JP2009043845A - Wiring board - Google Patents

Wiring board Download PDF

Info

Publication number
JP2009043845A
JP2009043845A JP2007205746A JP2007205746A JP2009043845A JP 2009043845 A JP2009043845 A JP 2009043845A JP 2007205746 A JP2007205746 A JP 2007205746A JP 2007205746 A JP2007205746 A JP 2007205746A JP 2009043845 A JP2009043845 A JP 2009043845A
Authority
JP
Japan
Prior art keywords
strip
wiring conductor
flip
test
resist layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007205746A
Other languages
Japanese (ja)
Other versions
JP4802155B2 (en
Inventor
Koichi Osumi
孝一 大隅
Makoto Sano
誠 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera SLC Technologies Corp
Original Assignee
Kyocera SLC Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera SLC Technologies Corp filed Critical Kyocera SLC Technologies Corp
Priority to JP2007205746A priority Critical patent/JP4802155B2/en
Publication of JP2009043845A publication Critical patent/JP2009043845A/en
Application granted granted Critical
Publication of JP4802155B2 publication Critical patent/JP4802155B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wiring board for which an electric test can be easily and securely conducted by connecting a probe for the electric test. <P>SOLUTION: The wiring board 10 has: a plurality of beltlike wiring conductors 5a arranged in parallel on an outermost insulating layer 4; a conductive projection 12 for a flip chip, which is formed on part of each beltlike wiring conductor 5a and has the same width with that of the beltlike wiring conductor 5a; and a solder resist layer 6 for exposing at least a top surface of the conductive projection 12 for the flip chip, the resist layer 6 being formed covering the outermost insulating layer 4 and beltlike wiring conductors 5a, A conductive projection 13 for the test, to which the probe for the electric test is to be connected, is formed at part on each beltlike wiring conductor 5a, the conductive projection 13 having the same width as that of the beltlike wiring conductor 5a while shifting in position from an adjacent conductive projection 13 for the test, and a top surface of each conductive projection 13 for the test is exposed from the solder resist layer 6. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は配線基板に関し、より詳細には、例えばペリフェラル型の半導体集積回路素子をフリップチップ接続により搭載するのに好適な配線基板に関する。   The present invention relates to a wiring board, and more particularly to a wiring board suitable for mounting, for example, a peripheral type semiconductor integrated circuit element by flip chip connection.

従来から、半導体集積回路素子として、多数の電極端子を、その一方の主面の外周に沿って配設した、いわゆるペリフェラル型の半導体集積回路素子がある。このような半導体集積回路素子を配線基板に搭載する方法として、フリップチップ接続により接続する方法がある。フリップチップ接続とは、配線基板上に設けた半導体素子接続用の配線導体の一部を半導体集積回路素子の電極端子の配置に対応した並びに露出させ、この半導体素子接続用の配線導体の露出部と前記半導体集積回路素子の電極端子とを対向させ、これらを半田等の導電バンプを介して電気的に接続する方法である。   2. Description of the Related Art Conventionally, as a semiconductor integrated circuit element, there is a so-called peripheral type semiconductor integrated circuit element in which a large number of electrode terminals are arranged along the outer periphery of one main surface thereof. As a method of mounting such a semiconductor integrated circuit element on a wiring board, there is a method of connecting by flip chip connection. Flip-chip connection means that a part of a wiring conductor for connecting a semiconductor element provided on a wiring board is exposed corresponding to the arrangement of electrode terminals of a semiconductor integrated circuit element, and an exposed portion of the wiring conductor for connecting a semiconductor element is exposed. And the electrode terminal of the semiconductor integrated circuit element are opposed to each other and are electrically connected through conductive bumps such as solder.

図8は、ペリフェラル型の半導体集積回路素子をフリップチップ接続により搭載した従来の配線基板を示す概略断面図であり、図9は、図8の配線基板を示す平面図である。図8,図9に示すように、従来の配線基板120は、上面から下面にかけて第一の配線導体102が配設された絶縁基板103の上下面に絶縁層104と第二の配線導体105とが交互に積層され、最表面には保護用のソルダーレジスト層106が被着されている。   FIG. 8 is a schematic cross-sectional view showing a conventional wiring board on which peripheral type semiconductor integrated circuit elements are mounted by flip-chip connection, and FIG. 9 is a plan view showing the wiring board of FIG. As shown in FIGS. 8 and 9, the conventional wiring board 120 includes an insulating layer 104 and a second wiring conductor 105 on the upper and lower surfaces of the insulating board 103 on which the first wiring conductor 102 is disposed from the upper surface to the lower surface. Are alternately laminated, and a protective solder resist layer 106 is deposited on the outermost surface.

絶縁基板103の上面から下面にかけては複数のスルーホール107が形成されており、絶縁基板103の上下面およびスルーホール107の内面には第一の配線導体102が被着され、スルーホール107の内部には埋め込み樹脂108が充填されている。絶縁層104には、それぞれに複数のビアホール109が形成されており、各絶縁層104の表面およびビアホール109の内面には、第二の配線導体105がそれぞれ被着形成されている。   A plurality of through holes 107 are formed from the upper surface to the lower surface of the insulating substrate 103, and the first wiring conductor 102 is attached to the upper and lower surfaces of the insulating substrate 103 and the inner surface of the through hole 107. Is filled with embedded resin 108. A plurality of via holes 109 are respectively formed in the insulating layer 104, and second wiring conductors 105 are formed on the surface of each insulating layer 104 and the inner surface of the via hole 109, respectively.

そして、複数の第二の配線導体105のうち、配線基板120の上面側における最外層の絶縁層104上に被着された一部が、半導体集積回路素子101の電極端子に導電バンプ110を介して電気的に接続される半導体素子接続用の帯状配線導体105aを構成し、この帯状配線導体105aのうち、ソルダーレジスト層106から露出した露出部に、半導体集積回路素子101の電極端子が半田や金等から成る導電バンプ110を介して電気的に接続される。また、配線基板120の下面側における最外層の絶縁層104上に被着された一部が、外部電気回路基板の配線導体に電気的に接続される外部接続用の配線導体105bを構成し、この外部接続用の配線導体105bのうち、ソルダーレジスト層106から露出した露出部に、外部電気回路基板の配線導体が半田ボール111を介して電気的に接続される。   A part of the plurality of second wiring conductors 105 deposited on the outermost insulating layer 104 on the upper surface side of the wiring board 120 is connected to the electrode terminals of the semiconductor integrated circuit element 101 via the conductive bumps 110. A strip-shaped wiring conductor 105a for connecting a semiconductor element electrically connected to each other is configured, and the electrode terminal of the semiconductor integrated circuit element 101 is soldered or exposed to an exposed portion of the strip-shaped wiring conductor 105a exposed from the solder resist layer 106. They are electrically connected via conductive bumps 110 made of gold or the like. In addition, a part of the lower surface side of the wiring board 120 that is deposited on the outermost insulating layer 104 constitutes a wiring conductor 105b for external connection that is electrically connected to the wiring conductor of the external electric circuit board, Of the wiring conductor 105b for external connection, the wiring conductor of the external electric circuit board is electrically connected to the exposed portion exposed from the solder resist layer 106 through the solder ball 111.

ソルダーレジスト層106は、最表層の第二の配線導体105を保護するとともに、帯状配線導体105aや配線導体105bの露出部を画定する。このようなソルダーレジスト層106は、感光性を有する熱硬化性樹脂ペーストまたはフィルムを第二の配線導体105が形成された最外層の絶縁層104上に積層した後、帯状配線導体105aや配線導体105bにおける露出部を露出させる開口を有するように露光および現像し、硬化させることにより形成される。このため、帯状配線導体105aにおける露出部は、ソルダーレジスト層106の表面から凹んで位置することになる。なお、図9に示すように、上面側のソルダーレジスト層106は、帯状配線導体105aの露出部を露出させるスリット状の開口106aを有している。   The solder resist layer 106 protects the outermost second wiring conductor 105 and defines the exposed portions of the strip-shaped wiring conductor 105a and the wiring conductor 105b. Such a solder resist layer 106 is formed by laminating a photosensitive thermosetting resin paste or film on the outermost insulating layer 104 on which the second wiring conductor 105 is formed, and then forming the strip-shaped wiring conductor 105a or the wiring conductor. It is formed by exposing, developing and curing so as to have an opening for exposing the exposed portion in 105b. For this reason, the exposed part in the strip-shaped wiring conductor 105 a is located recessed from the surface of the solder resist layer 106. As shown in FIG. 9, the solder resist layer 106 on the upper surface side has a slit-shaped opening 106a that exposes the exposed portion of the strip-shaped wiring conductor 105a.

そして、半導体集積回路素子101の電極端子と帯状配線導体105aにおける露出部とを導電バンプ110を介して電気的に接続した後、半導体集積回路素子101と配線基板120との間の隙間にエポキシ樹脂等の熱硬化性樹脂から成るアンダーフィルと呼ばれる充填樹脂112を充填し、半導体集積回路素子101が配線基板120上に実装される。   Then, after electrically connecting the electrode terminal of the semiconductor integrated circuit element 101 and the exposed portion of the strip-shaped wiring conductor 105a via the conductive bump 110, an epoxy resin is formed in the gap between the semiconductor integrated circuit element 101 and the wiring board 120. The semiconductor integrated circuit element 101 is mounted on the wiring substrate 120 by filling a filling resin 112 called an underfill made of a thermosetting resin such as the like.

近時、半導体集積回路素子101は、その高集積度化が急激に進み、半導体集積回路素子101における電極端子のピッチは狭ピッチになってきており、これに伴って帯状配線導体105aの幅も狭くなってきている。帯状配線導体105aの幅が狭くなると、この帯状配線導体105aの露出部上に形成される導電バンプ110も小さなものにならざるをえず、帯状配線導体105aの露出部と、導電バンプ110との接続信頼性が低下する。また、この小さな導電バンプ110を介して半導体集積回路素子101を実装した場合には、半導体集積回路素子101とソルダーレジスト層106との間の隙間が狭くなるので、この隙間内への充填樹脂112の充填性が低下すると共に、充填された充填樹脂112中にボイドが発生しやすくなる。   Recently, the integration density of the semiconductor integrated circuit element 101 has rapidly increased, and the pitch of the electrode terminals in the semiconductor integrated circuit element 101 has become narrower. With this, the width of the strip-shaped wiring conductor 105a has also increased. It is getting narrower. When the width of the strip-shaped wiring conductor 105a is narrowed, the conductive bump 110 formed on the exposed portion of the strip-shaped wiring conductor 105a must be small, and the exposed portion of the strip-shaped wiring conductor 105a and the conductive bump 110 are reduced. Connection reliability decreases. Further, when the semiconductor integrated circuit element 101 is mounted through the small conductive bumps 110, the gap between the semiconductor integrated circuit element 101 and the solder resist layer 106 is narrowed. As a result, the filling property of the filling resin 112 decreases and voids are easily generated in the filled resin 112.

そこで、本出願人は、先に特許文献1に記載のような配線基板を開発した。この配線基板は、最外層の絶縁層上に複数並設した帯状配線導体上の一部に、該帯状配線導体の幅と一致する幅でフリップチップ用の導電突起を設け、各導電突起の上面を露出させるようにソルダーレジスト層を被着させたものである。この配線基板によると、前記導電突起と、この導電突起の表面に形成される導電バンプとの接続信頼性に優れ、かつ前記導電突起とソルダーレジスト層との高低差が小さくなるので充填樹脂の充填性に優れ、電極端子が狭ピッチな半導体集積回路素子を微小な導電バンプを介してフリップチップ搭載することができる。   Therefore, the present applicant has previously developed a wiring board as described in Patent Document 1. This wiring board is provided with conductive protrusions for flip-chip on a part of a plurality of strip-shaped wiring conductors arranged side by side on the outermost insulating layer with a width that matches the width of the strip-shaped wiring conductor, and the upper surface of each conductive protrusion. A solder resist layer is deposited so as to be exposed. According to this wiring board, the conductive protrusion is excellent in connection reliability between the conductive protrusion and the conductive bump formed on the surface of the conductive protrusion, and the height difference between the conductive protrusion and the solder resist layer is reduced, so that the filling resin is filled. It is possible to flip-chip mount a semiconductor integrated circuit element having excellent characteristics and electrode terminals with a narrow pitch through minute conductive bumps.

一方、製造された配線基板は、電気テスト用のプローブを用いて電気テストされる。例えば、特許文献1に記載の配線基板では、電気テスト用のプローブを各導電突起に接続して電気テストを行う。ところが、前記した通り、半導体集積回路素子における電極端子の狭ピッチ下に伴い、導電突起(すなわち帯状配線導体)の幅、互いに隣接する導電突起間(すなわち帯状配線導体間)の間隔も狭くなっている。   On the other hand, the manufactured wiring board is subjected to an electrical test using an electrical test probe. For example, in the wiring board described in Patent Document 1, an electrical test is performed by connecting a probe for electrical testing to each conductive protrusion. However, as described above, with the narrow pitch of the electrode terminals in the semiconductor integrated circuit element, the width of the conductive protrusions (that is, the band-shaped wiring conductor) and the interval between the adjacent conductive protrusions (that is, between the band-shaped wiring conductors) are also narrowed. Yes.

一般に、電気テストに使用されるプローブの径は、帯状配線導体の幅よりも大きく、互いに隣接する帯状配線導体間の間隔とほぼ同じ大きさである。このため、電気テスト用のプローブと配線基板上の導電突起間で接続不良が生じるという問題がある。また、プローブ同士が接触して短絡不良が多発し、合格品であっても不良品とされる、いわゆる擬似不良による歩留り低下が大きくなっている。なお、電気テスト用のプローブ径の極小化、その位置精度向上等は非常に難しい。   In general, the diameter of the probe used for the electrical test is larger than the width of the strip-shaped wiring conductor and is almost the same as the interval between the adjacent strip-shaped wiring conductors. For this reason, there is a problem that connection failure occurs between the probe for electrical test and the conductive protrusion on the wiring board. Moreover, probes are brought into contact with each other and short circuit failures frequently occur, and a yield reduction due to a so-called pseudo failure, which is a defective product even if it is an acceptable product, is increasing. Note that it is very difficult to minimize the probe diameter for electrical testing and to improve the position accuracy.

特許文献2には、複数並設された電子デバイス接続用のパッド上の所定領域がソルダーレジスト層から露出して、所定の電気検査領域を形成している印刷配線板が記載されている。   Patent Document 2 describes a printed wiring board in which a predetermined region on a plurality of electronic device connection pads arranged in parallel is exposed from a solder resist layer to form a predetermined electrical inspection region.

しかしながら、この文献に記載されている電気検査領域を構成する各パッドは、隣接するパッド同士がソルダーレジスト層から露出しているので、パッドの幅、互いに隣接するパッド間の間隔が狭い場合には、前記した通り、電気テスト用のプローブとパッド間で接続不良が生じ、またプローブ同士が接触して短絡不良が多発する。   However, since the pads constituting the electrical inspection region described in this document are exposed from the solder resist layer, when the pad width and the interval between adjacent pads are narrow, As described above, poor connection occurs between the probe for electrical testing and the pad, and the probes come into contact with each other, resulting in frequent short circuits.

特開2006−344664号公報JP 2006-344664 A 特開平9−191169号公報JP-A-9-191169

本発明の課題は、電気テスト用のプローブを接続することによって簡単にかつ確実に電気テストを行うことができる配線基板を提供することである。   The subject of this invention is providing the wiring board which can perform an electrical test simply and reliably by connecting the probe for an electrical test.

本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、最外層の絶縁層上に複数並設した各帯状配線導体上の一部に、電気テスト用のプローブが接続されるテスト用導電突起を、前記帯状配線導体と一致する幅でかつ隣接するテスト用導電突起と位置をずらして形成し、各テスト用導電突起の上面をソルダーレジスト層から露出させる場合には、テスト用導電突起に接続される電気テスト用のプローブ同士の間隔が広がるので、帯状配線導体の幅、互いに隣接する帯状配線導体間の間隔が狭い場合であっても、前記プローブをテスト用導電突起に確実に接続させることができ、しかもプローブ同士が接触することにより発生する短絡不良を防いで電気テストを行うことができるという新たな知見を見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have conducted a test in which a probe for electrical testing is connected to a part of each of the strip-shaped wiring conductors arranged in parallel on the outermost insulating layer. When the conductive protrusions for testing are formed in a width that matches the strip-shaped wiring conductor and shifted from the position of the adjacent conductive protrusions for testing, and the upper surface of each conductive conductive protrusion is exposed from the solder resist layer, Since the gap between the electrical test probes connected to the protrusions is widened, the probe can be securely attached to the test conductive protrusions even when the width of the band-shaped wiring conductors and the distance between adjacent band-shaped wiring conductors are narrow. The present inventors have found a new finding that they can be connected, and that an electrical test can be performed while preventing a short circuit failure caused by contact between probes. The present invention has been completed.

すなわち、本発明における配線基板は、以下の構成からなる。
(1)絶縁層と配線導体とが交互に積層されており、最外層の絶縁層上に半導体素子接続用の帯状配線導体が複数並設されているとともに、各帯状配線導体上の一部に半導体素子の電極端子がフリップチップ接続されるフリップチップ用導電突起が前記帯状配線導体の幅と一致する幅で形成されており、かつ前記最外層の絶縁層上および前記帯状配線導体上に前記フリップチップ用導電突起の少なくとも上面を露出させるソルダーレジスト層が被着された配線基板であって、前記各帯状配線導体上の一部に、さらに電気テスト用のプローブが接続されるテスト用導電突起が前記帯状配線導体と一致する幅でかつ隣接するテスト用導電突起と位置をずらして形成されているとともに、各テスト用導電突起の上面が前記ソルダーレジスト層から露出していることを特徴とする配線基板。
(2)前記テスト用導電突起が、前記フリップチップ用導電突起を挟んで該突起の両側に交互に位置をずらせて形成されている前記(1)記載の配線基板。
(3)前記帯状配線導体の幅が30μm以下であり、互いに隣接する帯状配線導体間の間隔が45μm以下である前記(1)または(2)記載の配線基板。
(4)前記テスト用導電突起の上面と、その周囲の前記ソルダーレジスト層の上面とが実質的に同じ高さである前記(1)〜(3)のいずれかに記載の配線基板。
(5)前記フリップチップ用導電突起の上面と、その周囲の前記ソルダーレジスト層の上面とが実質的に同じ高さである前記(1)〜(4)のいずれかに記載の配線基板。
(6)前記フリップチップ用導電突起の長さが、該フリップチップ用導電突起の幅よりも長い前記(1)〜(5)のいずれかに記載の配線基板。
That is, the wiring board in the present invention has the following configuration.
(1) Insulating layers and wiring conductors are alternately stacked, and a plurality of strip-like wiring conductors for connecting semiconductor elements are arranged in parallel on the outermost insulating layer, and a part of each strip-like wiring conductor A flip-chip conductive protrusion to which the electrode terminal of the semiconductor element is flip-chip connected is formed with a width matching the width of the strip-shaped wiring conductor, and the flip is formed on the outermost insulating layer and on the strip-shaped wiring conductor. A wiring board on which a solder resist layer that exposes at least the upper surface of the chip conductive protrusion is deposited, and a test conductive protrusion to which a probe for electrical testing is further connected to a part of each of the strip-shaped wiring conductors The width of the test conductive protrusion is equal to the width of the strip-shaped wiring conductor and shifted from the adjacent test conductive protrusion, and the upper surface of each test conductive protrusion is exposed from the solder resist layer. Wiring board, characterized in that it is.
(2) The wiring board according to (1), wherein the test conductive protrusions are formed by alternately shifting positions on both sides of the flip chip conductive protrusions.
(3) The wiring board according to (1) or (2), wherein a width of the strip-shaped wiring conductor is 30 μm or less, and a distance between adjacent strip-shaped wiring conductors is 45 μm or less.
(4) The wiring board according to any one of (1) to (3), wherein an upper surface of the test conductive protrusion and an upper surface of the solder resist layer around the conductive protrusion are substantially the same height.
(5) The wiring board according to any one of (1) to (4), wherein an upper surface of the flip-chip conductive protrusion and an upper surface of the solder resist layer around the flip-chip conductive protrusion have substantially the same height.
(6) The wiring board according to any one of (1) to (5), wherein a length of the flip-chip conductive protrusion is longer than a width of the flip-chip conductive protrusion.

本発明によれば、最外層の絶縁層上に複数並設した各帯状配線導体上の一部に、電気テスト用のプローブが接続されるテスト用導電突起を、前記帯状配線導体と一致する幅でかつ隣接するテスト用導電突起と位置をずらして形成し、各テスト用導電突起の上面をソルダーレジスト層から露出させるので、該導電突起に一般的な電気テスト用のプローブを接続することによって簡単にかつ確実に電気テストを行うことができるという効果がある。
特に、前記(3)のように、帯状配線導体の幅が30μm以下であり、互いに隣接する帯状配線導体間の間隔が45μm以下である場合には、本発明にかかる配線基板の有用性がより向上する。
According to the present invention, a test conductive protrusion to which an electrical test probe is connected to a part of each of the strip-like wiring conductors arranged in parallel on the outermost insulating layer has a width that matches the strip-like wiring conductor. In addition, since the upper surface of each test conductive protrusion is exposed from the solder resist layer, it is easy to connect a general electric test probe to the conductive protrusion. In addition, there is an effect that an electrical test can be performed reliably.
In particular, when the width of the strip-shaped wiring conductor is 30 μm or less and the interval between the adjacent strip-shaped wiring conductors is 45 μm or less as in (3), the usefulness of the wiring board according to the present invention is further improved. improves.

以下、本発明にかかる配線基板の一実施形態について図面を参照して詳細に説明する。図1は、ペリフェラル型の半導体集積回路素子をフリップチップ接続により搭載した本実施形態にかかる配線基板を示す概略断面図である。図2は、図1の配線基板を示す平面図である。   Hereinafter, an embodiment of a wiring board according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing a wiring board according to the present embodiment on which peripheral type semiconductor integrated circuit elements are mounted by flip-chip connection. FIG. 2 is a plan view showing the wiring board of FIG.

図1,図2に示すように、本実施形態にかかる配線基板10は、上面から下面にかけて第一の配線導体2が配設された絶縁基板3の上下面に絶縁層4と第二の配線導体5とが交互に積層され、最表面に保護用のソルダーレジスト層6が被着されて成る。   As shown in FIGS. 1 and 2, the wiring substrate 10 according to the present embodiment includes an insulating layer 4 and a second wiring on the upper and lower surfaces of the insulating substrate 3 on which the first wiring conductor 2 is disposed from the upper surface to the lower surface. Conductors 5 are alternately stacked, and a protective solder resist layer 6 is deposited on the outermost surface.

絶縁基板3は、厚みが0.1〜1.5mm程度であり、例えばガラス繊維束を縦横に織ったガラスクロスにビスマレイミドトリアジン樹脂やエポキシ樹脂等の熱硬化性樹脂を含浸させた電気絶縁材料から成り、配線基板10のコア部材として機能する。   The insulating substrate 3 has a thickness of about 0.1 to 1.5 mm. For example, an electrically insulating material obtained by impregnating a glass cloth in which glass fiber bundles are woven vertically and horizontally with a thermosetting resin such as bismaleimide triazine resin or epoxy resin. And functions as a core member of the wiring board 10.

絶縁基板3の上面から下面にかけて直径が0.05〜0.3mm程度の複数のスルーホール7が形成されており、絶縁基板3の上下面およびスルーホール7の内面には、第一の配線導体2が被着されている。第一の配線導体2は、絶縁基板3の上下面では主として銅箔から形成されており、スルーホール7内面では無電解銅めっきおよびその上の電解銅めっきから形成されている。   A plurality of through holes 7 having a diameter of about 0.05 to 0.3 mm are formed from the upper surface to the lower surface of the insulating substrate 3, and the first wiring conductor is formed on the upper and lower surfaces of the insulating substrate 3 and the inner surface of the through hole 7. 2 is attached. The first wiring conductor 2 is mainly formed of copper foil on the upper and lower surfaces of the insulating substrate 3, and is formed of electroless copper plating and electrolytic copper plating thereon on the inner surface of the through hole 7.

スルーホール7内部にはエポキシ樹脂等の熱硬化性樹脂から成る埋め込み樹脂8が充填されており、絶縁基板3の上下面に形成された第一の配線導体2同士がスルーホール7内の第一の配線導体2を介して電気的に接続されている。   The through hole 7 is filled with an embedding resin 8 made of a thermosetting resin such as an epoxy resin, and the first wiring conductors 2 formed on the upper and lower surfaces of the insulating substrate 3 are connected to the first inside the through hole 7. The wiring conductor 2 is electrically connected.

このような絶縁基板3は、例えばガラス織物に未硬化の熱硬化性樹脂を含浸させたシートの上下面に第一の配線導体2用の銅箔を張着した後、そのシートを熱硬化させ、これに上面から下面にかけてスルーホール7用のドリル加工を施すこと等により製作される。   Such an insulating substrate 3 is formed by, for example, bonding a copper foil for the first wiring conductor 2 on the upper and lower surfaces of a sheet of glass fabric impregnated with an uncured thermosetting resin, and then thermosetting the sheet. This is manufactured by drilling the through hole 7 from the upper surface to the lower surface.

第一の配線導体2は、絶縁基板3用のシートの上下全面に、厚みが3〜50μm程度の銅箔を上述のように張着しておくとともに、これらの銅箔および絶縁基板3にスルーホール7を穿孔した後、このスルーホール7の内面および銅箔表面に無電解銅めっきおよび電解銅めっきを順次施し、次にスルーホール7内を埋め込み樹脂8で充填した後、この上下面の銅箔および銅めっきを、例えばフォトリソグラフィ技術等を用いて所定のパターンにエッチング加工することにより、絶縁基板3の上下面およびスルーホール7の内面に形成される。   In the first wiring conductor 2, copper foil having a thickness of about 3 to 50 μm is stuck on the entire upper and lower surfaces of the sheet for the insulating substrate 3 as described above, and through the copper foil and the insulating substrate 3. After the hole 7 is drilled, electroless copper plating and electrolytic copper plating are sequentially applied to the inner surface of the through hole 7 and the copper foil surface, and then the inside of the through hole 7 is filled with the embedded resin 8. The foil and copper plating are formed on the upper and lower surfaces of the insulating substrate 3 and the inner surface of the through hole 7 by etching into a predetermined pattern using, for example, a photolithography technique.

埋め込み樹脂8は、スルーホール7を塞ぐことによりスルーホール7の直上および直下に絶縁層4を形成可能とするためのものであり、未硬化のペースト状の熱硬化性樹脂をスルーホール7内にスクリーン印刷法により充填し、これを熱硬化させた後、その上下面を略平坦に研磨することにより形成される。   The embedded resin 8 is used to form the insulating layer 4 immediately above and below the through hole 7 by closing the through hole 7, and an uncured paste-like thermosetting resin is placed in the through hole 7. After filling with a screen printing method and thermosetting it, the upper and lower surfaces thereof are polished to be substantially flat.

絶縁基板3の上下面に積層された絶縁層4は、それぞれの厚みが20〜60μm程度であり、絶縁基板3と同様にガラスクロスに熱硬化性樹脂を含浸させた電気絶縁材料や、あるいはエポキシ樹脂等の熱硬化性樹脂に酸化ケイ素等の無機フィラーを分散させた電気絶縁材料等から成る。また、各絶縁層4には、直径が30〜100μm程度の複数のビアホール9が形成されている。   The insulating layers 4 laminated on the upper and lower surfaces of the insulating substrate 3 each have a thickness of about 20 to 60 μm. Similarly to the insulating substrate 3, an electric insulating material in which a glass cloth is impregnated with a thermosetting resin, or an epoxy It consists of an electrically insulating material in which an inorganic filler such as silicon oxide is dispersed in a thermosetting resin such as a resin. Each insulating layer 4 is formed with a plurality of via holes 9 having a diameter of about 30 to 100 μm.

各絶縁層4の表面およびビアホール9内面には、無電解銅めっきおよびその上の電解銅めっきから成る第二の配線導体5が被着形成されている。そして、絶縁層4を挟んで上層に位置する配線導体5と下層に位置する配線導体5とをビアホール9内の配線導体5を介して電気的に接続することにより高密度配線が立体的に形成される。   A second wiring conductor 5 made of electroless copper plating and electrolytic copper plating thereon is deposited on the surface of each insulating layer 4 and the inner surface of the via hole 9. Then, the wiring conductor 5 located in the upper layer and the wiring conductor 5 located in the lower layer are electrically connected via the wiring conductor 5 in the via hole 9 with the insulating layer 4 interposed therebetween, thereby forming a high-density wiring in three dimensions. Is done.

複数の第二の配線導体5のうち、配線基板10の上面側における最外層の絶縁層4上に被着された一部が、半導体集積回路素子101の電極と半田等の導電バンプ110および後述するフリップチップ用導電突起12を介して電気的に接続される半導体素子接続用の帯状配線導体5aを形成している。一方、配線基板10の下面側における最外層の絶縁層4上に被着された一部が、外部電気回路基板の配線導体に半田ボール111を介して電気的に接続される外部接続用の配線導体5bを形成している。   Among the plurality of second wiring conductors 5, a part of the second wiring conductor 5 deposited on the outermost insulating layer 4 on the upper surface side of the wiring substrate 10 is electrically conductive bumps 110 such as electrodes and solder of the semiconductor integrated circuit element 101, which will be described later. A strip-like wiring conductor 5a for connecting a semiconductor element, which is electrically connected via a flip-chip conductive protrusion 12 to be formed, is formed. On the other hand, a portion of the lower surface of the wiring board 10 that is deposited on the outermost insulating layer 4 is electrically connected to the wiring conductor of the external electric circuit board via the solder balls 111. A conductor 5b is formed.

このような第二の配線導体5は、例えばセミアディティブ法といわれる方法等により形成される。セミアディティブ法は、例えば、まず、ビアホール9が形成された絶縁層4の表面に電解めっき用の下地金属層を無電解銅めっきにより形成し、その上に第二の配線導体5に対応した開口を有するめっきレジスト層を形成する。次に、下地金属層を給電用の電極として開口から露出する下地金属層上に電解銅めっきを施し第二の配線導体5を形成し、めっきレジストを剥離した後、露出する下地金属層をエッチング除去することによって各第二の配線導体5を電気的に独立させる方法である。   Such a second wiring conductor 5 is formed by, for example, a method called a semi-additive method. In the semi-additive method, for example, first, a base metal layer for electrolytic plating is formed on the surface of the insulating layer 4 in which the via hole 9 is formed by electroless copper plating, and an opening corresponding to the second wiring conductor 5 is formed thereon. A plating resist layer having the following is formed. Next, electrolytic copper plating is performed on the base metal layer exposed from the opening using the base metal layer as a power supply electrode to form the second wiring conductor 5, and after removing the plating resist, the exposed base metal layer is etched. In this method, the second wiring conductors 5 are made electrically independent by removing them.

半導体素子接続用の帯状配線導体5aは、図2に示すように、半導体集積回路素子101の外周部に対応する位置を半導体集積回路素子101の外周辺に対して直角な方向に延びるようにして所定のピッチで複数並設されており、その上には半導体集積回路素子101の電極端子に対応する位置に、導電バンプ110と接続されるフリップチップ用導電突起12が帯状配線導体5aの幅と一致する幅で形成されている。   As shown in FIG. 2, the strip-shaped wiring conductor 5a for connecting the semiconductor element extends at a position corresponding to the outer peripheral portion of the semiconductor integrated circuit element 101 in a direction perpendicular to the outer periphery of the semiconductor integrated circuit element 101. A plurality of flip-chip conductive protrusions 12 connected to the conductive bumps 110 are arranged on the plurality of lines at a predetermined pitch and corresponding to the electrode terminals of the semiconductor integrated circuit element 101. It is formed with a matching width.

フリップチップ用導電突起12は、帯状配線導体5aの幅と一致する幅で形成されていることから、帯状配線導体5aからはみ出ることがないとともに、導電バンプ110と接続するための十分な幅を確保することができる。したがって、配線基板10は、隣接する帯状配線導体5a間の電気的絶縁信頼性に優れるとともに、フリップチップ用導電突起12と導電バンプ110との接続信頼性に優れる。   Since the flip-chip conductive protrusion 12 is formed with a width that matches the width of the strip-shaped wiring conductor 5a, the flip-chip conductive protrusion 12 does not protrude from the strip-shaped wiring conductor 5a and secures a sufficient width for connection to the conductive bump 110. can do. Therefore, the wiring substrate 10 is excellent in the electrical insulation reliability between the adjacent strip-shaped wiring conductors 5a, and is excellent in the connection reliability between the flip-chip conductive protrusions 12 and the conductive bumps 110.

また、フリップチップ用導電突起12は、その長さが該導電突起12の幅よりも例えば50μm以上長く形成されている。これにより、例えばフリップチップ用導電突起12の形成位置が帯状配線導体5aの長さ方向に多少ずれた場合であっても、半導体集積回路素子101の電極端子とフリップチップ用導電突起12との位置が合い、両者を導電バンプ110を介して正確に接続することができる。フリップチップ用導電突起12の長さは、70〜100μm程度であるのが好ましい。   Further, the flip-chip conductive protrusion 12 is formed to have a length that is, for example, 50 μm or longer than the width of the conductive protrusion 12. Thereby, for example, even when the formation position of the flip-chip conductive protrusion 12 is slightly shifted in the length direction of the strip-shaped wiring conductor 5a, the position of the electrode terminal of the semiconductor integrated circuit element 101 and the flip-chip conductive protrusion 12 is Therefore, the two can be accurately connected via the conductive bump 110. The length of the flip-chip conductive protrusion 12 is preferably about 70 to 100 μm.

最外層の絶縁層4およびその上の第二の配線導体5上には、ソルダーレジスト層6が被着されている。該ソルダーレジスト層6は、最外層の第二の配線導体5を熱や外部環境から保護するための保護膜であり、上面側のソルダーレジスト層6は、フリップチップ用導電突起12の上面を露出させるようにして、また下面側のソルダーレジスト層6は、外部接続用の配線導体5bを露出させるようにして被着されている。   A solder resist layer 6 is deposited on the outermost insulating layer 4 and the second wiring conductor 5 thereon. The solder resist layer 6 is a protective film for protecting the outermost second wiring conductor 5 from heat and the external environment. The solder resist layer 6 on the upper surface side exposes the upper surface of the flip chip conductive protrusion 12. In addition, the solder resist layer 6 on the lower surface side is deposited so as to expose the wiring conductor 5b for external connection.

また、フリップチップ用導電突起12の上面と、その周囲のソルダーレジスト層6の上面とが実質的に同じ高さに構成されている。これにより、フリップチップ用導電突起12の上に導電バンプ110を介して半導体集積回路素子101の電極端子を接続する際には、ソルダーレジスト層6と半導体集積回路素子101との間に導電バンプ110の高さに相当する隙間が確保され、その隙間に充填樹脂112を充填性良く、かつボイドを発生させることなく充填することができる。なお、フリップチップ用導電突起12の上面と、その周囲のソルダーレジスト層6の上面とは、完全に同一の高さである必要はなく、両者間に5μm以下の高低差があってもよい。   Further, the upper surface of the flip-chip conductive protrusion 12 and the upper surface of the surrounding solder resist layer 6 are formed at substantially the same height. Thus, when the electrode terminal of the semiconductor integrated circuit element 101 is connected to the flip-chip conductive protrusion 12 via the conductive bump 110, the conductive bump 110 is interposed between the solder resist layer 6 and the semiconductor integrated circuit element 101. A gap corresponding to the height of the resin is secured, and the gap can be filled with the filling resin 112 with good fillability and without generating voids. The upper surface of the flip chip conductive protrusion 12 and the upper surface of the surrounding solder resist layer 6 do not have to be completely the same height, and there may be a height difference of 5 μm or less between the two.

ここで、各帯状配線導体5a上の一部には、さらに電気テスト用のプローブが接続されるテスト用導電突起13が、フリップチップ用導電突起12と同様に帯状配線導体5aと一致する幅でかつ隣接するテスト用導電突起13と位置をずらして形成されている。より具体的には、テスト用導電突起13が、フリップチップ用導電突起12を挟んで該突起12の両側に交互に位置をずらせて(すなわち千鳥配置となるように)形成されている。そして、各テスト用導電突起13の上面がソルダーレジスト層6から露出している。このように、隣接するテスト用導電突起13,13同士を交互にずらして千鳥状に配置すると、このテスト用導電突起13に接続される電気テスト用のプローブ同士の間隔が広がるので、帯状配線導体5aの幅、互いに隣接する帯状配線導体5a,5a間の間隔が狭い場合であっても、前記プローブをテスト用導電突起13に確実に接続させることができ、しかもプローブ同士が接触することにより発生する短絡不良を防いで電気テストを行うことができる。   Here, on a part of each strip-shaped wiring conductor 5a, a test conductive projection 13 to which a probe for electrical testing is further connected has a width that matches the strip-shaped wiring conductor 5a, like the flip-chip conductive projection 12. Further, it is formed so as to be displaced from the adjacent test conductive protrusion 13. More specifically, the test conductive projections 13 are formed so as to be alternately shifted on both sides of the flip chip conductive projections 12 (that is, in a staggered arrangement). The upper surface of each test conductive protrusion 13 is exposed from the solder resist layer 6. Thus, when the adjacent test conductive protrusions 13 and 13 are alternately shifted and arranged in a staggered manner, the interval between the electrical test probes connected to the test conductive protrusions 13 is widened. Even when the width of 5a and the interval between the adjacent strip-like wiring conductors 5a and 5a are narrow, the probe can be reliably connected to the test conductive protrusion 13 and is generated when the probes come into contact with each other. The electrical test can be performed while preventing the short circuit failure.

特に、帯状配線導体5aの幅は30μm以下、好ましくは20〜30μm、互いに隣接する帯状配線導体5a,5a間の間隔は45μm以下、好ましくは40μm以下であるのがよい。テスト用導電突起13の長さは70〜100μm程度であるのが好ましい。一つの帯状配線導体5a上に位置するテスト用導電突起13とフリップチップ用導電突起12との間隔は、220〜260μm程度であるのが好ましい。   In particular, the width of the strip-shaped wiring conductor 5a is 30 μm or less, preferably 20 to 30 μm, and the interval between the strip-shaped wiring conductors 5a and 5a adjacent to each other is 45 μm or less, preferably 40 μm or less. The length of the test conductive protrusion 13 is preferably about 70 to 100 μm. The distance between the test conductive protrusion 13 and the flip-chip conductive protrusion 12 located on one strip-shaped wiring conductor 5a is preferably about 220 to 260 μm.

また、テスト用導電突起13の上面と、その周囲のソルダーレジスト層6の上面とが実質的に同じ高さに構成されている。これにより、電気テスト用のプローブをテスト用導電突起13に確実に接続させることができる。これに対し、テスト用導電突起13の上面が、その周囲のソルダーレジスト層6の上面よりも低い高さであると、前記プローブをテスト用導電突起13に接続させ難くなる。なお、フリップチップ用導電突起12と同様に、テスト用導電突起13の上面と、その周囲のソルダーレジスト層6の上面とは、完全に同一の高さである必要はなく、両者間に5μm以下の高低差があってもよい。   Further, the upper surface of the test conductive protrusion 13 and the upper surface of the surrounding solder resist layer 6 are configured to have substantially the same height. As a result, the electrical test probe can be reliably connected to the test conductive protrusion 13. On the other hand, when the upper surface of the test conductive protrusion 13 is lower than the upper surface of the surrounding solder resist layer 6, it is difficult to connect the probe to the test conductive protrusion 13. As with the flip-chip conductive protrusions 12, the upper surface of the test conductive protrusion 13 and the upper surface of the surrounding solder resist layer 6 do not have to be completely the same height, and the distance between them is 5 μm or less. There may be a difference in height.

次に、前記した配線基板10の製造方法について図面を参照して詳細に説明する。図3(a)〜(c),図4(d)〜(f)および図5(g)〜(j)は、本実施形態にかかる配線基板の製造方法を示す概略説明図である。   Next, a method for manufacturing the wiring board 10 will be described in detail with reference to the drawings. FIGS. 3A to 3C, FIGS. 4D to 5F, and FIGS. 5G to 5J are schematic explanatory views showing a method for manufacturing a wiring board according to the present embodiment.

まず、図3(a),(b)に示すように、上面側における最外層の絶縁層4の表面に、電解めっき用の下地金属層51を無電解めっきにより被着形成する。下地金属層51を形成する無電解めっきとしては、無電解銅めっきが好ましい。   First, as shown in FIGS. 3A and 3B, a base metal layer 51 for electrolytic plating is deposited on the surface of the outermost insulating layer 4 on the upper surface side by electroless plating. As the electroless plating for forming the base metal layer 51, electroless copper plating is preferable.

ついで、図3(c)に示すように、下地金属層51の表面に第一レジスト層R1を形成する。第一レジスト層R1は、帯状配線導体5aに対応する形状の第一開口A1を有しており、光感光性アルカリ現像型ドライフィルムレジストを下地金属層51上に張着するとともに、それにフォトリソグラフィ技術を用いて露光および現像を行なうことにより帯状配線導体5aに対応する形状の第一開口A1を有するパターンに形成される。また、第一レジスト層R1の厚みは、帯状配線導体5aおよびその上に形成されるフリップチップ用導電突起12,テスト用導電突起13の合計厚みよりも若干大きい厚みであるのがよい。   Next, as shown in FIG. 3C, a first resist layer R <b> 1 is formed on the surface of the base metal layer 51. The first resist layer R1 has a first opening A1 having a shape corresponding to the strip-shaped wiring conductor 5a, and a photo-sensitive alkaline developing dry film resist is stuck on the base metal layer 51 and photolithography is applied thereto. By performing exposure and development using a technique, a pattern having a first opening A1 having a shape corresponding to the strip-shaped wiring conductor 5a is formed. The thickness of the first resist layer R1 is preferably slightly larger than the total thickness of the strip-shaped wiring conductor 5a and the flip-chip conductive protrusions 12 and the test conductive protrusions 13 formed thereon.

図4(d)に示すように、第一レジスト層R1の第一開口A1内に露出する下地金属層51上に、電解めっきにより帯状配線導体5aを被着形成する。帯状配線導体5aを形成するための電解めっきとしては、電解銅めっきが好ましい。帯状配線導体5aの厚みは、第一レジスト層R1の厚みよりも薄い。具体的には、帯状配線導体5aの厚みは、8〜20μm、好ましくは10〜15μmであるのがよい。   As shown in FIG. 4D, a strip-shaped wiring conductor 5a is deposited on the underlying metal layer 51 exposed in the first opening A1 of the first resist layer R1 by electrolytic plating. As electrolytic plating for forming the strip-shaped wiring conductor 5a, electrolytic copper plating is preferable. The thickness of the strip-shaped wiring conductor 5a is thinner than the thickness of the first resist layer R1. Specifically, the thickness of the strip-shaped wiring conductor 5a is 8 to 20 μm, preferably 10 to 15 μm.

図4(e)に示すように、第一レジスト層R1および帯状配線導体5aの表面に第二レジスト層R2を形成する。第二レジスト層R2は、フリップチップ用導電突起12が形成される位置にフリップチップ用導電突起12の長さに対応した幅で第一開口A1を真横に横切る第二開口A2と、テスト用導電突起13が形成される位置にテスト用導電突起13の長さに対応した幅で第一開口A1を真横に横切る第三開口A3とを有している。   As shown in FIG. 4E, a second resist layer R2 is formed on the surfaces of the first resist layer R1 and the strip-shaped wiring conductor 5a. The second resist layer R2 includes a second opening A2 that crosses the first opening A1 and has a width corresponding to the length of the flip chip conductive protrusion 12 at a position where the flip chip conductive protrusion 12 is formed, and a test conductive film. A third opening A3 is formed at a position where the protrusion 13 is formed, and has a width corresponding to the length of the test conductive protrusion 13 and crosses the first opening A1 directly to the side.

このような第二レジスト層R2は、光感光性アルカリ現像型ドライフィルムレジストを第一レジスト層R1および帯状配線導体5a上に張着するとともに、それにフォトリソグラフィ技術を用いて露光および現像を行なうことにより第二開口A2,第三開口A3を有するパターンに形成される。このとき、各第三開口A3は、第二開口A2を挟んで該第二開口A2の両側に交互に位置をずらせて(すなわち千鳥配置となるように)形成する。なお、第二レジスト層R2の厚みは、第一レジスト層R1の厚み以上であるのが好ましい。   Such a second resist layer R2 is formed by sticking a photosensitive alkali developing dry film resist on the first resist layer R1 and the strip-shaped wiring conductor 5a, and exposing and developing the same using a photolithography technique. Thus, a pattern having a second opening A2 and a third opening A3 is formed. At this time, the third openings A3 are formed so as to be alternately shifted on both sides of the second opening A2 with the second opening A2 interposed therebetween (that is, in a staggered arrangement). In addition, it is preferable that the thickness of 2nd resist layer R2 is more than the thickness of 1st resist layer R1.

図4(f)に示すように、第一開口A1および第二開口A2で囲まれた帯状配線導体5a上にフリップチップ用導電突起12を、第一開口A1および第三開口A3で囲まれた帯状配線導体5a上にテスト用導電突起13を、それぞれ電解めっきにより形成する。これにより、形成されたフリップチップ用導電突起12,テスト用導電突起13は、同電位になる。フリップチップ用導電突起12,テスト用導電突起13を形成するための電解めっきとしては、電解銅めっきが好ましい。なお、フリップチップ用導電突起12,テスト用導電突起13の高さは、第一レジスト層R1の上面よりも若干低い位置とするのが好ましい。   As shown in FIG. 4F, the flip-chip conductive protrusion 12 is surrounded by the first opening A1 and the third opening A3 on the strip-shaped wiring conductor 5a surrounded by the first opening A1 and the second opening A2. Test conductive protrusions 13 are respectively formed on the strip-shaped wiring conductor 5a by electrolytic plating. As a result, the flip-chip conductive protrusion 12 and the test conductive protrusion 13 thus formed have the same potential. As the electrolytic plating for forming the flip chip conductive protrusion 12 and the test conductive protrusion 13, electrolytic copper plating is preferable. The height of the flip-chip conductive protrusion 12 and the test conductive protrusion 13 is preferably slightly lower than the upper surface of the first resist layer R1.

このとき、フリップチップ用導電突起12は、第一開口A1および第二開口A2で囲まれた帯状配線導体5a上に形成されるので、その幅が第一開口A1で画定される幅、すなわち帯状配線導体5aの幅と一致する幅で形成されるとともに、その長さが第二開口A2で画定される幅で形成される。これと同様に、テスト用導電突起13は、第一開口A1および第三開口A3で囲まれた帯状配線導体5a上に形成されるので、帯状配線導体5aの幅と一致する幅で形成されるとともに、その長さが第三開口A3で画定される幅で形成される。   At this time, since the flip-chip conductive protrusion 12 is formed on the strip-shaped wiring conductor 5a surrounded by the first opening A1 and the second opening A2, the width is defined as the width defined by the first opening A1, that is, the strip shape. The wiring conductor 5a is formed to have a width that matches the width of the wiring conductor 5a, and the length is defined by the second opening A2. Similarly, since the test conductive protrusion 13 is formed on the strip-shaped wiring conductor 5a surrounded by the first opening A1 and the third opening A3, it is formed with a width that matches the width of the strip-shaped wiring conductor 5a. At the same time, the length is defined by the width defined by the third opening A3.

また、第二開口A2,第三開口A3は、第一開口A1をそれぞれ横切るように形成されているので、第二レジスト層R2を形成する際の位置合わせの誤差に起因して、第二開口A2,第三開口A3の位置が帯状配線導体5aの幅方向にずれたとしても、帯状配線導体5aの露出幅が変わることはなく、したがって形成されるフリップチップ用導電突起12,テスト用導電突起13の幅に影響を与えることはない。   Further, since the second opening A2 and the third opening A3 are formed so as to cross the first opening A1, respectively, the second opening A2 is caused by an alignment error in forming the second resist layer R2. Even if the position of A2 and the third opening A3 is shifted in the width direction of the strip-shaped wiring conductor 5a, the exposed width of the strip-shaped wiring conductor 5a does not change. The width of 13 is not affected.

なお、第二開口A2の幅を、第一開口A1の幅よりも例えば50μm以上広い幅で形成しておくと、その分、フリップチップ用導電突起12の長さが長く形成されることになり、第二レジスト層R2を形成する際の位置合わせの誤差に起因して第二開口A2の位置が帯状配線導体5aの長さ方向に例えば25μm程度ずれたとしても、フリップチップ用導電突起12上に半導体集積回路素子101の電極端子と正確に対向する領域を確保することができるので、半導体集積回路素子101の電極端子とフリップチップ用導電突起12とを導電バンプ110を介して正確に接続することができる。したがって、第二開口A2の幅は、第一開口A1の幅よりも、例えば50μm以上広くしておくことが好ましい。   If the width of the second opening A2 is formed to be, for example, 50 μm or more wider than the width of the first opening A1, the length of the flip-chip conductive protrusion 12 is increased accordingly. Even if the position of the second opening A2 is shifted by, for example, about 25 μm in the length direction of the strip-like wiring conductor 5a due to the alignment error when forming the second resist layer R2, the flip-chip conductive protrusion 12 is In addition, since it is possible to secure a region that accurately faces the electrode terminal of the semiconductor integrated circuit element 101, the electrode terminal of the semiconductor integrated circuit element 101 and the flip-chip conductive protrusion 12 are accurately connected via the conductive bump 110. be able to. Therefore, it is preferable that the width of the second opening A2 is, for example, 50 μm or more wider than the width of the first opening A1.

図5(g)に示すように、第一レジスト層R1および第二レジスト層R2を除去する。前記第一レジスト層R1および第二レジスト層R2の除去は、例えば水酸化ナトリウム水溶液等のアルカリ水溶液への浸漬により行なう。   As shown in FIG. 5G, the first resist layer R1 and the second resist layer R2 are removed. The removal of the first resist layer R1 and the second resist layer R2 is performed by immersion in an alkaline aqueous solution such as an aqueous sodium hydroxide solution.

図5(h)に示すように、帯状配線導体5aが形成された部分以外の下地金属層51を除去する。これにより、隣接する帯状配線導体5a間が電気的に独立することになる。このとき、帯状配線導体5a上に形成されたフリップチップ用導電突起12,テスト用導電突起13は、その幅が帯状配線導体5aと一致する幅で形成されており、帯状配線導体5aからはみ出していないので、隣接する帯状配線導体5a間の電気的な絶縁が良好に保たれる。なお、帯状配線導体5aが形成された部分以外の下地金属層51を除去するには、第一レジスト層R1および第二レジスト層R2を除去した後、露出する下地金属層51を、例えば塩化第二銅を含有するエッチング液等によりエッチング除去する方法が採用可能である。   As shown in FIG. 5H, the base metal layer 51 other than the portion where the strip-like wiring conductor 5a is formed is removed. As a result, the adjacent strip-shaped wiring conductors 5a are electrically independent. At this time, the flip-chip conductive protrusions 12 and the test conductive protrusions 13 formed on the strip-shaped wiring conductor 5a are formed with a width that matches the strip-shaped wiring conductor 5a, and protrude from the strip-shaped wiring conductor 5a. Therefore, the electrical insulation between the adjacent strip-shaped wiring conductors 5a is kept good. In order to remove the base metal layer 51 other than the portion where the strip-shaped wiring conductor 5a is formed, after removing the first resist layer R1 and the second resist layer R2, the exposed base metal layer 51 is replaced with, for example, chloride chloride. A method of etching away with an etching solution containing dicopper can be employed.

図5(i)に示すように、ソルダーレジスト層用の樹脂6aで最外層の絶縁層4,帯状配線導体5a,フリップチップ用導電突起12,テスト用導電突起13を被覆する。ソルダーレジスト層用の樹脂6aとしては、配線基板の表面を保護するソルダーレジスト層として機能する各種の公知の樹脂が採用可能であり、例えばエポキシ樹脂等にシリカやタルク等の無機物粉末フィラーを30〜70質量%程度分散させた絶縁材料から成る熱硬化性樹脂等が好ましく、該樹脂を被覆後に硬化させるのがよい。   As shown in FIG. 5I, the outermost insulating layer 4, the strip-shaped wiring conductor 5a, the flip chip conductive protrusion 12 and the test conductive protrusion 13 are covered with the resin 6a for the solder resist layer. As the resin 6a for the solder resist layer, various known resins that function as a solder resist layer for protecting the surface of the wiring board can be employed. For example, an inorganic powder filler such as silica or talc is added to 30 to 30 epoxy resin or the like. A thermosetting resin made of an insulating material dispersed in an amount of about 70% by mass is preferable, and the resin is preferably cured after coating.

図5(j)に示すように、ソルダーレジスト層用の樹脂6aをフリップチップ用導電突起12,テスト用導電突起13の上面がそれぞれ露出するまで研磨してソルダーレジスト層6を形成し、フリップチップ用導電突起12,テスト用導電突起13の上面が、その周囲のソルダーレジスト層6の上面と実質的に同じ平面で露出する配線基板10が得られる。前記研磨は、各種の公知の機械的研磨方法やレーザスクライブ法等が採用可能であり、ソルダーレジスト層6の厚みとしては、ソルダーレジスト層6の上面と、フリップチップ用導電突起12,テスト用導電突起13の上面との高低差が5μm以下となる厚みが好ましい。   As shown in FIG. 5J, the solder resist layer resin 6a is polished until the upper surfaces of the flip chip conductive protrusions 12 and the test conductive protrusions 13 are exposed to form the solder resist layer 6, and the flip chip Thus, the wiring board 10 is obtained in which the upper surfaces of the conductive conductive protrusions 12 and the test conductive protrusions 13 are exposed in substantially the same plane as the upper surface of the surrounding solder resist layer 6. For the polishing, various known mechanical polishing methods, laser scribing methods, and the like can be employed. The thickness of the solder resist layer 6 includes the upper surface of the solder resist layer 6, the flip-chip conductive protrusions 12, and the test conductive. A thickness at which the height difference from the upper surface of the protrusion 13 is 5 μm or less is preferable.

得られた配線基板10は、隣接するテスト用導電突起13,13同士を交互にずらして千鳥状に配置しているので、該テスト用導電突起13に一般的な電気テスト用のプローブを接続することによって簡単にかつ確実に電気テストを行うことができる。前記プローブの径としては、例えば40μm以上のものを用いることができる。   Since the obtained wiring board 10 is arranged in a staggered manner by alternately shifting adjacent test conductive protrusions 13, 13, a general electric test probe is connected to the test conductive protrusion 13. Therefore, an electrical test can be performed easily and reliably. As the diameter of the probe, for example, a probe having a diameter of 40 μm or more can be used.

そして、図1に示すように、ペリフェラル型の半導体集積回路素子101の電極端子と、帯状配線導体5a上に形成されたフリップチップ用導電突起12とを導電バンプ110を介して電気的に接続(フリップチップ接続)することにより、半導体集積回路素子101の電極端子と帯状配線導体5aとが電気的に接続される。ついで、半導体集積回路素子101と配線基板10との間の隙間に充填樹脂112を充填し、半導体集積回路素子101が配線基板10上に実装される。   Then, as shown in FIG. 1, the electrode terminals of the peripheral type semiconductor integrated circuit element 101 and the flip-chip conductive protrusions 12 formed on the strip-like wiring conductor 5a are electrically connected via the conductive bumps 110 ( By performing flip chip connection, the electrode terminals of the semiconductor integrated circuit element 101 and the strip-shaped wiring conductor 5a are electrically connected. Next, the gap between the semiconductor integrated circuit element 101 and the wiring substrate 10 is filled with the filling resin 112, and the semiconductor integrated circuit element 101 is mounted on the wiring substrate 10.

以上、本発明の好ましい実施形態を説明したが、本発明は以上の実施形態に限定されるものではなく、特許請求の範囲に記載した範囲内において種々の改善や変更が可能である。例えば前記した実施形態では、第二開口A2,第三開口A3を、それぞれ第一開口A1と直交する向きに形成したが、フリップチップ用導電突起12,テスト用導電突起13の形状に合わせて、任意の向きに第二開口A2,第三開口A3を形成してもよい。   As mentioned above, although preferable embodiment of this invention was described, this invention is not limited to the above embodiment, A various improvement and change are possible within the range described in the claim. For example, in the above-described embodiment, the second opening A2 and the third opening A3 are formed in directions orthogonal to the first opening A1, respectively, but according to the shape of the flip chip conductive protrusion 12 and the test conductive protrusion 13, You may form 2nd opening A2 and 3rd opening A3 in arbitrary directions.

また、一つの帯状配線導体5aの表面には、一つのフリップチップ用導電突起12が形成されているが、複数の第一開口A1および第二開口A2を組み合わせることにより、一つの帯状配線導体5aの表面に複数のフリップチップ用導電突起12が被着形成されていてもよい。
テスト用導電突起13は、隣接するテスト用導電突起13と位置をずらして形成されていればよく、例えば図6に示すような千鳥配置で形成されていてもよい。
One flip-chip conductive protrusion 12 is formed on the surface of one strip-shaped wiring conductor 5a. By combining a plurality of first openings A1 and second openings A2, one strip-shaped wiring conductor 5a is formed. A plurality of flip-chip conductive protrusions 12 may be formed on the surface of the substrate.
The test conductive protrusions 13 need only be formed so as to be displaced from the adjacent test conductive protrusions 13, and may be formed in a staggered arrangement as shown in FIG. 6, for example.

前記ソルダーレジスト層用の樹脂6aをフリップチップ用導電突起12,テスト用導電突起13の上面がそれぞれ露出するまで研磨してソルダーレジスト層6を形成する際(図5(i),図5(j)参照)、樹脂6aを例えば図7に示すように、フリップチップ用導電突起12の並びに対応する領域およびテスト用導電突起13の並びに対応する領域のみを帯状に選択的に研磨してフリップチップ用導電突起12,テスト用導電突起13の上面をそれぞれ露出させ、それ以外の領域におけるソルダーレジスト層用の樹脂6aは厚いままで残してもよい。これにより、研磨する面積が少なくて済むので研磨が容易になるとともに、研磨されずに残った領域のソルダーレジスト層6が厚いままなので導体集積回路素子101の実装時における熱や外部環境からの保護能力をより高いものとすることができる。その他の構成は、前記した一実施形態と同じである。   When the solder resist layer 6 is formed by polishing the solder resist layer resin 6a until the upper surfaces of the flip chip conductive protrusions 12 and the test conductive protrusions 13 are exposed (FIGS. 5I and 5J). 7), for example, as shown in FIG. 7, only the regions corresponding to the flip chip conductive protrusions 12 and the corresponding regions of the test conductive protrusions 13 are selectively polished in a band shape for flip chip use. The upper surfaces of the conductive protrusions 12 and the test conductive protrusions 13 may be exposed, and the solder resist layer resin 6a in other regions may be left thick. As a result, the area to be polished can be reduced, so that the polishing is facilitated and the solder resist layer 6 in the region that has not been polished remains thick, so that the conductor integrated circuit element 101 is protected from heat and the external environment when mounted. Ability can be made higher. Other configurations are the same as those of the above-described embodiment.

ペリフェラル型の半導体集積回路素子をフリップチップ接続により搭載した本発明の一実施形態にかかる配線基板を示す概略断面図である。1 is a schematic cross-sectional view showing a wiring board according to an embodiment of the present invention on which peripheral type semiconductor integrated circuit elements are mounted by flip-chip connection. 図1の配線基板を示す平面図である。It is a top view which shows the wiring board of FIG. (a)〜(c)は、本発明の一実施形態にかかる配線基板の製造方法を示す概略説明図である。(A)-(c) is a schematic explanatory drawing which shows the manufacturing method of the wiring board concerning one Embodiment of this invention. (d)〜(f)は、本発明の一実施形態にかかる配線基板の製造方法を示す概略説明図である。(D)-(f) is a schematic explanatory drawing which shows the manufacturing method of the wiring board concerning one Embodiment of this invention. (g)〜(j)は、本発明の一実施形態にかかる配線基板の製造方法を示す概略説明図である。(G)-(j) is a schematic explanatory drawing which shows the manufacturing method of the wiring board concerning one Embodiment of this invention. 本発明の他の実施形態にかかる配線基板を示す平面図である。It is a top view which shows the wiring board concerning other embodiment of this invention. 本発明のさらに他の実施形態にかかる配線基板を示す概略説明図である。It is a schematic explanatory drawing which shows the wiring board concerning further another embodiment of this invention. 従来の配線基板を示す概略断面図である。It is a schematic sectional drawing which shows the conventional wiring board. 図8の配線基板を示す平面図である。It is a top view which shows the wiring board of FIG.

符号の説明Explanation of symbols

2 第一の配線導体
3 絶縁基板
4 絶縁層
5 第二の配線導体
5a 半導体素子接続用の帯状配線導体
5b 外部接続用の配線導体
6 ソルダーレジスト層
6a ソルダーレジスト層用の樹脂
7 スルーホール
8 埋め込み樹脂
9 ビアホール
10 配線基板
12 フリップチップ用導電突起
13 テスト用導電突起
51 下地金属層
101 半導体集積回路素子
110 導電バンプ
111 半田ボール
112 充填樹脂
A1 第一開口
A2 第二開口
A3 第三開口
R1 第一レジスト層
R2 第二レジスト層
2 First wiring conductor 3 Insulating substrate 4 Insulating layer 5 Second wiring conductor 5a Band-shaped wiring conductor 5a for connecting semiconductor elements 5b Wiring conductor for external connection 6 Solder resist layer 6a Resin for solder resist layer 7 Through hole 8 Embedding Resin 9 Via hole 10 Wiring board 12 Conductive protrusion for flip chip 13 Conductive protrusion for test 51 Underlying metal layer 101 Semiconductor integrated circuit element 110 Conductive bump 111 Solder ball 112 Filling resin A1 First opening A2 Second opening A3 Third opening R1 First Resist layer R2 Second resist layer

Claims (6)

絶縁層と配線導体とが交互に積層されており、
最外層の絶縁層上に半導体素子接続用の帯状配線導体が複数並設されているとともに、各帯状配線導体上の一部に半導体素子の電極端子がフリップチップ接続されるフリップチップ用導電突起が前記帯状配線導体の幅と一致する幅で形成されており、
かつ前記最外層の絶縁層上および前記帯状配線導体上に前記フリップチップ用導電突起の少なくとも上面を露出させるソルダーレジスト層が被着された配線基板であって、
前記各帯状配線導体上の一部に、さらに電気テスト用のプローブが接続されるテスト用導電突起が前記帯状配線導体と一致する幅でかつ隣接するテスト用導電突起と位置をずらして形成されているとともに、各テスト用導電突起の上面が前記ソルダーレジスト層から露出していることを特徴とする配線基板。
Insulating layers and wiring conductors are laminated alternately,
A plurality of strip-like wiring conductors for connecting semiconductor elements are arranged in parallel on the outermost insulating layer, and conductive protrusions for flip-chip, in which electrode terminals of the semiconductor elements are flip-chip connected to a part of each strip-like wiring conductor, It is formed with a width that matches the width of the strip-shaped wiring conductor,
And a wiring board on which a solder resist layer that exposes at least an upper surface of the flip-chip conductive protrusion is deposited on the outermost insulating layer and the strip-shaped wiring conductor,
A test conductive protrusion to which an electrical test probe is further connected is formed on a part of each of the strip-shaped wiring conductors so as to have a width matching the strip-shaped wiring conductor and shifted from the adjacent test conductive protrusion. And a top surface of each test conductive protrusion is exposed from the solder resist layer.
前記テスト用導電突起が、前記フリップチップ用導電突起を挟んで該突起の両側に交互に位置をずらせて形成されている請求項1記載の配線基板。   2. The wiring board according to claim 1, wherein the test conductive protrusions are formed so as to be alternately shifted on both sides of the flip chip conductive protrusion. 前記帯状配線導体の幅が30μm以下であり、互いに隣接する帯状配線導体間の間隔が45μm以下である請求項1または2記載の配線基板。   The wiring board according to claim 1 or 2, wherein a width of the strip-shaped wiring conductor is 30 µm or less, and a distance between adjacent strip-shaped wiring conductors is 45 µm or less. 前記テスト用導電突起の上面と、その周囲の前記ソルダーレジスト層の上面とが実質的に同じ高さである請求項1〜3のいずれかに記載の配線基板。   The wiring board according to claim 1, wherein an upper surface of the test conductive protrusion and an upper surface of the solder resist layer around the test conductive protrusion have substantially the same height. 前記フリップチップ用導電突起の上面と、その周囲の前記ソルダーレジスト層の上面とが実質的に同じ高さである請求項1〜4のいずれかに記載の配線基板。   The wiring board according to claim 1, wherein an upper surface of the flip-chip conductive protrusion and an upper surface of the solder resist layer around the flip-chip conductive protrusion have substantially the same height. 前記フリップチップ用導電突起の長さが、該フリップチップ用導電突起の幅よりも長い請求項1〜5のいずれかに記載の配線基板。   The wiring board according to claim 1, wherein a length of the flip-chip conductive protrusion is longer than a width of the flip-chip conductive protrusion.
JP2007205746A 2007-08-07 2007-08-07 Wiring board Expired - Fee Related JP4802155B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007205746A JP4802155B2 (en) 2007-08-07 2007-08-07 Wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007205746A JP4802155B2 (en) 2007-08-07 2007-08-07 Wiring board

Publications (2)

Publication Number Publication Date
JP2009043845A true JP2009043845A (en) 2009-02-26
JP4802155B2 JP4802155B2 (en) 2011-10-26

Family

ID=40444286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007205746A Expired - Fee Related JP4802155B2 (en) 2007-08-07 2007-08-07 Wiring board

Country Status (1)

Country Link
JP (1) JP4802155B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014123592A (en) * 2012-12-20 2014-07-03 Ibiden Co Ltd Process of manufacturing printed wiring board and printed wiring board
JP2014239200A (en) * 2013-06-07 2014-12-18 ツーハイ アドバンスド チップ キャリアーズ アンド エレクトロニック サブストレート ソリューションズ テクノロジーズ カンパニー リミテッド Novel end terminal part and coupling part of chip and substrate
JP2016514367A (en) * 2013-03-01 2016-05-19 クアルコム,インコーポレイテッド Package substrate with test pads on fine pitch trace
US20220344225A1 (en) * 2021-04-23 2022-10-27 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor package including test line structure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0750364A (en) * 1993-08-04 1995-02-21 Sony Corp Component mounting substrate and electronic element
JPH0718467U (en) * 1993-09-03 1995-03-31 株式会社ピーエフユー Printed wiring board
JPH09191169A (en) * 1996-01-10 1997-07-22 Nec Corp Printed wiring board
JP2001177045A (en) * 1999-12-16 2001-06-29 Shinko Electric Ind Co Ltd Semiconductor device and method for manufacturing the same
JP2006013149A (en) * 2004-06-25 2006-01-12 Shinko Seisakusho:Kk Manufacturing method for printed wiring board
JP2006165466A (en) * 2004-12-10 2006-06-22 Shinko Electric Ind Co Ltd Semiconductor apparatus
JP2006344664A (en) * 2005-06-07 2006-12-21 Kyocer Slc Technologies Corp Wiring board and its manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0750364A (en) * 1993-08-04 1995-02-21 Sony Corp Component mounting substrate and electronic element
JPH0718467U (en) * 1993-09-03 1995-03-31 株式会社ピーエフユー Printed wiring board
JPH09191169A (en) * 1996-01-10 1997-07-22 Nec Corp Printed wiring board
JP2001177045A (en) * 1999-12-16 2001-06-29 Shinko Electric Ind Co Ltd Semiconductor device and method for manufacturing the same
JP2006013149A (en) * 2004-06-25 2006-01-12 Shinko Seisakusho:Kk Manufacturing method for printed wiring board
JP2006165466A (en) * 2004-12-10 2006-06-22 Shinko Electric Ind Co Ltd Semiconductor apparatus
JP2006344664A (en) * 2005-06-07 2006-12-21 Kyocer Slc Technologies Corp Wiring board and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014123592A (en) * 2012-12-20 2014-07-03 Ibiden Co Ltd Process of manufacturing printed wiring board and printed wiring board
JP2016514367A (en) * 2013-03-01 2016-05-19 クアルコム,インコーポレイテッド Package substrate with test pads on fine pitch trace
JP2014239200A (en) * 2013-06-07 2014-12-18 ツーハイ アドバンスド チップ キャリアーズ アンド エレクトロニック サブストレート ソリューションズ テクノロジーズ カンパニー リミテッド Novel end terminal part and coupling part of chip and substrate
US20220344225A1 (en) * 2021-04-23 2022-10-27 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor package including test line structure

Also Published As

Publication number Publication date
JP4802155B2 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
JP4769022B2 (en) Wiring board and manufacturing method thereof
TWI470758B (en) Wiring board and manufacturing method thereof
KR101469698B1 (en) Wiring substrate and the method of manufacturing the same
JP5091469B2 (en) Wiring board and manufacturing method thereof
JP5280309B2 (en) Semiconductor device and manufacturing method thereof
KR20070120449A (en) Wiring substrate and manufacturing method thereof, and semiconductor apparatus
TW201644334A (en) Wiring substrate and identifying method for coding information thereof
JP5106197B2 (en) Semiconductor device and manufacturing method thereof
JP4802155B2 (en) Wiring board
JP2009105301A (en) Semiconductor package and manufacturing method thereof, and semiconductor device with semiconductor package
JP2010040936A (en) Wiring board and method of manufacturing the same
JP2010135347A (en) Wiring substrate, and method for manufacturing the same
JP5058929B2 (en) Wiring board and manufacturing method thereof
US20090194888A1 (en) Semiconductor device including wiring and manufacturing method thereof
JP2009289868A (en) Wiring substrate and its manufacturing method
JP5106351B2 (en) Wiring board and manufacturing method thereof
JP5426261B2 (en) Semiconductor device
JP4751121B2 (en) Wiring board
JP2001021587A (en) Inspection probe and its manufacture
JP2010010494A (en) Wiring board and method of manufacturing the same
JP6259045B2 (en) Wiring board manufacturing method
JP5455116B2 (en) Wiring board and manufacturing method thereof
JP6510349B2 (en) Wiring board
JP2010074032A (en) Wiring board and manufacturing method thereof
JP2012119361A (en) Wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110808

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4802155

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees