極の電位が、
0.8V以上1.3V以下の範囲に到達するまで定電流
充電を行った後に、負極の電位を維持したままで0.1
〜8時間の定電圧充電を行う第1充電工程とからなるこ
とを特徴とするリチウム二次電池の製造方法。
5. A method for producing a lithium secondary battery comprising: a positive electrode and a negative electrode capable of inserting and extracting lithium; and an electrolyte, wherein the electrolyte comprises polyethylene glycol dimethacrylate or polyethylene glycol diacrylate. 5
The electrolyte is placed at least between the positive electrode and the negative electrode in a state where acrylonitrile is added in the range of 0.1 to 2% by weight and acrylonitrile is added in the range of 0.1 to 2% by weight.
Performing a heat treatment at a temperature in the range of 0 to 120 ° C .;
After performing constant current charging until the voltage reaches a range of 0.8 V or more and 1.3 V or less, 0.1 is charged while the potential of the negative electrode is maintained.
And a first charging step of performing constant-voltage charging for up to 8 hours.
【請求項6】 前記第1充電工程の後に、前記負極の電
位が、0V以上0.1V以下の範囲に到達するまで定電
流充電を行った後に、負極の電位を維持したままで1〜
8時間の定電圧充電を行う第2充電工程を行うことを特
徴とする請求項5に記載のリチウム二次電池の製造方
法。
6. After the first charging step, after performing a constant current charging until the potential of the negative electrode reaches a range of 0 V or more and 0.1 V or less, 1 to 1 while maintaining the potential of the negative electrode.
The method for manufacturing a lithium secondary battery according to claim 5, wherein a second charging step of performing constant-voltage charging for 8 hours is performed.
【請求項7】 リチウムを吸蔵、放出が可能な正極及び
負極と、電解質とを具備してなるリチウム二次電池の製
造方法であり、 前記正極の活物質が、コバルト、マンガン、ニッケルか
ら選ばれる少なくとも一種とリチウムとの複合酸化物の
いずれか1種以上であり、 前記電解質にポリエチレングリコールジメタクリレート
またはポリエチレングリコールジアクリレートを0.5
〜10重量%の範囲で添加するとともにアクリロニトリ
ルを0.1〜2重量%の範囲で添加した状態で、該電解
質を少なくとも前記正極及び前記負極の間に配置して4
0〜120℃の範囲で熱処理を行う工程と、 電池電圧が2.5V以上3.1V以下の範囲に到達する
まで定電流充電を行った後に、電池電圧を維持したまま
で0.1〜8時間の定電圧充電を行う第1充電工程とか
らなることを特徴とするリチウム二次電池の製造方法。
7. A method for manufacturing a lithium secondary battery comprising a positive electrode and a negative electrode capable of inserting and extracting lithium, and an electrolyte, wherein the active material of the positive electrode is selected from cobalt, manganese, and nickel. At least one kind of complex oxide of lithium and at least one kind thereof, wherein the electrolyte contains polyethylene glycol dimethacrylate or polyethylene glycol diacrylate in an amount of 0.5
The electrolyte is placed at least between the positive electrode and the negative electrode in a state where acrylonitrile is added in the range of 0.1 to 2% by weight and acrylonitrile is added in the range of 0.1 to 2% by weight.
A step of performing a heat treatment in the range of 0 to 120 ° C., and performing a constant current charge until the battery voltage reaches a range of 2.5 V or more and 3.1 V or less, and then 0.1 to 8 while maintaining the battery voltage. A method for producing a lithium secondary battery, comprising: a first charging step of performing constant voltage charging for a long time.
【請求項8】 前記第1充電工程の後に、電池電圧が
4.0V以上4.3V以下の範囲に到達するまで定電流
充電を行った後に、電池電圧を維持したままで1〜8時
間の定電圧充電を行う第2充電工程を行うことを特徴と
する請求項7にリチウム二次電池の製造方法。
8. After the first charging step, constant current charging is performed until the battery voltage reaches a range of 4.0 V or more and 4.3 V or less. 8. The method for manufacturing a lithium secondary battery according to claim 7, wherein a second charging step of performing constant voltage charging is performed.
【請求項9】 前記電解質中にアセトニトリルを0.1
〜5重量%の範囲で添加することを特徴とする請求項5
ないし請求項8のいずれかに記載のリチウム二次電池の
製造方法。
9. An acetonitrile containing 0.1% of acetonitrile in the electrolyte.
6. The method according to claim 5, wherein the addition is in the range of from 5 to 5% by weight.
A method for manufacturing a lithium secondary battery according to claim 8.
JP2001110350A 2001-04-09 2001-04-09 Lithium secondary battery and method for producing lithium secondary battery Expired - Lifetime JP4149681B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001110350A JP4149681B2 (en) 2001-04-09 2001-04-09 Lithium secondary battery and method for producing lithium secondary battery
KR1020010071248A KR100669314B1 (en) 2001-04-09 2001-11-16 Lithium secondary battery and method of preparing same
US10/119,868 US7008728B2 (en) 2001-04-09 2002-04-09 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
CNB02105908XA CN1278444C (en) 2001-04-09 2002-04-09 Anhydrous electrolyte of lithium storage battery, and lithium storage battery containing said electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001110350A JP4149681B2 (en) 2001-04-09 2001-04-09 Lithium secondary battery and method for producing lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2002324577A true JP2002324577A (en) 2002-11-08
JP4149681B2 JP4149681B2 (en) 2008-09-10

Family

ID=18962138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001110350A Expired - Lifetime JP4149681B2 (en) 2001-04-09 2001-04-09 Lithium secondary battery and method for producing lithium secondary battery

Country Status (2)

Country Link
JP (1) JP4149681B2 (en)
KR (1) KR100669314B1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007005242A (en) * 2005-06-27 2007-01-11 Mitsubishi Chemicals Corp Nonaqueous electrolyte and nonaqueous electrolyte battery
JP2007510270A (en) * 2004-01-15 2007-04-19 エルジー・ケム・リミテッド Electrochemical device comprising an aliphatic nitrile compound
WO2008075812A1 (en) * 2006-12-20 2008-06-26 Cheil Industries Inc. Hydrophilic carbon black aggregate, its preparation process, hydrophilic composite material and bipolarplate for fuel cell comprising it
JP2009054462A (en) * 2007-08-28 2009-03-12 Furukawa Battery Co Ltd:The Lithium-ion secondary battery
JP2010507896A (en) * 2006-10-25 2010-03-11 エルジー・ケム・リミテッド Non-aqueous electrolyte and electrochemical device including the same
US7718311B2 (en) 2004-11-05 2010-05-18 Sony Corporation Electrolytic solution and battery
US8133620B2 (en) 2007-12-28 2012-03-13 Sanyo Electric Co., Ltd. Polymer electrolyte secondary cell
JP2012109048A (en) * 2010-11-15 2012-06-07 Toyota Motor Corp Regeneration method of nonaqueous electrolyte secondary battery
JP2017068978A (en) * 2015-09-29 2017-04-06 富士フイルム株式会社 Nonaqueous electrolyte solution and nonaqueous secondary battery
JP2018104555A (en) * 2016-12-27 2018-07-05 セイコーエプソン株式会社 Polymer electrolyte composition, polymer electrolyte, polymer electrolyte production method, battery, battery production method, and electronic apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9444120B2 (en) 2005-12-21 2016-09-13 Samsung Sdi Co., Ltd. Rechargeable lithium battery and method for manufacturing the same
JP5188677B2 (en) * 2005-12-21 2013-04-24 三星エスディアイ株式会社 Lithium secondary battery and method for producing lithium secondary battery
US10263288B2 (en) 2015-02-16 2019-04-16 Nissan Motor Co., Ltd. Lithium ion secondary battery production method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07320781A (en) * 1994-05-20 1995-12-08 Sanyo Electric Co Ltd Solid electrolytic secondary battery
US5609974A (en) * 1995-08-04 1997-03-11 Battery Engineering, Inc. Rechargeable battery polymeric electrolyte
JP3734896B2 (en) * 1996-10-08 2006-01-11 旭化成エレクトロニクス株式会社 Solid electrolyte and non-aqueous battery
JPH11144760A (en) * 1997-11-07 1999-05-28 Asahi Chem Ind Co Ltd Polymer solid electrolyte precursor
KR100605060B1 (en) * 1998-08-31 2006-07-26 엔이씨 도킨 도치기 가부시키가이샤 Non-aqueous electrolyte battery
WO2011158298A1 (en) * 2010-06-17 2011-12-22 富士通株式会社 Communication apparatus, control apparatus and transmission parameter adjustment method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007510270A (en) * 2004-01-15 2007-04-19 エルジー・ケム・リミテッド Electrochemical device comprising an aliphatic nitrile compound
JP2011222528A (en) * 2004-01-15 2011-11-04 Lg Chem Ltd Method for manufacturing positive electrode for lithium secondary battery
USRE44489E1 (en) 2004-11-05 2013-09-10 Sony Corporation Electrolytic solution and battery
US7718311B2 (en) 2004-11-05 2010-05-18 Sony Corporation Electrolytic solution and battery
JP2007005242A (en) * 2005-06-27 2007-01-11 Mitsubishi Chemicals Corp Nonaqueous electrolyte and nonaqueous electrolyte battery
JP2010507896A (en) * 2006-10-25 2010-03-11 エルジー・ケム・リミテッド Non-aqueous electrolyte and electrochemical device including the same
US9466856B2 (en) 2006-10-25 2016-10-11 Lg Chem, Ltd. Non-aqueous electrolyte and electrochemical device comprising the same
US8895195B2 (en) 2006-10-25 2014-11-25 Lg Chem, Ltd. Non-aqueous electrolyte and electrochemical device comprising the same
WO2008075812A1 (en) * 2006-12-20 2008-06-26 Cheil Industries Inc. Hydrophilic carbon black aggregate, its preparation process, hydrophilic composite material and bipolarplate for fuel cell comprising it
JP2010513654A (en) * 2006-12-20 2010-04-30 チェイル インダストリーズ インコーポレイテッド Hydrophilic carbon black aggregate, method for producing the same, hydrophilic composite material including the same, and bipolar plate for fuel cell
JP2009054462A (en) * 2007-08-28 2009-03-12 Furukawa Battery Co Ltd:The Lithium-ion secondary battery
US8133620B2 (en) 2007-12-28 2012-03-13 Sanyo Electric Co., Ltd. Polymer electrolyte secondary cell
JP2012109048A (en) * 2010-11-15 2012-06-07 Toyota Motor Corp Regeneration method of nonaqueous electrolyte secondary battery
JP2017068978A (en) * 2015-09-29 2017-04-06 富士フイルム株式会社 Nonaqueous electrolyte solution and nonaqueous secondary battery
JP2018104555A (en) * 2016-12-27 2018-07-05 セイコーエプソン株式会社 Polymer electrolyte composition, polymer electrolyte, polymer electrolyte production method, battery, battery production method, and electronic apparatus

Also Published As

Publication number Publication date
KR100669314B1 (en) 2007-01-15
KR20020079346A (en) 2002-10-19
JP4149681B2 (en) 2008-09-10

Similar Documents

Publication Publication Date Title
JP4413460B2 (en) Lithium secondary battery and method for producing lithium secondary battery
US7718322B2 (en) Electrolyte for rechargeable lithium battery and rechargeable lithium battery comprising same
US7846588B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
US7008728B2 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
US7687204B2 (en) Non-aqueous electrolyte and a lithium secondary battery comprising the same
EP2070150B1 (en) Non-aqueous electrolyte solution and electrochemical device comprising the same
KR102601603B1 (en) Lithium metal battery
WO2008088167A1 (en) Electrolyte comprising eutectic mixture and secondary battery using the same
JP2002358999A (en) Non-aqueous electrolyte secondary battery
JP2009123499A (en) Nonaqueous electrolyte secondary battery and nonaqueous electrolyte composition
JP4149681B2 (en) Lithium secondary battery and method for producing lithium secondary battery
KR20110023820A (en) Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
US7943257B2 (en) Electrolyte solvent and rechargeable lithium battery
CN113795464A (en) Method for manufacturing positive electrode active material for lithium secondary battery and positive electrode active material manufactured by the method
KR20200020169A (en) Electrolyte for lithium secondary battery
JP4369084B2 (en) Lithium secondary battery manufacturing method and lithium secondary battery
US20050084764A1 (en) Polymer electrolyte composition for rechargeable lithium battery and rechargeable lithium battery fabricated using same
JP4476530B2 (en) Electrolyte, lithium secondary battery, and method for manufacturing lithium secondary battery
JPH08213014A (en) Nonaqueous electrolyte secondary battery
JPH1050314A (en) Nonaqueous electrolyte second ary battery
US20120091403A1 (en) Lithium ion rechargeable batteries & the additive for lithium ion rechargeable batteries which prevents increase of the viscosity
JP2003007303A (en) Nonaqueous electrolyte secondary battery
KR20170134156A (en) Nonaqueous electrolytic solution for secondary battery and lithium secondary battery
JP3216107B2 (en) Non-aqueous electrolyte secondary battery
JP2003297419A (en) Manufacturing method for non-aqueous electrolyte battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040810

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080626

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4149681

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term