JP2009043596A - 燃料電池システムおよび燃料電池システムの制御方法 - Google Patents

燃料電池システムおよび燃料電池システムの制御方法 Download PDF

Info

Publication number
JP2009043596A
JP2009043596A JP2007207772A JP2007207772A JP2009043596A JP 2009043596 A JP2009043596 A JP 2009043596A JP 2007207772 A JP2007207772 A JP 2007207772A JP 2007207772 A JP2007207772 A JP 2007207772A JP 2009043596 A JP2009043596 A JP 2009043596A
Authority
JP
Japan
Prior art keywords
flow rate
target
gas
fuel cell
oxidant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007207772A
Other languages
English (en)
Inventor
Hayato Chikugo
隼人 筑後
Kenji Yonekura
健二 米倉
Yasuhiro Taniguchi
育宏 谷口
Yoshinao Otake
義直 大竹
Mitsunori Kumada
光徳 熊田
Hitoshi Igarashi
仁 五十嵐
Yosuke Tomita
要介 冨田
Kazuo Saito
和男 齋藤
Ryoichi Shimoi
亮一 下井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2007207772A priority Critical patent/JP2009043596A/ja
Priority to EP08789072A priority patent/EP2176912A2/en
Priority to PCT/IB2008/002123 priority patent/WO2009019596A2/en
Publication of JP2009043596A publication Critical patent/JP2009043596A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04402Pressure; Ambient pressure; Flow of anode exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04231Purging of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】ドライアウトの発生を抑制しつつ、燃料極オフガスの希釈を行う。
【解決手段】酸化剤極オフガスおよび排水素処理ブロア14から供給される空気を希釈処理用ガスとして用い、燃料極オフガスを希釈した状態で排出する排水素処理装置13を備えている。目標空気流量演算部42は、パージ流量MQP(RPRA,RT)が目標パージ流量よりも大きい場合、要求電力TPGに基づいて算出される安定発電流量(第1の目標空気流量)TQAGよりも流量を増加させた第2の目標空気流量を、目標空気流量TQCとして算出する。
【選択図】図2

Description

本発明は、燃料電池システムおよび燃料電池システムの制御方法に関する。
従来より、燃料極に燃料ガス(例えば、水素)が供給されるとともに、酸化剤極に酸化剤ガス(例えば、空気)が供給されることにより、これらのガスを電気化学的に反応させて発電を行う燃料電池を備えた燃料電池システムが知られている。この類の燃料電池システムには、燃料極から排出されるガス(燃料極オフガス)を、酸化剤極から排出されるガス(酸化剤極オフガス)によって希釈した上で外部に排出する希釈装置が備えられている。例えば、特許文献1によれば、希釈装置に供給される燃料極オフガスおよび酸化剤極オフガスの流量を制御する手法が開示されている。
特開2004−127621号公報
しかしながら、特許文献1に開示された手法によれば、希釈されたガス中の燃料ガスの濃度と、燃料電池の最低セル電圧とに応じて、酸化剤極オフガスの流量を制御するため、場合によって、燃料電池から持ち出される水分量が過多となり、ドライアウトとなってしまう可能性がある。
本発明はかかる事情に鑑みてなされたものであり、その目的は、ドライアウトの発生を抑制しつつ、燃料極オフガスの希釈を行うことにある。
かかる課題を解決するために、本発明の燃料電池システムは、燃料電池の燃料極から排出される燃料極オフガスを希釈した状態で排出する希釈手段には、燃料電池の酸化剤極から排出される酸化剤極オフガスと希釈ガスとが希釈処理用ガスとして供給されている。燃料極オフガスの流量をパージ流量として検出し、この検出値が目標パージ流量よりも大きい場合、燃料電池の酸化剤極に供給する酸化剤ガスの流量目標値である目標酸化剤ガス流量は、要求電力に基づいて算出される第1の目標酸化剤ガス流量よりも流量を増加させた第2の目標酸化剤ガス流量として算出される。
本発明によれば、パージ流量が目標パージ流量よりも多い場合、酸化剤極オフガスの流量が増加されるため、希釈処理用ガスの必要流量を確保することができる。また、パージ流量が目標パージ流量よりも過渡的に増加するシーンにおいて、目標酸化剤ガス流量を第2の目標酸化剤ガス流量に設定するため、酸化剤極に供給される空気流量が過大となる状態を時間的に抑えることができる。したがって、燃料極オフガスの希釈を行いつつ、ドライアウトの発生を抑制することができる。
(第1の実施形態)
図1は、本発明の実施形態にかかる燃料電池システムの全体構成を示すブロック図である。この燃料電池システムは、例えば、車両に搭載されて、その電源として機能している。
燃料電池システムは、固体高分子電解質膜を挟んで酸化剤極と燃料極とを対設した燃料電池構造体をセパレータで挟持して、これを複数積層して構成される燃料電池スタック1を備える。この燃料電池スタック1は、燃料極に燃料ガスが供給されるとともに、酸化剤極に酸化剤ガスが供給されることにより、これらのガスを電気化学的に反応させて発電電力を発生する。本実施形態では、燃料ガスとして水素を、酸化剤ガスとして酸素を用いるケースについて説明する。
この燃料電池スタック1を備える燃料電池システムには、燃料電池スタック1に水素を供給するための水素系と、燃料電池スタック1に空気を供給するための空気系と、燃料電池スタック1を冷却するための冷却系とが備えられている。
水素系において、燃料ガスである水素は、燃料タンク10(例えば、高圧水素ボンベ)に貯蔵されており、この燃料タンク10から水素供給流路L1を介して燃料電池スタック1の燃料極に供給される。具体的には、燃料タンク10の下流には燃料タンク元弁(図示せず)が設けられており、この燃料タンク元弁が開状態となると、燃料タンク10からの高圧水素ガスは、その下流に設けられた減圧弁(図示せず)によって機械的に所定の圧力まで減圧される。減圧された水素ガスは、減圧弁よりも下流に設けられた水素調整弁11によって更に減圧された後に、燃料電池スタック1に供給される。水素調整弁11は、燃料電池スタック1へ供給される水素の圧力および流量を調整する機能を担っており、後述する制御装置40によってその開度が制御される。一方、燃料電池スタック1の燃料極から排出される燃料極オフガスは、水素排出流路L2を介して排出される。この燃料極オフガスには、酸化剤極側から燃料極側へと透過した窒素などの不純物と、反応に使用されなかった水素とが含まれている。水素排出流路L2には、パージ弁12が設けられている。このパージ弁12は、燃料極から排出される燃料極オフガスの流量、すなわち、後述する排水素処理装置13に供給する燃料極オフガスの流量を調整するパージ流量調整手段として機能しており、制御装置40によってその開度が制御される。
空気系において、酸化剤ガスである空気は、例えば、大気がコンプレッサ20によって取り込まれた後に加圧され、加圧空気は空気供給流路L3を介して燃料電池スタック1の酸化剤極に供給される。この空気供給流路L3には、加湿装置(図示せず)が設けられており、燃料電池スタック1に供給される空気は、燃料電池スタック1の発電性能を低下させない程度に加湿される。一方、燃料電池スタック1の酸化剤極から排出される酸化剤極オフガスは、空気排出流路L4を介して排出される。この酸化剤極オフガスは、酸素が消費された空気を主体に構成されているが、燃料極側から酸化剤極側へと透過した水素も含んでいる。空気排出流路L4には、空気調圧弁21が設けられており、この空気調圧弁21は、燃料電池スタック1へ供給される空気の圧力を調整する供給圧力調整手段としての機能を担っており、制御装置40によってその開度が制御される。また、コンプレッサ20は、酸化剤極に供給する空気の流量を調整する供給流量調整手段としての機能を担っており、制御装置40によってその回転数が制御される。
燃料極オフガスは水素排出流路L2を介して、酸化剤極オフガスは空気排出流路L4を介して、排水素処理装置(希釈手段)13にそれぞれ供給される。また、排水素処理装置13には、排水素処理ブロア(希釈ガス供給手段)14によって取り込まれた空気(希釈ガス)が供給されている。この排水素処理装置13は、酸化剤極オフガスおよび希釈ガスである空気を希釈処理用ガスとして用い、外部に排出される水素濃度が可燃濃度以下となるように、燃料極オフガスを希釈した状態で外部に排出する(排水素処理)。この排水素処理装置13としては、例えば、白金触媒を用いて空気中の酸素と水素とを反応させる触媒燃焼器や、装置内に供給されたガスを混合してから外部に放出する希釈装置などを用いることができる。
冷却系は、燃料電池スタック1を冷却する冷媒が循環する閉ループ状の冷却流路L5を有している。この冷却流路L5には、冷媒を循環させる冷媒ポンプ31およびラジエータ32が、燃料電池スタック1を冷却する冷却手段として設けられている。この冷媒ポンプ31を動作させることにより、冷却流路L5内の冷媒が循環する。燃料電池スタック1の冷却によって温度が上昇した冷媒は、冷却流路L5を経由して、ラジエータ32へと流れ、ラジエータ32によって冷却される。冷却された冷媒は、燃料電池スタック1へと供給される。冷却流路L5は、燃料電池スタック1内においてその流路が細かく分岐しており、これにより、燃料電池スタック1は、その内部が全体に亘って冷却されるようになっている。冷媒ポンプ31の駆動量は、制御装置40によって制御される。
燃料電池スタック1には、車両を駆動する電動モータといった負荷装置2が接続されている。この負荷装置2には、制御装置40によって、燃料電池スタック1から必要な電力が取り出され、この取り出された電力が供給されている。
図2は、本実施形態に係る制御装置40を示すブロック図である。制御装置40は、システム全体を統合的に制御する機能を担っており、制御プログラムに従ってシステムの各部を制御することにより、燃料電池スタック1の運転状態を制御する。制御装置40としては、CPU、ROM、RAM、I/Oインターフェースを主体に構成されたマイクロコンピュータを用いることができる。この制御装置40は、システムの状態に基づいて、各種の演算を行い、この演算結果を制御出力として各種のアクチュエータに出力し、水素調整弁11、パージ弁12および空気調圧バルブの開度、排水素処理ブロア14、コンプレッサ20および冷媒ポンプ31の回転数を制御する。この制御装置40には、システムの状態を検出するために、各種のセンサなどの信号が制御入力として入力されている。
水素圧力センサ15は、燃料電池スタック1の燃料極に供給される水素の圧力(水素圧力)RPRAを検出するセンサである。空気圧力センサ22は、燃料電池スタック1の酸化剤極に供給される空気の圧力(空気圧力)RPRCを検出するセンサである。温度センサ33は、燃料電池スタック1から排出される冷媒の温度から、燃料電池スタック1の運転温度RTを検出するセンサである。また、この制御装置40には、車両側から燃料電池スタック1に要求される要求電力TPGが入力されている。
この制御装置40は、これを機能的に捉えた場合、目標水素圧力演算部41と、目標空気流量演算部42と、目標空気圧力演算部43と、パージ時間演算部45と、取出電力演算部46と、水素調整弁開度演算部47と、パージ弁開閉指令部48と、目標ブロア回転数演算部49と、目標コンプレッサ回転数演算部50と、空気調圧弁開度演算部51と、目標冷媒ポンプ回転数演算部52とを有する。
目標水素圧力演算部41は、要求電力TPGに基づいて、目標水素圧力TPRAを算出する。図3は、要求電力TPGと目標水素圧力TPRAとの対応関係を示す説明図である。目標水素圧力TPRAは、燃料極に供給する水素圧力の目標値であり、同図に示すように、要求電力TPGの増加に応じて単調増加する傾向を有している。要求電力TPGと目標水素圧力TPRAとの関係は、実験やシミュレーションを通じて予め取得されている。例えば、水素圧力に対する燃料電池スタック1の発電効率や、水素圧力に対する各アクチュエータの消費電力感度、排出空気ガスによって持ち出される水蒸気量、さらには、空気圧力との差圧などを考慮して決定される。目標水素圧力演算部41は、図3に示すような要求電力TPGと目標水素圧力TPRAとの対応関係をテーブルまたは演算式として保持しており、このテーブルまたは演算式に基づいて、要求電力TPGから目標水素圧力TPRAを算出する。算出された目標水素圧力TPRAは、水素調整弁開度演算部47に対して出力される。
目標空気流量演算部42は、要求電力TPGに基づいて、目標空気流量(目標酸化剤ガス流量)TQCおよび目標ブロア流量TQDを算出する。ここで、目標空気流量(目標酸化剤ガス流量)TQCは、燃料電池スタック1の酸化剤極に供給する空気の流量目標値であり、目標ブロア流量TQDは、排水素処理ブロア14によって排水素処理装置13に供給する空気の流量目標値である。
まず、目標ブロア流量TQDの算出方法について説明する。パージ弁12が開いている場合、このパージ弁12から排出される燃料極オフガスの流量、すなわち、排水素処理装置13に供給される燃料極オフガスの流量(以下「パージ流量」という)MQP(x,y)は、図4に示すような傾向で示される。同図において、xは、水素圧力RPRAに対応するパラメータであり、yは、運転温度RTに対応するパラメータである。パージ流量MQP(x,y)は、水素圧力RPRAの増加に応じてその値が増加する傾向を有しており、また、同一の水素圧力RPRAであっても、運転温度RTが高い程、その値が相対的に小さくなる傾向を有している。
ここで、要求電力TPGが安定しており、かつ、外気条件(大気圧)が代表的な条件である場合、要求電力TPGに対する水素圧力RPRA、および、燃料電池スタック1の運転温度RTは、それぞれ一意に決定することができる。したがって、排水素処理装置13に供給する燃料極オフガスの流量目標値(以下「目標パージ流量」という)は、要求電力TPGに基づいて、一義的に算出される。また、この目標パージ流量を前提として、排水素処理装置13から排出される水素を目標濃度R1に保とうとした場合、排水素処理装置13に対して供給する希釈処理用ガス(酸化剤極オフガスおよび排水素処理ブロア14からの空気)の目標流量TQAPは、要求電力TPGに基づいて、一義的に算出することができる。この希釈処理用ガスの目標流量TQAPは、図5に示すように、要求電力TPGに対してなだらかに増加する傾向を有している。
一方、安定して発電するために酸化剤極に供給すべき空気の流量(以下「安定発電流量」という)TQAGは、図5に示すように、要求電力TPGに対して単調増加する傾向にある。この安定発電流量TQAGは、希釈処理用ガスの目標流量TQAPよりも、要求電力TPGに対する増加幅が大きくなっている。希釈処理用ガスで排水素処理を実施する場合、目標ブロア流量TQDは、以下に示す関係を満足する。
(数式1)
TQD=TQAP−TQAG
ここで、目標ブロア流量TQDは、希釈処理用ガスの目標流量TQAPから、安定発電流量TQAGを減算した値となっている。この数式1に示される目標ブロア流量TQDは、図6に示すように、要求電力TPGに対する関係を設定することができる。目標空気流量演算部42は、図6に示すような要求電力TPGと目標ブロア流量TQDとの対応関係をテーブルまたは演算式として保持しており、このテーブルまたは演算式に基づいて、要求電力TPGから目標ブロア流量TQDを算出する。算出された目標ブロア流量TQDは、目標ブロア回転数演算部49に対して出力される。
つぎに、目標空気流量TQCの算出方法について説明する。この目標空気流量TQCは、下式に基づいて一義的に算出される。
(数式2)
TQC=TQC(TQAP)
+Max[{R1×MQP(RPRA,RT)−TQAP},0]
ここで、関数TQC(x)は、要求電力TPGに対する希釈処理用ガスの目標流量TQAPおよび安定発電流量TQAGの関係(図5)を、希釈処理用ガスの目標流量TQAPと安定発電流量TQAGとの関係として関数化したものである。安定発電流量TQAGは、図7に示すように、希釈処理用ガスの目標流量TQAPに対して単調増加の傾向を有している。同図において、xは、希釈処理用ガスの目標流量TQAPに対応するパラメータを示す。また、関数MQP(x,y)は、図4に示すように、水素圧力RPRAおよび運転温度RTに対するパージ流量MQP(x,y)の関係を関数化したものである。R1は、排水素処理装置13から排出される水素の目標濃度である。
この数式2において、「TQC(TQAP)」は、要求電力TPGに基づいて算出される安定発電流量TQAGを示している。
つぎに、「TQAP」は、要求電力TPGに基づいて算出される希釈処理用ガスの目標流量であり、間接的には、上述した目標パージ流量を示している。すなわち、目標空気流量演算部42は、目標空気流量TQCの演算過程において、目標パージ流量を算出している。
また、「MQP(RPRA,RT)」は、水素圧力RPRAおよび運転温度RT(具体的には、酸化剤極オフガスの温度)に基づいて推定される、パージ流量(実際のパージ流量)を示している。換言すれば、目標空気流量演算部42は、パージ流量を(間接的に)検出する検出手段としての機能を担っている。さらに、「R1×MQP(RPRA,RT)」は、このパージ流量を前提として、排水素処理装置13から排出される水素を目標濃度R1に保とうとした場合に、排水素処理装置13に対して供給する必要がある希釈処理用ガスの必要流量である(この値自体も、間接的には、パージ流量を示している)。
このような演算式に鑑みれば、目標空気流量TQCは、一次的には、要求電力TPGに基づいて算出される安定発電流量TQAG(第1の目標空気流量)として算出される。ただし、パージ流量が目標パージ流量よりも大きい場合、目標空気流量TQCは、安定発電流量TQAGよりも流量を増加させた第2の目標空気流量として設定される。ここで、第2の目標空気流量は、パージ流量と目標パージ流量との差に応じた増加流量、具体的には、希釈処理用ガスの必要流量から希釈処理用ガスの目標流量TQAPを減算した値を、安定発電流量TQAGに加算した値となる。このように、目標空気流量演算部42は、目標空気流量TQCを算出する供給流量演算手段としての機能を担っている。算出された目標空気流量TQCは、目標運転温度演算部44および目標コンプレッサ回転数演算部50に対して出力される。
また、この目標空気流量演算部42は、目標空気流量TQCとして第2の目標空気流量を用いることにより、燃料電池スタック1の発電状態が不安定となる可能性があるか否かを判定している。具体的には、目標空気流量演算部42は、下式に基づいて、判定を行う。
(数式3)
∫{TQC−TQAG}dt>V1
同数式は、目標空気流量TQCから安定発電流量TQAGを減算した減算値に関する時間累積値である。V1は定数であり、燃料電池スタック1における水収支、すなわち、燃料電池スタック1から持ち出される水分量と燃料電池スタック1において生成される水分量との差として許容できる範囲内においてできるだけ大きな値に設定されている。よって、この累積値が判定値V1よりも大きい場合には、燃料電池スタック1の酸化剤極から持ち出される水分量が大きく、ドライアウトの懸念があるため、燃料電池スタック1の発電状態が不安定となる可能性がある。この場合には、燃料極オフガスのパージ禁止、すなわち、排水素処理装置13に対する燃料極オフガスの供給停止を指示するべく、パージ禁止フラグFSPが「1」に設定される。一方、この累積値が判定値V1以下の場合には、燃料電池スタック1の酸化剤極から持ち出される水分量が小さく、ドライアウトの懸念がないため、燃料電池スタック1の発電状態が不安定となる可能性がない。この場合には、燃料極オフガスのパージ許可を指示すべく、パージ禁止フラグが「0」に設定される。パージ禁止フラグFSPは、目標空気圧力演算部43、パージ時間演算部45および取出電力演算部46に対して出力される。なお、パージ禁止フラグが「1」に設定されているケースでは、目標空気流量演算部42は、目標空気流量TQCを安定発電流量(第1の目標空気流量)TQAGに変更する。
目標空気圧力演算部(供給圧力演算手段)43は、パージ禁止フラグFSPおよび水素圧力RPRAに基づいて、酸化剤極に供給される空気の目標圧力である目標空気圧力(目標酸化剤ガス圧力)TPRCを算出する。具体的には、目標空気圧力TPRCは、パージ禁止フラグFSPが「0」にセットされている場合、水素圧力RPRAと対応した圧力(通常値)として算出される(TPRC=RPRA)。一方、目標空気圧力TPRCは、パージ禁止フラグFSPが「1」にセットされている場合、水素圧力RPRA(通常値)よりも所定圧力ΔP1だけ減少させた値に設定される(TPRC=RPRA−ΔP1)。ここで、所定圧力ΔP1は、燃料電池スタック1における電解質膜に許容される差圧以下に設定されている。算出された目標空気圧力TPRCは、目標運転温度演算部44および空気調圧弁開度演算部51に対して出力される。
目標運転温度演算部(運転温度演算手段)44は、目標空気流量TQCおよび目標空気圧力TPRCに基づいて、燃料電池スタック1の運転温度(すなわち、冷媒の管理温度)の目標値である目標運転温度TTを算出する。目標運転温度TTは、目標空気流量TQCおよび目標空気圧力TPRCに基づいて、燃料電池スタック1の酸化剤極から持ち出される水分量が、発電により生成される水分量を超えないように設定される。
図8は、目標運転温度TTと、目標空気流量TQCおよび目標空気圧力TPRCとの対応関係を示す説明図である。ここで、目標空気流量TQCおよび目標空気圧力TPRCは、それぞれ定常的に設計された安定発電流量TQAGおよび目標水素圧力TPRAに対して差を持っているため、この差を補正する必要がある。この場合、燃料電池スタック1の目標運転温度TTは、目標空気圧力TPRCおよび目標空気流量TQCに対して、図8に示すような関係になる。具体的には、目標運転温度TTは、目標空気圧力TPRCが増加する程、その値が小さくなるような傾向を有しており、また、同一の目標空気圧力TPRCであっても、目標空気流量TQCが大きい程、その値が相対的に小さくなる傾向を有している。換言すれば、目標運転温度演算部44は、目標空気流量TQCの増加に応じて、目標運転温度TTを減少させた値に設定することとなる。
目標運転温度TTと、目標空気流量TQCおよび目標空気圧力TPRCとの関係は、実験やシミュレーションを通じて予め取得されている。目標運転温度演算部44は、図8に示すような目標運転温度TTと目標空気流量TQCおよび目標空気圧力TPRCとの対応関係をテーブルまたは演算式として保持しており、このテーブルまたは演算式に基づいて、目標空気流量TQCおよび目標空気圧力TPRCから目標運転温度TTを算出する。算出された目標運転温度TTは、目標冷媒ポンプ回転数演算部52に対して出力される。
パージ時間演算部(パージ流量演算手段)45は、要求電力TPGとパージ禁止フラグFSPとに基づいて、パージ時間POTを算出する。このパージ時間POTは、パージ弁12を開状態に設定する時間であり、実質的には、要求電力TPGに基づく目標パージ流量に対応している。すなわち、パージ時間演算部45は、目標パージ流量を演算するパージ流量演算手段としての機能を担っている。
図9は、要求電力TPGと目標パージ流量TQPとの対応関係を示す説明図である。目標パージ流量TQPは、要求電力TPGに対して単調増加する傾向を有している。要求電力TPGと目標パージ流量TQPとの関係は、燃料電池スタック1における両極のガス圧力と相関があり、実験やシミュレーションを通じて予め設定されている。ここで、一定時間Ts内においてパージ弁12を開状態にする時間割合をパージ時間POTとした場合、この一定時間Ts内での平均パージ流量が目標パージ流量TQPとなるように、パージ時間POTを設定すればよい。したがって、パージ時間POTは、実際のパージ流量MPQ(RPRA,RT)を用いて、下式で求められる。
(数式4)
POT=TQP×Ts/{MQP(RPRA,RT)}・・・(1)
POT=0・・・(2)
ここで、(1)式は、パージ禁止フラグFSPが「0」にセットされているケースでの、パージ時間POTである。また、(2)式は、パージ禁止フラグFSPが「1」にセットされているときケースでの、パージ時間POTである。算出されたパージ時間POTは、パージ弁開閉指令部48に対して出力される。
取出電力演算部46は、負荷装置2に対して取り出す電力である取出電力TPを算出する。ここで、図10は、パージ禁止開始後の経過時間T1と、上限電力UPGとの対応関係を示し、図11は、パージ禁止解除後の経過時間T2と、上限電力UPGとの対応関係を示す。図10において、パージ禁止開始後の経過時間T1は、パージ禁止フラグFSPが「0」から「1」に切り替えられてからの経過時間であり、上限電力UPGは、経過時間T1が増加するに従って、初期値から線形的に減少するような値として設定されている。また、図11において、パージ禁止解除後の経過時間T2は、パージ禁止フラグFSPが「1」から「0」に切り替えられてからの経過時間であり、上限電力UPGは、経過時間T2が増加するに従って、初期値から線形的に増加するような値として設定されている。パージ禁止開始後の経過時間T1と上限電力UPGとの関係、および、パージ禁止解除後の経過時間T2と上限電力UPGとの関係は、実験やシミュレーションを通じて予め設定されている。取出電力演算部46は、パージ禁止開始後の経過時間T1またはパージ禁止解除後の経過時間T2に基づいて、上限電力UPGを設定し、この上限電力UPGによって要求電力TPGを制限した値を取出電力TPとして算出する。算出された取出電力TPに対応する電力が燃料電池スタック1から取り出され、負荷装置2に対して供給される。
水素調整弁開度演算部47は、水素圧力RPRAおよび目標水素圧力TPRAに基づいて、水素調整弁11の開度指令値TAVPを演算し、この開度指令値TAVPに基づいて、水素調整弁11を制御する。具体的には、水素調整弁開度演算部47は、水素圧力RPRAと目標水素圧力TPRAとが一致するように、水素調整弁11の開度指令値TAVPを演算し、その開度をフィードバック制御する。
パージ弁開閉指令部(パージ流量制御手段)48は、目標パージ流量TQPに対応するパージ時間POTに応じて、パージ弁12に対して開閉指令SPOを出力し、この開閉指令SPOに基づいて、パージ弁12の開閉状態を制御する。
目標ブロア回転数演算部49は、目標ブロア流量TQDに基づいて、排水素処理ブロアの回転数指令値TNBを演算し、この回転数指令値TNBに基づいて、排水素処理ブロア14を制御する。
目標コンプレッサ回転数演算部(供給流量制御手段)50は、目標空気流量TQCに基づいて、コンプレッサ30を制御する。具体的には、目標コンプレッサ回転数演算部50は、目標空気流量TQCに応じたコンプレッサ20の回転数指令値TNCを演算し、この回転数指令値TNCに基づいて、コンプレッサ30を制御する。
空気調圧弁開度演算部(供給圧力制御手段)51は、目標空気圧力TPRCに基づいて、空気調圧弁21を制御する。具体的には、空気調圧弁開度演算部51は、空気圧力RPRCと目標空気圧力TPRCとが一致するように、空気調圧弁21の開度指令値TCVPを演算し、空気調圧弁21の開度をフィードバック制御する。
目標冷媒ポンプ回転数演算部(運転温度制御手段)52は、目標運転温度TTに基づいて、冷媒ポンプ31を制御する。具体的には、目標冷媒ポンプ回転数演算部52は、目標運転温度TTに応じた冷媒ポンプ31の回転数指令値TNPを演算し、この回転数指令値TNPに基づいて、冷媒ポンプ31を制御する。
このように本実施形態において、燃料電池システムは、酸化剤極オフガスおよび排水素処理ブロア14から供給される空気を希釈処理用ガスとして用い、燃料極オフガスを希釈した状態で排出する排水素処理装置13を備えている。目標空気流量演算部42は、パージ流量MQP(RPRA,RT)が目標パージ流量よりも大きい場合、要求電力TPGに基づいて算出される安定発電流量(第1の目標空気流量)TQAGよりも流量を増加させた第2の目標空気流量を、目標空気流量TQCとして算出する。
図12は、要求電力、パージ流量、コンプレッサ20からの空気流量、排水素処理ブロア14からの空気流量の経時的な推移を示す説明図である。ここで、パージ流量の推移において、実線は実際のパージ流量MQP(RPRA,RT)を示し、破線は目標パージ流量を示す。また、コンプレッサ20からの空気流量の推移において、実線は目標空気流量TQCを示し、破線は、希釈処理用ガスの必要流量を示し、一点鎖線は、安定発電流量TQAGを示している。同図に示すように、要求電力TPGが過渡的に低下した場合、目標パージ流量もこれに対応して過渡的に低下する。しかしながら、実際のパージ流量MQP(RPRA,RT)は、この目標パージ流量よりも多くなっている。ここで、目標空気流量TQCを、要求電力TPGに対応して安定発電流量TQAGに設定した場合には、希釈処理用ガスの必要流量を賄うことできなくなる。そこで、本実施形態では、要求電力TPGが過渡的に低下した場合、具体的には、パージ流量MQP(RPRA,RT)が目標パージ流量よりも大きい場合には、目標空気流量TQCを第2の目標空気流量に設定する。そのため、コンプレッサ20から供給される空気流量が増加し、酸化剤極オフガスの流量が増加され、これにより、希釈処理用ガスの必要流量を確保することができる。
かかる構成によれば、燃料極オフガスが過渡的に増加するシーンにおいて、排水素処理ブロア14からの空気流量を増加させる必要がないので、希釈システムの小型化を図ることができる。また、パージ流量が目標パージ流量よりも過渡的に増加するシーンにおいて、目標空気流量TQCを第2の目標空気流量に設定するため、コンプレッサ20からの空気流量を増加させる時間を抑えることができ、酸化剤極に供給される空気流量が過大となる状態を時間的に抑えることができる。したがって、燃料極オフガスの希釈を行いつつ、ドライアウトの発生を抑制することができる。
また、本実施形態において、第2の目標空気流量は、目標パージ流量と、パージ流量MQP(RPRA,RT)との差に応じた増加流量を、安定発電流量(第1の目標空気流量)TQAGに加算した値である。
かかる構成によれば、希釈処理用ガスの必要流量として不足分に対応して、目標空気流量TQCが増加される。よって、酸化剤極から持ち出される水分量を最低限に抑えながら、燃料極オフガスの希釈を有効に行うことができる。
また、本実施形態において、目標空気流量演算部42は、燃料極に供給する水素圧力RPRAと、運転温度(酸化剤極オフガスの温度)TTとに基づいて、パージ流量MQP(RPRA,RT)を推定することにより、パージ流量MQP(RPRA,RT)を間接的に検出している。
かかる構成によれば、センサなどの計測手段を用いることなく、パージ流量MQP(RPRA,RT)を検出することができるので、システム構成の簡素化を図ることができる。
また、本実施形態において、目標空気流量演算部42は、目標空気流量TQCとして第2の目標空気流量を用いることにより、燃料電池スタック1の発電状態が不安定となる可能性がある場合、パージ禁止フラグを「1」に設定し、これをパージ時間演算部45に出力し、目標空気流量TQCを安定発電流量TQAGに変更する。
かかる構成によれば、ドライアウトの発生を抑制するとともに、高濃度の水素が排出されるといった事態が抑制されるので、燃料電池スタック1の信頼性の向上を図ることができる。
なお、上述したケースでは、パージ禁止開始後の経過時間T1に基づいて、上限電力UPGを設定し、この上限電力UPGによって要求電力TPGを制限した値を取出電力TPとして算出することが好ましい。これにより、過大な要求電力TPGが要求された場合であっても、取出電力TPが制限されるので、ストイキ不足といった事態を抑制することができる。これに対して、パージ禁止解除後の経過時間T2に基づいて、上限電力UPGを設定し、この上限電力UPGによって要求電力TPGを制限した値を取出電力TPとして算出してもよい。これにより、過大な要求電力TPGが要求された場合であっても、取出電力TPが制限されるので、燃料電池スタック1における水素不足といった事態を抑制することができる。
また、本実施形態において、目標空気圧力演算部43は、目標空気流量TQCとして第2の目標空気流量を用いることにより、燃料電池スタック1の発電状態が不安定となる可能性がある場合、目標空気圧力TPRCを水素圧力RPRA(演算にて算出された値)よりも減少させた値(RPRA−ΔP1)に設定する。
かかる構成によれば、酸化剤極側の圧力が低下するので、燃料極への透過窒素を減らすことができる。これにより、燃料電池スタック1における水素不足といった事態を抑制することができる。
また、本実施形態において、目標運転温度演算部44は、目標空気流量TQCの増加に応じて、目標運転温度TTを減少させた値に設定する。
かかる構成によれば、酸化剤極から持ち出される水分量を低減することができる。これにより、ドライアウトを抑制することができる。
(第2の実施形態)
図13は、本発明の第2の実施形態にかかる燃料電池システムの構成を示すブロック図である。第2の実施形態にかかる燃料電池システムが、第1の実施形態のそれと相違する点は、パージ流量を実際に測定する点にある。なお、システム構成および制御装置40の処理内容については、第1の実施形態のそれと基本的に同じであり、重複する部分の説明は省略することとし、以下、相違点を中心に説明を行う。
図13に示すように、水素排出流路L2には、この流路を流れる燃料極オフガスの流量、すなわち、パージ流量を検出する流量計(検出手段)16が設けられている。流量計16によって検出されたパージ流量は、制御装置40に入力されている。
制御装置40において、目標空気流量演算部42は、目標空気流量TQCを算出する場合、上記の数式1に示す演算において、パージ流量MQP(x,y)を、流量計16からの実測値に置き換えて演算を行う。また、パージ時間演算部45は、パージ時間POTを算出する場合、上記の数式4に示す演算において、パージ流量MQP(x,y)を、流量計16からの実測値に置き換えて演算を行う。
このように本実施形態において、パージ流量を検出する流量計16を用いている。これにより、パージ流量を正確に検出することができるので、目標空気流量TQCの演算精度の向上を図ることができる。
なお、本実施形態に示す手法は、後述する実施形態についても同様に適用可能である。
(第3の実施形態)
図14は、本発明の第3の実施形態に係る燃料電池システムの制御装置40を示すブロック図である。本実施形態の燃料電池システムが、第1の実施形態のそれと相違する点は、制御装置40によるパージ時間POTの算出方法である。なお、システム構成および制御装置40の処理内容については、第1の実施形態のそれと基本的に同じであり、重複する部分の説明は省略することとし、以下、相違点を中心に説明を行う。
本実施形態の制御装置において、目標空気流量演算部42は、目標空気流量TQCおよび目標ブロア流量TQDの算出と、パージ禁止フラグFSPの設定とに加え、パージ時間増加フラグFEPを設定している。このパージ時間増加フラグFEPは、下式に基づいて設定される。
(数式5)
TQAP−R1×MQP(RPRA,RT)<0
同数式は、目標パージ流量と実際のパージ流量との制御偏差が0よりも小さいかを判断している。同数式が成立している場合、すなわち、目標パージ流量と実際のパージ流量との制御偏差が0よりも小さい場合、パージ時間増加フラグFEPは、「1」にセットされる。一方、同数式が成立していない場合、すなわち、目標パージ流量と実際のパージ流量との制御偏差が0よりも小さくない場合、パージ時間増加フラグFEPは、「0」にセットされる。パージ時間増加フラグFEPはパージ時間演算部45に対して出力される。
パージ時間演算部45は、要求電力TPGと、パージ禁止フラグFSPと、パージ時間増加フラグFEPとに基づいて、パージ弁12を開状態に設定する時間であるパージ時間POTを算出する。具体的には、パージ時間演算部45は、第1の実施形態と同様に、要求電力TPGと目標パージ流量TQPとの関係に基づいて、要求電力TPGに基づいて、目標パージ流量TQPを算出する。そして、パージ時間演算部45は、パージ禁止フラグFSPと、パージ時間増加フラグFEPとに基づいて、パージ時間POTを下式の通りに算出する。
(数式6)
POT=0・・・(1)
POT=Ts・・・(2)
POT=TQP×Ts/{MQP(RPRA,RT)}・・・(3)
ここで、(1)式は、パージ時間増加フラグFEPに拘わらず、パージ禁止フラグFSPが「1」にセットされているケースでのパージ時間POTである。(2)式は、パージ禁止フラグFSPが「0」にセットされ、かつ、パージ時間増加フラグFEPが「1」にセットされているケースでのパージ時間POTである。(3)式は、パージ禁止フラグFSPが「0」にセットされ、かつ、パージ時間増加フラグFEPが「0」にセットされているケースでのパージ時間POTである。
このように本実施形態において、パージ時間演算部45は、目標空気流量TQCとして第2の目標空気流量を用いることにより、燃料電池スタック1の発電状態が不安定となる可能性がある場合、パージ時間POTを通常値(TQP×T1/{MQP(RPRA,RT)})よりも増加させた値(Ts)に設定し、これにより、目標パージ流量を通常値よりも増加させた値に設定している。
かかる構成によれば、目標パージ流量を増加させることにより、燃料電池スタック1の燃料極内の水素濃度を高めることができる。そのため、パージ禁止フラグFSPが「1」にセットされ、燃料極オフガスの排出が禁止された場合であっても、水素が欠乏して発電を妨げるといった事態を抑制することができる。
(第4の実施形態)
図15は、本発明の第4の実施形態に係る燃料電池システムの制御装置40を示すブロック図である。本実施形態の燃料電池システムが、第1の実施形態のそれと相違する点は、制御装置40による目標ブロア流量TQDの算出方法である。なお、システム構成および制御装置40の処理内容については、第1の実施形態のそれと基本的に同じであり、重複する部分の説明は省略することとし、以下、相違点を中心に説明を行う。
本実施形態の制御装置40において、目標空気流量演算部42は、下式に基づいて、目標ブロア流量TQDを算出する。
(数式7)
TQD=Min(R1×MQP(RPRA,RT),Q1)
ここで、Q1は、排水素処理ブロア14が供給可能な最大空気流量であり、ブロアのサイズや性能に応じて決定されている。すなわち、本実施形態において、目標ブロア流量TQDは、パージ流量MQP(RTRA,RT)の燃料極オフガスを目標濃度R1以下とするための希釈処理用ガスの必要流量と、排水素処理ブロア14の最大空気流量Q1とのうち、その値が小さい方が設定される。
また、目標空気流量演算部42は、下式に基づいて、目標空気流量TQCを算出する。
(数式8)
TQC=Max{TQAG,R1×MQP(RPRA,RT)−TQD}
同数式から分かるように、目標空気流量TQCは、安定して発電するために酸化剤極に供給すべき空気流量(安定発電流量)TQAGと、
パージ流量MQP(x,y)の燃料極オフガスを目標濃度R1以下とするために必要な空気流量から目標ブロア流量TQDを減算した値とのうち、その値が大きい方が設定される。
さらに、目標空気圧力演算部43は、下式に基づいて、目標空気圧力TPRCを算出する。
(数式9)
TPRC=Min{TPRA+ΔP1,TPRCL}
ここで、ΔP1は、燃料電池スタック1における電解質膜に許容される差圧である。また、TPRCLは、水収支を確保するために必要な空気圧力の下限値であり、上記した図8に示すような運転温度および目標空気圧力との対応関係を参照し、目標空気圧力TQCと運転温度RTとに基づいて、算出される。したがって、目標空気圧力TPRCは、目標水素圧力TPRAおよび許容差圧ΔP1の加算値と、水収支を確保するために必要な空気圧力の下限値TPRCLのうち、その値が小さい方が設定される。
また、目標運転温度演算部44は、第1の実施形態とは異なり、空気圧力によって水収支を確保するため、実験やシミュレーションを通じて予め設定された固定値をして与えられている。
このように本実施形態において、目標空気流量演算部42は、パージ流量MQP(RTRA,RT)に基づいて、希釈処理用ガスの必要流量を算出するとともに、この算出された希釈処理用ガスの必要流量から、排水素処理ブロア14によって供給可能な空気流量の最大値Q1(=TQD)を減算した値を、第2の目標空気流量として設定している。
かかる構成によれば、安定発電流量(第1の目標空気流量)TQAGに対する第2の目標空気流量の増量割合をできるだけ低減することができるので、燃料電池スタック1がドライアウト傾向となる事態を抑制することができる。
また、本実施形態において、目標空気圧力演算部43は、目標空気圧力TPRCを目標水素圧力TPRA(通常値)よりも増加させた値(TPRA+ΔP1)に設定する。
かかる構成によれば、目標空気流量TQCの増量に応じて、目標空気圧力TPRCを増加させている。これにより、酸化剤極から持ち出される水分量を減らすことができるので、過渡的なドライアウトの発生を抑制することができる。
燃料電池システムの全体構成を示すブロック図 第1の実施形態に係る制御装置40を示すブロック図 要求電力TPGと目標水素圧力TPRAとの対応関係を示す説明図 パージ流量MQP(x,y)と水素圧力RPRAおよび運転温度RTとの対応関係を示す説明図 要求電力TPGと希釈処理用ガスの目標流量TQAPおよび安定発電流量TQAGとの対応関係を示す説明図 要求電力TPGと目標ブロア流量TQDとの対応関係を示す説明図 安定発電流量TQAGと希釈処理用ガスの目標流量TQAPとの対応関係を示す説明図 目標運転温度TTと目標空気流量TQCおよび目標空気圧力TPRCとの対応関係を示す説明図 要求電力TPGと目標パージ流量TQPとの対応関係を示す説明図 パージ禁止開始後の経過時間T1と上限電力UPGとの対応関係を示す説明図 パージ禁止解除後の経過時間T2と上限電力UPGとの対応関係を示す説明図 要求電力、パージ流量、コンプレッサ20からの空気流量、排水素処理ブロア14からの空気流量の経時的な推移を示す説明図 第2の実施形態にかかる燃料電池システムの構成を示すブロック図 第3の実施形態に係る燃料電池システムの制御装置40を示すブロック図 第4の実施形態に係る燃料電池システムの制御装置40を示すブロック図
符号の説明
1 燃料電池スタック
2 負荷装置
10 燃料タンク
11 水素調整弁
12 パージ弁
13 排水素処理装置
14 排水素処理ブロア
15 水素圧力センサ
16 流量計
20 コンプレッサ
21 空気調圧弁
22 空気圧力センサ
30 コンプレッサ
31 冷媒ポンプ
32 ラジエータ
33 温度センサ
40 制御装置
41 目標水素圧力演算部
42 目標空気流量演算部
43 目標空気圧力演算部
44 目標運転温度演算部
45 パージ時間演算部
46 取出電力演算部
47 水素調整弁開度演算部
48 パージ弁開閉指令部
49 目標ブロア回転数演算部
50 目標コンプレッサ回転数演算部
51 空気調圧弁開度演算部
52 目標冷媒ポンプ回転数演算部

Claims (12)

  1. 燃料電池システムにおいて、
    燃料極に供給される燃料ガスと、酸化剤極に供給される酸化剤ガスとを電気化学的に反応させて発電を行う燃料電池と、
    前記燃料極から排出される燃料極オフガスと、前記酸化剤極から排出される酸化剤極オフガスと、希釈ガス供給手段からの希釈ガスとがそれぞれ供給されており、前記酸化剤極オフガスおよび前記希釈ガスを希釈処理用ガスとして用い、前記燃料極オフガスを希釈した状態で排出する希釈手段と、
    前記燃料電池に要求される要求電力に基づいて、前記燃料極オフガスの流量目標値である目標パージ流量を算出するパージ流量演算手段と、
    前記燃料極オフガスの流量を調整するパージ流量調整手段と、
    前記パージ流量演算手段によって算出される目標パージ流量に基づいて、前記パージ流量調整手段を制御するパージ流量制御手段と、
    前記燃料極オフガスの流量をパージ流量として検出する検出手段と、
    前記燃料電池に要求される要求電力に基づいて、前記酸化剤極に供給する酸化剤ガスの流量目標値である目標酸化剤ガス流量を算出する供給流量演算手段と、
    前記酸化剤極に供給する酸化剤ガスの流量を調整する供給流量調整手段と、
    前記供給流量演算手段によって算出される目標酸化剤ガス流量に基づいて、前記供給流量調整手段を制御する供給流量制御手段とを有し、
    前記供給流量演算手段は、前記検出手段によって検出されるパージ流量が目標パージ流量よりも大きい場合、前記要求電力に基づいて算出される第1の目標酸化剤ガス流量よりも流量を増加させた第2の目標酸化剤ガス流量を、前記目標酸化剤ガス流量として算出することを特徴とする燃料電池システム。
  2. 前記第2の目標酸化剤ガス流量は、前記検出手段によって検出されるパージ流量と目標パージ流量との差に応じた増加流量を、前記第1の目標酸化剤ガス流量に加算した値であることを特徴とする請求項1に記載された燃料電池システム。
  3. 前記検出手段は、前記パージ流量を直接的に検出する流量計であることを特徴とする請求項1または2に記載された燃料電池システム。
  4. 前記検出手段は、前記燃料極に供給する燃料ガスの圧力と、前記酸化剤極オフガスの温度とに基づいて、前記パージ流量を推定することにより、当該パージ流量を間接的に検出することを特徴とする請求項1または2に記載された燃料電池システム。
  5. 前記供給流量演算手段は、前記目標酸化剤ガス流量として第2の目標酸化剤ガス流量を用いることにより、前記燃料電池の発電状態が不安定となる可能性がある場合、前記希釈手段に対する前記燃料極オフガスの供給停止の指示を前記パージ流量演算手段に出力するとともに、前記目標酸化剤ガス流量を前記第1の目標酸化剤ガス流量に変更することを特徴とする請求項1から4のいずれか一項に記載された燃料電池システム。
  6. 前記酸化剤極に供給される酸化剤ガスの圧力を調整する供給圧力調整手段と、
    前記酸化剤極に供給される酸化剤ガスの圧力目標値である目標酸化剤ガス圧力を算出する供給圧力演算手段と、
    前記供給圧力演算手段によって算出された目標酸化剤ガス圧力に基づいて、前記供給圧力調整手段を制御する供給圧力制御手段とをさらに有し、
    供給圧力演算手段は、前記目標酸化剤ガス流量として第2の目標酸化剤ガス流量を用いることにより、前記燃料電池の発電状態が不安定となる可能性がある場合、目標酸化剤ガス圧力を通常値よりも減少させた値に設定することを特徴とする請求項5に記載された燃料電池システム。
  7. 前記燃料電池を冷却する冷却手段と、
    前記燃料電池の運転温度の目標値である目標運転温度を算出する運転温度演算手段と、
    前記運転温度演算手段によって算出される目標運転温度に基づいて、前記冷却手段を制御する運転温度制御手段とをさらに有し、
    前記運転温度演算手段は、前記供給流量演算手段において算出される目標酸化剤ガス流量の増加に応じて、前記目標運転温度を減少させた値に設定することを特徴とする請求項1から6のいずれか一項に記載された燃料電池システム。
  8. 前記パージ流量演算手段は、前記目標酸化剤ガス流量として第2の目標酸化剤ガス流量を用いることにより、前記燃料電池の発電状態が不安定となる可能性がある場合、前記目標パージ流量を通常値よりも増加させた値に設定することを特徴とする請求項1から7のいずれか一項に記載された燃料電池システム。
  9. 前記供給流量演算手段は、前記検出手段によって検出されるパージ流量に基づいて、前記希釈処理用ガスの必要流量を算出するとともに、当該算出された希釈処理用ガスの必要流量から、前記希釈ガス供給手段によって供給可能な希釈ガス流量の最大値を減算した値を、前記第2の目標酸化剤ガス流量として設定することを特徴とする請求項1に記載された燃料電池システム。
  10. 前記酸化剤極に供給される酸化剤ガスの圧力を調整する供給圧力調整手段と、
    前記酸化剤極に供給される酸化剤ガスの圧力目標値である目標酸化剤ガス圧力を算出する供給圧力演算手段と、
    前記供給圧力演算手段によって算出された目標酸化剤ガス圧力に基づいて、前記供給圧力調整手段を制御する供給圧力制御手段とをさらに有し、
    前記供給圧力演算手段は、前記目標酸化剤ガス圧力を通常値よりも増加させた値に設定することを特徴とする請求項9に記載された燃料電池システム。
  11. 燃料電池システムにおいて、
    燃料極に供給される燃料ガスと、酸化剤極に供給される酸化剤ガスとを電気化学的に反応させて発電を行う燃料電池と、
    前記燃料極から排出される燃料極オフガスと、前記酸化剤極から排出される酸化剤極オフガスと、希釈ガス供給手段からの希釈ガスとがそれぞれ供給されており、前記酸化剤極オフガスおよび前記希釈ガスを希釈処理用ガスとして用い、前記燃料極オフガスを希釈した状態で排出する希釈手段と、
    前記燃料電池に要求される要求電力に基づいて、前記酸化剤極に供給する酸化剤ガスの流量目標値である目標酸化剤ガス流量を算出する供給流量演算手段と、
    前記酸化剤極に供給する酸化剤ガスの流量を調整する供給流量調整手段と、
    前記供給流量演算手段によって算出される目標酸化剤ガス流量に基づいて、前記供給流量調整手段を制御する供給流量制御手段とを有し、
    前記供給流量演算手段は、前記燃料電池に要求される要求電力が低下した場合、前記酸化剤極から排出される酸化剤極オフガスの流量を増加させて、前記希釈処理用ガスの必要流量を確保するように、前記要求電力に基づいて算出される第1の目標酸化剤ガス流量よりも流量を増加させた第2の目標酸化剤ガス流量を前記目標酸化剤ガス流量として算出することを特徴とする燃料電池システム。
  12. 燃料電池システムの制御方法において、
    燃料電池に要求される要求電力に基づいて、前記燃料電池の酸化剤極に供給する酸化剤ガスの流量目標値である目標酸化剤ガス流量を算出する第1のステップと、
    前記算出された目標酸化剤ガス流量に基づいて、前記酸化剤極に供給する酸化剤ガスの流量を制御する第2のステップと、
    前記燃料電池の酸化剤極から排出される酸化剤極オフガスおよび前記燃料電池の燃料極から排出される燃料極オフガスが供給されて当該燃料極オフガスを希釈した状態で排出する希釈手段に対して、希釈ガスを供給する第3のステップと、
    前記燃料電池に要求される要求電力に基づいて、前記希釈手段に供給する燃料極オフガスの流量目標値である目標パージ流量を算出する第4のステップと、
    前記算出された目標パージ流量に基づいて、前記希釈手段に供給する燃料極オフガスの流量を制御する第5のステップとを有し、
    前記第1のステップは、前記検出されるパージ流量が目標パージ流量よりも大きい場合、前記要求電力に基づいて算出される第1の目標酸化剤ガス流量よりも流量を増加させた第2の目標酸化剤ガス流量を、前記目標酸化剤ガス流量として算出するステップを含むことを特徴とする燃料電池システムの制御方法。
JP2007207772A 2007-08-09 2007-08-09 燃料電池システムおよび燃料電池システムの制御方法 Pending JP2009043596A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007207772A JP2009043596A (ja) 2007-08-09 2007-08-09 燃料電池システムおよび燃料電池システムの制御方法
EP08789072A EP2176912A2 (en) 2007-08-09 2008-08-04 Fuel cell system with anode purge and exhaust dilution device and method for controlling said fuel cell system
PCT/IB2008/002123 WO2009019596A2 (en) 2007-08-09 2008-08-04 Fuel cell system and method for controlling fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007207772A JP2009043596A (ja) 2007-08-09 2007-08-09 燃料電池システムおよび燃料電池システムの制御方法

Publications (1)

Publication Number Publication Date
JP2009043596A true JP2009043596A (ja) 2009-02-26

Family

ID=40042891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007207772A Pending JP2009043596A (ja) 2007-08-09 2007-08-09 燃料電池システムおよび燃料電池システムの制御方法

Country Status (3)

Country Link
EP (1) EP2176912A2 (ja)
JP (1) JP2009043596A (ja)
WO (1) WO2009019596A2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101755781B1 (ko) * 2015-01-19 2017-07-10 현대자동차주식회사 차량 연료전지의 제어방법

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113406881B (zh) * 2021-04-12 2023-09-08 北京北方华创微电子装备有限公司 半导体热处理设备及其装卸载腔室中氧含量的控制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4384395B2 (ja) * 2002-09-30 2009-12-16 本田技研工業株式会社 燃料電池のパージ水素希釈装置
JP4802486B2 (ja) * 2004-11-24 2011-10-26 日産自動車株式会社 燃料電池システム
KR100956674B1 (ko) * 2005-10-21 2010-05-10 도요타 지도샤(주) 연료전지시스템, 애노드가스생성량의 추정장치 및 애노드가스생성량의 추정방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101755781B1 (ko) * 2015-01-19 2017-07-10 현대자동차주식회사 차량 연료전지의 제어방법
US10074863B2 (en) 2015-01-19 2018-09-11 Hyundai Motor Company System and method for controlling fuel cell of vehicle

Also Published As

Publication number Publication date
EP2176912A2 (en) 2010-04-21
WO2009019596A3 (en) 2009-06-04
WO2009019596A2 (en) 2009-02-12

Similar Documents

Publication Publication Date Title
KR101646417B1 (ko) 연료전지 시스템 및 그 제어 방법
US10141590B2 (en) Fuel cell system and method of controlling fuel cell system
JP2006099993A (ja) 燃料電池システム及び燃料電池システムの故障診断装置
WO2009016985A1 (ja) 燃料電池システム及びその制御方法
JP2009146618A (ja) 燃料電池システム及び移動体
JP2007220625A (ja) 燃料電池システム
JP5136415B2 (ja) 燃料電池システム
JP5164014B2 (ja) 燃料電池システムおよびその制御方法
JP2006351506A (ja) 燃料電池システム
JP2009117066A (ja) 燃料電池システムおよび燃料電池システムの制御方法
JP5224080B2 (ja) 燃料電池システムとオフガスパージ方法
JP2010108756A (ja) 燃料電池システムおよび燃料電池システムのパージ制御方法
JP2009043596A (ja) 燃料電池システムおよび燃料電池システムの制御方法
JP4876593B2 (ja) 燃料電池システム
JP4831938B2 (ja) 燃料電池システム
JP5468740B2 (ja) 燃料電池システムおよび燃料電池システムの制御方法
JP5080876B2 (ja) 燃料電池システム
JP2005032502A (ja) 燃料電池システム
JP2007280721A (ja) 燃料電池システム
JP2007095434A (ja) 燃料電池システム
JP5135665B2 (ja) 燃料電池システム
JP2008004337A (ja) 燃料電池システム
JP4675605B2 (ja) 燃料電池の酸化剤供給装置
JP6287010B2 (ja) 燃料電池システム
WO2016013320A1 (ja) 燃料電池システム及び燃料電池システムの圧力損失推定方法