JP2009049260A - Lateral semiconductor device with high driving capacity using trench structure - Google Patents
Lateral semiconductor device with high driving capacity using trench structure Download PDFInfo
- Publication number
- JP2009049260A JP2009049260A JP2007215552A JP2007215552A JP2009049260A JP 2009049260 A JP2009049260 A JP 2009049260A JP 2007215552 A JP2007215552 A JP 2007215552A JP 2007215552 A JP2007215552 A JP 2007215552A JP 2009049260 A JP2009049260 A JP 2009049260A
- Authority
- JP
- Japan
- Prior art keywords
- trench
- gate
- view
- sectional
- semiconductor device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims description 27
- 239000000758 substrate Substances 0.000 claims description 16
- 239000013078 crystal Substances 0.000 claims description 10
- 235000004522 Pentaglottis sempervirens Nutrition 0.000 abstract description 7
- 240000004050 Pentaglottis sempervirens Species 0.000 abstract description 6
- 238000005468 ion implantation Methods 0.000 description 20
- 238000000034 method Methods 0.000 description 11
- 150000002500 ions Chemical class 0.000 description 7
- 230000015556 catabolic process Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 3
- 230000010354 integration Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42356—Disposition, e.g. buried gate electrode
- H01L29/4236—Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66568—Lateral single gate silicon transistors
- H01L29/66613—Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation
- H01L29/66621—Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation using etching to form a recess at the gate location
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66787—Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
- H01L29/66795—Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7801—DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
- H01L29/7816—Lateral DMOS transistors, i.e. LDMOS transistors
- H01L29/7825—Lateral DMOS transistors, i.e. LDMOS transistors with trench gate electrode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7833—Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
- H01L29/7835—Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/785—Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
- H01L29/7851—Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET with the body tied to the substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/265—Bombardment with radiation with high-energy radiation producing ion implantation
- H01L21/26586—Bombardment with radiation with high-energy radiation producing ion implantation characterised by the angle between the ion beam and the crystal planes or the main crystal surface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/04—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
- H01L29/045—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
本発明は、高駆動能力が要求される半導体装置に関する。 The present invention relates to a semiconductor device that requires high drive capability.
時代とともに半導体装置は微細加工技術を駆使することにより、能力を下げずにより小さく作成できるようになった。高駆動能力を有する半導体素子においてもその流れは例外ではなく、微細加工技術を駆使することにより単位面積当たりのオン抵抗の低減が図られてきた。しかしながら、素子を微細化することによって生じる耐圧の低下は、微細加工による更なる駆動能力の向上に歯止めをかけていることも事実である。この微細化と耐圧のトレードオフを打破するために、これまでさまざまな構造の素子が提案されており、現在主流な構造としては、高耐圧かつ高駆動能力を有するPower MOS FETを例にとると、トレンチゲートMOSがあげられる。トレンチゲートMOSは高耐圧かつ高駆動能力を有するDMOSの中でも最も集積度の高いものでる。しかしながら、トレンチゲートMOSは基板の深さ方向に電流を流す縦型MOS構造であり、素子単体としては非常に優れた性能を有しているが、ICとのオンチップ化には不利である。ICとのオンチップ化を考慮すると、やはり従来の横型MOS構造を選ばざるを得ない。耐圧を低下させずに更に単位面積当たりのオン抵抗を低減する方法として、ゲート部を凸部と凹部を有するトレンチ構造にすることによってゲート幅を稼ぐ横型トレンチゲート型トランジスタが考案されている(例えば、特許文献1参照)。図4に従来技術の概念図を示す。ここで、図4(a)は平面図、図4(b)は図4(a)の線分4B-4B'の断面図、図4(c)は図4(a)の線分4C-4C'に沿った断面図、図4(d)は(a)の線分4D-4D'に沿った断面図である。ここで図4(a)において図を見易くするためトレンチ外部のゲート電極003とゲート絶縁膜004は透明にしてある。太線はゲート電極003のエッジを示している。ゲート部をトレンチ構造にすることにより横型MOSの単位平面積当たりのゲート幅を拡げオン抵抗を低減する技術である。
しかし、上記の構成には1つの問題点がある。通常MOSを作る際には、酸化膜質向上の為ウエハ表面にSi面[100]を使用し、結晶方位を示すオリエンテーションフラット(OF)はキャリア移動度の高い[110]を利用し、MOSのソース・ドレインをOFに対し垂直または平行に設置する。しかしながら、上記の構成において同ウエハを利用し、図14(a)に示すように、トレンチをOFに対して垂直または水平に設置してしまうと、トレンチ側面に関して[110]のSi面が露出し、その面がゲート面になりゲート酸化膜質が劣化する。また、図14(b)に示すように、トレンチ上部および底部のゲート面は基板表面と平行であるため[100]のSi面になり、トレンチ側面に対して別の結晶面がゲート面となる。一般的に、酸化膜の成長具合は結晶面によって差があるため、トレンチ側面のゲート酸化膜厚(図14(c)のdV)とトレンチ底面および上面のゲート酸化膜厚(図14(c)のdH)は厚さが異なる。作成時には薄い方のゲート酸化膜が所望の耐圧を持つようにゲート酸化膜を成長させるため、厚いゲート酸化膜領域の駆動能力が低下し、効率の良いデバイスを作成することができない。 However, the above configuration has one problem. When making MOS, the Si surface [100] is used on the wafer surface to improve the oxide film quality, and the orientation flat (OF) showing the crystal orientation uses [110], which has high carrier mobility.・ Install the drain vertically or parallel to the OF. However, if the wafer is used in the above configuration and the trench is installed vertically or horizontally with respect to the OF as shown in FIG. 14A, the Si surface of [110] is exposed with respect to the side surface of the trench. The surface becomes the gate surface, and the gate oxide film quality deteriorates. Further, as shown in FIG. 14 (b), the gate surfaces at the top and bottom of the trench are parallel to the substrate surface, so that they are [100] Si surfaces, and another crystal plane is the gate surface with respect to the trench side surfaces. . In general, since the degree of growth of the oxide film varies depending on the crystal plane, the gate oxide film thickness on the trench side surface (dV in FIG. 14C) and the gate oxide film thickness on the trench bottom and top surfaces (FIG. 14C). DH) vary in thickness. Since the gate oxide film is grown so that the thinner gate oxide film has a desired withstand voltage at the time of production, the driving capability of the thick gate oxide film region is lowered, and an efficient device cannot be produced.
n型もしくはp型半導体基板表面から一定の深さに設けられた高抵抗p型半導体のウェル領域と、前記ウェル領域の表面から途中の深さまでの複数本のトレンチと、前記トレンチが形成する凹凸部の表面に設けられたゲート絶縁膜と、前記トレンチ内部に埋め込まれたゲート電極とを有する構造において、前記トレンチ凹凸部全ての半導体表面が結晶面[100]となる半導体装置とした。 A well region of a high resistance p-type semiconductor provided at a certain depth from the surface of the n-type or p-type semiconductor substrate, a plurality of trenches from the surface of the well region to a midway depth, and irregularities formed by the trenches In the structure having the gate insulating film provided on the surface of the portion and the gate electrode embedded in the trench, a semiconductor device in which the semiconductor surface of all the concave and convex portions of the trench becomes a crystal plane [100].
例えばトレンチ上面および底面が[100]でトレンチ側面が[110]のようなゲート面に複数の結晶面を利用するMOSに比べ、本発明のMOSはトレンチ凹凸全ての半導体表面を結晶面[100]としているため、ゲート酸化膜質が向上し、MOSの信頼性が向上するとともに、酸化膜を薄くすることができるため駆動能力が向上する。また、ゲート面を[100]結晶面しか用いないため、ゲート酸化膜厚の均一性が良く駆動能力が向上する。 For example, compared to a MOS that uses a plurality of crystal planes for the gate surface such as [100] for the top and bottom surfaces of the trench and [110] for the side surfaces of the trench, the MOS of the present invention has a crystal surface [100] for all the semiconductor surfaces of the trench irregularities. Therefore, the gate oxide film quality is improved, the reliability of the MOS is improved, and the oxide film can be thinned, so that the driving capability is improved. Moreover, since only the [100] crystal plane is used as the gate surface, the uniformity of the gate oxide film thickness is good and the driving capability is improved.
図1は本発明の代表的な実施例である。 FIG. 1 shows a typical embodiment of the present invention.
ここで、図1(a)は平面図、図1(b)は(a)の鳥瞰図である。図1(a)において、図を見易くするためトレンチ外部のゲート電極003とゲート絶縁膜004は透明にしてある。太線はゲート電極003のエッジを示している。ここで、それぞれの図に面方位を表す軸を示している。このようにトレンチ上面、底面、側面に結晶面[100]を採用することにより、ゲート酸化膜質が向上すると共に、ゲート酸化膜厚の均一性向上が得られ、信頼性と駆動能力が向上する。
Here, FIG. 1A is a plan view, and FIG. 1B is a bird's-eye view of FIG. In FIG. 1A, the
トレンチ上面、底面、側面に結晶面[100]を採用するための一つの方法は、図15(a)に示すようにウエハ表面が[100]でOFが[110]ではなく[100]のウエハを用いればよい。二つめの方法は、図(b)に示すようにウエハ表面が[100]でOFが[110]のウエハに45°傾けてトレンチをパターニングすればよい。 One method for adopting the crystal plane [100] on the top, bottom and side surfaces of the trench is as shown in FIG. 15 (a) where the wafer surface is [100] and the OF is not [110] but [100]. May be used. In the second method, as shown in FIG. 2B, the trench may be patterned by tilting the wafer surface by 45 ° with respect to the wafer whose surface is [100] and OF is [110].
また、図2(a)は図1(a)の線分2A-2A'の断面図、図2(b)は図1(a)の線分2B-2B'の断面図、図3(a)は図1(a)の線分3A-3A'の断面図、図3(b)は図1(a)の線分3B-3B'の断面図である。図4に示す従来例において、ゲート電極003がトレンチ部全体を覆っているが、図1から図3に示す本発明では、トレンチの両端付近がゲート電極003に覆われていない構造となっている。このような構造において、l3を大きくすることによって(l2が大きくなる)、ソース及びドレイン領域とチャネルの接触面積が大きくすることが可能となる。
2 (a) is a cross-sectional view of
次に、製造法について記す。図6は本発明の製造法の一例である。図6(a)に示すように、表面付近にウェル領域005を形成したn型もしくはp型高抵抗半導体基板006に多数本のトレンチを形成する。ここで、トレンチの深さをウェル領域005の深さより深くすると、基板にリーク電流が流れてしまうため安易にトレンチの深さを深くすることは出来ないが、ウェル領域005を作成する為のイオン注入を、図10(a)に示すように前記トレンチ領域作成直後の多方向からの斜めイオン注入によって行うことにより、更にトレンチ深さを深くすることが可能となる。なぜなら、左右の斜めイオン注入017によってトレンチ側面とトレンチ上面にイオンが注入され、図示していない手前と奥からの斜めイオン注入によってトレンチ上面と底面にイオンが注入され、その後の熱拡散によって図10(b)に示すようにトレンチ底部より深くなるように形成されるからである。この手法を用いることで、ウェル領域005を作成した後にトレンチ領域を作成する手法よりも確実にトレンチを深く形成することができ、単位面積あたりのゲート幅を増加させることが可能となる。
Next, the manufacturing method will be described. FIG. 6 shows an example of the production method of the present invention. As shown in FIG. 6A, a large number of trenches are formed in an n-type or p-type high
ただし、上記の方法でもトレンチ深さに限界はある。斜めイオン注入の角度θを変えずに単純にトレンチ深さを深くすると、図11(a)に示すようにトレンチ底部領域のトレンチ側面にイオンが注入されない部分が生じ、熱拡散をしても図11(b)に示すようにウェル領域005がトレンチ全体を囲まなくなる。一方、トレンチ底部領域のトレンチ側面にイオンが注入されるように斜めイオン注入角度θを小さくすると、図12に示すようにトレンチ側面にイオンが十分に注入されず熱拡散後のウェルのイオン濃度プロファイルが一定でなくなる。
However, there is a limit to the trench depth even in the above method. If the trench depth is simply increased without changing the angle θ of the oblique ion implantation, a portion where ions are not implanted is generated on the side surface of the trench in the bottom region of the trench as shown in FIG. As shown in FIG. 11 (b), the
しかし、前記斜めイオン注入とエピタキシャル技術を組み合わせることで、トレンチ深さを上記限界以上に深くすることが可能となる。図13(a)のように、半導体基板006の表面にウェルと同じ導電型となるようにイオン注入を施した領域016を形成する。その後図13(b)のようにエピタキシャル成長により半導体膜を堆積させる。その後図13(c)のようにトレンチ構造を作成し、図13(d)のように多方向からによる斜めイオン注入を行う。エピタキシャル層と半導体基板間にイオン注入層が存在する為、熱拡散を施すことにより図13(e)に示すようにトレンチ全体を囲むウェルを形成することが可能となる。この手法を用いれば、さらにトレンチ深さを深くすることが可能となり、更に単位面積あたりのゲート幅を増加させることが可能となる。
However, by combining the oblique ion implantation and the epitaxial technique, the trench depth can be made deeper than the above limit. As shown in FIG. 13A, a
次に図6(b)に示すように、基板表面を酸化してゲート絶縁膜004とゲート電極膜003を順に形成し、チャネルとする領域上のゲート電極膜003のみを残し、その他のゲート電極膜003をエッチングする。このとき、図5に示すようなソース及びドレイン領域とチャネルの接触面積の縮小によってオン抵抗低減が阻害されない程度に長さl3のトレンチ両端上部のゲート電極003もエッチバックし、トレンチ内部に埋め込まれているゲート電極003がd2>0になるようにする。
Next, as shown in FIG. 6B, the substrate surface is oxidized to form a
次に、図6(c)に示すように、イオン注入および不純物拡散によりソース領域001及びドレイン領域002を作成する。仮にd1<d2となり、ソース領域001及びドレイン領域002とチャネル部が離れてしまう場合には、斜めイオン注入をすることによりソース及びドレイン領域を図7に示すように形成すればよい。ここで図7は図1(a)の線分2B-2B'の断面図である。最後に、図6(c)に示す構造表面にパッシベーション膜を形成し、ソース、ゲート、ドレイン部にコンタクトホールを作成し、それぞれの電極を取出し完成する。上記の実施例において、導電型を反転することによってp-ch型MOS構造も同様に作成することができることは言うまでも無く、ツインウェル手法を用いれば、1チップで高駆動能力を有するCMOS構造を作成することも、IC混載も容易に可能となる。以上が、本発明の基本構造及び基本製造法である。
Next, as shown in FIG. 6C, a
ここからは、上記の基本構造の応用について述べる。 From now on, the application of the above basic structure will be described.
通常のプレーナ型MOSにおいて、耐圧向上のため、基本構造をベースとし、さまざまな構造が存在する。本発明に関しても同様に、基本構造(図1)をベースとし、図8に示すようDDD(Double Diffused Drain)構造のものや、図9に示すようなLDMOS (Lateral Double diffused MOS) 構造などの従来技術との併合が可能であるため、容易に耐圧向上が図れる。 In ordinary planar MOS, there are various structures based on the basic structure to improve the breakdown voltage. Similarly, the present invention is based on the basic structure (FIG. 1), and has a DDD (Double Diffused Drain) structure as shown in FIG. 8 and an LDMOS (Lateral Double diffused MOS) structure as shown in FIG. Since it can be merged with technology, the breakdown voltage can be easily improved.
また、図1に示す凸部007の幅を1000A程度にすることによって、MOSがオン状態になる際に凸部内部が全て空乏化し、サブスレッショルド特性が向上する。したがってソース・ドレイン間のリークが減少し、閾値を下げることが可能となり、結果的に更に駆動能力を向上させることが可能となる。
Further, by setting the width of the
以上、本発明の実施形態を説明したが、本発明は上記の実施形態に限定されるものではなく、本発明はその要旨を逸脱しない範囲で変形して実施できる。 As mentioned above, although embodiment of this invention was described, this invention is not limited to said embodiment, This invention can be deform | transformed and implemented in the range which does not deviate from the summary.
001 ソース領域
002 ドレイン領域
003 ゲート電極
004 ゲート絶縁膜
005 ウェル領域
006 高抵抗半導体基板
007 凸部
008 凹部
009 高抵抗n型半導体領域
010 高抵抗n型半導体基板
016 ウェルと同じ導電型となるようイオン注入を施された領域
017 イオン注入の方向
018 エピタキシャル成長による半導体膜
019 電流
020 チャネル部と接している部分
021 トレンチパターン
022 ウエハ
001 Source area
002 Drain region
003 Gate electrode
004 Gate insulation film
005 Well region
006 High resistance semiconductor substrate
007 Convex
008 recess
009 High resistance n-type semiconductor region
010 High resistance n-type semiconductor substrate
016 Ion-implanted region with the same conductivity type as the well
017 Direction of ion implantation
018 Semiconductor film by epitaxial growth
019 current
020 The part in contact with the channel
021 trench pattern
022 Wafer
Claims (3)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007215552A JP2009049260A (en) | 2007-08-22 | 2007-08-22 | Lateral semiconductor device with high driving capacity using trench structure |
PCT/JP2008/064852 WO2009025308A1 (en) | 2007-08-22 | 2008-08-20 | Horizontal high driving performance semiconductor device using trench structure |
TW97131935A TW200929540A (en) | 2007-08-22 | 2008-08-21 | Lateral semiconductor device with high driving capacity using trench structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007215552A JP2009049260A (en) | 2007-08-22 | 2007-08-22 | Lateral semiconductor device with high driving capacity using trench structure |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009049260A true JP2009049260A (en) | 2009-03-05 |
Family
ID=40378207
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007215552A Pending JP2009049260A (en) | 2007-08-22 | 2007-08-22 | Lateral semiconductor device with high driving capacity using trench structure |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2009049260A (en) |
TW (1) | TW200929540A (en) |
WO (1) | WO2009025308A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013098402A (en) * | 2011-11-02 | 2013-05-20 | Renesas Electronics Corp | Semiconductor device and semiconductor device manufacturing method |
US10483391B2 (en) | 2016-12-28 | 2019-11-19 | Renesas Electronics Corporation | Semiconductor device and method for manufacturing the same |
WO2021186911A1 (en) * | 2020-03-18 | 2021-09-23 | ソニーセミコンダクタソリューションズ株式会社 | Imaging device and electronic apparatus |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62126675A (en) * | 1985-11-27 | 1987-06-08 | Toshiba Corp | Semiconductor device and manufacture thereof |
JPS63228710A (en) * | 1987-03-18 | 1988-09-22 | Toshiba Corp | Semiconductor device |
JPS63250852A (en) * | 1987-04-08 | 1988-10-18 | Sony Corp | Semiconductor device |
JPH06209106A (en) * | 1993-01-12 | 1994-07-26 | Matsushita Electron Corp | Semiconductor device |
JPH08264764A (en) * | 1995-03-22 | 1996-10-11 | Toshiba Corp | Semiconductor device |
KR100641365B1 (en) * | 2005-09-12 | 2006-11-01 | 삼성전자주식회사 | Mos transistors having an optimized channel plane orientation, semiconductor devices including the same and methods of fabricating the same |
-
2007
- 2007-08-22 JP JP2007215552A patent/JP2009049260A/en active Pending
-
2008
- 2008-08-20 WO PCT/JP2008/064852 patent/WO2009025308A1/en active Application Filing
- 2008-08-21 TW TW97131935A patent/TW200929540A/en unknown
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013098402A (en) * | 2011-11-02 | 2013-05-20 | Renesas Electronics Corp | Semiconductor device and semiconductor device manufacturing method |
US10483391B2 (en) | 2016-12-28 | 2019-11-19 | Renesas Electronics Corporation | Semiconductor device and method for manufacturing the same |
WO2021186911A1 (en) * | 2020-03-18 | 2021-09-23 | ソニーセミコンダクタソリューションズ株式会社 | Imaging device and electronic apparatus |
Also Published As
Publication number | Publication date |
---|---|
TW200929540A (en) | 2009-07-01 |
WO2009025308A1 (en) | 2009-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4976658B2 (en) | Manufacturing method of semiconductor device | |
JP5110776B2 (en) | Manufacturing method of semiconductor device | |
JP4860929B2 (en) | Semiconductor device and manufacturing method thereof | |
JP4398185B2 (en) | Vertical MOS transistor | |
JP4754353B2 (en) | Vertical trench gate semiconductor device and manufacturing method thereof | |
JP2007300034A (en) | Semiconductor device, and its fabrication process | |
JP5567711B2 (en) | Semiconductor device | |
TW200845391A (en) | Semiconductor device and method of manufacturing the same | |
JP2006019518A (en) | Horizontal trench mosfet | |
JP5486654B2 (en) | Semiconductor device | |
JP2005268679A (en) | Semiconductor device and manufacturing method for the same | |
TWI445171B (en) | Semiconductor device and manufacturing method thereof | |
KR20090092718A (en) | Semiconductor device and method of manufacturing the same | |
US9356135B2 (en) | Semiconductor device and method of manufacturing the same | |
JP2009049260A (en) | Lateral semiconductor device with high driving capacity using trench structure | |
JP6850659B2 (en) | Manufacturing method of semiconductor devices | |
JP2001119019A (en) | Semiconductor device and manufacturing method therefor | |
JP2001102574A (en) | Semiconductor device with trench gate | |
JP2007115791A (en) | Semiconductor device and method of manufacturing same | |
JP5486673B2 (en) | Semiconductor device | |
JP2008053468A (en) | Lateral semiconductor device with high driving capacity using trench structure | |
JP2005085975A (en) | Semiconductor device | |
KR100760010B1 (en) | Electronic power semiconductor device to be improved change rate of voltage which depends on time |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Effective date: 20091105 Free format text: JAPANESE INTERMEDIATE CODE: A7421 |
|
RD01 | Notification of change of attorney |
Effective date: 20091113 Free format text: JAPANESE INTERMEDIATE CODE: A7421 |