JP2009041599A - 車両用動力伝達装置の制御装置 - Google Patents

車両用動力伝達装置の制御装置 Download PDF

Info

Publication number
JP2009041599A
JP2009041599A JP2007204730A JP2007204730A JP2009041599A JP 2009041599 A JP2009041599 A JP 2009041599A JP 2007204730 A JP2007204730 A JP 2007204730A JP 2007204730 A JP2007204730 A JP 2007204730A JP 2009041599 A JP2009041599 A JP 2009041599A
Authority
JP
Japan
Prior art keywords
shift
driving force
force source
speed
differential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007204730A
Other languages
English (en)
Inventor
Atsushi Tabata
淳 田端
Hiroyuki Shibata
寛之 柴田
Kenta Kumazaki
健太 熊▲崎▼
Toru Matsubara
亨 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007204730A priority Critical patent/JP2009041599A/ja
Publication of JP2009041599A publication Critical patent/JP2009041599A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Transmission Device (AREA)
  • Arrangement Of Transmissions (AREA)

Abstract

【課題】駆動力源と車両用動力伝達装置とによる駆動力源ブレーキトルクを、牽引時は非牽引時よりも大きく設定する車両用動力伝達装置の制御装置において、マニュアル操作時においても、運転者の希望にあった駆動力源ブレーキトルクを得ることができる車両用動力伝達装置の制御装置を提供する。
【解決手段】変速レンジまたは変速段における駆動力源ブレーキトルクを、低速変速レンジまたは変速段である程、非牽引時に比べ牽引時においてより大きく設定するので、牽引時の駆動力源ブレーキトルクと非牽引時の駆動力源ブレーキトルクとの差が低速変速レンジまたは変速段になるほど大きくなる。これより、運転者が変速レンジまたは変速段を低速変速レンジまたは変速段に切り換える程、大きな駆動力源ブレーキトルクを得ることができ、牽引時においてより大きな駆動力源ブレーキトルクが必要な時でも、速やかにこれに対応することができる。
【選択図】図6

Description

本発明は、車両用動力伝達装置の制御装置に関し、特に、駆動力源ブレーキトルクの制御に関するものである。
駆動源と車両用動力伝達装置とによる駆動力源ブレーキトルクを、牽引時は非牽引時に比べて大きく設定する車両用動力伝達装置の制御装置が知られている。特許文献1に記載の車両の減速度制御装置がそれに対応する。特許文献1においては、車両の実際の走行状態から車両重量を算出して牽引の有無を判断し、その牽引の有無に応じて車両停止時に減速度パターンを変更するため、牽引の有無による車両重量の相違に拘わらず、運転者の減速要求に合致した減速性能が得られる技術が開示されている。
特開2006−348840号公報
ところで、特許文献1においては、自動変速状態での走行時において駆動力源ブレーキトルクを好適に設定することが開示されているが、任意のブレーキ力が必要なマニュアル操作時において、より運転者の希望にあった操作設定方法について記載されていない。牽引時においては、フットブレーキに比べて駆動力源ブレーキが好まれるため、マニュアル操作によって運転者の希望にあった駆動源ブレーキトルクを好適に発生させることで、駆動力源ブレーキの操作性を向上させることが望まれていた。
本発明は、以上の事情を背景として為されたものであり、その目的とするところは、駆動力源と車両用動力伝達装置とによる駆動力源ブレーキトルクを、牽引時は非牽引時よりも大きく設定する車両用動力伝達装置の制御装置において、マニュアル操作時においても、運転者の希望にあった駆動力源ブレーキトルクを得ることができる車両用動力伝達装置の制御装置を提供することにある。
上記目的を達成するための、請求項1にかかる発明の要旨とするところは、(a)駆動力源と車両用動力伝達装置とによる駆動力源ブレーキトルクを、牽引時は非牽引時よりも大きく設定する駆動力源ブレーキ制御手段を備える車両用動力伝達装置の制御装置であって、(b)運転者の操作に応じて任意の変速レンジまたは変速段に切換できるシフト操作装置を備え、(c)前記駆動力源ブレーキ制御手段は、前記駆動力源ブレーキトルクを、低速変速レンジまたは低速変速段である程、非牽引時に比べ牽引時においてより大きく設定することを特徴とする。
また、上記目的を達成するための請求項2にかかる発明の要旨とするところは、(a)運転者の操作に応じて任意の変速レンジまたは変速段に切換できるシフト操作装置を備える車両用動力伝達装置の制御装置であって、(b)牽引時は非牽引時に比べて、選択できる前記変速レンジまたは変速段の数をより多く設定することを特徴とする。
また、上記目的を達成するための請求項3にかかる発明の要旨とするところは、(a)運転者の操作に応じて任意の変速レンジまたは変速段に切換可能なシフト操作装置を備える車両用動力伝達装置の制御装置であって、(b)牽引時は非牽引時に比べて、前記変速レンジまたは変速段に応じて選択できる駆動力源ブレーキトルクをより細かく設定したことを特徴とする。
また、上記目的を達成するための請求項4にかかる発明の要旨とするところは、(a)運転者の操作に応じて任意の変速レンジまたは変速段に切換できるシフト操作装置を備える車両用動力伝達装置の制御装置であって、(b)牽引時は非牽引時に比べて、選択できる変速レンジまたは変速段による最大駆動力源ブレーキトルクをより大きく設定したことを特徴とする。
また、請求項5にかかる発明の要旨とするとことは、請求項1乃至4のいずれか1つの車両用動力伝達装置の制御装置において、前記動力伝達装置は、差動機構の回転要素に連結された電動機の運転状態が制御されることにより、入力軸回転速度と出力軸回転速度との差動状態が制御される電気式差動部と動力伝達経路の一部を構成する変速部とを備えることを特徴とする。
また、請求項6にかかる発明の要旨とするとことは、請求項5の車両用動力伝達装置の制御装置において、前記変速部は有段式の変速部であることを特徴とする。
また、請求項7にかかる発明の要旨とするとことは、請求項5の車両用動力伝達装置の制御装置において、前記電気式差動部は、遊星歯車装置と2つの電動機により構成され、前記電動機の運転状態が制御されることにより、無段変速部として作動することを特徴とする。
また、請求項8にかかる発明の要旨とするとことは、請求項5の車両用動力伝達装置の制御装置において、回生が可能な電動機が前記変速部の上流側に備えられていることを特徴とする。
請求項1にかかる発明の車両用動力伝達装置の制御装置によれば、前記駆動力源ブレーキ制御手段は、前記駆動力源ブレーキトルクを、低速変速レンジまたは低速変速段である程、非牽引時に比べ牽引時においてより大きく設定するので、牽引時の駆動力源ブレーキトルクと非牽引時の駆動力源ブレーキトルクとの差が低速変速レンジまたは低速変速段になるほど大きくなる。これにより、運転者が変速レンジまたは変速段を低速変速レンジまたは低速変速段に切り換える程、より大きな駆動力源ブレーキトルクを得ることができ、牽引時においてより大きな駆動力源ブレーキトルクが必要な時でも、速やかにこれに対応することができる。すなわち、牽引時において、低速変速レンジまたは低速変速段を選択することでより大きな駆動力源ブレーキトルクが得られるため、運転者の減速意思を好適に反映することができる。
また、請求項2にかかる発明の車両用動力伝達装置の制御装置によれば、牽引時は非牽引時に比べて、選択できる前記変速レンジまたは変速段の数をより多く設定するため、牽引時は非牽引時に比べて選択できる変速レンジまたは変速段による駆動力源ブレーキトルクをより細かく設定することができる。これにより、運転者がマニュアル操作によってより細かく駆動力源ブレーキトルクを得ることができ、牽引時において細かな減速度が必要な時も、これに速やかに対応することができる。このように、運転者のマニュアル操作によって、より細かな駆動力源ブレーキトルクを設定できるため、運転者の減速意思を好適に反映することができる。
また、請求項3にかかる発明の車両用動力伝達装置の制御装置によれば、牽引時は非牽引時に比べて、前記変速レンジまたは変速段に応じて選択できる駆動力源ブレーキトルクをより細かく設定したため、牽引時において運転者がマニュアル操作によってより細かく駆動力源ブレーキトルクを得ることができ、牽引でより細かな減速度が必要なときも、これに速やかに対応することができる。このように、運転者のマニュアル操作によって、より細かな駆動力源ブレーキトルクを設定できるため、運転者の減速意思を好適に反映することができる。
また、請求項4にかかる発明の車両用動力伝達装置の制御装置によれば、牽引時は非牽引時に比べて、選択できる変速レンジまたは変速段による最大駆動力源ブレーキトルクをより大きく設定したため、牽引時においてより大きな駆動力源ブレーキトルクが必要な時でも、速やかにこれに対応することができる。このように、牽引時において、最大駆動力源ブレーキトルクをより大きくすることでより大きな駆動力源ブレーキトルクが得られるため、運転者の減速意思を好適に反映することができる。
また、請求項5にかかる発明の車両用動力伝達装置の制御装置によれば、前記車両用動力伝達装置は、差動機構の回転要素に連結された電動機の運転状態が制御されることにより、入力軸回転速度と出力軸回転速度との差動状態が制御される電気式差動部と動力伝達経路の一部を構成する変速部とを備えることため、電気式差動部および変速部を好適に制御することでより大きな駆動力源ブレーキトルクを得ることができる、或いは、より細かな駆動力源ブレーキトルクを得ることができる。
また、請求項6にかかる発明の車両用動力伝達装置の制御装置によれば、前記変速部は有段式の変速部であるため、有段式の変速部を低速変速レンジまたは低速変速段側にマニュアル操作するに従って、より大きな駆動力源ブレーキトルクを得ることができる、或いは、より細かな駆動力源ブレーキトルクを得ることができる。
また、請求項7にかかる発明の車両用動力伝達装置の制御装置によれば、前記電気式差動部は、遊星歯車装置と2つの電動機により構成され、前記電動機の運転状態が制御されることにより、無段変速部として作動するため、電動機を好適に制御して、滑らかな駆動トルクを得ることができる。また、電動機を制御することにより、無段変速機構を有段式の変速機構として機能させることもでき、牽引時において無段変速機構を有段に制御した状態で、低速変速レンジまたは低速変速段側にマニュアル操作するに従って、より大きな駆動力源ブレーキトルクを得ることができる、或いは、より細かな駆動力源ブレーキトルクを得ることができる。
また、請求項8にかかる発明の車両用動力伝達装置の制御装置によれば、回生が可能な電動機が前記変速部の上流側に備えられているため、電動機の回生トルクを好適に制御することで、より大きな駆動力源ブレーキトルクを得ることができる、或いは、より細かな駆動力源ブレーキトルクを得ることができ、しかも変速部の上流側に位置することで、制御の複雑化が回避される。
以下、本発明の実施例を図面を参照しつつ詳細に説明する。
図1は、本発明の制御装置が適用されるハイブリッド車両用動力伝達装置の一部を構成する変速機構10を説明する骨子図である。図1において、変速機構10は車体に取り付けられる非回転部材としてのトランスミッションケース12(以下、「ケース12」という)内において共通の軸心上に配設された入力回転部材として機能する入力軸14と、この入力軸14に直接に或いは図示しない脈動吸収ダンパー(振動減衰装置)を介して直接に連結された差動部11と、その差動部11と駆動輪38(図6参照)との間の動力伝達経路で伝達部材(差動機構の出力軸)18を介して直列に連結されている有段式の変速部として機能する自動変速部20と、この自動変速部20に連結されている出力回転部材として機能する出力軸22とを直列に備えている。この変速機構10は、車両において縦置きされるFR(フロントエンジン・リヤドライブ)型車両に好適に用いられるものであり、入力軸14に直接に或いは図示しない脈動吸収ダンパーを介して直接的に連結された走行用の駆動力源として例えばガソリンエンジンやディーゼルエンジン等の内燃機関であるエンジン8と一対の駆動輪38(図6参照)との間に設けられて、エンジン8からの動力を動力伝達経路の一部を構成する差動歯車装置(終減速機)36および一対の車軸等を順次介して左右の駆動輪38へ伝達する。なお、本実施例のエンジン8が本発明の駆動力源に対応しており、変速機構10が本発明の車両用動力伝達装置に対応しており、差動部11が本発明の電気式差動部および無段変速部に対応している。
このように、本実施例の変速機構10においてはエンジン8と差動部11とは直結されている。この直結にはトルクコンバータやフルードカップリング等の流体式伝動装置を介することなく連結されているということであり、例えば上記脈動吸収ダンパーなどを介する連結はこの直結に含まれる。なお、変速機構10はその軸心に対して対称的に構成されているため、図1の骨子図においてはその下側が省略されている。
第1電動機M1の運転状態が制御されることにより差動状態が制御されるという点で電気式差動部と言うことができる差動部11は、第1電動機M1と、入力軸14に入力されたエンジン8の出力を機械的に分配する遊星歯車装置である機械的機構であってエンジン8の出力を第1電動機M1および伝達部材18に分配する差動機構としての動力分配機構16と、第2電動機M2とを、備えている。また、第2電動機M2は、伝達部材18と一体的に回転するように接続されているが、第2電動機M2は前記差動部11乃至駆動輪38の間の何れの箇所に接続されていていも構わない。また、第1電動機M1および第2電動機M2は発電機能をも有する所謂モータジェネレータであるが、第1電動機M1は反力を発生させるためのジェネレータ(発電)機能を少なくとも備え、第2電動機M2は走行用の駆動力源として駆動力を出力するためのモータ(電動機)機能を少なくとも備える。なお、本実施例の第1電動機M1が本発明の差動機構の回転要素に連結された電動機に対応しており、第2電動機M2が本発明の動力伝達経路上に連結された回生可能な電動機に対応している。
本発明の差動機構に対応する動力分配機構16は、例えば「0.418」程度の所定のギヤ比ρ0を有するシングルピニオン型の差動部遊星歯車装置24と、切換クラッチC0および切換ブレーキB0とを主体的に備えている。この差動部遊星歯車装置24は、差動部サンギヤS0、差動部遊星歯車P0、その差動部遊星歯車P0を自転および公転可能に支持する差動部キャリヤCA0、差動部遊星歯車P0を介して差動部サンギヤS0と噛み合う差動部リングギヤR0を回転要素(要素)として備えている。差動部サンギヤS0の歯数をZS0、差動部リングギヤR0の歯数をZR0とすると、上記ギヤ比ρ0はZS0/ZR0である。なお、本実施例の差動部遊星歯車装置24が、本発明の遊星歯車装置に対応している。
この動力分配機構16においては、差動部キャリヤCA0は入力軸14すなわちエンジン8に連結され、差動部サンギヤS0は第1電動機M1に連結され、差動部リングギヤR0は伝達部材18に連結されている。また、切換ブレーキB0は差動部サンギヤS0とケース12との間に設けられ、切換クラッチC0は差動部サンギヤS0と差動部キャリヤCA0との間に設けられている。それら切換クラッチC0および切換ブレーキB0が解放されると、動力分配機構16は差動部遊星歯車装置24の3要素である差動部サンギヤS0、差動部キャリヤCA0、差動部リングギヤR0がそれぞれ相互に相対回転可能とされて差動作用が作動可能なすなわち差動作用が働く差動状態とされることから、エンジン8の出力が第1電動機M1と伝達部材18とに分配されるとともに、分配されたエンジン8の出力の一部で第1電動機M1から発生させられた電気エネルギで蓄電されたり第2電動機M2が回転駆動されるので、差動部11(動力分配機構16)は電気的な差動装置として機能させられて例えば差動部11は所謂無段変速状態(電気的CVT状態)とされて、エンジン8の所定回転に拘わらず伝達部材18の回転が連続的に変化させられる。すなわち、動力分配機構16に動力伝達可能に連結された第1電動機M1および第2電動機M2の運転状態が制御されることによりエンジン8に連結された入力軸14の回転速度と出力軸として機能する伝達部材18の回転速度との差動状態が制御される。なお、伝達部材18の回転速度N18は、第2電動機M2近傍に設けられている回転方向をも検出可能なレゾルバ19によって検出される。なお、本実施例の伝達部材18が、本発明の差動機構の出力軸に対応している。
この状態で、上記切換クラッチC0或いは切換ブレーキB0が係合させられると動力分配機構16は前記差動作用をしないすなわち差動作用が不能な非差動状態とされる。具体的には、上記切換クラッチC0が係合させられて差動部サンギヤS0と差動部キャリヤCA0とが一体的に係合させられると、動力分配機構16は差動部遊星歯車装置24の3要素である差動部サンギヤS0、差動部キャリヤCA0、差動部リングギヤR0が共に回転すなわち一体回転させられるロック状態とされて前記差動作用が不能な非差動状態とされることから、差動部11も非差動状態とされる。また、エンジン8の回転と伝達部材18の回転速度とが一致する状態となるので、差動部11(動力分配機構16)は変速比γ0が「1」に固定された変速機として機能する定変速状態すなわち有段変速状態とされる。次いで、上記切換クラッチC0に替えて切換ブレーキB0が係合させられて差動部サンギヤS0がケース12に連結させられると、動力分配機構16は差動部サンギヤS0が非回転状態とさせられるロック状態とされて前記差動作用が不能な非差動状態とされることから、差動部11も非差動状態とされる。また、差動部リングギヤR0は差動部キャリヤCA0よりも増速回転されるので、動力分配機構16は増速機構として機能するものであり、差動部11(動力分配機構16)は変速比γ0が「1」より小さい値例えば0.7程度に固定された増速変速機として機能する定変速状態すなわち有段変速状態とされる。
このように、本実施例では、上記切換クラッチC0および切換ブレーキB0は、差動部11(動力分配機構16)の変速状態を差動状態すなわち非ロック状態と非差動状態すなわちロック状態とに、すなわち差動部11(動力分配機構16)を電気的な差動装置として作動可能な差動状態例えば変速比が連続的変化可能な無段変速機構として作動する電気的な無段変速作動可能な無段変速状態と、電気的な無段変速作動しない変速状態例えば無段変速機として作動させず無段変速作動を非作動として変速比変化を一定にロックするロック状態すなわち1または2種類以上の変速比の単段または複数段の変速機として作動する電気的な無段変速作動をしないすなわち電気的な無段変速作動不能な定変速状態(非差動状態)、換言すれば変速比が一定の1段または複数段の変速機として作動する定変速状態とに選択的に切換える差動状態切換装置として機能している。
変速機構10の動力伝達経路上に備えられて有段変速部(変速部)として機能する自動変速部20は、シングルピニオン型の第1遊星歯車装置26、シングルピニオン型の第2遊星歯車装置28、およびシングルピニオン型の第3遊星歯車装置30を備えている。第1遊星歯車装置26は、第1サンギヤS1、第1遊星歯車P1、その第1遊星歯車P1を自転および公転可能に支持する第1キャリヤCA1、第1遊星歯車P1を介して第1サンギヤS1と噛み合う第1リングギヤR1を備えており、例えば「0.562」程度の所定のギヤ比ρ1を有している。第2遊星歯車装置28は、第2サンギヤS2、第2遊星歯車P2、その第2遊星歯車P2を自転および公転可能に支持する第2キャリヤCA2、第2遊星歯車P2を介して第2サンギヤS2と噛み合う第2リングギヤR2を備えており、例えば「0.425」程度の所定のギヤ比ρ2を有している。第3遊星歯車装置30は、第3サンギヤS3、第3遊星歯車P3、その第3遊星歯車P3を自転および公転可能に支持する第3キャリヤCA3、第3遊星歯車P3を介して第3サンギヤS3と噛み合う第3リングギヤR3を備えており、例えば「0.421」程度の所定のギヤ比ρ3を有している。第1サンギヤS1の歯数をZS1、第1リングギヤR1の歯数をZR1、第2サンギヤS2の歯数をZS2、第2リングギヤR2の歯数をZR2、第3サンギヤS3の歯数をZS3、第3リングギヤR3の歯数をZR3とすると、上記ギヤ比ρ1はZS1/ZR1、上記ギヤ比ρ2はZS2/ZR2、上記ギヤ比ρ3はZS3/ZR3である。なお、自動変速部20が本発明の変速部(有段変速部)に対応している。
自動変速部20では、第1サンギヤS1と第2サンギヤS2とが一体的に連結されて第2クラッチC2を介して伝達部材18に選択的に連結されるとともに第1ブレーキB1を介してケース12に選択的に連結され、第1キャリヤCA1は第2ブレーキB2を介してケース12に選択的に連結され、第3リングギヤR3は第3ブレーキB3を介してケース12に選択的に連結され、第1リングギヤR1と第2キャリヤCA2と第3キャリヤCA3とが一体的に連結されて出力軸22に連結され、第2リングギヤR2と第3サンギヤS3とが一体的に連結されて第1クラッチC1を介して伝達部材18に選択的に連結されている。
このように、自動変速部20と伝達部材18(差動部11)とは自動変速部20の変速段を成立させるために用いられる第1クラッチC1または第2クラッチC2を介して選択的に連結されている。言い換えれば、第1クラッチC1および第2クラッチC2は、差動部の出力軸として機能する伝達部材18と自動変速部20との間すなわち差動部11(伝達部材18)と駆動輪38との間の動力伝達経路を、その動力伝達経路の動力伝達を可能とする動力伝達可能状態と、その動力伝達経路の動力伝達を遮断する動力伝達遮断状態とに選択的に切り換える切換装置として機能している。つまり、第1クラッチC1および第2クラッチC2の少なくとも一方が係合されることで上記動力伝達経路が動力伝達可能状態とされ、或いは第1クラッチC1および第2クラッチC2が解放されることで上記動力伝達経路が動力伝達遮断状態とされる。
前記切換クラッチC0、第1クラッチC1、第2クラッチC2、切換ブレーキB0、第1ブレーキB1、第2ブレーキB2、および第3ブレーキB3は従来の車両用有段式自動変速機においてよく用いられている油圧式摩擦係合装置であって、互いに重ねられた複数枚の摩擦板が油圧アクチュエータにより押圧される湿式多板型や、回転するドラムの外周面に巻き付けられた1本または2本のバンドの一端が油圧アクチュエータによって引き締められるバンドブレーキなどにより構成され、それが介装されている両側の部材を選択的に連結するためのものである。
以上のように構成された変速機構10では、例えば、図2の係合作動表に示されるように、前記切換クラッチC0、第1クラッチC1、第2クラッチC2、切換ブレーキB0、第1ブレーキB1、第2ブレーキB2、および第3ブレーキB3が選択的に係合作動させられることにより、第1速ギヤ段(第1変速段)乃至第5速ギヤ段(第5変速段)のいずれか或いは後進ギヤ段(後進変速段)或いはニュートラルが選択的に成立させられ、略等比的に変化する変速比γ(=入力軸回転速度NIN/出力軸回転速度NOUT)が各ギヤ段毎に得られるようになっている。特に、本実施例では動力分配機構16に切換クラッチC0および切換ブレーキB0が備えられており、切換クラッチC0および切換ブレーキB0の何れかが係合作動させられることによって、差動部11は前述した無段変速機として作動する無段変速状態に加え、変速比が一定の変速機として作動する定変速状態を構成することが可能とされている。したがって、変速機構10では、切換クラッチC0および切換ブレーキB0の何れかを係合作動させることで定変速状態とされた差動部11と自動変速部20とで有段変速機として作動する有段変速状態が構成され、切換クラッチC0および切換ブレーキB0の何れも係合作動させないことで無段変速状態とされた差動部11と自動変速部20とで電気的な無段変速機として作動する無段変速状態が構成される。言い換えれば、変速機構10は、切換クラッチC0および切換ブレーキB0の何れかを係合作動させることで有段変速状態に切り換えられ、切換クラッチC0および切換ブレーキB0の何れも係合作動させないことで無段変速状態に切り換えられる。また、差動部11も有段変速状態と無段変速状態とに切り換え可能な変速機であると言える。なお、出力軸回転速度NOUTは、出力軸22に設けられている回転速度センサ23によって検出される。この回転速度センサ23は、出力軸22の回転速度NOUTを検出するとともに出力軸22の回転方向をも検出可能となっており、出力軸22の回転方向に基づいて車両の進行方向を検出することができる。
例えば、変速機構10が有段変速機として機能する場合には、図2に示すように、切換クラッチC0、第1クラッチC1および第3ブレーキB3の係合により、変速比γ1が最大値例えば「3.357」程度である第1速ギヤ段が成立させられ、切換クラッチC0、第1クラッチC1および第2ブレーキB2の係合により、変速比γ2が第1速ギヤ段よりも小さい値例えば「2.180」程度である第2速ギヤ段が成立させられ、切換クラッチC0、第1クラッチC1および第1ブレーキB1の係合により、変速比γ3が第2速ギヤ段よりも小さい値例えば「1.424」程度である第3速ギヤ段が成立させられ、切換クラッチC0、第1クラッチC1および第2クラッチC2の係合により、変速比γ4が第3速ギヤ段よりも小さい値例えば「1.000」程度である第4速ギヤ段が成立させられ、第1クラッチC1、第2クラッチC2、および切換ブレーキB0の係合により、変速比γ5が第4速ギヤ段よりも小さい値例えば「0.705」程度である第5速ギヤ段が成立させられる。また、第2クラッチC2および第3ブレーキB3の係合により、変速比γRが第1速ギヤ段と第2速ギヤ段との間の値例えば「3.209」程度である後進ギヤ段が成立させられる。なお、ニュートラル「N」状態とする場合には、例えば全てのクラッチ及びブレーキC0、C1、C2、B0、B1、B2、B3が解放される。
しかし、変速機構10が無段変速機として機能する場合には、図2に示される係合表の切換クラッチC0および切換ブレーキB0が共に解放される。これにより、差動部11が無段変速機として機能し、それに直列の自動変速部20が有段変速機として機能することにより、自動変速部20の第1速、第2速、第3速、第4速の各ギヤ段に対しその自動変速部20に入力される回転速度すなわち伝達部材18の回転速度が無段的に変化させられて各ギヤ段は無段的な変速比幅が得られる。したがって、その各ギヤ段の間が無段的に連続変化可能な変速比となって変速機構10全体としてのトータル変速比(総合変速比)γTが無段階に得られるようになる。
図3は、無段変速部として機能する差動部11と有段変速部として機能する自動変速部20とから構成される変速機構10において、ギヤ段毎に連結状態が異なる各回転要素の回転速度の相対関係を直線上で表すことができる共線図を示している。この図3の共線図は、各遊星歯車装置24、26、28、30のギヤ比ρの関係を示す横軸と、相対的回転速度を示す縦軸とから成る二次元座標であり、3本の横線のうちの下側の横線X1が回転速度零を示し、上側の横線X2が回転速度「1.0」すなわち入力軸14に連結されたエンジン8の回転速度Nを示し、横線XGが伝達部材18の回転速度を示している。
また、差動部11を構成する動力分配機構16の3つの要素に対応する3本の縦線Y1、Y2、Y3は、左側から順に第2回転要素(第2要素)RE2に対応する差動部サンギヤS0、第1回転要素(第1要素)RE1に対応する差動部キャリヤCA0、第3回転要素(第3要素)RE3に対応する差動部リングギヤR0の相対回転速度を示すものであり、それらの間隔は差動部遊星歯車装置24のギヤ比ρ0に応じて定められている。さらに、自動変速部20の5本の縦線Y4、Y5、Y6、Y7、Y8は、左から順に、第4回転要素(第4要素)RE4に対応し且つ相互に連結された第1サンギヤS1および第2サンギヤS2を、第5回転要素(第5要素)RE5に対応する第1キャリヤCA1を、第6回転要素(第6要素)RE6に対応する第3リングギヤR3を、第7回転要素(第7要素)RE7に対応し且つ相互に連結された第1リングギヤR1、第2キャリヤCA2、第3キャリヤCA3を、第8回転要素(第8要素)RE8に対応し且つ相互に連結された第2リングギヤR2、第3サンギヤS3をそれぞれ表し、それらの間隔は第1、第2、第3遊星歯車装置26、28、30のギヤ比ρ1、ρ2、ρ3に応じてそれぞれ定められている。共線図の縦軸間の関係においてサンギヤとキャリヤとの間が「1」に対応する間隔とされるとキャリヤとリングギヤとの間が遊星歯車装置のギヤ比ρに対応する間隔とされる。すなわち、差動部11では縦線Y1とY2との縦線間が「1」に対応する間隔に設定され、縦線Y2とY3との間隔はギヤ比ρ0に対応する間隔に設定される。また、自動変速部20では各第1、第2、第3遊星歯車装置26、28、30毎にそのサンギヤとキャリヤとの間が「1」に対応する間隔に設定され、キャリヤとリングギヤとの間がρに対応する間隔に設定される。
上記図3の共線図を用いて表現すれば、本実施例の変速機構10は、動力分配機構16(差動部11)において、差動部遊星歯車装置24の第1回転要素RE1(差動部キャリヤCA0)が入力軸14すなわちエンジン8に連結されるとともに切換クラッチC0を介して第2回転要素(差動部サンギヤS0)RE2と選択的に連結され、第2回転要素RE2が第1電動機M1に連結されるとともに切換ブレーキB0を介してケース12に選択的に連結され、第3回転要素(差動部リングギヤR0)RE3が伝達部材18および第2電動機M2に連結されて、入力軸14の回転を伝達部材18を介して自動変速部(有段変速部)20へ伝達する(入力させる)ように構成されている。このとき、Y2とX2の交点を通る斜めの直線L0により差動部サンギヤS0の回転速度と差動部リングギヤR0の回転速度との関係が示される。
例えば、上記切換クラッチC0および切換ブレーキB0の解放により無段変速状態(差動状態)に切換えられたときは、第1電動機M1の回転速度を制御することによって直線L0と縦線Y1との交点で示される差動部サンギヤS0の回転が上昇或いは下降させられると、車速Vに拘束される差動部リングギヤR0の回転速度が略一定である場合には、直線L0と縦線Y2との交点で示される差動部キャリヤCA0の回転速度が上昇或いは下降させられる。また、切換クラッチC0の係合により差動部サンギヤS0と差動部キャリヤCA0とが連結されると、動力分配機構16は上記3回転要素が一体回転する非差動状態とされるので、直線L0は横線X2と一致させられ、エンジン回転速度Nと同じ回転で伝達部材18が回転させられる。或いは、切換ブレーキB0の係合によって差動部サンギヤS0の回転が停止させられると動力分配機構16は増速機構として機能する非差動状態とされるので、直線L0は図3に示す状態となり、その直線L0と縦線Y3との交点で示される差動部リングギヤR0すなわち伝達部材18の回転速度は、エンジン回転速度Nよりも増速された回転で自動変速部20へ入力される。
また、自動変速部20において第4回転要素RE4は第2クラッチC2を介して伝達部材18に選択的に連結されるとともに第1ブレーキB1を介してケース12に選択的に連結され、第5回転要素RE5は第2ブレーキB2を介してケース12に選択的に連結され、第6回転要素RE6は第3ブレーキB3を介してケース12に選択的に連結され、第7回転要素RE7は出力軸22に連結され、第8回転要素RE8は第1クラッチC1を介して伝達部材18に選択的に連結されている。
自動変速部20では、図3に示すように、第1クラッチC1と第3ブレーキB3とが係合させられることにより、第8回転要素RE8の回転速度を示す縦線Y8と横線X2との交点と第6回転要素RE6の回転速度を示す縦線Y6と横線X1との交点とを通る斜めの直線L1と、出力軸22と連結された第7回転要素RE7の回転速度を示す縦線Y7との交点で第1速の出力軸22の回転速度が示される。同様に、第1クラッチC1と第2ブレーキB2とが係合させられることにより決まる斜めの直線L2と出力軸22と連結された第7回転要素RE7の回転速度を示す縦線Y7との交点で第2速の出力軸22の回転速度が示され、第1クラッチC1と第1ブレーキB1とが係合させられることにより決まる斜めの直線L3と出力軸22と連結された第7回転要素RE7の回転速度を示す縦線Y7との交点で第3速の出力軸22の回転速度が示され、第1クラッチC1と第2クラッチC2とが係合させられることにより決まる水平な直線L4と出力軸22と連結された第7回転要素RE7の回転速度を示す縦線Y7との交点で第4速の出力軸22の回転速度が示される。上記第1速乃至第4速では、切換クラッチC0が係合させられている結果、エンジン回転速度Nと同じ回転速度で第8回転要素RE8に差動部11すなわち動力分配機構16からの動力が入力される。しかし、切換クラッチC0に替えて切換ブレーキB0が係合させられると、差動部11からの動力がエンジン回転速度Nよりも高い回転速度で入力されることから、第1クラッチC1、第2クラッチC2、および切換ブレーキB0が係合させられることにより決まる水平な直線L5と出力軸22と連結された第7回転要素RE7の回転速度を示す縦線Y7との交点で第5速の出力軸22の回転速度が示される。
図4は、本発明に係るハイブリッド車両用駆動装置の一部を構成する変速機構10を制御するための制御装置である電子制御装置40に入力される信号及びその電子制御装置40から出力される信号を例示している。この電子制御装置40は、CPU、ROM、RAM、及び入出力インターフェースなどから成る所謂マイクロコンピュータを含んで構成されており、RAMの一時記憶機能を利用しつつROMに予め記憶されたプログラムに従って信号処理を行うことによりエンジン8、第1電動機M1、第2電動機M2に関するハイブリッド駆動制御、自動変速部20の変速制御等の駆動制御を実行するものである。
電子制御装置40には、図4に示す各センサやスイッチなどから、エンジン水温TEMPを示す信号、変速レンジまたは変速段を表す信号、第1電動機M1の回転速度NM1および回転方向を表す信号、第2電動機M2の回転速度NM2および回転方向を表す信号、エンジン8の回転速度であるエンジン回転速度Nを表す信号、ギヤ比列設定値を示す信号、Mモード(手動変速走行モード)を指令する信号、エアコンの作動を示すエアコン信号、出力軸22の回転速度NOUTに対応する車速V並びに回転方向を表す信号、自動変速部20の作動油温を示す油温信号、サイドブレーキ操作を示す信号、フットブレーキ操作を示す信号、触媒温度を示す触媒温度信号、運転者の出力要求量に対応するアクセルペダルの操作量Accを示すアクセル開度信号、カム角信号、スノーモード設定を示すスノーモード設定信号、車両の前後加速度を示す加速度信号、オートクルーズ走行を示すオートクルーズ信号、車両の重量を示す車重信号、各車輪の車輪速を示す車輪速信号、エンジン8の空燃比A/Fを示す信号、スロットル弁開度θTHを示す信号、牽引スイッチが入力されたか否かを示す信号などが、それぞれ供給される。
また、上記電子制御装置40からは、エンジン出力を制御するエンジン出力制御装置43(図6参照)への制御信号例えばエンジン8の吸気管95に備えられた電子スロットル弁96の開度θTHを操作するスロットルアクチュエータ97への駆動信号や燃料噴射装置98によるエンジン8の各気筒内への燃料供給量を制御する燃料供給量信号や点火装置99によるエンジン8の点火時期を指令する点火信号、過給圧を調整するための過給圧調整信号、電動エアコンを作動させるための電動エアコン駆動信号、電動機M1およびM2の作動を指令する指令信号、シフトインジケータを作動させるための変速レンジまたは変速段(操作位置)表示信号、ギヤ比を表示させるためのギヤ比表示信号、スノーモードであることを表示させるためのスノーモード表示信号、制動時の車輪のスリップを防止するABSアクチュエータを作動させるためのABS作動信号、Mモードが選択されていることを表示させるMモード表示信号、差動部11や自動変速部20の油圧式摩擦係合装置の油圧アクチュエータを制御するために油圧制御回路42(図6参照)に含まれる電磁弁を作動させるバルブ指令信号、この油圧制御回路42の油圧源である電動油圧ポンプを作動させるための駆動指令信号、電動ヒータを駆動するための信号、クルーズコントロール制御用コンピュータへの信号等が、それぞれ出力される。
図5は複数種類の変速レンジまたは変速段を運転者の操作に応じて任意の変速レンジまたは変速段に切換えできる切換装置としてのシフト操作装置48の一例を示す図である。このシフト操作装置48は、例えば運転席の横に配設され、複数種類の変速レンジまたは変速段を選択するために操作されるシフトレバー49を備えている。
そのシフトレバー49は、変速機構10内つまり自動変速部20内の動力伝達経路が遮断されたニュートラル状態すなわち中立状態とし且つ自動変速部20の出力軸22をロックするための駐車ポジション「P(パーキング)」、後進走行のための後進走行ポジション「R(リバース)」、変速機構10内の動力伝達経路が遮断された中立状態とするための中立ポジション「N(ニュートラル)」、変速機構10の変速可能なトータル変速比γTの変化範囲内で自動変速制御を実行させる前進自動変速走行ポジション「D(ドライブ)」、または手動変速走行モード(手動モード)を成立させて上記自動変速制御における高速側の変速段を制限する所謂変速レンジを設定するための前進手動変速走行ポジション「M(マニュアル)」へ手動操作されるように設けられている。
上記シフトレバー49の各変速レンジまたは変速段への手動操作に連動して図2の係合作動表に示す後進ギヤ段「R」、ニュートラル「N」、前進ギヤ段「D」における各変速段等が成立するように、例えば油圧制御回路42が電気的に切り換えられる。
上記「P」乃至「M」ポジションに示す各変速レンジまたは変速段において、「P」ポジションおよび「N」ポジションは、車両を走行させないときに選択される非走行ポジションであって、例えば図2の係合作動表に示されるように、切換装置として機能する第1クラッチC1および第2クラッチC2のいずれもが解放されるような自動変速部20内の動力伝達経路が遮断された車両を駆動不能とする第1クラッチC1および第2クラッチC2による動力伝達経路の動力伝達遮断状態へ切換えを選択するための非駆動ポジションである。また、「R」ポジション、「D」ポジションおよび「M」ポジションは、車両を走行させるときに選択される走行ポジションであって、例えば図2の係合作動表に示されるように第1クラッチC1および第2クラッチC2の少なくとも一方が係合されるような自動変速部20内の動力伝達経路が連結された車両を駆動可能とする第1クラッチC1および/または第2クラッチC2による動力伝達経路の動力伝達可能状態への切換えを選択するための駆動ポジションでもある。
具体的には、シフトレバー49が「P」ポジション或いは「N」ポジションから「R」ポジションへ手動操作されることで、第2クラッチC2が係合されて自動変速部20内の動力伝達経路が動力伝達遮断状態から動力伝達可能状態とされ、シフトレバー49が運転者によって「N」ポジションから「D」ポジションへ手動操作されることで、少なくとも第1クラッチC1が非係合状態から係合状態へ切り換えられて自動変速部20内の動力伝達経路が動力伝達遮断状態から動力伝達可能状態とされる。また、シフトレバー49が「R」ポジションから「P」ポジション或いは「N」ポジションへ手動操作されることで、第2クラッチC2が解放されて自動変速部20内の動力伝達経路が動力伝達可能状態から動力伝達遮断状態とされ、シフトレバー49が運転者によって「D」ポジションから「N」ポジションへ手動操作されることで、第1クラッチC1および第2クラッチC2が係合状態から非係合状態へ切り換えられて自動変速部20内の動力伝達経路が動力伝達可能状態から動力伝達遮断状態とされる。
上記「M」ポジションは、例えば車両の前後方向において上記「D」ポジションと同じ位置において車両の幅方向に隣接して設けられており、シフトレバー49が「M」ポジションへ操作されることにより、「D」レンジ乃至「L」レンジの何れかがシフトレバー49の操作に応じて変更される。具体的には、この「M」ポジションには、車両の前後方向にアップシフト位置「+」、およびダウンシフト位置「−」が設けられており、シフトレバー49がそれ等のアップシフト位置「+」またはダウンシフト位置「−」へ操作されると、「D」レンジ乃至「L」レンジの何れかへ切り換えられる。例えば、「M」ポジションにおける「D」レンジ乃至「L」レンジの5つの変速レンジは、変速機構10の自動変速制御が可能なトータル変速比γTの変化範囲における高速側(変速比が最小側)のトータル変速比γTが異なる複数種類の変速レンジであり、また自動変速部20の変速が可能な最高速側変速段が異なるように変速段(ギヤ段)の変速範囲を制限するものである。すなわち、指定される変速レンジまたは変速段に応じて自動変速部20の変速段が変速される。また、シフトレバー49はスプリング等の付勢手段により上記アップシフト位置「+」およびダウンシフト位置「−」から、「M」ポジションへ自動的に戻されるようになっている。また、シフト操作装置48にはシフトレバー49の各変速レンジまたは変速段を検出するための図示しないシフトポジションセンサが備えられており、そのシフトレバー49の変速レンジまたは変速段や「M」ポジションにおける操作回数等を電子制御装置40へ出力する。なお、シフトレバー49を「M」ポジションへ移動することで、高速側の変速レンジを指定する他に、変速段を指定するものであっても構わない。具体的には、シフトレバー49をアップシフト位置「+」またはダウンシフト位置「−」へ操作されると、第1速ギヤ段乃至第5速ギヤ段のいずれかの変速段に固定される。すなわち、指定される変速レンジまたは変速段となるように、自動変速部20が変速される。なお、このときの差動部11は有段式の変速部として機能するように制御され、各変速段に対応する回転速度に制御される。
図6は、電子制御装置40による制御機能の要部を説明する機能ブロック線図である。図6において、有段変速制御手段54は、自動変速部20の変速を行う変速制御手段として機能するものである。例えば、有段変速制御手段54は、記憶手段56に予め記憶された図7の実線および一点鎖線に示す関係(変速線図、変速マップ)から車速Vおよび自動変速部20の要求出力トルクTOUTで示される車両状態に基づいて、自動変速部20の変速を実行すべきか否かを判断し、すなわち自動変速部20の変速すべき変速段を判断し、その判断した変速段が得られるように自動変速部20の変速を実行する。このとき、有段変速制御手段54は、例えば図2に示す係合表に従って変速段が達成されるように切換クラッチC0および切換ブレーキB0を除いた油圧式摩擦係合装置を係合および/または解放させる指令(変速出力指令)を油圧制御回路42へ出力する。
ハイブリッド制御手段52は、変速機構10の前記無段変速状態すなわち差動部11の差動状態においてエンジン8を効率のよい作動域で作動させる一方で、エンジン8と第2電動機M2との駆動力の配分や第1電動機M1の発電による反力を最適になるように変化させて差動部11の電気的な無段変速機としての変速比γ0を制御する。例えば、そのときの走行車速において、運転者の出力要求量としてのアクセルペダル操作量Accや車速Vから車両の目標(要求)出力を算出し、車両の目標出力と充電要求値から必要なトータル目標出力を算出し、そのトータル目標出力が得られるように伝達損失、補機負荷、第2電動機M2のアシストトルク等を考慮して目標エンジン出力を算出し、その目標エンジン出力が得られるエンジン回転速度NとエンジントルクTとなるようにエンジン8を制御するとともに第1電動機M1の発電量を制御する。
ハイブリッド制御手段52は、その制御を動力性能や燃費向上などのために自動変速部20の変速段を考慮して実行する。このようなハイブリッド制御では、エンジン8を効率のよい作動域で作動させるために定まるエンジン回転速度Nと車速Vおよび自動変速部20の変速段で定まる伝達部材18の回転速度とを整合させるために、差動部11が電気的な無段変速機として機能させられる。すなわち、ハイブリッド制御手段52は例えばエンジン回転速度Nとエンジン8の出力トルク(エンジントルク)Tとをパラメータとする二次元座標内において無段変速走行の時に運転性と燃費性とを両立するように予め実験的に定められたエンジン8の最適燃費率曲線(燃費マップ、関係)を予め記憶しており、その最適燃費率曲線に沿ってエンジン8が作動させられるように、例えば目標出力(トータル目標出力、要求駆動力)を充足するために必要なエンジン出力を発生するためのエンジントルクTとエンジン回転速度Nとなるように変速機構10のトータル変速比γTの目標値を定め、その目標値が得られるように差動部11の変速比γ0を制御し、トータル変速比γTをその変速可能な変化範囲内例えば13〜0.5の範囲内で制御する。
このとき、ハイブリッド制御手段52は、第1電動機M1により発電された電気エネルギをインバータ58を通して蓄電装置60や第2電動機M2へ供給するので、エンジン8の動力の主要部は機械的に伝達部材18へ伝達されるが、エンジン8の動力の一部は第1電動機M1の発電のために消費されてそこで電気エネルギに変換され、インバータ58を通してその電気エネルギが第2電動機M2へ供給され、その第2電動機M2が駆動されて第2電動機M2から伝達部材18へ伝達される。この電気エネルギの発生から第2電動機M2で消費されるまでに関連する機器により、エンジン8の動力の一部を電気エネルギに変換し、その電気エネルギを機械的エネルギに変換するまでの電気パスが構成される。
ハイブリッド制御手段52は、スロットル制御のためにスロットルアクチュエータ97により電子スロットル弁96を開閉制御させる他、燃料噴射制御のために燃料噴射装置98による燃料噴射量や噴射時期を制御させ、点火時期制御のためにイグナイタ等の点火装置99による点火時期を制御させる指令を単独で或いは組み合わせてエンジン出力制御装置43に出力して必要なエンジン出力を発生するようにエンジン8の出力制御を実行するエンジン出力制御手段を機能的に備えている。例えば、ハイブリッド制御手段52は、基本的には図示しない予め記憶された関係からアクセル開度信号Accに基づいてスロットルアクチュエータ97を駆動し、アクセル開度Accが増加するほどスロットル弁開度θTHを増加させるようにスロットル制御を実行する。
前記図7の実線Aは、車両の発進/走行用(以下、走行用という)の駆動力源をエンジン8と電動機例えば第2電動機M2とで切り換えるための、言い換えればエンジン8を走行用の駆動力源として車両を発進/走行(以下、走行という)させる所謂エンジン走行と第2電動機M2を走行用の駆動力源として車両を走行させる所謂モータ走行とを切り換えるための、エンジン走行領域とモータ走行領域との境界線である。この図7に示すエンジン走行とモータ走行とを切り換えるための境界線(実線A)を有する予め記憶された関係は、車速Vと駆動力関連値である出力トルクTOUTとをパラメータとする二次元座標で構成された駆動力源切換線図(駆動力源マップ)の一例である。この駆動力源切換線図は、例えば同じ図7中の実線および一点鎖線に示す変速線図(変速マップ)と共に記憶手段56に予め記憶されている。
そして、ハイブリッド制御手段52は、例えば図7の駆動力源切換線図から車速Vと要求出力トルクTOUTとで示される車両状態に基づいてモータ走行領域とエンジン走行領域との何れであるかを判断してモータ走行或いはエンジン走行を実行する。このように、ハイブリッド制御手段52によるモータ走行は、図7から明らかなように一般的にエンジン効率が高トルク域に比較して悪いとされる比較的低出力トルクTOUT時すなわち低エンジントルクT時、或いは車速Vの比較的低車速時すなわち低負荷域で実行される。
ハイブリッド制御手段52は、このモータ走行時には、停止しているエンジン8の引き摺りを抑制して燃費を向上させるために、差動部11の電気的CVT機能(差動作用)によって、第1電動機の回転速度NM1を負の回転速度で制御例えば空転させて、差動部11の差動作用によりエンジン回転速度Nを零乃至略零に維持する。
また、ハイブリッド制御手段52は、エンジン走行領域であっても、上述した電気パスによる第1電動機M1からの電気エネルギおよび/または蓄電装置60からの電気エネルギを第2電動機M2へ供給し、その第2電動機M2を駆動してエンジン8の動力を補助するトルクアシストが可能である。よって、本実施例のエンジン走行には、エンジン走行+モータ走行も含むものとする。
また、ハイブリッド制御手段52は、車両の停止状態又は低車速状態に拘わらず、差動部11の電気的CVT機能によってエンジン8の運転状態を維持させることができる。例えば、車両停止時に蓄電装置60の充電容量SOCが低下して第1電動機M1による発電が必要となった場合には、エンジン8の動力により第1電動機M1が発電させられてその第1電動機M1の回転速度が引き上げられ、車速Vで一意的に決められる第2電動機の回転速度NM2が車両停止状態により零(略零)となっても動力分配機構16の差動作用によってエンジン回転速度Nが自律回転可能な回転速度以上に維持される。
また、ハイブリッド制御手段52は、車両の停止中又は走行中に拘わらず、差動部11の電気的CVT機能によって第1電動機M1の回転速度NM1および/または第2電動機M2の回転速度NM2を制御してエンジン回転速度Nを任意の回転速度に維持させられる。例えば、図3の共線図からもわかるようにハイブリッド制御手段52はエンジン回転速度Nを引き上げる場合には、車速Vに拘束される第2電動機M2の回転速度NM2を略一定に維持しつつ第1電動機の回転速度NM1の引き上げを実行する。
また、ハイブリッド制御手段52は、アクセルオフの惰性走行時(コースト走行時)やフットブレーキによる制動時などには、燃費を向上させるために車両の運動エネルギすなわち駆動輪38からエンジン8側へ伝達される逆駆動力により第2電動機M2を回転駆動させて発電機として作動させ、その電気エネルギすなわち第2電動機発電電流をインバータ58を介して蓄電装置60へ充電する回生制御手段としての機能を有する。この回生制御は、蓄電装置60の充電容量SOCやブレーキペダル操作量に応じた制動力を得るための油圧ブレーキによる制動力の制動力配分等に基づいて決定された回生量となるように制御される。
増速側ギヤ段判定手段62は、変速機構10を有段変速状態とする際に切換クラッチC0および切換ブレーキB0のいずれを係合させるかを判定するために、例えば車両状態に基づいて記憶手段56に予め記憶された前記図7に示す変速線図に従って変速機構10の変速されるべき変速段が増速側ギヤ段例えば第5速ギヤ段であるか否かを判定する。
切換制御手段50は、車両状態に基づいて前記差動状態切換装置(切換クラッチC0、切換ブレーキB0)の係合/解放を切り換えることにより、前記無段変速状態と前記有段変速状態とを、すなわち前記差動状態と前記ロック状態とを選択的に切り換える。例えば、切換制御手段50は、記憶手段56に予め記憶された前記図7の破線および二点鎖線に示す関係(切換線図、切換マップ)から車速Vおよび要求出力トルクTOUTで示される車両状態に基づいて、変速機構10(差動部11)の変速状態を切り換えるべきか否かを判断して、すなわち変速機構10を無段変速状態とする無段制御領域内であるか或いは変速機構10を有段変速状態とする有段制御領域内であるかを判定することにより変速機構10の切り換えるべき変速状態を判断して、変速機構10を前記無段変速状態と前記有段変速状態とのいずれかに選択的に切り換える変速状態の切換えを実行する。
具体的には、切換制御手段50は有段変速制御領域内であると判定した場合は、ハイブリッド制御手段52に対してハイブリッド制御或いは無段変速制御を不許可すなわち禁止とする信号を出力するとともに、有段変速制御手段54に対しては、予め設定された有段変速時の変速を許可する。このときの有段変速制御手段54は、記憶手段56に予め記憶された例えば図7に示す変速線図に従って自動変速部20の自動変速を実行する。例えば記憶手段56に予め記憶された図2は、このときの変速において選択される油圧式摩擦係合装置すなわちC0、C1、C2、B0、B1、B2、B3の作動の組み合わせを示している。すなわち、変速機構10全体すなわち差動部11および自動変速部20が所謂有段式自動変速機として機能し、図2に示す係合表に従って変速段が達成される。
例えば、増速側ギヤ段判定手段62により第5速ギヤ段が判定される場合には、変速機構10全体として変速比が1.0より小さな増速側ギヤ段所謂オーバードライブギヤ段が得られるために切換制御手段50は差動部11が固定の変速比γ0例えば変速比γ0が0.7の副変速機として機能させられるように切換クラッチC0を解放させ且つ切換ブレーキB0を係合させる指令を油圧制御回路42へ出力する。また、増速側ギヤ段判定手段62により第5速ギヤ段でないと判定される場合には、変速機構10全体として変速比が1.0以上の減速側ギヤ段が得られるために切換制御手段50は差動部11が固定の変速比γ0例えば変速比γ0が1の副変速機として機能させられるように切換クラッチC0を係合させ且つ切換ブレーキB0を解放させる指令を油圧制御回路42へ出力する。このように、切換制御手段50によって変速機構10が有段変速状態に切り換えられるとともに、その有段変速状態における2種類の変速段のいずれかとなるように選択的に切り換えられて、差動部11が副変速機として機能させられ、それに直列の自動変速部20が有段変速機として機能することにより、変速機構10全体が所謂有段式自動変速機として機能させられる。
しかし、切換制御手段50は、変速機構10を無段変速状態に切り換える無段変速制御領域内であると判定した場合は、変速機構10全体として無段変速状態が得られるために差動部11を無段変速状態として無段変速可能とするように切換クラッチC0および切換ブレーキB0を解放させる指令を油圧制御回路42へ出力する。同時に、ハイブリッド制御手段52に対してハイブリッド制御を許可する信号を出力するとともに、有段変速制御手段54には、予め設定された無段変速時の変速段に固定する信号を出力するか、或いは記憶手段56に予め記憶された例えば図7に示す変速線図に従って自動変速部20を自動変速することを許可する信号を出力する。この場合、有段変速制御手段54により、図2の係合表内において切換クラッチC0および切換ブレーキB0の係合を除いた作動により自動変速が行われる。このように、切換制御手段50により無段変速状態に切り換えられた差動部11が無段変速機として機能し、それに直列の自動変速部20が有段変速機として機能することにより、適切な大きさの駆動力が得られると同時に、自動変速部20の第1速、第2速、第3速、第4速の各ギヤ段に対しその自動変速部20に入力される回転速度すなわち伝達部材18の回転速度が無段的に変化させられて各ギヤ段は無段的な変速比幅が得られる。したがって、その各ギヤ段の間が無段的に連続変化可能な変速比となって変速機構10全体として無段変速状態となりトータル変速比γTが無段階に得られるようになる。
ここで前記図7について詳述すると、図7は自動変速部20の変速判断の基となる記憶手段56に予め記憶された関係(変速線図、変速マップ)であり、車速Vと駆動力関連値である要求出力トルクTOUTとをパラメータとする二次元座標で構成された変速線図の一例である。図7の実線はアップシフト線であり一点鎖線はダウンシフト線である。
また、図7の破線は切換制御手段50による有段制御領域と無段制御領域との判定のための判定車速V1および判定出力トルクT1を示している。つまり、図7の破線はハイブリッド車両の高速走行を判定するための予め設定された高速走行判定値である判定車速V1の連なりである高車速判定線と、ハイブリッド車両の駆動力に関連する駆動力関連値例えば自動変速部20の出力トルクTOUTが高出力となる高出力走行を判定するための予め設定された高出力走行判定値である判定出力トルクT1の連なりである高出力走行判定線とを示している。さらに、図7の破線に対して二点鎖線に示すように有段制御領域と無段制御領域との判定にヒステリシスが設けられている。つまり、この図7は判定車速V1および判定出力トルクT1を含む、車速Vと出力トルクTOUTとをパラメータとして切換制御手段50により有段制御領域と無段制御領域とのいずれであるかを領域判定するための予め記憶された切換線図(切換マップ、関係)である。なお、この切換線図を含めて変速マップとして記憶手段56に予め記憶されてもよい。また、この切換線図は判定車速V1および判定出力トルクT1の少なくとも1つを含むものであってもよいし、車速Vおよび出力トルクTOUTの何れかをパラメータとする予め記憶された切換線であってもよい。
上記変速線図、切換線図、或いは駆動力源切換線図等は、マップとしてではなく実際の車速Vと判定車速V1とを比較する判定式、出力トルクTOUTと判定出力トルクT1とを比較する判定式等として記憶されてもよい。この場合には、切換制御手段50は、車両状態例えば実際の車速が判定車速V1を越えたときに変速機構10を有段変速状態とする。また、切換制御手段50は、車両状態例えば自動変速部20の出力トルクTOUTが判定出力トルクT1を越えたときに変速機構10を有段変速状態とする。
また、差動部11を電気的な無段変速機として作動させるための電動機等の電気系の制御機器の故障や機能低下時、例えば第1電動機M1における電気エネルギの発生からその電気エネルギが機械的エネルギに変換されるまでの電気パスに関連する機器の機能低下すなわち第1電動機M1、第2電動機M2、インバータ58、蓄電装置60、それらを接続する伝送路などの故障(フェイル)や、故障とか低温による機能低下が発生したような車両状態となる場合には、無段制御領域であっても車両走行を確保するために切換制御手段50は変速機構10を優先的に有段変速状態としてもよい。
前記駆動力関連値とは、車両の駆動力に1対1に対応するパラメータであって、駆動輪38での駆動トルク或いは駆動力のみならず、例えば自動変速部20の出力トルクTOUT、エンジントルクT、車両加速度や、例えばアクセル開度或いはスロットル弁開度θTH(或いは吸入空気量、空燃比、燃料噴射量)とエンジン回転速度Nとに基づいて算出されるエンジントルクTなどの実際値や、運転者のアクセルペダル操作量或いはスロットル開度等に基づいて算出される要求(目標)エンジントルクT、自動変速部20の要求(目標)出力トルクTOUT、要求駆動力等の推定値であってもよい。また、上記駆動トルクは出力トルクTOUT等からデフ比、駆動輪38の半径等を考慮して算出されてもよいし、例えばトルクセンサ等によって直接検出されてもよい。上記他の各トルク等も同様である。
また、例えば判定車速V1は、高速走行において変速機構10が無段変速状態とされるとかえって燃費が悪化するのを抑制するように、その高速走行において変速機構10が有段変速状態とされるように設定されている。また、判定トルクT1は、車両の高出力走行において第1電動機M1の反力トルクをエンジンの高出力域まで対応させないで第1電動機M1を小型化するために、例えば第1電動機M1からの電気エネルギの最大出力を小さくして配設可能とされた第1電動機M1の特性に応じて設定されている。
図8は、エンジン回転速度NとエンジントルクTとをパラメータとして切換制御手段50により有段制御領域と無段制御領域とのいずれであるかを領域判定するための境界線としてのエンジン出力線を有し、記憶手段56に予め記憶された切換線図(切換マップ、関係)である。切換制御手段50は、図7の切換線図に替えてこの図8の切換線図からエンジン回転速度NとエンジントルクTとに基づいて、それらのエンジン回転速度NとエンジントルクTとで表される車両状態が無段制御領域内であるか或いは有段制御領域内であるかを判定してもよい。また、この図8は図7の破線を作るための概念図でもある。言い換えれば、図7の破線は図8の関係図(マップ)に基づいて車速Vと出力トルクTOUTとをパラメータとする二次元座標上に置き直された切換線でもある。
図7の関係に示されるように、出力トルクTOUTが予め設定された判定出力トルクT1以上の高トルク領域、或いは車速Vが予め設定された判定車速V1以上の高車速領域が有段制御領域として設定されているので、有段変速走行がエンジン8の比較的高トルクとなる高駆動トルク時、或いは車速の比較的高車速時において実行され、無段変速走行がエンジン8の比較的低トルクとなる低駆動トルク時、或いは車速の比較的低車速時すなわちエンジン8の常用出力域において実行されるようになっている。
同様に、図8の関係に示されるように、エンジントルクTが予め設定された所定値TE1以上の高トルク領域、エンジン回転速度Nが予め設定された所定値NE1以上の高回転領域、或いはそれらエンジントルクTおよびエンジン回転速度Nから算出されるエンジン出力が所定以上の高出力領域が、有段制御領域として設定されているので、有段変速走行がエンジン8の比較的高トルク、比較的高回転速度、或いは比較的高出力時において実行され、無段変速走行がエンジン8の比較的低トルク、比較的低回転速度、或いは比較的低出力時すなわちエンジン8の常用出力域において実行されるようになっている。図8における有段制御領域と無段制御領域との間の境界線は、高車速判定値の連なりである高車速判定線および高出力走行判定値の連なりである高出力走行判定線に対応している。
これによって、例えば、車両の低中速走行および低中出力走行では、変速機構10が無段変速状態とされて車両の燃費性能が確保されるが、実際の車速Vが前記判定車速V1を越えるような高速走行では変速機構10が有段の変速機として作動する有段変速状態とされ専ら機械的な動力伝達経路でエンジン8の出力が駆動輪38へ伝達されて電気的な無段変速機として作動させる場合に発生する動力と電気エネルギとの間の変換損失が抑制されて燃費が向上する。また、出力トルクTOUTなどの前記駆動力関連値が判定トルクT1を越えるような高出力走行では変速機構10が有段の変速機として作動する有段変速状態とされ専ら機械的な動力伝達経路でエンジン8の出力が駆動輪38へ伝達されて電気的な無段変速機として作動させる領域が車両の低中速走行および低中出力走行となって、第1電動機M1が発生すべき電気的エネルギ換言すれば第1電動機M1が伝える電気的エネルギの最大値を小さくできて第1電動機M1或いはそれを含む車両の駆動装置が一層小型化される。また、他の考え方として、この高出力走行においては燃費に対する要求より運転者の駆動力に対する要求が重視されるので、無段変速状態より有段変速状態(定変速状態)に切り換えられるのである。これによって、ユーザは、有段自動変速走行におけるアップシフトに伴うエンジン回転速度Nの変化すなわち変速に伴うリズミカルなエンジン回転速度Nの変化が楽しめる。
駆動力源ブレーキ制御手段100は、エンジン8と変速機構10とによる駆動力源ブレーキトルクを好適に制御するものである。具体的には、駆動力源ブレーキ制御手段100は、エンジン8によるブレーキトルクを中心として、第2電動機M2による回生トルクや第1電動機の回転速度NM1、並びに自動変速部20の変速比を制御することによって、駆動力源ブレーキトルクを制御する。
駆動力源ブレーキトルクは、エンジン8によるブレーキトルクと、回生可能な第2電動機M2の回生トルク値によるブレーキトルクを加算したものである。エンジン8によるブレーキトルクは、駆動輪38側から伝達される逆駆動力によってエンジン8を回転させた際に発生する回転抵抗力によるものである。具体的には、エンジン8を回転させた際のエンジン8内の摩擦抵抗や圧縮行程における圧縮力などの抵抗力によって発生させられるため、エンジン8の回転速度Nが高くなる程、その効果(ブレーキトルク)は大きくなる。これにより、低速変速段であるほど、駆動輪38の回転が増速されてエンジン8に伝達されるため、エンジン8の回転速度が高くなり、ブレーキトルクが大きくなる。
また、第2電動機M2の回生トルクによるブレーキトルクは、第2電動機M2の回生制御時の回転抵抗によるものである。例えば、第2電動機M2の回生トルク値を増大させると、第2電動機M2によるブレーキトルクが増大し、回生トルク値を低減させると、第2電動機M2によるブレーキトルクが低減される。すなわち、変速レンジまたは変速段に応じて第2電動機M2の回生トルク値が制御されて、結果的にブレーキトルクが制御される。なお、第2電動機M2は、自動変速部20の上流側に備えられおり、第2電動機M2によるブレーキトルクの制御が、自動変速部20の影響を受けることがないため、制御が比較的容易となる。
また、第1電動機M1の回転速度NM1を制御することで、エンジン8の回転速度Nを制御して、ブレーキトルクを制御することができる。例えば、車速Vによって一意的に決定される第2電動機M2の回転速度NM2が一定であるとすると、第1電動機M1の回転速度NM1を増速させると、差動部11の差動作用によって、エンジン8の回転速度Nが増速される。これより、エンジン8の回転速度Nが増速されるため、エンジン8によるブレーキトルクが大きくなる。また、第1電動機M1の回転速度NM1が減速されると、エンジン8の回転速度Nが減速されるため、エンジン8によるブレーキトルクが小さくなる。駆動力源ブレーキ制御手段100は、上述した自動変速部20の変速比、第1電動機M1の回転速度NM1、および第2電動機M2の回生トルクなどを制御することにより、駆動力源ブレーキトルクを制御する。
図9は、予め記憶手段56に記憶されている、各シフトポジション毎の駆動力源ブレーキトルクの設定値を示している。なお、この駆動力源ブレーキトルクが大きくなると、駆動力源ブレーキの制動力が大きくなり、減速度が高くなる。図9に示すように、低速変速レンジまたは低速変速段になる程、また車速が低くなる程、駆動力源ブレーキトルクが大きくなるように設定されている。駆動力源ブレーキ制御手段100は、これら設定されている駆動力ブレーキトルクが得られるように、自動変速部20の変速比、第2電動機M2の回生トルク、および第1電動機M1の回転速度NM1などを制御する。
ここで、トレーラなどの牽引時においては、一般にフットブレーキの使用頻度を極力減らして、駆動力源ブレーキを多用することが好まれる。また、運転者が所望する任意の駆動力源ブレーキトルクを得るには、駆動力源ブレーキ作動時において任意の変速段へ自動変速される「D」ポジションに比べ、変速レンジまたは変速段が指定される手動変速ポジションである「M」ポジションが優れている。「M」ポジションにおいては、所定の変速レンジまたは変速段へ手動操作することによって、その変速レンジまたは変速段に対応する駆動力源ブレーキトルク、すなわち運転者が希望する駆動力源ブレーキトルクを得ることができる。そこで、本発明においては、変速レンジまたは変速段が「M」ポジションに位置された状態での牽引時において、駆動力源ブレーキ制御手段100によって、さらに運転者の希望に合った駆動力源ブレーキトルクを発生させる。以下、上記駆動力源ブレーキ制御手段100の制御を中心に説明を行う。
Mモード判定手段104は、シフト操作装置48のシフトレバー49が「M」ポジションに位置されているか否かを判定するものである。また、牽引スイッチ判定手段106は、例えばシフト操作装置近傍に設けられている牽引スイッチ70が運転者によって押し入れられた状態か否かを判定する。
駆動力源ブレーキ制御手段100は、牽引モード切換手段108を備えている。牽引モード切換手段108は、非牽引時に設定されている駆動力源ブレーキトルクと牽引時に設定されている駆動力源ブレーキトルクとを適宜切り換えるものである。例えば、非牽引時であれば、牽引モード切換手段108は、駆動力源ブレーキトルクの設定値を図9の実線示す状態に切り換える。また、牽引時であれば、牽引モード切換手段108は、駆動力源ブレーキトルクの設定値を図9の破線に示す状態に切り換える。
トレーラなどの牽引時は、車両の重量が増加するに伴い、非牽引時に比べて慣性力が大きくなる。このような状態において、十分な減速性能が得られるように、図9の破線に示すように、牽引時の駆動力源ブレーキトルクは、実線で示す非牽引時よりも大きく大きく設定されている。
ここで、駆動力源ブレーキトルクは、牽引時において非牽引時よりも大きく設定されているが、本実施例では、各変速レンジまたは変速段における駆動力源ブレーキトルクは、低速変速レンジまたは低速変速段である程、非牽引時に比べ牽引時においてより大きく設定されている。すなわち、非牽引時の図9の実線で示す駆動力源ブレーキトルクに対して、牽引時の破線で示す駆動力源ブレーキトルクが大きくなるように設定され、且つ、その差が低速変速レンジまたは低速変速段になるほど大きくなるように設定されている。
具体的には、駆動力源ブレーキトルクの牽引時と非牽引時との差が「L」レンジが最も大きく、高速変速段となるにつれてその差が小さくなり、「5」レンジにおいてその差が最も小さくなる。なお、各変速レンジの牽引時における増加量は予め実験或いは理論的に好適な値に設定されて記憶手段56に記憶されている。また、牽引時において、運転者に駆動力源ブレーキ(減速性能)不足を感じさせないように、Lレンジにおいてさらに大きな駆動力源ブレーキトルクが発生させることができるように設定されている。一方、「5」レンジ時においては、牽引時と非牽引時との差が小さく設定されることで、運転者が比較的小さな駆動力源ブレーキを必要とするときでも、それに対応することができる。そして、駆動力源ブレーキ制御手段100は、破線に示す駆動力源ブレーキトルクが得られるように、第2電動機M2の回生トルク、第1電動機M1の回転速度NM1などを好適に制御する。
図10は、電子制御装置40の制御作動の要部すなわち駆動力源ブレーキ制御手段100によって運転者が希望する駆動力源ブレーキトルクを発生させるための制御作動を説明するフローチャートであり、例えば数msec乃至数十msec程度の極めて短いサイクルタイムで繰り返し実行されるものである。
先ず、Mモード判定手段104に対応するSA1において、シフト操作装置48の変速レンジまたは変速段が「M」ポジションに位置されているか否かを判定する。SA1が否定されると、駆動力源ブレーキ制御手段100に対応するSA5において、「D」ポジションにおける通常の駆動力源ブレーキ制御手段100が実行される。具体的には、図9の実線で示す駆動力源ブレーキトルクが得られるように、自動変速部20の変速比、第2電動機M2の回生トルク、第1電動機M1の回転速度NM1を制御するエンジンブレーキ制御が実行される。
SA1が肯定されると、牽引スイッチ判定手段106に対応するSA2において、牽引スイッチ70が押し入れられた状態か否かが判定される。SA2が否定されると、非牽引状態と判定され、駆動力源ブレーキ制御手段100および牽引モード切換手段108に対応するSA4において、図9の実線に示す駆動力源ブレーキトルク設定値に切り換えられ、この駆動力源ブレーキトルクが得られるように、第2電動機M2の回生トルクや第1電動機M1の回転速度NM1が制御される。
SA2が肯定されると、牽引状態と判定され、駆動力源ブレーキ制御手段100および牽引モード切換手段108に対応するSA3において、図9の破線に示す駆動力源ブレーキトルク設定値に切り換えられ、この駆動力源ブレーキトルクが得られるように、第2電動機M2の回生トルクや第1電動機M1の回転速度NM1が制御される。
上述のように、本実施例によれば、変速レンジまたは変速段における駆動力源ブレーキトルクを、低速変速レンジまたは低速変速段である程、非牽引時に比べ牽引時においてより大きく設定するので、牽引時の駆動力源ブレーキトルクと非牽引時の駆動力源ブレーキトルクとの差が低速変速レンジまたは低速変速段になるほど大きくなる。これにより、運転者が変速レンジまたは変速段に切り換える程、大きな駆動力源ブレーキトルクを得ることができ、牽引時においてより大きな駆動力源ブレーキトルクが必要な時でも、速やかにこれに対応することができる。すなわち、牽引時において、低速変速レンジまたは低速変速段を選択することでより大きな駆動力源ブレーキトルクが得られるため、運転者の減速意思を好適に反映することができる。
また、本実施例によれば、変速機構10は、動力伝達経路上に自動変速部20を含むものであり、変速レンジまたは変速段は、自動変速部20の変速レンジまたは変速段に対応しているものであるため、牽引時において自動変速部20を低速変速レンジ側にマニュアル操作するに従って、より大きな駆動力源ブレーキトルクを得ることができる。
また、本実施例によれば、変速機構10は、動力伝達経路上に無段変速部として機能する差動部11を含むものであり、変速レンジまたは変速段は、差動部11を有段に制御した場合の変速レンジまたは変速段に対応しているため、牽引時において差動部11を有段に制御した状態で、低速変速レンジ側にマニュアル操作するに従って、より大きな駆動力源ブレーキトルクを得ることができる。
また、本実施例によれば、変速機構10は、動力伝達経路上に連結された第2電動機M2を含むものであり、変速レンジまたは変速段は、第2電動機M2で発生させる回生トルク値に対応しているため、第2電動機M2で発生させる回生トルク値を好適に制御することでより大きな駆動力源ブレーキトルクを得ることができる。
また、本実施例によれば、変速機構10は、動力分配機構16の回転要素に連結された第1電動機M1の運転状態が制御されることにより、入力軸14の回転速度と出力軸として機能する伝達部材18の回転速度との差動状態が制御される差動部11と動力伝達経路の一部を構成する自動変速部20とを備えるため、差動部11および自動変速部20を好適に制御することでより大きな駆動力源ブレーキトルクを得ることができる。
また、本実施例によれば、自動変速部20は有段式の変速部であるため、自動変速部20を低速変速レンジまたは低速変速段側にマニュアル操作するに従って、より大きな駆動力源ブレーキトルクを得ることができる。
また、本実施例によれば、差動部11は、差動部遊星歯車装置24と第1電動機M1および第2電動機M2により構成され、第1電動機M1の運転状態が制御されることにより、無段変速部として作動するため、電動機を好適に制御して、滑らかな駆動トルクを得ることができる。また、第1電動機M1を制御することにより、差動部11を有段式の変速機構として機能させることもでき、牽引時において差動部11を有段に制御した状態で、低速変速レンジまたは低速変速段側にマニュアル操作するに従って、より大きな駆動力源ブレーキトルクを得ることができる。
また、本実施例によれば、変速レンジまたは変速段は、自動変速部20の変速レンジ或いは変速段に対応しているため、牽引時において自動変速部20を低速変速レンジまたは低速変速段側にマニュアル操作するに従って、より大きな駆動力源ブレーキトルクを得ることができる。
また、本実施例によれば、回生が可能な第2電動機M2が自動変速部20の前側に備えられているため、第2電動機M2の回生トルクを好適に制御することで、より大きな駆動力源ブレーキトルクを得ることができる。
つぎに、本発明の他の実施例を説明する。なお、以下の説明において前述の実施例と共通する部分には同一の符号を付してその説明を省略する。
図11は、本発明の他の実施例である各変速レンジまたは変速段毎の駆動力源ブレーキトルクの設定値を示している。本実施例においては、牽引時は非牽引時に比べて選択できる変速レンジまたは変速段の数がより多く設定されている。言い換えれば、牽引時は非牽引時に比べて選択できる変速レンジまたは変速段による駆動力源ブレーキトルクの大きさがより細かく設定されている。
牽引スイッチ70が押し入れられると、通常の変速レンジまたは変速段に加えて破線で示す中間変速レンジまたは中間変速段が追加される。具体的には、実線に示す通常のLレンジ(L−H)乃至Dレンジ(D−H)の間に破線で示す中間変速レンジ(L−L乃至D−L)が追加されている。この中間変速レンジ(中間変速段)への変速は、例えばシフトレバー49の操作によって変速され、例えば変速レンジ(変速段)がD−Hレンジに位置された状態でシフトレバー49がダウンシフト位置「−」へ一回操作されると、D−Lレンジへ変速される。さらにダウンシフト位置「−」へ一回操作されると、3−Hレンジに変速される。このように、シフトバー49のダウンシフト或いはアップシフトへの操作に応じて中間変速レンジ(中間変速段)に変速される。
なお、本実施例の自動変速部20は4段変速機構であるため、本実施例においては、中間変速レンジ(中間変速段)への変速は差動部11を好適に制御することで変速される。例えば3−Lレンジと3−Hレンジとは、自動変速部20のクラッチおよびブレーキの係合状態は変化しないものの、差動部11によって回転状態を制御することで、中間変速レンジとして機能させることができる。例えば、第1電動機M1の回転速度NM1を制御することで、差動部を2段式の有段変速部として制御し、自動変速部20の変速段と合わせて、中間変速レンジ(中間変速段)を設けることができる。或いは、切換クラッチC0および切換ブレーキB0を好適に係合させることにより、中間変速レンジ(中間変速段)を設定することができる。
このように、牽引時においては、実線で示す非牽引時の変速レンジ(変速段)に加えて破線で示す中間変速レンジ(中間変速段)が追加されるに伴いエンジン8の回転速度も変化されて、選択できる駆動力源ブレーキトルクの数が多くなる。これにより、運転者はシフトレバー49の操作により、達成できる駆動力源ブレーキトルクがより細かく変化し、牽引でより細かな減速度が必要なときでも、これに速やかに対応することができる。また、中間変速レンジであるL−Lレンジが最も駆動力源ブレーキトルクが大きくなるレンジであるから、牽引時は非牽引時に比べて最大駆動力源ブレーキトルクがより大きくなる。
駆動力源ブレーキ制御手段100は、Mモード判定手段104および牽引スイッチ判定手段106の各判定結果に応じて、牽引モード切換手段108によって駆動力源ブレーキトルクの設定値を適宜切り換える。例えば、非牽引時において変速レンジまたは変速段が「M」ポジションに位置されているとき、駆動力源ブレーキトルクの設定値が図11の実線に示す状態となる。さらに変速レンジまたは変速段が「M」ポジションに位置された状態で牽引スイッチ70が押し入れられると、駆動力源ブレーキトルクの設定値が図11の実線に示す状態からさらに破線で示す駆動力源ブレーキトルクが追加された設定値に切り換えられる。そして、駆動力源ブレーキ制御手段100は、その駆動力源ブレーキトルクが得られるように、第2電動機M2の回生トルク、第1電動機の回転速度NM1、或いは切換クラッチC0や切換ブレーキなどの制御を実行する。
また、図10のフローチャートにおいては、ステップSA1、SA2、SA4、およびSA5については前述の実施例と同様であるが、SA2において牽引スイッチ70の入力判定が肯定されると、ステップSA3において、図11の実線および破線で示す駆動力源ブレーキトルクの設定値に切り換えられ、駆動力源ブレーキ制御手段100は、図11の駆動力源ブレーキトルクとなるように制御を実行する。
上述のように、本実施例によれば、牽引時は非牽引時に比べて、選択できる変速レンジまたは変速段の数をより多く設定するため、牽引時は非牽引時に比べて選択できる変速レンジまたは変速段による駆動力源ブレーキトルクをより細かく設定することができる。これにより、運転者がマニュアル操作によってより細かく駆動力源ブレーキトルクを得ることができ、牽引でより細かな減速度が必要な時も、これに速やかに対応することができる。このように、運転者のマニュアル操作によって、より細かな駆動力源ブレーキトルクを設定できるため、運転者の減速意思を好適に反映することができる。
また、本実施例によれば、牽引時は非牽引時に比べて、変速レンジまたは変速段により選択できる駆動力源ブレーキトルクをより細かく設定したため、牽引時において運転者がマニュアル操作によってより細かく駆動力源ブレーキトルクを得ることができ、牽引でより細かな減速度が必要なときも、これに速やかに対応することができる。このように、運転者のマニュアル操作によって、より細かな駆動力源ブレーキトルクを設定できるため、運転者の減速意思を好適に反映することができる。
また、本実施例によれば、牽引時は非牽引時に比べて、選択できる変速レンジまたは変速段による最大駆動力源ブレーキトルクをより大きく設定したため、牽引時においてより大きな駆動力源ブレーキトルクが必要な時でも、速やかにこれに対応することができる。このように、牽引時において、最大駆動力源ブレーキトルクをより大きくすることでより大きな駆動力源ブレーキトルクが得られるため、運転者の減速意思を好適に反映することができる。
また、本実施例によれば、変速機構10は、動力伝達経路上に自動変速部20を含むものであり、変速レンジまたは変速段は、自動変速部20の変速レンジまたは変速段に対応しているものであるため、牽引時において自動変速部20をマニュアル操作するに従って、より細かく駆動力源ブレーキトルクを得ることができる。
また、本実施例によれば、変速機構10は、動力伝達経路上に差動部11を含むものであり、変速レンジまたは変速段は、差動部11を有段に制御した場合の変速レンジまたは変速段に対応しているため、牽引時において差動部11を有段に制御した状態でマニュアル操作することで、より細かな駆動力源ブレーキトルクを得ることができる。
また、本実施例によれば、変速機構10は、動力伝達経路上に連結された第2電動機M2を含むものであり、変速レンジまたは変速段は、第2電動機M2で発生させる回生トルク値に対応しているため、第2電動機M2で発生させる回生トルク値を好適に制御することでより細かな駆動力源ブレーキトルクを得ることができる。
また、本実施例によれば、変速機構10は、差動機構の回転要素に連結された第1電動機M1の運転状態が制御されることにより、入力軸14の回転速度と出力軸として機能する伝達部材18の回転速度との差動状態が制御される差動部11と動力伝達経路の一部を構成する自動変速部20とを備えることため、差動部11および自動変速部20を好適に制御することで、より細かな駆動力源ブレーキトルクを得ることができる。
また、本実施例によれば、自動変速部20は有段式の変速部であるため、自動変速部20をマニュアル操作によって変速させるに従ってより細かな駆動力源ブレーキトルクを得ることができる。
また、本実施例によれば、差動部11は、差動部遊星歯車装置24と第1電動機M1および第2電動機M2により構成され、第1電動機M1の運転状態が制御されることにより、無段変速部として作動するため、第1電動機M1を好適に制御して、滑らかな駆動トルクを得ることができる。また、第1電動機M1を制御することにより、差動部11を有段式の変速機構として機能させることもでき、牽引時において差動部11を有段に制御した状態で、マニュアル操作することにより、より細かな駆動力源ブレーキトルクを得ることができる。
また、本実施例によれば、変速レンジまたは変速段は、自動変速部20の変速レンジ或いは変速段に対応しているため、牽引時においてマニュアル操作によって自動変速部20を変速させることで、より細かな駆動力源ブレーキトルクを得ることができる。
また、本実施例によれば、回生が可能な第2電動機M2が自動変速部20の上流に備えられているため、第2電動機M2の回生トルクを好適に制御することで、より細かな駆動力源ブレーキトルクを得ることができ、しかも、自動変速部20の上流側に位置することで、制御の複雑化が回避される。
以上、本発明の実施例を図面に基づいて詳細に説明したが、本発明はその他の態様においても適用される。
例えば、前述した2つの実施例は、必ずしも独立的に実施する必要はなく、これらの2つの実施例を組み合わせて実施するものであっても構わない。具体的には、牽引スイッチ70を押し入れると、変速レンジまたは変速段の数が多くなると共に、低速変速レンジまたは低速変速段になるほど、駆動力源ブレーキトルクがより大きくなる構成であっても構わない。
また、前述の実施例の中間変速レンジまたは中間変速段への変速は、牽引スイッチ70が押し入れられると、シフト操作装置48のシフトレバー49によって変速されるものであったが、必ずしもこのような構成にする必要はなく、例えば中間変速レンジ(中間変速段)へ変速する為のスイッチを設けるなど、他の構成によって中間変速レンジ(中間変速段)への変速を実施するものであっても構わない。
また、前述の実施例の駆動力源ブレーキトルクの制御は、主に第2電動機M2による回生トルクの制御によるものであったが、切換クラッチC0および切換ブレーキB0を好適に制御して駆動力源ブレーキトルクを制御するものであっても構わない。
また、前述の実施例の変速レンジ(変速段)の数は、自動変速機20の変速段に加えて差動部11を有段式の変速段に制御して、全体としての変速レンジ(変速段)を増やすものであったが、例えば、元々多段化が可能な自動変速部を適用し、通常はその自動変速部の所定の変速段のみを使用し、牽引スイッチ70を押し入れた際にその自動変速部の全ての変速段を使用するなど、他の構成によって変速レンジ(変速段)の数を増やすものであっても構わない。
また、前述の実施例の牽引スイッチ70はシフト操作装置48に設けられていたが、これはあくまで一例であり、牽引スイッチ70の位置は、運転者が操作可能な位置であれば、いずれの位置であっても構わない。
また、前述の実施例では、第2電動機M2は、伝達部材18に直接連結されているが、第2電動機M2の連結位置はそれに限定されず、差動部11から駆動輪34の間の動力伝達経路に直接的或いは変速機等を介して間接的に連結されていてもよい。
また、前述の実施例の動力分配機構16では、第1キャリヤCA1がエンジン8に連結され、第1サンギヤS1が第1電動機M1に連結され、第1リングギヤR1が伝達部材18に連結されていたが、それらの連結関係は、必ずしもそれに限定されるものではなく、エンジン8、第1電動機M1、伝達部材18は、差動部遊星歯車装置24の3要素CA1、S1、R1のうちのいずれと連結されていても差し支えない。
また、前述の実施例では、エンジン8は入力軸14と直結されていたが、たとえばギヤ、ベルト等を介して作動的に連結されておればよく、共通の軸心上に配置される必要もない。
また、前述の実施例では、第1電動機M1および第2電動機M2は、入力軸14に同心に配置されて第1電動機M1は第1サンギヤS1に連結され第2電動機M2は伝達部材18に連結されていたが、必ずしもそのように配置される必要はなく、たとえばギヤ、ベルト、減速機等を介して作動的に第1電動機M1は第1サンギヤS1に連結され、第2電動機M2は伝達部材18に連結されていてもよい。
また、前述の実施例では、第1クラッチC1や第2クラッチC2などの油圧式摩擦係合装置は、パウダー(磁紛)クラッチ、電磁クラッチ、噛合型のドグクラッチなどの磁紛式、電磁式、機械式係合装置から構成されていてもよい。たとえば電磁クラッチであるような場合には、油圧制御回路70は油路を切り換える弁装置ではなく電磁クラッチへの電気的な指令信号回路を切り換えるスイッチング装置や電磁切換装置等により構成される。
また、前述の実施例では、自動変速部20は伝達部材18を介して差動部11と直列に連結されていたが、入力軸14と平行にカウンタ軸が設けられてそのカウンタ軸上に同心に自動変速部20が配列されていてもよい。この場合には、差動部11と自動変速部20とは、たとえば伝達部材18としてカウンタギヤ対、スプロケットおよびチェーンで構成される1組の伝達部材などを介して動力伝達可能に連結される。
また、前述の実施例の差動機構としての動力分配機構16は、たとえばエンジンによって回転駆動されるピニオンと、そのピニオンに噛み合う一対のかさ歯車が第1電動機M1および伝達部材18(第2電動機M2)に作動的に連結された差動歯車装置であってもよい。
また、前述の実施例の動力分配機構16は、1組の遊星歯車装置から構成されていたが2以上の遊星歯車装置から構成されて、非差動状態(定変速状態)では3段以上の変速機として機能するものであってもよい。また、その遊星歯車装置はシングルピニオン型に限られたものではなくダブルピニオン型の遊星歯車装置であってもよい。また、このような2以上の遊星歯車装置から構成された場合においても、これらの遊星歯車装置の各回転要素にエンジン8、第1および第2電動機M1、M2、伝達部材18が動力伝達可能に連結され、さらに遊星歯車装置の各回転要素に接続されたクラッチCおよびブレーキBの制御により有段変速と無段変速とが切り換えられるような構成であっても構わない。
また、前述の実施例ではエンジン8と差動部11とが直接連結されているが、必ずしも直接連結される必要はなく、エンジン8と差動部11との間にクラッチを介して連結されていてもよい。
また、前述の実施例では、差動部11と自動変速部20とが直列接続されたような構成となっているが、特にこのような構成に限定されず、変速機構10全体として電気式差動を行う機能と、変速機構10全体として電気式差動による変速とは異なる原理で変速を行う機能と、を備えた構成であれば本発明は適用可能であり、機械的に独立している必要はない。また、これらの配設位置や配設順序も特に限定されず、自由に配設することができる。また、変速機構において、電気式差動を行う機能と変速を行う機能とを有するものであれば、その構成が一部重複する、或いは全てが共通するものであっても、本発明を適用することができる。
また、前述の実施例のシフト操作装置48は、複数種類の変速レンジまたは変速段を選択するために操作されるシフトレバー49を備えていたが、そのシフトレバー49に替えて、たとえば押しボタン式のスイッチやスライド式スイッチ等の複数種類の変速レンジまたは変速段を選択可能なスイッチ、或いは手動操作に因らず運転者の音声に反応して複数種類の変速レンジまたは変速段を切り換えられる装置や足の操作により複数種類の変速レンジまたは変速段が切り換えられる装置等であってもよい。また、シフトレバー49が「M」ポジションに操作されることにより、変速レンジが設定されるものであったが、ギヤ段が設定されることすなわち各変速レンジの最高速ギヤ段がギヤ段として設定されてもよい。このばあい、自動変速部20ではギヤ段が切り換えられて変速が実行される。たとえば、シフトレバー49が「M」ポジションにおけるアップシフト位置「+」またはダウンシフト位置「−」へ手動操作されると、自動変速部20では第1速ギヤ段乃至第5速ギヤ段のいずれかがシフトレバー49の操作に応じて設定される。
なお、上述したのはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。
本発明の一実施例であるハイブリッド車両の駆動装置の構成を説明する骨子図である。 図1の実施例のハイブリッド車両の駆動装置が無段或いは有段変速作動させられる場合における変速作動とそれに用いられる油圧式摩擦係合装置の作動の組み合わせとの関係を説明する作動図表である。 図1の実施例のハイブリッド車両の駆動装置が有段変速作動させられる場合における各ギヤ段の相対的回転速度を説明する共線図である。 図1の実施例の駆動装置に設けられた電子制御装置の入出力信号を説明する図である。 複数種類のシフトポジションを人為的操作により切り換える切換装置としてのシフト操作装置の一例を示す図である。 図4の電子制御装置の制御作動の要部を説明する機能ブロック線図である。 車速と出力トルクとをパラメータとする同じ二次元座標に構成された、自動変速部の変速判断の基となる予め記憶された変速線図の一例と、変速機構の変速状態の切換判断の基となる予め記憶された切換線図の一例と、エンジン走行とモータ走行とを切り換えるためのエンジン走行領域とモータ走行領域との境界線を有する予め記憶された駆動力源切換線図の一例とを示す図であって、それぞれの関係を示す図でもある。 無段制御領域と有段制御領域との境界線を有する予め記憶された関係を示す図であって、図7の破線に示す無段制御領域と有段制御領域との境界をマップ化するための概念図でもある。 予め記憶手段に記憶されている、各シフトポジション毎の駆動力源ブレーキトルクの設定値を示す図である。 電子制御装置の制御作動の要部すなわち駆動力源ブレーキ制御手段によって運転者が希望する駆動力源ブレーキトルクを発生させるための制御作動を説明するフローチャートである。 本発明の他の実施例である、予め記憶手段に記憶されている各シフトポジション毎の駆動力源ブレーキトルクの設定値を示す図である。
符号の説明
8:エンジン(駆動力源) 10:変速機構(車両用動力伝達装置) 11:差動部(電気式差動部、無段変速部) 14:入力軸 18:伝達部材(出力軸) 20:自動変速部(変速部、有段変速部) 24:差動部遊星歯車装置(遊星歯車装置) 48:シフト操作装置 100:駆動力源ブレーキ制御手段 M1:第1電動機(差動機構の回転要素に連結された電動機) M2:第2電動機(動力伝達経路に連結された電動機、回生可能な電動機)

Claims (8)

  1. 駆動力源と車両用動力伝達装置とによる駆動力源ブレーキトルクを、牽引時は非牽引時よりも大きく設定する駆動力源ブレーキ制御手段を備える車両用動力伝達装置の制御装置であって、
    運転者の操作に応じて任意の変速レンジまたは変速段に切換できるシフト操作装置を備え、
    前記駆動力源ブレーキ制御手段は、前記駆動力源ブレーキトルクを、低速変速レンジまたは低速変速段である程、非牽引時に比べ牽引時においてより大きく設定することを特徴とする車両用動力伝達装置の制御装置。
  2. 運転者の操作に応じて任意の変速レンジまたは変速段に切換できるシフト操作装置を備える車両用動力伝達装置の制御装置であって、
    牽引時は非牽引時に比べて、選択できる前記変速レンジまたは変速段の数をより多く設定することを特徴とする車両用動力伝達装置の制御装置。
  3. 運転者の操作に応じて任意の変速レンジまたは変速段に切換できるシフト操作装置を備える車両用動力伝達装置の制御装置であって、
    牽引時は非牽引時に比べて、前記変速レンジまたは変速段に応じて選択できる駆動力源ブレーキトルクをより細かく設定したことを特徴とする車両用動力伝達装置の制御装置。
  4. 運転者の操作に応じて任意の変速レンジまたは変速段に切換できるシフト操作装置を備える車両用動力伝達装置の制御装置であって、
    牽引時は非牽引時に比べて、選択できる変速レンジまたは変速段による最大駆動力源ブレーキトルクをより大きく設定したことを特徴とする車両用動力伝達装置の制御装置。
  5. 前記動力伝達装置は、差動機構の回転要素に連結された電動機の運転状態が制御されることにより、入力軸回転速度と出力軸回転速度との差動状態が制御される電気式差動部と動力伝達経路の一部を構成する変速部とを備えることを特徴とする請求項1乃至4のいずれか1つの車両用動力伝達装置の制御装置。
  6. 前記変速部は有段式の変速部であることを特徴とする請求項5の車両用動力伝達装置の制御装置。
  7. 前記電気式差動部は、遊星歯車装置と2つの電動機により構成され、前記電動機の運転状態が制御されることにより、無段変速機構として作動することを特徴とする請求項5の車両用動力伝達装置。
  8. 回生が可能な電動機が前記変速部の上流側に備えられていることを特徴とする請求項5の車両用動力伝達装置の制御装置。
JP2007204730A 2007-08-06 2007-08-06 車両用動力伝達装置の制御装置 Pending JP2009041599A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007204730A JP2009041599A (ja) 2007-08-06 2007-08-06 車両用動力伝達装置の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007204730A JP2009041599A (ja) 2007-08-06 2007-08-06 車両用動力伝達装置の制御装置

Publications (1)

Publication Number Publication Date
JP2009041599A true JP2009041599A (ja) 2009-02-26

Family

ID=40442561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007204730A Pending JP2009041599A (ja) 2007-08-06 2007-08-06 車両用動力伝達装置の制御装置

Country Status (1)

Country Link
JP (1) JP2009041599A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014168016A1 (ja) * 2013-04-11 2014-10-16 日産自動車株式会社 車両の制御装置及び制御方法
US9457667B2 (en) 2011-12-14 2016-10-04 Toyota Jidosha Kabushiki Kaisha Vehicle control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9457667B2 (en) 2011-12-14 2016-10-04 Toyota Jidosha Kabushiki Kaisha Vehicle control device
WO2014168016A1 (ja) * 2013-04-11 2014-10-16 日産自動車株式会社 車両の制御装置及び制御方法

Similar Documents

Publication Publication Date Title
JP4957475B2 (ja) 車両用動力伝達装置の制御装置
JP4320650B2 (ja) 車両用駆動装置の制御装置
JP4998164B2 (ja) 車両用動力伝達装置の制御装置
JP5003220B2 (ja) 車両用駆動装置の制御装置
JP4973277B2 (ja) 車両の電動オイルポンプ制御装置
JP5092694B2 (ja) 車両用動力伝達装置の制御装置
JP4046103B2 (ja) 車両用駆動装置の制御装置
JP2009023614A (ja) 車両用動力伝達装置の制御装置
JP4858310B2 (ja) 車両用動力伝達装置の制御装置
JP2008207690A (ja) 車両用駆動装置の制御装置
JP4438574B2 (ja) 車両用駆動装置の制御装置
JP5120202B2 (ja) 車両用動力伝達装置の制御装置
JP4941194B2 (ja) 車両用油圧制御装置
JP2010143491A (ja) 車両用動力伝達装置の制御装置
JP4144561B2 (ja) 車両用駆動装置の制御装置
JP2010083361A (ja) 車両用動力伝達装置の制御装置
JP2009166643A (ja) 車両用動力伝達装置の制御装置
JP5195376B2 (ja) 車両用駆動装置の制御装置
JP5330669B2 (ja) 車両用動力伝達装置の制御装置
JP2009280177A (ja) 車両用動力伝達装置の制御装置
JP2010074886A (ja) 車両用動力伝達装置の制御装置
JP2009143417A (ja) 車両用動力伝達装置の制御装置
JP4483892B2 (ja) ハイブリッド車両用駆動装置の制御装置
JP4289242B2 (ja) 車両用駆動装置の制御装置
JP2009137332A (ja) 車両用動力伝達装置の制御装置