JP2009043424A - Flat shape nonaqueous electrolytic liquid secondary battery - Google Patents

Flat shape nonaqueous electrolytic liquid secondary battery Download PDF

Info

Publication number
JP2009043424A
JP2009043424A JP2007204001A JP2007204001A JP2009043424A JP 2009043424 A JP2009043424 A JP 2009043424A JP 2007204001 A JP2007204001 A JP 2007204001A JP 2007204001 A JP2007204001 A JP 2007204001A JP 2009043424 A JP2009043424 A JP 2009043424A
Authority
JP
Japan
Prior art keywords
negative electrode
battery
positive electrode
secondary battery
sealing plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007204001A
Other languages
Japanese (ja)
Inventor
Toku Takai
徳 高井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2007204001A priority Critical patent/JP2009043424A/en
Publication of JP2009043424A publication Critical patent/JP2009043424A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flat-shape nonaqueous electrolytic liquid secondary battery having superior load characteristics and charge and discharge cycle characteristics for a long period. <P>SOLUTION: The flat-shape nonaqueous electrolytic liquid secondary battery has: an electrode body that has a positive electrode, a negative electrode, and a separator in a sealed space in which a sealing plate is inserted and engaged with an opening part of an outer package can through a gasket and the opening end part of the outer package can is formed by being tightened inward; and a non-aqueous electrolytic liquid. The reaction area of the electrode body is larger than the area of the battery in a plan view, and at least the portion in which the positive electrode and the negative electrode are not facing each other in the sealed space has a non-woven fabric. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、長期の充放電サイクル特性に優れた扁平形非水電解液二次電池に関するものである。   The present invention relates to a flat nonaqueous electrolyte secondary battery excellent in long-term charge / discharge cycle characteristics.

一般にコイン形電池やボタン形電池と称される扁平形の非水電解液二次電池では、例えば図1に示すように、正極3と負極5とがセパレータ4を介して対向してなる電極体と非水電解液とを、封口板1と外装缶2とガスケット6とで形成された空間内に収容してなる構造を有している。封口板1は、外装缶2の開口部にガスケット6を介して嵌合しており、外装缶2の開口端部が内方に締め付けられ、これによりガスケット6が封口板1に当接することで、外装缶2の開口部が封口されて電池内部が密閉構造となっている。   In a flat nonaqueous electrolyte secondary battery generally called a coin-type battery or a button-type battery, for example, as shown in FIG. 1, an electrode body in which a positive electrode 3 and a negative electrode 5 are opposed to each other with a separator 4 therebetween. And the non-aqueous electrolyte are housed in a space formed by the sealing plate 1, the outer can 2, and the gasket 6. The sealing plate 1 is fitted to the opening of the outer can 2 via the gasket 6, and the opening end of the outer can 2 is tightened inward, whereby the gasket 6 comes into contact with the sealing plate 1. The opening of the outer can 2 is sealed so that the inside of the battery has a sealed structure.

ところで、前記のような扁平形非水電解液二次電池は、例えば携帯機器などの電源用途に適用されることがあるが、近年の携帯機器などの高機能化に伴って、より大電流での放電が可能となるように、負荷特性を高めることが要求されている。   By the way, the flat non-aqueous electrolyte secondary battery as described above may be applied to a power supply application such as a portable device, for example. Therefore, it is required to improve the load characteristics so that the discharge can be performed.

例えば、特許文献1および特許文献2には、扁平形非水電解液二次電池に使用する電極体を巻回構造(すなわち巻回電極体)とすることで、正極と負極との対向面積を大きくして、電池の負荷特性を高める技術が提案されている。   For example, in Patent Document 1 and Patent Document 2, the electrode body used in the flat nonaqueous electrolyte secondary battery has a wound structure (that is, a wound electrode body), so that the opposing area between the positive electrode and the negative electrode is increased. A technique for increasing the load characteristics of the battery has been proposed.

特開2000−164259号公報JP 2000-164259 A 特開2001−68143号公報JP 2001-68143 A

ところが、前記のような巻回電極体は、正極や負極に、発電反応に関与しない集電体を用いる必要があることから、巻回電極体の使用は電池の容量低下に繋がる虞がある。このようなことから、扁平形非水電解液二次電池において、巻回電極体を使用して負荷特性を高めつつ、容量低下も可及的に抑制するには、電池内容積をより有効に使用し、巻回電極体の占有体積をできるだけ大きくする必要があるが、その一方で、良好な電池特性を確保するためには非水電解液の注入量もできるだけ多くする必要もある。   However, since the above-described wound electrode body needs to use a current collector that does not participate in the power generation reaction for the positive electrode and the negative electrode, the use of the wound electrode body may lead to a decrease in battery capacity. For this reason, in a flat non-aqueous electrolyte secondary battery, the volume of the battery is made more effective in order to suppress the decrease in capacity as much as possible while improving the load characteristics using the wound electrode body. It is necessary to use and make the volume of the wound electrode body as large as possible. On the other hand, in order to ensure good battery characteristics, it is also necessary to increase the injection amount of the non-aqueous electrolyte as much as possible.

しかしながら、前記のように、電極体の占有体積を大きくした扁平形非水電解液二次電池では、その製造時において、外装缶内に電極体を挿入し非水電解液を注入した後に封口板とガスケットとを用いて外装缶の開口部を封口する際に電池内側に圧力がかかるため、非水電解液の一部が外装缶の外に溢れる虞がある。このような電池を長期にわたって使用し、充放電を繰り返すと、非水電解液量の不足により放電特性が大きく低下することが本発明者の検討により明らかとなった。   However, as described above, in the flat nonaqueous electrolyte secondary battery in which the volume occupied by the electrode body is increased, the sealing plate is inserted after the electrode body is inserted into the outer can and the nonaqueous electrolyte solution is injected during the production. Since the pressure is applied to the inside of the battery when the opening of the outer can is sealed using the gasket and the gasket, a part of the non-aqueous electrolyte may overflow from the outer can. When such a battery is used over a long period of time and repeatedly charged and discharged, the inventors have clarified that the discharge characteristics are greatly deteriorated due to a shortage of the non-aqueous electrolyte.

本発明は前記事情に鑑みてなされたものであり、その目的は、負荷特性と長期の充放電サイクル特性に優れた扁平形非水電解液二次電池を提供することにある。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a flat non-aqueous electrolyte secondary battery excellent in load characteristics and long-term charge / discharge cycle characteristics.

前記目的を達成し得た本発明の扁平形非水電解液二次電池は、外装缶の開口部にガスケットを介して封口板が嵌合され、かつ前記外装缶の開口端部が内方に締め付けられることにより形成されてなる密閉空間内に、正極、負極およびセパレータを有する電極体と、非水電解液とを有する扁平形非水電解液二次電池であって、前記電極体の反応面積が、電池の平面視での面積よりも大きく、少なくとも、前記密閉空間内の正極と負極との対向していない箇所に、不織布を有することを特徴とするものである。   The flat non-aqueous electrolyte secondary battery of the present invention that has achieved the above object has a sealing plate fitted to the opening of the outer can through a gasket, and the opening end of the outer can is inward A flat nonaqueous electrolyte secondary battery having an electrode body having a positive electrode, a negative electrode, and a separator, and a nonaqueous electrolyte solution in a sealed space formed by tightening, wherein the reaction area of the electrode body However, it is larger than the area of the battery in plan view, and has a non-woven fabric at least at a location where the positive electrode and the negative electrode are not opposed to each other in the sealed space.

本発明の扁平形非水電解液二次電池では、電極体の反応面積、すなわち、電極体に係る正極と負極との対向面積を、電池の平面視での面積よりも大きくすることで、負荷特性を高めている。   In the flat nonaqueous electrolyte secondary battery of the present invention, the reaction area of the electrode body, that is, the facing area between the positive electrode and the negative electrode related to the electrode body is made larger than the area of the battery in plan view, Increases the characteristics.

また、本発明の扁平形非水電解液二次電池では、電池内に配置した不織布に非水電解液を保持させることで、電池製造時における非水電解液の溢れなどを防止して、電池内の非水電解液量を可及的に多くしている。不織布に保持された非水電解液も電池の放電反応に寄与し得ることから、本発明の電池では、不織布の前記作用によって、非水電解液量の不足により生じ得る充放電を長期にわたって繰り返した際の放電特性の低下を抑制している。   Further, in the flat non-aqueous electrolyte secondary battery of the present invention, the non-aqueous electrolyte is retained in the non-woven fabric disposed in the battery, thereby preventing the non-aqueous electrolyte from overflowing during battery manufacture. The amount of the non-aqueous electrolyte solution is increased as much as possible. Since the non-aqueous electrolyte retained in the nonwoven fabric can also contribute to the discharge reaction of the battery, in the battery of the present invention, charging and discharging that may occur due to a shortage of the non-aqueous electrolyte due to the above-described action of the nonwoven fabric was repeated over a long period of time. The deterioration of the discharge characteristics is suppressed.

なお、電池業界においては、高さより径の方が大きい扁平形電池をコイン形電池と呼んだり、ボタン形電池と呼んだりしているが、そのコイン形電池とボタン形電池との間に明確な差はなく、本発明の扁平形非水電解液二次電池には、コイン形電池、ボタン形電池のいずれもが含まれる。   In the battery industry, a flat battery with a diameter larger than the height is called a coin-type battery or a button-type battery, but there is a clear gap between the coin-type battery and the button-type battery. There is no difference, and the flat nonaqueous electrolyte secondary battery of the present invention includes both coin-type batteries and button-type batteries.

本発明によれば、負荷特性と、長期の充放電サイクル特性に優れた扁平形非水電解液二次電池を提供することができる。   According to the present invention, it is possible to provide a flat nonaqueous electrolyte secondary battery excellent in load characteristics and long-term charge / discharge cycle characteristics.

図2に、本発明の扁平形非水電解液二次電池の一例を示す。図2は、扁平形非水電解液二次電池の要部断面の模式図である。図2に示す電池は、正極集電体32の両面に正極合剤層31、31を有する正極3と、負極集電体52の両面に負極合剤層51、51を有する負極5とが、セパレータ4を介して積層されて渦巻状に巻回され、更に扁平状に押しつぶされた形状の巻回電極体10を有しており、該電極体10が非水電解液(図示しない)と共に、封口板1、外装缶2およびガスケット6により形成される空間(密閉空間)内に収容されている。封口板1は、外装缶2の開口部にガスケット6を介して嵌合しており、外装缶2の開口端部が内方に締め付けられ、これによりガスケット6が封口板1に当接することで、外装缶2の開口部が封口されて電池内部が密閉構造となっている。   FIG. 2 shows an example of the flat nonaqueous electrolyte secondary battery of the present invention. FIG. 2 is a schematic view of a cross-section of the main part of a flat nonaqueous electrolyte secondary battery. The battery shown in FIG. 2 includes a positive electrode 3 having positive electrode mixture layers 31 and 31 on both sides of a positive electrode current collector 32, and a negative electrode 5 having negative electrode mixture layers 51 and 51 on both sides of a negative electrode current collector 52. It has a spirally wound electrode body 10 that is stacked via a separator 4 and wound in a spiral shape, and is further flattened, and the electrode body 10 has a non-aqueous electrolyte (not shown), It is accommodated in a space (sealed space) formed by the sealing plate 1, the outer can 2 and the gasket 6. The sealing plate 1 is fitted to the opening of the outer can 2 via the gasket 6, and the opening end of the outer can 2 is tightened inward, whereby the gasket 6 comes into contact with the sealing plate 1. The opening of the outer can 2 is sealed so that the inside of the battery has a sealed structure.

封口板1は負極端子を兼ねており、巻回電極体10に係る負極5における集電体52の露出部(負極合剤層51を形成していない部分)が、封口板1内面に接触しているか、または封口板1内面に溶接されている。封口板1は、鉄、ステンレス鋼、アルミニウムまたはアルミニウム合金とステンレス鋼または鉄とのクラッド材などで構成することができる。   The sealing plate 1 also serves as a negative electrode terminal, and the exposed portion of the current collector 52 (the portion where the negative electrode mixture layer 51 is not formed) in the negative electrode 5 associated with the wound electrode body 10 is in contact with the inner surface of the sealing plate 1. Or is welded to the inner surface of the sealing plate 1. The sealing plate 1 can be made of a clad material of iron, stainless steel, aluminum or aluminum alloy and stainless steel or iron.

また、外装缶2は正極端子を兼ねており、巻回電極体10の正極3において、図2に示すよりも左側の部分で集電体32に露出部(正極合剤層31を形成していない部分)が設けられており、この正極集電体32の露出部が、外装缶2内面に接触しているか、または外装缶2内面に溶接されている。外装缶2は、ステンレス鋼、アルミニウムまたはアルミニウム合金とステンレス鋼とのクラッド材などで構成することができる。   The outer can 2 also serves as a positive electrode terminal. In the positive electrode 3 of the spirally wound electrode body 10, an exposed portion (a positive electrode mixture layer 31 is formed on the current collector 32 at a portion on the left side as shown in FIG. 2. The exposed portion of the positive electrode current collector 32 is in contact with the inner surface of the outer can 2 or is welded to the inner surface of the outer can 2. The outer can 2 can be made of stainless steel, aluminum, or a clad material of aluminum alloy and stainless steel.

7は不織布であり、図2に示す電池では、不織布7が、封口板1内面に接触するか、または封口板1内面に溶接された負極集電体52の露出部の内側(負極集電体52とセパレータ4との間)に配置されている。本発明の電池では、この不織布7に非水電解液を保持させることで、電池製造時の非水電解液の溢れなどを防止して、電池が保有する非水電解液量を可及的に高めている。   2 is a nonwoven fabric. In the battery shown in FIG. 2, the nonwoven fabric 7 is in contact with the inner surface of the sealing plate 1 or inside the exposed portion of the negative electrode current collector 52 welded to the inner surface of the sealing plate 1 (negative electrode current collector). 52 and the separator 4). In the battery of the present invention, the non-aqueous electrolyte is held in the nonwoven fabric 7 to prevent overflow of the non-aqueous electrolyte during battery manufacture, and the amount of non-aqueous electrolyte held by the battery is made as much as possible. It is increasing.

次に、図3から図5を用いて、図2に示す構造の扁平形非水電解液二次電池を製造する場合の、不織布7の配置方法の一例を説明する。図3から図5は、扁平形非水電解液二次電池の各製造工程での、正面斜め上からの様子を示したものである。   Next, an example of the arrangement method of the nonwoven fabric 7 in the case of manufacturing the flat nonaqueous electrolyte secondary battery having the structure shown in FIG. 2 will be described with reference to FIGS. FIG. 3 to FIG. 5 show the appearance of the flat non-aqueous electrolyte secondary battery from obliquely above the front in each manufacturing process.

まず、図3に示すように、巻回電極体10の負極に係る負極集電体52を、封口板1の内面に接触させるかまたは溶接する。   First, as shown in FIG. 3, the negative electrode current collector 52 relating to the negative electrode of the wound electrode body 10 is brought into contact with or welded to the inner surface of the sealing plate 1.

次に、図4に示すように、不織布7を負極集電体52の上側に配置する。なお、図4では、封口板1の底面部(図4中での底面部)よりも図中横方向の長さが長い不織布7を用い、該不織布7を、左右両端を封口板1の側壁に沿って上側に折りつつ配置しているが、例えば、不織布7に、封口板1の底面部よりも横方向の長さが短い不織布を用い、左右両端を折らずに配置してもよい。また、不織布7に、封口板の底面部よりも横方向の長さが短く、かつ図中下方向の長さが封口板1の底面部よりも長い不織布を使用し、左右両端は折らずに、図中下側のみ封口板1の側壁に沿って上側に折りつつ配置してもよい。更に、不織布7に、封口板1の底面部よりも横方向の長さが長く、かつ図中下方向の長さも封口板1の底面部よりも長い不織布を使用し、左右両端および図中下側の3辺を封口板1の側壁に沿って上側に折りつつ配置しても構わない。   Next, as shown in FIG. 4, the nonwoven fabric 7 is disposed on the upper side of the negative electrode current collector 52. In FIG. 4, a nonwoven fabric 7 having a length in the lateral direction in the drawing is longer than the bottom surface portion (bottom surface portion in FIG. 4) of the sealing plate 1. However, for example, a nonwoven fabric having a shorter lateral length than the bottom surface of the sealing plate 1 may be used for the nonwoven fabric 7 and the left and right ends may be disposed without folding. Further, the nonwoven fabric 7 is made of a nonwoven fabric having a lateral length shorter than the bottom surface portion of the sealing plate and having a lower length in the figure longer than the bottom surface portion of the sealing plate 1, and the right and left ends are not folded. Only the lower side in the figure may be arranged while being folded upward along the side wall of the sealing plate 1. Furthermore, the nonwoven fabric 7 is made of a nonwoven fabric having a lateral length longer than the bottom surface portion of the sealing plate 1 and a lower length in the figure than the bottom surface portion of the sealing plate 1. The three sides may be arranged while being folded upward along the side wall of the sealing plate 1.

次に、図5に示すように、巻回電極体10を不織布7上に載せる。その後、非水電解液を入れ、続いて、封口板1の外周にガスケットを配置し、外装缶を被せた後封止して電池を作製する。なお、前記の通り、巻回電極体10の正極集電体32の露出部は、外装缶の内面に接触させるだけでもよく、外装缶の内面に溶接してもよい。   Next, as shown in FIG. 5, the wound electrode body 10 is placed on the nonwoven fabric 7. Thereafter, a nonaqueous electrolytic solution is added, and subsequently, a gasket is disposed on the outer periphery of the sealing plate 1, covered with an outer can, and then sealed to produce a battery. As described above, the exposed portion of the positive electrode current collector 32 of the wound electrode body 10 may be brought into contact with the inner surface of the outer can or welded to the inner surface of the outer can.

図3から図5では、封口板1内に巻回電極体10および不織布7を配置して電池を作製する例を示したが、外装缶内に巻回電極体および不織布を配置して電池を作製してもよい。   3 to 5 show an example in which the wound electrode body 10 and the nonwoven fabric 7 are disposed in the sealing plate 1 to produce a battery. However, the wound electrode body and the nonwoven fabric are disposed in an outer can so that the battery is It may be produced.

また、図2から図5では、不織布7を、封口板1側の負極集電体52の露出部の内側に配置した例を示しているが、不織布7を配置する箇所は、電池内の正極と負極との対向する箇所以外であれば特に制限されない。   2 to 5 show an example in which the nonwoven fabric 7 is arranged inside the exposed portion of the negative electrode current collector 52 on the sealing plate 1 side, the place where the nonwoven fabric 7 is arranged is the positive electrode in the battery. There is no particular limitation as long as it is other than a portion where the negative electrode and the negative electrode face each other.

なお、不織布による非水電解液の保持機能をより有効に発揮させる観点からは、不織布を、比較的圧力がかかり難い電池側壁の内側に配置することが好ましい。電池側壁の内側に不織布を配置する場合には、例えば、図3から図5で示したように、不織布7の大きさを封口板1の底面よりも大きくしておき、不織布7の1辺〜3辺を封口板1の側壁に沿って折る方法を採用してもよく、また、封口板の底面などには不織布は配置せず、電池側壁の内面にのみ不織布を配置するようにしてもよい。   In addition, it is preferable to arrange | position a nonwoven fabric inside the battery side wall from which a pressure is comparatively hard to apply from a viewpoint of exhibiting the nonaqueous electrolyte retention function by a nonwoven fabric more effectively. When arranging a nonwoven fabric inside the battery side wall, for example, as shown in FIGS. 3 to 5, the size of the nonwoven fabric 7 is made larger than the bottom surface of the sealing plate 1, A method of folding three sides along the side wall of the sealing plate 1 may be adopted, and the non-woven fabric may not be arranged on the bottom surface of the sealing plate, but the non-woven fabric may be arranged only on the inner surface of the battery side wall. .

他方、例えば、巻回電極体における負極集電体の露出部や正極集電体の露出部を、封口板の内面や外装缶の内面に溶接せずに接触させるだけの場合、例えば、電池の使用中に電池内でガスが発生し、電池の厚みが僅かに膨れたときには、巻回電極体の負極や正極と、負極端子を兼ねる封口板や正極端子を兼ねる外装缶との接触が不十分となり、電気的接続が損なわれることもある。このような場合には、図3から図5に示したように、不織布7を、封口板1の底面に平行乃至略平行に、負極集電体52の露出部の内側に挟むようにして配置したり、外装缶の底面に平行乃至略平行に、正極集電体の露出部の内側に挟むようにして配置したりすることが好ましい。   On the other hand, for example, when the exposed portion of the negative electrode current collector or the exposed portion of the positive electrode current collector in the wound electrode body is merely contacted without being welded to the inner surface of the sealing plate or the inner surface of the outer can, When gas is generated in the battery during use and the thickness of the battery expands slightly, the contact between the negative electrode and positive electrode of the wound electrode body and the sealing plate that also functions as the negative electrode terminal and the outer can that also functions as the positive electrode terminal is insufficient. Thus, the electrical connection may be lost. In such a case, as shown in FIGS. 3 to 5, the non-woven fabric 7 may be disposed so as to be sandwiched between the exposed portions of the negative electrode current collector 52 in parallel or substantially parallel to the bottom surface of the sealing plate 1. In addition, it is preferable to dispose them so as to be sandwiched inside the exposed portion of the positive electrode current collector in parallel or substantially parallel to the bottom surface of the outer can.

このように配置された不織布は、電池の封止時に、巻回電極体と共に封口板と外装缶とに挟持されて圧縮されるが、電池内のガス発生などにより電池が膨れ、封口板底面−外装缶底面間の距離が大きくなると、不織布が膨れて元のサイズに戻ろうとする。そして、膨れた不織布によって負極集電体の露出部が封口板の内面に押し付けられたり、正極集電体の露出部が外装缶の内面に押し付けられたりするようになることから、巻回電極体の負極と封口板との電気的接続、および正極と外装缶との電気的接続が良好に維持される。   When the battery is sealed, the nonwoven fabric arranged in this way is sandwiched between the sealing electrode and the outer can together with the wound electrode body and compressed, but the battery expands due to gas generation in the battery, and the bottom surface of the sealing plate- When the distance between the outer can bottoms increases, the nonwoven fabric swells and tries to return to its original size. The exposed portion of the negative electrode current collector is pressed against the inner surface of the sealing plate by the swollen nonwoven fabric, or the exposed portion of the positive electrode current collector is pressed against the inner surface of the outer can. The electrical connection between the negative electrode and the sealing plate and the electrical connection between the positive electrode and the outer can can be maintained well.

電池内に配置する不織布の素材としては特に制限は無く、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、ポリメチルペンテン(TPX)などのポリオレフィン;ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)などのポリエステル;など、非水電解液二次電池の電池内部材(例えばセパレータ)の素材として公知の各種樹脂が挙げられる。   There is no restriction | limiting in particular as a raw material of the nonwoven fabric arrange | positioned in a battery, For example, polyolefin, such as polyethylene (PE), polypropylene (PP), and polymethylpentene (TPX); Polyethylene terephthalate (PET), polybutylene terephthalate (PBT), etc. Various known resins can be used as the material for the battery inner member (for example, separator) of the non-aqueous electrolyte secondary battery.

また、不織布の空隙率は、非水電解液の保持機能をより良好にする観点から、50%以上であることが好ましく、70%以上であることがより好ましい。なお、不織布の空隙率があまり大きすぎると、例えば、電池に膨れが生じた場合の不織布の膨れ(サイズの回復)の程度が小さくなることがあり、その場合、前記の負極集電体の露出部や正極集電体の露出部を封口板内面や外装缶内面に押し付ける作用が小さくなることから、不織布の空隙率は、95%以下であることが好ましく、90%以下であることがより好ましい。   Further, the porosity of the nonwoven fabric is preferably 50% or more, and more preferably 70% or more, from the viewpoint of making the holding function of the non-aqueous electrolyte better. In addition, if the porosity of the nonwoven fabric is too large, for example, the degree of swelling (recovery of size) of the nonwoven fabric when the battery is swollen may be reduced. In this case, the exposure of the negative electrode current collector may be reduced. The porosity of the nonwoven fabric is preferably 95% or less, and more preferably 90% or less, because the action of pressing the exposed portion of the portion and the positive electrode current collector against the inner surface of the sealing plate or the inner surface of the outer can is reduced. .

なお、本明細書でいう不織布の空隙率は、不織布の見かけの体積と、不織布の質量と不織布の構成繊維の比重とから求められる不織布の構成繊維の体積との比を、百分率で表した値である。   In addition, the porosity of the nonwoven fabric referred to in the present specification is a value representing the ratio of the apparent volume of the nonwoven fabric and the volume of the nonwoven fabric constituent fiber obtained from the mass of the nonwoven fabric and the specific gravity of the constituent fiber of the nonwoven fabric as a percentage. It is.

また、不織布の厚みは、非水電解液保持機能をより良好にする観点から、100μm以上であることが好ましく、150μm以上であることがより好ましい。なお、不織布が厚すぎると、電池内での不織布の占有体積が大きくなりすぎて、電池容量の低下を引き起こすことがあるため、不織布の厚みは、500μm以下であることが好ましく、400μm以下であることがより好ましい。   In addition, the thickness of the nonwoven fabric is preferably 100 μm or more, and more preferably 150 μm or more, from the viewpoint of making the nonaqueous electrolyte holding function better. If the nonwoven fabric is too thick, the occupied volume of the nonwoven fabric in the battery becomes too large, which may cause a decrease in battery capacity. Therefore, the thickness of the nonwoven fabric is preferably 500 μm or less, and is 400 μm or less. It is more preferable.

本発明の扁平形非水電解液二次電池に係る正極は、特に制限は無く、従来公知の非水電解液二次電池で使用されている正極、すなわち、例えば、正極活物質、導電助剤、バインダなどを含有する正極合剤を成形したものなどを用いることができる。   The positive electrode according to the flat nonaqueous electrolyte secondary battery of the present invention is not particularly limited, and is a positive electrode used in a conventionally known nonaqueous electrolyte secondary battery, that is, for example, a positive electrode active material, a conductive additive. In addition, a positive electrode mixture containing a binder or the like can be used.

正極活物質としては、LiCoO、LiNiO、LiMnO、LiCoNi1−y、LiCo1−y、LiNi1−y、LiMnNiCo1−y−z、LiMn、LiMn2−yなどのリチウム遷移金属複合酸化物などが挙げられる(ただし、前記の各リチウム遷移金属複合酸化物において、Mは、Mg、Mn、Fe、Co、Ni、Cu、Zn、AlおよびCrからなる群から選ばれる少なくとも1種の金属元素であり、0≦x≦1.1、0<y<1.0、2.0≦z≦2.2である。)。これらの正極活物質は1種単独で使用してもよく、2種以上を併用しても構わない。 Examples of the positive electrode active material include Li x CoO 2 , Li x NiO 2 , Li x MnO 2 , Li x Co y Ni 1-y O 2 , Li x Co y M 1-y O 2 , and Li x Ni 1-y M 2. y O 2, Li x Mn y Ni z Co 1-y-z O 2, Li x Mn 2 O 4, etc. Li x Mn lithium transition metal composite oxides, such as 2-y M y O 4 and the like (provided that In the above lithium transition metal composite oxides, M is at least one metal element selected from the group consisting of Mg, Mn, Fe, Co, Ni, Cu, Zn, Al and Cr, and 0 ≦ x ≦ 1.1, 0 <y <1.0, 2.0 ≦ z ≦ 2.2.) These positive electrode active materials may be used individually by 1 type, and may use 2 or more types together.

導電助剤としては、例えば、カーボンブラック、鱗片状黒鉛、ケッチェンブラック、アセチレンブラック、繊維状炭素などが挙げられる。また、バインダとしては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、カルボキシメチルセルロース、スチレンブタジエンラバーなどが挙げられる。   Examples of the conductive assistant include carbon black, scaly graphite, ketjen black, acetylene black, and fibrous carbon. Examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), carboxymethyl cellulose, and styrene butadiene rubber.

正極は、例えば、正極活物質と導電助剤とバインダとを混合して得られる正極合剤を水または有機溶剤に分散させて正極合剤含有ペーストを調製し(この場合、バインダは予め水または溶剤に溶解または分散させておき、それを正極活物質などと混合して正極合剤含有ペーストを調製してもよい)、その正極合剤含有ペーストを金属箔、エキスパンドメタル、平織り金網などからなる集電体の片面または両面に塗布し、乾燥した後、加圧成形することによって正極合剤層を形成して作製される。ただし、正極の作製方法は、前記例示の方法のみに限られることなく、他の方法によってもよい。   For the positive electrode, for example, a positive electrode mixture obtained by mixing a positive electrode active material, a conductive additive, and a binder is dispersed in water or an organic solvent to prepare a positive electrode mixture-containing paste (in this case, the binder is preliminarily mixed with water or It may be dissolved or dispersed in a solvent and mixed with a positive electrode active material to prepare a positive electrode mixture-containing paste), and the positive electrode mixture-containing paste is made of metal foil, expanded metal, plain weave metal mesh, etc. It is manufactured by forming a positive electrode mixture layer by applying it to one or both sides of a current collector, drying it, and then press-molding it. However, the method for manufacturing the positive electrode is not limited to the above-described method, and may be another method.

正極の組成としては、例えば、正極を構成する正極合剤100質量%中、正極活物質を75〜90質量%、導電助剤を5〜20質量%、バインダを3〜15質量%とすることが好ましい。また、正極合剤層の厚みは、例えば、30〜200μmであることが好ましい。   As a composition of the positive electrode, for example, in 100% by mass of the positive electrode mixture constituting the positive electrode, the positive electrode active material is 75 to 90% by mass, the conductive additive is 5 to 20% by mass, and the binder is 3 to 15% by mass. Is preferred. Moreover, it is preferable that the thickness of a positive mix layer is 30-200 micrometers, for example.

正極の集電体の素材としては、アルミニウムやアルミニウム合金が好ましい。また、集電体の厚みは、例えば、8〜20μmであることが好ましい。   The material for the current collector of the positive electrode is preferably aluminum or an aluminum alloy. Moreover, it is preferable that the thickness of a collector is 8-20 micrometers, for example.

本発明の電池に係る負極としては、活物質に、リチウム、リチウム合金、リチウムイオンを吸蔵放出可能な炭素材料、チタン酸リチウムなどを有する負極が挙げられる。   Examples of the negative electrode according to the battery of the present invention include a negative electrode having lithium, a lithium alloy, a carbon material capable of occluding and releasing lithium ions, lithium titanate, and the like as an active material.

負極活物質に用い得るリチウム合金としては、例えば、リチウム−アルミニウム、リチウム−ガリウムなどのリチウムと可逆的に合金化するリチウム合金が挙げられ、リチウム含有量が、例えば1〜15原子%であることが好ましい。また、負極活物質に用い得る炭素材料としては、例えば、人造黒鉛、天然黒鉛、低結晶性カーボン、コークス、無煙炭などが挙げられる。   Examples of the lithium alloy that can be used for the negative electrode active material include lithium alloys that reversibly alloy with lithium, such as lithium-aluminum and lithium-gallium, and the lithium content is, for example, 1 to 15 atomic%. Is preferred. Examples of the carbon material that can be used for the negative electrode active material include artificial graphite, natural graphite, low crystalline carbon, coke, and anthracite.

負極活物質に用い得るチタン酸リチウムとしては、一般式LiTiで表され、xとyがそれぞれ、0.8≦x≦1.4、1.6≦y≦2.2の化学量論数を持つチタン酸リチウムが好ましく、特にx=1.33、y=1.67の化学量論数を持つチタン酸リチウムが好ましい。前記一般式LiTiで表されるチタン酸リチウムは、例えば、酸化チタンとリチウム化合物とを760〜1100℃で熱処理することによって得ることができる。前記酸化チタンとしては、アナターゼ型、ルチル型のいずれも使用可能であり、リチウム化合物としては、例えば、水酸化リチウム、炭酸リチウム、酸化リチウムなどが用いられる。 The lithium titanate that can be used for the negative electrode active material is represented by the general formula Li x Ti y O 4 , and x and y are 0.8 ≦ x ≦ 1.4 and 1.6 ≦ y ≦ 2.2, respectively. Lithium titanate having a stoichiometric number is preferable, and lithium titanate having a stoichiometric number of x = 1.33 and y = 1.67 is particularly preferable. The lithium titanate represented by the general formula Li x Ti y O 4 can be obtained, for example, by heat-treating titanium oxide and a lithium compound at 760 to 1100 ° C. As the titanium oxide, either anatase type or rutile type can be used, and examples of the lithium compound include lithium hydroxide, lithium carbonate, and lithium oxide.

負極は、負極活物質がリチウムやリチウム合金の場合は、リチウムやリチウム合金を金属網などの集電体に圧着することで、集電体の表面にリチウムやリチウム合金などからなる負極剤層を形成して得ることができる。他方、負極活物質として炭素材料やチタン酸リチウムを用いる場合は、例えば、負極活物質としての炭素材料やチタン酸リチウムとバインダ、更には必要に応じて導電助剤を混合して得られる負極合剤を水または有機溶剤に分散させて負極合剤含有ペーストを調製し(この場合、バインダは予め水または溶剤に溶解または分散させておき、それを負極活物質などと混合して負極合剤含有ペーストを調製してもよい)、その負極合剤含有ペーストを金属箔、エキスパンドメタル、平織り金網などからなる集電体に塗布し、乾燥した後、加圧成形することによって負極合剤層を形成して負極を作製することができる。ただし、負極の作製方法は、前記例示の方法のみに限られることなく、他の方法によってもよい。   When the negative electrode active material is lithium or a lithium alloy, the negative electrode is formed by bonding the lithium or lithium alloy to a current collector such as a metal network to form a negative electrode layer made of lithium or lithium alloy on the surface of the current collector. Can be obtained. On the other hand, when a carbon material or lithium titanate is used as the negative electrode active material, for example, a negative electrode composite obtained by mixing a carbon material or lithium titanate with a binder as the negative electrode active material and, if necessary, a conductive additive. The negative electrode mixture-containing paste is prepared by dispersing the agent in water or an organic solvent (in this case, the binder is previously dissolved or dispersed in water or solvent, and mixed with the negative electrode active material or the like to contain the negative electrode mixture) A paste may be prepared), and the negative electrode mixture-containing paste is applied to a current collector made of metal foil, expanded metal, plain woven wire mesh, etc., dried, and then pressed to form a negative electrode mixture layer Thus, a negative electrode can be manufactured. However, the manufacturing method of the negative electrode is not limited to the above-described method, and other methods may be used.

なお、負極に係るバインダおよび導電助剤としては、正極に用い得るものとして先に例示した各種バインダおよび導電助剤を用いることができる。   In addition, as a binder and conductive support agent which concern on a negative electrode, the various binders and conductive support agent which were illustrated previously as what can be used for a positive electrode can be used.

負極活物質に炭素材料を用いる場合の負極の組成としては、例えば、負極を構成する負極合剤100質量%中、炭素材料を80〜95質量%、バインダを3〜15質量%とすることが好ましく、また、導電助剤を併用する場合には、導電助剤を5〜20質量%とすることが好ましい。他方、負極活物質にチタン酸リチウムを用いる場合の負極の組成としては、例えば、負極を構成する負極合剤100質量%中、チタン酸リチウムを75〜90質量%、バインダを3〜15質量%とすることが好ましく、また、導電助剤を併用する場合には、導電助剤を5〜20質量%とすることが好ましい。   The composition of the negative electrode when a carbon material is used as the negative electrode active material is, for example, that the carbon material is 80 to 95% by mass and the binder is 3 to 15% by mass in 100% by mass of the negative electrode mixture constituting the negative electrode. Moreover, when using together a conductive support agent, it is preferable that a conductive support agent shall be 5-20 mass%. On the other hand, the composition of the negative electrode when lithium titanate is used as the negative electrode active material is, for example, 75 to 90% by mass of lithium titanate and 3 to 15% by mass of the binder in 100% by mass of the negative electrode mixture constituting the negative electrode. In addition, when a conductive auxiliary is used in combination, the conductive auxiliary is preferably 5 to 20% by mass.

負極における負極剤層または負極合剤層の厚みは、例えば、40〜200μmであることが好ましい。   The thickness of the negative electrode agent layer or the negative electrode mixture layer in the negative electrode is preferably 40 to 200 μm, for example.

負極の集電体の素材としては、銅や銅合金が好ましい。また、集電体の厚みは、例えば、5〜25μmであることが好ましい。   The material for the current collector of the negative electrode is preferably copper or a copper alloy. Moreover, it is preferable that the thickness of a collector is 5-25 micrometers, for example.

セパレータとしては、微孔性樹脂フィルム、樹脂不織布のいずれも用いることができる。その材質としては、例えば、PE、PP、TPXなどのポリオレフィンのほか、耐熱用として、テトラフルオロエチレン−パーフルオロアルコキシエチレン共重合体(PFA)などのフッ素樹脂;ポリフェニレンサルファイド(PPS);ポリエーテルエーテルケトン(PEEK);PBTなどが挙げられる。また、前記材質の微孔性樹脂フィルムと樹脂不織布とを複数積層したり、微孔性樹脂フィルム同士や樹脂不織布同士を複数積層することによってセパレータを構成してもよい。セパレータの厚みは、例えば、5〜25μmであることが好ましく、また、空孔率は、例えば、30〜70%であることが好ましい。   As the separator, either a microporous resin film or a resin nonwoven fabric can be used. Examples of the material include polyolefins such as PE, PP and TPX, and fluorine resins such as tetrafluoroethylene-perfluoroalkoxyethylene copolymer (PFA) for heat resistance; polyphenylene sulfide (PPS); polyether ether Ketone (PEEK); PBT etc. are mentioned. Moreover, you may comprise a separator by laminating | stacking two or more microporous resin films and resin nonwoven fabrics of the said material, or laminating | stacking two or more microporous resin films or resin nonwoven fabrics. The thickness of the separator is preferably, for example, 5 to 25 μm, and the porosity is preferably, for example, 30 to 70%.

本発明の扁平形非水電解液二次電池は、前記正極、前記負極および前記セパレータにより構成される電極体の反応面積、すなわち、前記正極と前記負極とが対向する面積が、電池の平面視での面積(平面視での投影面積)よりも大きいものである。従来の扁平形電池では、例えば、図1に示すように、1層のみからなる正極と1層のみからなる負極とを、セパレータを介して積層した電極体を用いるのが主流であり、この場合、電極体の反応面積は電池の平面視での面積よりも小さくなる。これに対し、本発明の扁平形非水電解液二次電池では、前記のように、電極体の反応面積を電池の平面視での面積よりも大きくして、電池の負荷特性向上を図っている。   The flat nonaqueous electrolyte secondary battery of the present invention has a reaction area of an electrode body constituted by the positive electrode, the negative electrode, and the separator, that is, an area where the positive electrode and the negative electrode face each other, as viewed from above the battery. It is larger than the area (projected area in plan view). In a conventional flat battery, for example, as shown in FIG. 1, it is mainstream to use an electrode body in which a positive electrode consisting of only one layer and a negative electrode consisting of only one layer are stacked via a separator. The reaction area of the electrode body is smaller than the area of the battery in plan view. In contrast, in the flat non-aqueous electrolyte secondary battery of the present invention, as described above, the reaction area of the electrode body is made larger than the area of the battery in plan view to improve the load characteristics of the battery. Yes.

電極体の反応面積を電池の平面視での面積よりも大きくする方法としては、2枚以上の正極と2枚以上の負極とを、セパレータを介して積層した積層電極体を用いる方法や、図2に示すように、正極と負極とをセパレータを介して積層した積層体を、渦巻状に巻回し、必要に応じて押しつぶすなどして扁平状にした巻回電極体を用いる方法などが挙げられる。これらの中でも、電極体の作製がより容易であり、電池の生産性をより高め得ることから、巻回電極体(扁平状の巻回電極体)を使用することがより好ましい。   As a method for making the reaction area of the electrode body larger than the area in the plan view of the battery, a method using a laminated electrode body in which two or more positive electrodes and two or more negative electrodes are laminated via a separator, As shown in FIG. 2, a method of using a spirally wound electrode body in which a laminated body in which a positive electrode and a negative electrode are laminated via a separator is spirally wound and crushed as necessary is used. . Among these, it is more preferable to use a wound electrode body (flat wound electrode body) because the production of the electrode body is easier and the productivity of the battery can be further increased.

なお、巻回電極体を使用する場合には、前記の通り、最外周側の正極において、集電体の端部とその近傍を、正極合剤層を形成しないようにして露出させ、かかる集電体の露出部を、正極端子を兼ねる外装缶と溶接したり接触させたりすることで、正極と外装缶とを電気的に接続することができる。また、巻回電極体を使用する場合には、最外周側の負極において、集電体の端部とその近傍を、負極剤層や負極合剤層を形成しないようにして露出させ、かかる集電体の露出部を、負極端子を兼ねる封口板と溶接したり接触させたりすることで、負極と封口板とを電気的に接続することができる。   In the case of using a wound electrode body, as described above, in the positive electrode on the outermost peripheral side, the end portion of the current collector and the vicinity thereof are exposed without forming a positive electrode mixture layer. The positive electrode and the outer can can be electrically connected by welding or contacting the exposed portion of the electric body with the outer can serving also as the positive electrode terminal. Also, when using a wound electrode body, in the negative electrode on the outermost peripheral side, the end portion of the current collector and the vicinity thereof are exposed so as not to form a negative electrode agent layer or a negative electrode mixture layer. The negative electrode and the sealing plate can be electrically connected by welding or contacting the exposed portion of the electric body with the sealing plate also serving as the negative electrode terminal.

他方、積層電極体を使用する場合には、正極端子を兼ねる外装缶側の最外層の電極を正極とし、該正極の外装缶側には正極合剤層を形成せずに集電体を露出させておき、この集電体の露出部と外装缶とを溶接したり接触させたりすることで、正極と外装缶とを電気的に接続することができる。また、積層電極体を使用する場合には、負極端子を兼ねる封口板側の最外層の電極を負極とし、該負極の封口板側には負極剤層や負極合剤層を形成せずに集電体を露出させておき、この集電体の露出部と封口板とを溶接したり接触させたりすることで、負極と封口板とを電気的に接続することができる。   On the other hand, when using a laminated electrode body, the outermost electrode on the outer can side that also serves as the positive electrode terminal is used as the positive electrode, and the current collector is exposed without forming a positive electrode mixture layer on the outer can side of the positive electrode. In addition, the positive electrode and the outer can can be electrically connected by welding or bringing the exposed portion of the current collector into contact with the outer can. When a laminated electrode body is used, the outermost electrode on the side of the sealing plate that also serves as the negative electrode terminal is used as the negative electrode, and the negative electrode layer or the negative electrode mixture layer is not formed on the sealing plate side of the negative electrode. The negative electrode and the sealing plate can be electrically connected by exposing the electric body and welding or contacting the exposed portion of the current collector and the sealing plate.

前記の他にも、電極の集電体と電気的に接続された集電タブを、外装缶や封口板の内面に溶接することで、電極と外部端子を兼ねる外装缶や封口板とを電気的に接続することも可能である。   In addition to the above, the current collecting tab electrically connected to the current collector of the electrode is welded to the inner surface of the outer can and the sealing plate, thereby electrically connecting the outer can and the sealing plate serving both as the electrode and the external terminal. It is also possible to connect them.

ガスケットの素材としては、例えば、PP;ナイロン(ナイロン6、ナイロン66など);などの他、耐熱用に、PFAなどのフッ素樹脂;ポリフェニレンエーテル(PPE);ポリスルフォン(PSF);ポリアリレート(PAR);ポリエーテルスルフォン(PES);PPS;PEEK;などが例示できる。   As a material of the gasket, for example, PP; nylon (nylon 6, nylon 66, etc.); etc., for heat resistance, fluorine resin such as PFA; polyphenylene ether (PPE); polysulfone (PSF); polyarylate (PAR) ); Polyethersulfone (PES); PPS; PEEK;

非水電解液としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートなどの環状炭酸エステル;ジメチルカーボネート、ジエチルカーボネート(DEC)、メチルエチルカーボネートなどの鎖状炭酸エステル;1,2−ジメトキシエタン、ジグライム(ジエチレングリコールメチルエーテル)、トリグライム(トリエチレングリコールジメチルエーテル)、テトラグライム(テトラエチレングリコールジメチルエーテル)、1,2−ジメトキシエタン、1,2−ジエトキシメタン、テトラヒドロフランなどのエーテル;などの有機溶媒に、電解質(リチウム塩)を0.3〜2.0mol/L程度の濃度に溶解させることによって調製した電解液を用いることができる。前記の有機溶媒は、それぞれ1種単独で用いてもよく、2種以上を併用しても構わない。   Examples of the non-aqueous electrolyte include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate, butylene carbonate, and vinylene carbonate; chain carbonates such as dimethyl carbonate, diethyl carbonate (DEC), and methyl ethyl carbonate; Ethers such as 2-dimethoxyethane, diglyme (diethylene glycol methyl ether), triglyme (triethylene glycol dimethyl ether), tetraglyme (tetraethylene glycol dimethyl ether), 1,2-dimethoxyethane, 1,2-diethoxymethane, tetrahydrofuran; An electrolytic solution prepared by dissolving an electrolyte (lithium salt) in a concentration of about 0.3 to 2.0 mol / L in the organic solvent can be used. The above organic solvents may be used alone or in combination of two or more.

前記電解質としては、例えば、LiBF、LiPF、LiAsF、LiSbF、LiClO、LiCFSO、LiCSO、LiN(CFSO、LiN(CSOなどのリチウム塩が挙げられる。 Examples of the electrolyte include LiBF 4 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiClO 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) Lithium salts such as 2 are mentioned.

なお、LiBF、LiPF、LiAsF、LiSbF、LiCFSO、LiCSO、LiN(CFSO、LiN(CSOなどのフッ素原子含有リチウム塩を用いて調製した非水電解液を電池に用いる場合には、前記の通り、電池製造時などにおいて不可避的に混入する水分によってフッ化水素が生成し、これが電池の耐漏液性を損なうことがあるため、その周縁部が、封口板上面から一段下がった肩部を有しており、更に、該肩部から下方に延びて、その下端縁で終わる壁部を有する形状の封口板を用いて電池を構成することが好ましい。 In addition, fluorine atom content such as LiBF 4 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2, etc. When a non-aqueous electrolyte prepared using a lithium salt is used in a battery, as described above, hydrogen fluoride is generated by moisture inevitably mixed during battery manufacture, and this impairs the leakage resistance of the battery. Therefore, the peripheral edge of the sealing plate has a shoulder portion that is stepped down from the upper surface of the sealing plate, and further has a wall portion that extends downward from the shoulder portion and ends at the lower edge. It is preferable to constitute a battery by using.

本発明の扁平形非水電解液二次電池の平面形状には特に制限は無く、従来公知の扁平形電池の主流である円形の他、角形(四角形)などの多角形状でもよいが、特に扁平状に押しつぶした形状の巻回電極体を用いる場合、電池内容積をより有効に使用でき、電池体積当たりの容量をより高め易いことから、角形であることが好ましい。なお、本明細書でいう電池の平面形状としての角形などの多角形には、その角が切り落とされた形状や、角を曲線にした形状も包含される。   The flat shape of the flat non-aqueous electrolyte secondary battery of the present invention is not particularly limited, and may be a polygonal shape such as a square (quadrangle) in addition to a circular shape that is the mainstream of conventionally known flat batteries, but is particularly flat. In the case of using a wound electrode body that has been crushed into a shape, the internal volume of the battery can be used more effectively, and the capacity per battery volume can be increased more easily, so that it is preferably rectangular. In addition, the polygon such as a square as the planar shape of the battery in this specification includes a shape in which the corner is cut off and a shape in which the corner is curved.

なお、本発明の扁平形非水電解液二次電池について、図2から図5を用いて説明したが、図2から図5は、本発明の電池の一例を示すものに過ぎず、本発明の電池はこれらの図面に示されたものに限定される訳ではない。また、図2から図5は、本発明の電池の構造を模式的に示したものに過ぎず、各構成要素のサイズは必ずしも正確ではない。   Although the flat nonaqueous electrolyte secondary battery of the present invention has been described with reference to FIGS. 2 to 5, FIGS. 2 to 5 show only an example of the battery of the present invention. The batteries are not limited to those shown in these drawings. Further, FIGS. 2 to 5 are only schematic views showing the structure of the battery of the present invention, and the size of each component is not necessarily accurate.

本発明の扁平形非水電解液二次電池は、長期にわたって充放電を繰り返しても放電特性が良好に維持され、また負荷特性にも優れることから、例えば、時計(通信型)や携帯電話用ヘッドセット用の電源など、長期にわたって連続使用され、かつ比較的大きな電流での放電が要求される用途を始めとして、従来の扁平形非水電解液二次電池が適用されている各種用途に好ましく適用することができる。   The flat nonaqueous electrolyte secondary battery of the present invention maintains good discharge characteristics even after repeated charge and discharge over a long period of time, and also has excellent load characteristics. For example, for a watch (communication type) or mobile phone Suitable for various applications where conventional flat type non-aqueous electrolyte secondary batteries are applied, including applications that require continuous discharge over a long period of time, such as power supplies for headsets, and that require a relatively large current discharge Can be applied.

以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は、本発明を制限するものではない。なお、以下の実施例などにおいて、「部」とあるのは質量部を意味するものとする。   Hereinafter, the present invention will be described in detail based on examples. However, the following examples do not limit the present invention. In the following examples and the like, “parts” means parts by mass.

実施例1
この実施例1について、正極の作製、負極の作製、電解液の調製、電池の組み立ての順に説明する。
Example 1
Example 1 will be described in the order of positive electrode preparation, negative electrode preparation, electrolyte solution preparation, and battery assembly.

<正極の作製>
正極活物質としてLiCoOを、導電助剤としてカーボンブラックを、バインダとしてPVDFを、それぞれ用いて正極を作製した。まず、LiCoO:93部とカーボンブラック:3部とを混合し、得られた混合物とPVDF:4部を予めN−メチル−2−ピロリドン(NMP)に溶解させておいたバインダ溶液とを混合して正極合剤含有ペーストを調製した。得られた正極合剤含有ペーストを厚さ15μmのアルミニウム箔からなる正極集電体の両面にアプリケータにより塗布し(ただし、完成後の正極をセパレータを介して負極と重ね合わせて渦巻状に巻回して巻回構造の電極体としたときに最外周部となる部分には、正極合剤含有ペーストを塗布せず、正極集電体の両面に正極集電体の露出部分が残るようにしておいた)、乾燥して、正極合剤層を形成し、その後、ロールプレスし、所定の大きさに切断して、帯状の正極を得た。この正極の幅は15mm、厚みは120μmであり、また、巻回したときに最外周部となる部分の正極集電体の露出部分の長さは20mmである。
<Preparation of positive electrode>
A positive electrode was prepared using LiCoO 2 as a positive electrode active material, carbon black as a conductive additive, and PVDF as a binder. First, 93 parts of LiCoO 2 and 3 parts of carbon black were mixed, and the resulting mixture was mixed with a binder solution in which 4 parts of PVDF were previously dissolved in N-methyl-2-pyrrolidone (NMP). Thus, a positive electrode mixture-containing paste was prepared. The obtained positive electrode mixture-containing paste was applied to both surfaces of a positive electrode current collector made of an aluminum foil having a thickness of 15 μm by an applicator (however, the completed positive electrode was superposed on the negative electrode via a separator and wound in a spiral shape). Do not apply the positive electrode mixture-containing paste to the part that will be the outermost periphery when turning into an electrode body with a wound structure, so that the exposed portion of the positive electrode current collector remains on both sides of the positive electrode current collector And dried to form a positive electrode mixture layer, and then roll-pressed and cut into a predetermined size to obtain a strip-shaped positive electrode. The positive electrode has a width of 15 mm and a thickness of 120 μm, and the length of the exposed portion of the positive electrode current collector that is the outermost peripheral portion when wound is 20 mm.

<負極の作製>
負極活物質として黒鉛を、バインダとしてPVDFを、それぞれ用いて負極を作製した。前記黒鉛:94部とPVDF:6部と予めNMPに溶解させておいたバインダ溶液とを混合して、負極合剤含有ペーストを調製した。得られた負極合剤含有ペーストを厚さが10μmの銅箔からなる負極集電体の両面にアプリケータにより塗布し(ただし、完成後の負極をセパレータを介して前記正極と重ね合わせて渦巻状に巻回して巻回構造の電極体としたときに最外周部となる部分には、負極合剤含有ペーストを塗布せず、負極集電体の両面に負極集電体の露出部分が残るようにしておいた)、乾燥して、負極合剤層を形成し、その後、ロールプレスし、所定の大きさに切断してシート状の負極を得た。この負極の幅は16mm、厚みは140μmであり、また、巻回したときに最外周部となる部分の負極集電体の露出部分の長さは20mmである。
<Production of negative electrode>
A negative electrode was prepared using graphite as the negative electrode active material and PVDF as the binder. The graphite: 94 parts, PVDF: 6 parts, and a binder solution previously dissolved in NMP were mixed to prepare a negative electrode mixture-containing paste. The obtained negative electrode mixture-containing paste was applied to both surfaces of a negative electrode current collector made of a copper foil having a thickness of 10 μm by an applicator (however, the completed negative electrode was overlapped with the positive electrode via a separator to form a spiral shape) No negative electrode mixture-containing paste is applied to the outermost portion when the electrode body is wound to form an electrode body with a wound structure, so that exposed portions of the negative electrode current collector remain on both sides of the negative electrode current collector And dried to form a negative electrode mixture layer, and then roll-pressed and cut into a predetermined size to obtain a sheet-like negative electrode. The negative electrode has a width of 16 mm and a thickness of 140 μm, and the length of the exposed portion of the negative electrode current collector at the outermost peripheral portion when wound is 20 mm.

<電解液の調製>
LiPFをエチレンカーボネートとメチルエチルカーボネートとの体積比1:2の混合溶媒に1.2mol/l濃度で溶解することによって電解液を調製した。
<Preparation of electrolyte>
An electrolytic solution was prepared by dissolving LiPF 6 in a mixed solvent of ethylene carbonate and methyl ethyl carbonate in a volume ratio of 1: 2 at a concentration of 1.2 mol / l.

<電池の組み立て>
前記の正極と前記の負極とを両者の間に厚み16μmの微孔性PEフィルムからなるセパレータが介在するようにして、渦巻状に巻回し、コイン形電池に仕上げやすいように扁平状に押圧して巻回電極体を作製した。封口板と外装缶とガスケットとからなる密閉空間内に、この巻回電極体と300μlの非水電解液と不織布とを、図3から図5に示す手順で収容して、図2に示す構造で、一片の長さ24.5mm、厚み3mmの角形の扁平形非水電解液二次電池を作製した。
<Battery assembly>
The positive electrode and the negative electrode are spirally wound so that a separator made of a microporous PE film having a thickness of 16 μm is interposed between the positive electrode and the negative electrode, and pressed into a flat shape so that a coin-type battery can be easily finished. Thus, a wound electrode body was produced. The wound electrode body, 300 μl of non-aqueous electrolyte, and non-woven fabric are accommodated in a sealed space composed of a sealing plate, an outer can, and a gasket according to the procedure shown in FIGS. Thus, a rectangular flat nonaqueous electrolyte secondary battery having a length of 24.5 mm and a thickness of 3 mm was produced.

詳細には、まず、図3に示すように、巻回電極体10の負極に係る負極集電体52を、封口板1の内面に溶接した。次に、図4に示すように、長さ22mm、幅20mmで、空隙率80%、厚み350μmのPP製不織布を負極集電体52の上側に配置した。ここで、図4に示すように、不織布は幅方向の左右を封口板1の側壁に沿って、2mmずつ上側に折りつつ配置している。次に、図5に示すように巻回電極体10を不織布7の上に乗せた後、正極集電体32を外装缶2の内面に溶接した。その後、非水電解液を入れ、続いて、封口板1の外周にPP製のガスケットを配置し、外装缶を被せた後、封止して電池を作製した。   Specifically, first, as shown in FIG. 3, the negative electrode current collector 52 related to the negative electrode of the wound electrode body 10 was welded to the inner surface of the sealing plate 1. Next, as shown in FIG. 4, a PP nonwoven fabric having a length of 22 mm, a width of 20 mm, a porosity of 80%, and a thickness of 350 μm was placed on the upper side of the negative electrode current collector 52. Here, as shown in FIG. 4, the non-woven fabric is arranged by folding the left and right sides in the width direction upward by 2 mm along the side wall of the sealing plate 1. Next, as shown in FIG. 5, the wound electrode body 10 was placed on the nonwoven fabric 7, and then the positive electrode current collector 32 was welded to the inner surface of the outer can 2. Thereafter, a non-aqueous electrolyte was added, and subsequently, a PP gasket was disposed on the outer periphery of the sealing plate 1 and covered with an outer can, and then sealed to prepare a battery.

ここで、実施例1の扁平形非水電解液二次電池を、図2を参照しつつ説明すると、正極3はLiCoOを正極活物質とする正極合剤を集電体に塗布してシート状にしたものからなり、負極5は黒鉛を負極活物質とする負極合剤を集電体に塗布してシート状にしたものからなり、これらの正極3と負極5との間には微孔性PEフィルムからなるセパレータ4が介在して電極体を構成しており、負極集電体の露出部の上側とセパレータの間には不織布7が配置され、この電極体と非水電解液(図示しない)とが、封口板1、外装缶2およびガスケット6で形成された密閉空間内に収容されている。そして、電池は、その組み立て時において、外装缶2の開口端部を内方に締め付けてガスケット6を封口板1と外装缶2とに圧接させることによって、外装缶2の開口部を封口して、電池内部が密閉状態にされている。 Here, the flat nonaqueous electrolyte secondary battery of Example 1 will be described with reference to FIG. 2. The positive electrode 3 is a sheet obtained by applying a positive electrode mixture containing LiCoO 2 as a positive electrode active material to a current collector. The negative electrode 5 is formed by applying a negative electrode mixture containing graphite as a negative electrode active material to a current collector to form a sheet. Between these positive electrodes 3 and 5, there are micropores. A separator 4 made of a conductive PE film is interposed to constitute an electrode body, and a nonwoven fabric 7 is disposed between the upper side of the exposed portion of the negative electrode current collector and the separator, and this electrode body and a non-aqueous electrolyte (illustrated) Is not accommodated in the sealed space formed by the sealing plate 1, the outer can 2, and the gasket 6. The battery seals the opening of the outer can 2 by tightening the opening end of the outer can 2 inward and pressing the gasket 6 against the sealing plate 1 and the outer can 2 at the time of assembly. The inside of the battery is sealed.

比較例1
不織布を用いなかった以外は、実施例1と同様にして扁平形非水電解液二次電池を作製した。なお、比較例1の扁平形非水電解液二次電池では、封口時に一部の非水電解液が漏れ出た。
Comparative Example 1
A flat nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the non-woven fabric was not used. In the flat type nonaqueous electrolyte secondary battery of Comparative Example 1, a part of the nonaqueous electrolyte leaked during sealing.

比較例2
不織布を用いず、電池内に入れる非水電解液の量を250μlに変更した以外は、実施例1と同様にして扁平形非水電解液二次電池を作製した。
Comparative Example 2
A flat nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the amount of the nonaqueous electrolyte placed in the battery was changed to 250 μl without using a non-woven fabric.

実施例1および比較例1、2の電池について、充放電500サイクル目の容量維持率を測定した。結果を表1に示す。電池の充放電では、100mAの定電流で電圧が4.2Vに達するまで充電し、続いて100mAの定電流で終止電圧は3.0Vまで放電させる一連の操作を1サイクルとした。また、500サイクル目の容量維持率は下記式により算出した。
容量維持率(%)=(500サイクル目の放電容量/1サイクル目の放電容量)
×100
For the batteries of Example 1 and Comparative Examples 1 and 2, the capacity retention rate at the 500th charge / discharge cycle was measured. The results are shown in Table 1. In the charging / discharging of the battery, a series of operations in which charging was performed at a constant current of 100 mA until the voltage reached 4.2 V, and then discharging was performed at a constant current of 100 mA to a final voltage of 3.0 V was defined as one cycle. The capacity maintenance rate at the 500th cycle was calculated by the following formula.
Capacity maintenance rate (%) = (discharge capacity at 500th cycle / discharge capacity at the first cycle)
× 100

Figure 2009043424
Figure 2009043424

表1に示すように、実施例1の扁平形非水電解質二次電池では、比較例1の扁平形非水電解質二次電池よりも、500サイクル目の容量維持率が優れていることが確認できた。この結果は、実施例の電池では、不織布によって電解液を保持し得たため、電池内への電解液量を増加することができたことによるものと考えられる。   As shown in Table 1, it was confirmed that the flat nonaqueous electrolyte secondary battery of Example 1 had a capacity retention rate at the 500th cycle superior to that of the flat nonaqueous electrolyte secondary battery of Comparative Example 1. did it. This result is considered to be due to the fact that in the battery of the example, the electrolyte solution could be held by the nonwoven fabric, so that the amount of the electrolyte solution into the battery could be increased.

また、実施例1の扁平形非水電解液二次電池(前記の容量維持率測定に用いていないもの)について、20℃で10mAの連続放電と、20℃で1mAの連続放電をそれぞれ行い、終止電圧3.0Vとした場合の放電容量を測定し、次式により求められる「1mAでの放電容量に対する10mAでの放電容量の割合」で実施例1の電池の負荷特性を評価した。なお、負荷特性評価時の電池の充電は、10mAでの連続放電、1mAでの連続放電のいずれの場合も、20℃で、5mAの電流で4.2Vに達するまでの定電流充電と、その後4.2Vでの定電圧充電とを、充電時間の合計が48時間となる条件で行った。
負荷特性(%)=100×(10mAでの放電容量)/(1mAでの放電容量)
For the flat nonaqueous electrolyte secondary battery of Example 1 (not used for the capacity retention rate measurement), a continuous discharge of 10 mA at 20 ° C. and a continuous discharge of 1 mA at 20 ° C. were performed. The discharge capacity when the final voltage was 3.0 V was measured, and the load characteristics of the battery of Example 1 were evaluated by “the ratio of the discharge capacity at 10 mA to the discharge capacity at 1 mA” obtained by the following formula. In addition, the charging of the battery at the time of load characteristic evaluation is constant current charging until reaching 4.2V at a current of 5 mA at 20 ° C. in both cases of continuous discharge at 10 mA and continuous discharge at 1 mA, and thereafter The constant voltage charging at 4.2 V was performed under the condition that the total charging time was 48 hours.
Load characteristics (%) = 100 × (discharge capacity at 10 mA) / (discharge capacity at 1 mA)

前記試験の結果、実施例1の電池の負荷特性は98%であり、優れた負荷特性を有していることが確認できた。   As a result of the test, the load characteristic of the battery of Example 1 was 98%, and it was confirmed that the battery had excellent load characteristics.

従来の扁平形非水電解液二次電池の要部断面模式図である。It is a principal part cross-sectional schematic diagram of the conventional flat nonaqueous electrolyte secondary battery. 本発明の扁平形非水電解液二次電池の一例を示す要部断面模式図である。It is a principal part cross-section schematic diagram which shows an example of the flat nonaqueous electrolyte secondary battery of this invention. 本発明の扁平形非水電解液二次電池の製造工程の一例を説明するための模式図である。It is a schematic diagram for demonstrating an example of the manufacturing process of the flat nonaqueous electrolyte secondary battery of this invention. 図3に示す工程の次工程を説明するための模式図である。It is a schematic diagram for demonstrating the next process of the process shown in FIG. 図4に示す工程の次工程を説明するための模式図である。It is a schematic diagram for demonstrating the next process of the process shown in FIG.

符号の説明Explanation of symbols

1 封口板
2 外装缶
3 正極
4 セパレータ
5 負極
6 ガスケット
7 不織布
10 巻回電極体
DESCRIPTION OF SYMBOLS 1 Sealing plate 2 Exterior can 3 Positive electrode 4 Separator 5 Negative electrode 6 Gasket 7 Non-woven fabric 10 Winding electrode body

Claims (4)

外装缶の開口部にガスケットを介して封口板が嵌合され、かつ前記外装缶の開口端部が内方に締め付けられることにより形成されてなる密閉空間内に、正極、負極およびセパレータを有する電極体と、非水電解液とを有する扁平形非水電解液二次電池であって、
前記電極体の反応面積が、電池の平面視での面積よりも大きく、
少なくとも、前記密閉空間内の正極と負極との対向していない箇所に、不織布を有することを特徴とする扁平形非水電解液二次電池。
An electrode having a positive electrode, a negative electrode, and a separator in a sealed space formed by fitting a sealing plate to the opening of the outer can through a gasket and tightening the opening end of the outer can inward. A flat non-aqueous electrolyte secondary battery having a body and a non-aqueous electrolyte,
The reaction area of the electrode body is larger than the area of the battery in plan view,
A flat nonaqueous electrolyte secondary battery comprising a non-woven fabric at least at a location where the positive electrode and the negative electrode are not opposed to each other in the sealed space.
電極体が、正極と負極とがセパレータを介して積層された積層体を渦巻状に巻回してなる巻回電極体である請求項1に記載の扁平形非水電解液二次電池。   The flat non-aqueous electrolyte secondary battery according to claim 1, wherein the electrode body is a wound electrode body obtained by winding a laminated body in which a positive electrode and a negative electrode are laminated via a separator in a spiral shape. 平面視で角形である請求項1または2に記載の扁平形非水電解液二次電池。   The flat nonaqueous electrolyte secondary battery according to claim 1, which is square in a plan view. 不織布の空隙率が50〜95%である請求項1〜3のいずれかに記載の扁平形非水電解液二次電池。
The flat nonaqueous electrolyte secondary battery according to any one of claims 1 to 3, wherein the non-woven fabric has a porosity of 50 to 95%.
JP2007204001A 2007-08-06 2007-08-06 Flat shape nonaqueous electrolytic liquid secondary battery Withdrawn JP2009043424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007204001A JP2009043424A (en) 2007-08-06 2007-08-06 Flat shape nonaqueous electrolytic liquid secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007204001A JP2009043424A (en) 2007-08-06 2007-08-06 Flat shape nonaqueous electrolytic liquid secondary battery

Publications (1)

Publication Number Publication Date
JP2009043424A true JP2009043424A (en) 2009-02-26

Family

ID=40443978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007204001A Withdrawn JP2009043424A (en) 2007-08-06 2007-08-06 Flat shape nonaqueous electrolytic liquid secondary battery

Country Status (1)

Country Link
JP (1) JP2009043424A (en)

Similar Documents

Publication Publication Date Title
JP5735096B2 (en) Non-aqueous secondary battery manufacturing method and non-aqueous secondary battery manufacturing method
JP2011081931A (en) Lithium ion secondary battery
KR101363438B1 (en) Flat nonaqueous secondary battery
JP2008071612A (en) Flat nonaqueous electrolyte secondary battery
JP2011159491A (en) Flat nonaqueous secondary battery
JP6081745B2 (en) Flat non-aqueous secondary battery
CN106063021A (en) Rolled electrode set and nonaqueous-electrolyte battery
JP4836185B2 (en) Non-aqueous electrolyte secondary battery
JP2012089402A (en) Lithium ion secondary battery
JP5348720B2 (en) Flat non-aqueous secondary battery
JP2012053987A (en) Battery and manufacturing method therefor
JP2012064366A (en) Flat-shaped nonaqueous secondary battery and manufacturing method thereof
JP2014049371A (en) Flat type nonaqueous secondary battery and manufacturing method thereof
JP6283288B2 (en) Flat non-aqueous secondary battery
JP5562655B2 (en) Flat non-aqueous secondary battery
JP5377249B2 (en) Flat non-aqueous secondary battery
JP2012064313A (en) Battery
JP2011129330A (en) Flat type nonaqueous secondary battery
JP5528304B2 (en) Flat non-aqueous secondary battery
JP6240265B2 (en) Method for manufacturing flat non-aqueous secondary battery
JP5528305B2 (en) Flat non-aqueous secondary battery
JP5583419B2 (en) Lithium ion secondary battery
JP2009043423A (en) Flat shape nonaqueous electrolytic liquid secondary battery
JP5562654B2 (en) Flat non-aqueous secondary battery
JP2011154784A (en) Flat nonaqueous secondary battery

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20101102