JP2009041482A - Hydraulic machine - Google Patents

Hydraulic machine Download PDF

Info

Publication number
JP2009041482A
JP2009041482A JP2007208392A JP2007208392A JP2009041482A JP 2009041482 A JP2009041482 A JP 2009041482A JP 2007208392 A JP2007208392 A JP 2007208392A JP 2007208392 A JP2007208392 A JP 2007208392A JP 2009041482 A JP2009041482 A JP 2009041482A
Authority
JP
Japan
Prior art keywords
casing
staying
rectifying member
fixed
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007208392A
Other languages
Japanese (ja)
Inventor
Yoshimi Omura
嘉 大村
Takeshi Ito
伊藤  剛
Satoshi Narisawa
聡 成澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2007208392A priority Critical patent/JP2009041482A/en
Publication of JP2009041482A publication Critical patent/JP2009041482A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Hydraulic Turbines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydraulic machine not susceptible to breakage or dropping off caused by a force received by fluid and having a straightening member excellent in ease of mounting work. <P>SOLUTION: The straightening member 9 of the hydraulic machine has an arc-like cross-sectional shape, and is fixed to an outer periphery of a stay ring 4, so that a projection part of the arc directs on a flow passage 3a side of the casing 3. A support member 11 is fixed to the outer periphery of the stay ring 4, and the straightening member 9 is fixed to the support member 11. In this way, since the straightening member 9 has structure held by the stay ring 4 not connected with the casing 3 and does not transmits the force received by the straightening member 9 to the casing 3, the breakage of the casing 3 or the dropping off of the straightening member 9 is suppressed, and the installation is performed only by relatively simple process, that is, welding. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、水力機械に関するものである。   The present invention relates to a hydraulic machine.

水力発電に用いられる水車、ポンプ水車などの水力機械は、長年の運転による経年劣化、土砂磨耗、腐食による損傷等に対する補修、及び、水力機械の特性改善のため、構成部品を更新することが一般的である。しかしながら、例えば水力発電の場合、水力機械の主要部品の多くはコンクリート等による埋設部品となっているため、更新作業において作業領域(空間)が制限されることが多く、更新作業時間が多くかかることがある。そのため、保守費用の低減などの目的から補修や更新の範囲が限定される場合も多いことから、更新作業の回数を可能な範囲で減らすことが望まれる。   In general, hydraulic machines such as water turbines and pump turbines used for hydroelectric power generation are renewed in order to repair aging deterioration, earth and sand wear, damage due to corrosion, etc. due to many years of operation, and to improve the characteristics of hydraulic machines. Is. However, in the case of hydroelectric power generation, for example, many of the main parts of the hydropower machine are embedded parts such as concrete, so the work area (space) is often limited in renewal work, and renewal work takes a lot of time. There is. For this reason, the range of repairs and updates is often limited for the purpose of reducing maintenance costs, etc. Therefore, it is desirable to reduce the number of update operations as much as possible.

水力機械である水車は、水力発電に用いられる場合、高所にあるダムや溜池などの貯水設備から流れ落ちる水を、流路が形成されているケーシングに圧力水として流し込み、ステーリングを介して水車の回転体に備わるランナに導水し、回転体を回転する構造を有する。
ケーシングは、回転体の周囲を取り囲むように例えば円形状に流路を形成し、ステーリングは、上下の略円盤状の板材の間に形成される空間によって、ケーシングを流れる水を、回転体のランナに導く構造である。そして、ステーリングを形成する上下の板材は、複数のステーベーンによって支持され、構造強度を保っている。そして、ステーリングを形成する上下の板材はケーシングに溶接などの手段で固定され、構造強度を保つためにその先端部はケーシングの流路に突き出た状態で固定される。
When used for hydroelectric power generation, a hydraulic turbine, which is a hydraulic machine, flows water flowing down from a storage facility such as a dam or pond in a high place as pressure water into the casing in which the flow path is formed, and the turbine is connected via a staying ring. The structure has a structure in which water is introduced to a runner provided in the rotating body and the rotating body is rotated.
The casing forms a flow path, for example, in a circular shape so as to surround the periphery of the rotating body, and the staying allows water flowing through the casing to flow through the casing by a space formed between upper and lower substantially disk-shaped plates. This structure leads to the runner. The upper and lower plate members forming the staying are supported by a plurality of stay vanes to maintain the structural strength. Then, the upper and lower plate members forming the staying are fixed to the casing by means such as welding, and the front end portion thereof is fixed in a state protruding from the casing flow path in order to maintain the structural strength.

水力発電において、貯水設備から流れ落ちる水の落差が小さい設備に使用される小型の水車においては、上下の板材を、ケーシングからランナに向けて傾斜して配置することで整流作用を大きくできる、ベルマウス型のステーリングを用いることができる。しかしながら、水の落差が大きい設備に使用される大型の水車においては、構造強度の観点からベルマウス型のステーリングを用いることが困難であるため、上下の板材を平行に配置する平行平板型のステーリングが用いられることが多い。平行平板型のステーリングは、ベルマウス型のステーリングに比べて整流作用が小さいため、例えばケーシングからステーリングに流れ込むときに、ステーリングの外周縁がケーシングの内部に突き出た部分で流れが乱されて流体損失が大きくなり、性能低下につながる。   In hydroelectric power generation, in small water turbines used in facilities where the drop of water flowing from the storage facility is small, the rectifying action can be increased by arranging the upper and lower plate members inclined from the casing toward the runner. Mold staying can be used. However, it is difficult to use bellmouth type staying for large turbines used in equipment with large water drop from the viewpoint of structural strength, so parallel plate type with upper and lower plate members arranged in parallel Staling is often used. Parallel plate type staying has less rectifying action than bell mouth type staying.For example, when flowing into the staying from the casing, the flow is disturbed at the part where the outer peripheral edge of the staying protrudes into the case. As a result, fluid loss increases, leading to performance degradation.

そこで、ケーシングからステーリングに流れ込むときの流れの乱れの発生を抑えるために、ステーリングの外周縁に整流部材を備える技術が開示されている(例えば、特許文献1参照)。   Therefore, in order to suppress the occurrence of turbulence when flowing from the casing into the staying, a technique is disclosed that includes a rectifying member on the outer periphery of the staying (see, for example, Patent Document 1).

しかしながら、例えば特許文献1に開示される整流部材には、ケーシングの流路を流れる圧力水の圧力によって変動応力が作用する。そして、この変動応力が長期にわたって整流部材に作用することで、整流部材の例えばステーリングとの接合部が疲労破壊することがある。   However, for example, the rectifying member disclosed in Patent Document 1 is subjected to fluctuating stress due to the pressure of the pressure water flowing through the flow path of the casing. And when this fluctuating stress acts on the rectifying member over a long period of time, the joint portion of the rectifying member, for example, with the staying, may be fatigued.

そこで、整流部材とステーリングとケーシングとで囲まれた領域に、コンクリートミルク等の充填材を充填して補強する。このようにコンクリートミルク等の充填材を充填することで、整流部材に変動応力が作用することを抑止できる。
特開2002−147327号公報(段落0022、図3参照)
Therefore, a region surrounded by the rectifying member, the staying, and the casing is filled with a filler such as concrete milk for reinforcement. By filling the filler such as concrete milk in this way, it is possible to prevent the fluctuating stress from acting on the rectifying member.
JP 2002-147327 A (see paragraph 0022, FIG. 3)

前記のように、コンクリートミルク等の充填材を充填することで、整流部材に変動応力が作用することは防止できるが、充填材を充填する作業や充填材の硬化に相当の時間を要するため作業性が悪化するなどの問題が知られている。   As described above, by filling with a filler such as concrete milk, it is possible to prevent the fluctuating stress from acting on the rectifying member. However, the work for filling the filler and the hardening of the filler requires a considerable time. Problems such as deterioration of sex are known.

そこで、本発明は、圧力水から受ける力による破損や脱落が起きにくく、かつ取り付けの作業性に優れた整流部材を有する水力機械を提供することを課題とする。   Then, this invention makes it a subject to provide the hydraulic machine which has the baffle member which was hard to generate | occur | produce the failure | damage and drop | offset by the force received from pressure water, and was excellent in attachment workability | operativity.

前記課題を解決するため、本発明は、非拘束部を有し、支持部材によってステーリングに固定される整流部材を備えることを特徴とした。   In order to solve the above-described problems, the present invention is characterized by including a rectifying member that has a non-restraining portion and is fixed to the staying by a support member.

本発明によると、圧力水から受ける力による破損や脱落が起きにくく、かつ取り付けの作業性に優れた整流部材を有する水力機械を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the hydraulic machine which has the baffle member which was hard to generate | occur | produce by the force received from pressure water, and was excellent in attachment workability | operativity can be provided.

以下、本発明を実施するための最良の形態について、適宜図を用いて詳細に説明する。
まず、比較のため、図1、図2を参照して従来の構造を説明する。図1は、水力発電に用いられるフランシス水車の概略断面図、図2は従来の整流部材を取り付けたことを示す図である。
Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings as appropriate.
First, a conventional structure will be described with reference to FIGS. 1 and 2 for comparison. FIG. 1 is a schematic cross-sectional view of a Francis turbine used for hydroelectric power generation, and FIG. 2 is a diagram showing that a conventional rectifying member is attached.

図1に示すように、水力機械であるフランシス水車1は、発電機Gに接続される回転軸2aの周りに回転する回転体2、回転軸2aを回転自在に保持することで回転体2を回転自在に保持し、回転体2にケーシング3の流路3aを流れる圧力水を導水する導水路5dを備える固定部5、回転体2の周囲を下方に傾斜して取り囲むように配置することで渦巻状をなし、断面が円形状の流路3aを形成するケーシング3及び、ケーシング3の流路3aを流れる圧力水を固定部5の導水路5dに導水する導水路4cを備えるステーリング4を含んで構成される。   As shown in FIG. 1, the Francis turbine 1 that is a hydraulic machine has a rotating body 2 that rotates around a rotating shaft 2 a connected to the generator G, and the rotating body 2 by rotatably holding the rotating shaft 2 a. By fixing the rotating part 2 so as to surround the rotating body 2 in a downwardly inclined manner, the rotating part 2 is provided with a water guide channel 5d that guides the pressure water flowing through the flow path 3a of the casing 3 to the rotating body 2. A stirring 4 including a casing 3 that forms a spiral-shaped channel 3a having a circular cross section and a water conduit 4c that guides the pressure water flowing through the channel 3a of the casing 3 to the water conduit 5d of the fixed portion 5. Consists of including.

そして、矢印で示すように、ケーシング3の流路3aを流れる圧力水は、ステーリング4の導水路4cと固定部5の導水路5dを介して回転体2に導水され、回転体2を回転する。回転体2を回転した圧力水は、固定部5の下部に開口する吸出し管5cを介して下池等に排出される。   As indicated by the arrows, the pressure water flowing through the flow path 3 a of the casing 3 is guided to the rotating body 2 through the water guide path 4 c of the staying 4 and the water guide path 5 d of the fixing portion 5, and rotates the rotating body 2. To do. The pressure water that has rotated the rotating body 2 is discharged to a lower pond or the like via a suction pipe 5c that opens to the lower portion of the fixed portion 5.

図1に示すように、ステーリング4は、上部板4aと下部板4bとで形成される。上部板4aと下部板4bの外周縁は、上面視で略円形であって、ケーシング3の内周に接続して備わる。そして、上部板4aと下部板4bとは相対して平行に配置され、間に導水路4cが形成される。
上部板4aと下部板4bとの間には、ステーベーン8が溶接などの手段で固定されて、ステーリング4の強度を保つ。ステーベーン8は例えば板状の部材であって、ステーリング4の外周縁の側から回転体2の中心の側に向かって備わり、上端部と下端部とがそれぞれ上部板4aと下部板4bに固定される。なお、ステーベーン8の回転体2の中心の側の端を、ステーリング4の外周縁の側の端よりケーシング3を流れる圧力水の流れの方向に傾斜して固定してもよい。すなわち、ステーリング4の外周縁の側から回転体2の中心の側に向かって、流れの方向に向かう傾斜を設ける。このように、ステーベーン8を流れの方向に向かう傾斜を設けて固定することで、ケーシング3からステーリング4への導水の効率が向上する。そして、ステーリング4には、円周方向に複数のステーベーン8が備わることが好ましい。
As shown in FIG. 1, the staying 4 is formed by an upper plate 4a and a lower plate 4b. The outer peripheral edges of the upper plate 4 a and the lower plate 4 b are substantially circular when viewed from above, and are provided connected to the inner periphery of the casing 3. And the upper board 4a and the lower board 4b are arrange | positioned in parallel relatively, and the water conduit 4c is formed among them.
A stay vane 8 is fixed between the upper plate 4a and the lower plate 4b by means such as welding to maintain the strength of the staying 4. The stay vane 8 is a plate-like member, for example, and is provided from the outer peripheral edge side of the staying 4 toward the center side of the rotating body 2, and the upper end portion and the lower end portion are fixed to the upper plate 4a and the lower plate 4b, respectively. Is done. Note that the end of the stay vane 8 on the center side of the rotating body 2 may be fixed by being inclined in the direction of the flow of the pressure water flowing through the casing 3 from the end on the outer peripheral edge side of the stay ring 4. That is, an inclination is provided in the direction of flow from the outer peripheral edge side of the staying 4 toward the center side of the rotating body 2. Thus, the efficiency of the water conveyance from the casing 3 to the staying 4 is improved by providing the stay vane 8 with an inclination toward the flow direction. The staying 4 is preferably provided with a plurality of stay vanes 8 in the circumferential direction.

ステーリング4の上部板4aと下部板4bとはそれぞれケーシング3に溶接などの手段で固定され、上部板4aと下部板4bの間は、ケーシング3の側面が開口して、ステーリング4の導水路4cとケーシング3の流路3aとが連通する。このような構成によって、ケーシング3の流路3aを流れる圧力水は、ステーリング4の導水路4cに流れ込むことができる。   The upper plate 4a and the lower plate 4b of the staying 4 are respectively fixed to the casing 3 by means of welding or the like, and a side surface of the casing 3 is opened between the upper plate 4a and the lower plate 4b so that the staying 4 is guided. The water channel 4 c communicates with the channel 3 a of the casing 3. With such a configuration, the pressure water flowing through the flow path 3 a of the casing 3 can flow into the water conduit 4 c of the staying 4.

固定部5は導水路5dを形成する上カバー5aと下カバー5bとで構成され、ステーリング4の上部板4aと上カバー5aとが水密固定され、下部板4bと下カバー5bとが水密固定される。このような構成によって、ステーリング4の導水路4cと固定部5の導水路5dとは連通し、ステーリング4の導水路4cを流れる圧力水は、固定部5の導水路5dに流れ込む構造となる。   The fixing portion 5 includes an upper cover 5a and a lower cover 5b that form a water conduit 5d. The upper plate 4a and the upper cover 5a of the staying 4 are fixed in a watertight manner, and the lower plate 4b and the lower cover 5b are fixed in a watertight manner. Is done. With such a configuration, the water conduit 4c of the staying 4 communicates with the water conduit 5d of the fixed portion 5, and the pressure water flowing through the water conduit 4c of the staying 4 flows into the water conduit 5d of the fixed portion 5. Become.

固定部5には、上カバー5aと下カバー5bに保持される上下方向に伸びる回転軸7aの周りに回転可能なガイドベーン7が備わる。ガイドベーン7は板状の部材であって、固定部5の導水路5dを流れる圧力水の方向に対して垂直に回転(首振り)し、その回転角度(首振り角度)によって固定部5の導水路5dを流れる水量を調節する機能を有する。   The fixed portion 5 is provided with a guide vane 7 that is rotatable around a rotary shaft 7a that is held by the upper cover 5a and the lower cover 5b and extends in the vertical direction. The guide vane 7 is a plate-like member, and rotates (swings) perpendicularly to the direction of the pressure water flowing through the water conduit 5d of the fixing part 5, and the rotation angle (swinging angle) of the fixing part 5 It has a function of adjusting the amount of water flowing through the water conduit 5d.

回転体2は、固定部5に形成される導水路5dに連通するように開口部が形成され、開口部には複数のランナ2bが備わる。そして、固定部5の導水路5dを流れてきた圧力水がランナ2bに当たることで、圧力水の持つ圧力エネルギと速度エネルギが回転運動エネルギに変換され、回転体2が回転する。   The rotating body 2 is formed with an opening so as to communicate with a water conduit 5d formed in the fixed portion 5, and the opening is provided with a plurality of runners 2b. Then, when the pressure water flowing through the water guide channel 5d of the fixed portion 5 hits the runner 2b, the pressure energy and velocity energy of the pressure water are converted into rotational kinetic energy, and the rotating body 2 rotates.

以上のように構成されるフランシス水車1においては、前記のように、ステーリング4とケーシング3は溶接によって接合される。このとき、構造強度を考慮して、ケーシング3は上部板4aと下部板4bを支持するステーベーン8の上部でステーリング4と溶接接合されることが好ましく、ステーリング4の最外周より内側に接合部ができる。したがって、図1に示すように、ケーシング3の内部に形成される流路3aにステーリング4の外周縁が突き出る構造となる。
そして、ケーシング3の流路3aに突き出たステーリング4の外周縁によって圧力水の流れが乱され、ケーシング3の流路3aからステーリング4の導水路4cに圧力水が流入するときの流体損失が大きくなる。
In the Francis turbine 1 configured as described above, the staying 4 and the casing 3 are joined by welding as described above. At this time, in consideration of the structural strength, the casing 3 is preferably welded to the stay ring 4 at the upper part of the stay vane 8 that supports the upper plate 4 a and the lower plate 4 b, and is joined to the inner side of the outermost periphery of the stay ring 4. A part is made. Therefore, as shown in FIG. 1, the outer peripheral edge of the staying 4 protrudes into the flow path 3 a formed inside the casing 3.
Then, the flow of pressure water is disturbed by the outer peripheral edge of the staying 4 protruding into the flow path 3 a of the casing 3, and fluid loss occurs when the pressure water flows from the flow path 3 a of the casing 3 into the water conduit 4 c of the staying 4. Becomes larger.

そこで、従来、図2に示すように、ケーシング3の流路3aに突き出たステーリング4の外周縁に整流部材9を備える。整流部材9は、例えば断面形状の一端から他端までが弧を描くように湾曲した板状の部材であって、ケーシング3の流路3aの側に凸面が向くように配置され、一端をステーリング4の外周縁の先端部に溶接などで固定し、他端をケーシング3の内側に溶接などで固定する。このような整流部材9を備えることで、ケーシング3の流路3aからステーリング4の導水路4cに、圧力水が滑らかに流入することになり流れの乱れの発生を抑えることができる。   Therefore, conventionally, as shown in FIG. 2, a rectifying member 9 is provided on the outer peripheral edge of the staying 4 protruding into the flow path 3 a of the casing 3. The rectifying member 9 is, for example, a plate-like member that is curved so as to draw an arc from one end to the other end of the cross-sectional shape, and is arranged so that the convex surface faces the flow path 3a side of the casing 3, and one end of the rectifying member 9 is The front end of the outer peripheral edge of the ring 4 is fixed by welding or the like, and the other end is fixed to the inside of the casing 3 by welding or the like. By providing such a rectifying member 9, the pressure water smoothly flows from the flow path 3 a of the casing 3 to the water guide path 4 c of the staying 4, thereby suppressing the occurrence of flow disturbance.

しかしながら、図2に示すケーシング3は、流路3aを流れる圧力水から、流路3aの外側に向かう力が作用するため、図2に示すように固定された整流部材9にも、ケーシング3の流路3aを流れる圧力水から外側に向かう力が作用する。そして、これらの力の多くは時間変化するものであるため、整流部材9には変動応力として作用し、疲労破壊の一因となる。
このような疲労破壊を防止すべく、図2に示すように、ケーシング3、ステーリング4及び整流部材9で囲まれた領域にコンクリートミルクなどの充填材10を充填する。このように充填材10を充填することで、整流部材9に作用する変動応力を抑えることができる。また、変動応力が作用しても充填材10によって分散するために応力が集中することがなく、応力集中による破壊を防止することができる。
しかしながら、前記したように、充填材10を充填する工数が必要になるとともに、充填材10の硬化に相当の時間を要するため作業効率が悪化するなどの問題がある。
However, in the casing 3 shown in FIG. 2, a force directed from the pressure water flowing through the flow path 3 a to the outside of the flow path 3 a acts. Therefore, the rectifying member 9 fixed as shown in FIG. A force directed outward from the pressure water flowing through the flow path 3a acts. Since most of these forces change over time, the rectifying member 9 acts as a fluctuating stress and contributes to fatigue failure.
In order to prevent such fatigue failure, a filler 10 such as concrete milk is filled in an area surrounded by the casing 3, the staying 4, and the rectifying member 9 as shown in FIG. 2. By filling the filler 10 in this way, the fluctuating stress acting on the rectifying member 9 can be suppressed. Further, even if fluctuating stress is applied, the stress is not concentrated because it is dispersed by the filler 10, and it is possible to prevent breakage due to stress concentration.
However, as described above, the man-hour for filling the filler 10 is required, and there is a problem that work efficiency is deteriorated because a considerable time is required for curing the filler 10.

そこで、本実施形態においては、非拘束部を有するとともに、支持部材によってステーリングに固定される整流部材を特徴とする。図3の(a)は、フランシス水車における、本実施形態にかかる整流部材を示す図、(b)は、図3の(a)におけるX−X断面の斜視図、図4は、図3の(a)におけるX−X断面の斜視図において、直線状の部材で形成された整流部材を固定したことを示す図である。なお、図1および図2に示すフランシス水車と同等の部材については、同じ符号を付して適宜説明は省略する。   Therefore, the present embodiment is characterized by a rectifying member that has an unconstrained portion and is fixed to the staying by a support member. (A) of FIG. 3 is a figure which shows the rectification | straightening member concerning this embodiment in a Francis turbine, (b) is a perspective view of the XX cross section in (a) of FIG. 3, FIG. 4 is FIG. In the perspective view of the XX section in (a), it is a figure showing fixing the straightening member formed with the linear member. In addition, about the member equivalent to the Francis turbine shown to FIG. 1 and FIG. 2, the same code | symbol is attached | subjected and description is abbreviate | omitted suitably.

図3の(a)に示すように、本実施形態にかかる整流部材9は、例えば断面形状が弧状をなす板状の部材であって、ケーシング3の流路3aの側に凸面が向くように配置され、一端がステーリング4の外周縁の先端に溶接部9aを形成するように溶接されて固定される。そして、図3の(a)に示すように、整流部材9の少なくとも一端は固定されることなく、開放された状態にある。すなわち、整流部材9は非拘束部を有し、ケーシング3と非接続にステーリング4の外周縁に保持される。   As shown to (a) of FIG. 3, the rectification | straightening member 9 concerning this embodiment is a plate-shaped member which cross-sectional shape makes an arc shape, for example, Comprising: A convex surface faces the flow-path 3a side of the casing 3. As shown in FIG. It is arrange | positioned and one end is welded and fixed so that the welding part 9a may be formed in the front-end | tip of the outer periphery of the staying 4. FIG. And as shown to (a) of FIG. 3, at least one end of the rectification | straightening member 9 is in the open state, without being fixed. That is, the rectifying member 9 has a non-binding portion and is held on the outer peripheral edge of the staying 4 so as not to be connected to the casing 3.

また、整流部材9には、弧状の凹面の側に支持部材11が備わる。支持部材11は、ステーリング4の外周縁の先端部に固定された整流部材9の一端の側から他端の側に向けてリブ状に備わる板状の部材であって、その一端は、ケーシング3の流路3aに突き出したステーリング4の外周縁に溶接部11aを形成するような溶接などの手段によって固定される。すなわち、整流部材9は、ステーリング4の外周縁に固定される支持部材11に固定される。そして、整流部材9と同様に、他端は固定されることなく非拘束部を有し、ケーシング3と非接続にステーリング4の外周縁に保持される。   Further, the rectifying member 9 is provided with a support member 11 on the arc-shaped concave surface side. The support member 11 is a plate-like member provided in a rib shape from one end side to the other end side of the rectifying member 9 fixed to the distal end portion of the outer peripheral edge of the staying 4, and one end thereof is a casing. 3 is fixed by means such as welding to form a welded portion 11a on the outer peripheral edge of the staying 4 protruding into the flow path 3a. That is, the rectifying member 9 is fixed to the support member 11 that is fixed to the outer peripheral edge of the staying 4. And, like the flow regulating member 9, the other end is not fixed and has a non-restraining portion, and is held on the outer peripheral edge of the staying 4 so as not to be connected to the casing 3.

なお、整流部材9の一端をステーリング4の外周縁の先端部に固定するとしたが、これは限定されるものではなく、整流部材9をステーリング4の外周縁の先端部に固定せずに支持部材11のみに固定する構成であってもよい。この場合、整流部材9は支持部材11のみでステーリング4に保持される。   Although one end of the rectifying member 9 is fixed to the tip of the outer peripheral edge of the staying 4, this is not limited, and the rectifying member 9 is not fixed to the tip of the outer peripheral edge of the staying 4. The structure fixed only to the support member 11 may be sufficient. In this case, the rectifying member 9 is held on the staying 4 only by the support member 11.

このように、整流部材9および支持部材11が、ともにケーシング3と接続されないことから、整流部材9はケーシング3とは非接続に設置される。   As described above, since the rectifying member 9 and the support member 11 are not connected to the casing 3, the rectifying member 9 is installed so as not to be connected to the casing 3.

ここで、支持部材11の個数は限定されるものではなく、整流部材9に作用する変動応力の大きさおよび、整流部材9に要求される強度などに基づいて、支持部材11を適宜設置すればよい。   Here, the number of the supporting members 11 is not limited, and if the supporting members 11 are appropriately installed based on the magnitude of the fluctuating stress acting on the rectifying member 9 and the strength required for the rectifying member 9. Good.

図3の(a)に示すように形成される整流部材9は、ステーリング4のみによって片持ち状態に保持され、整流部材9とケーシング3とは非接続であり、整流部材9とケーシング3とは直接に接することがない。したがって、圧力水の流れによって整流部材9に変動応力が発生しても、ケーシング3に伝達されることがない。
一般的に、軽量化などのためケーシング3の部材はステーリング4に比べて肉厚が薄く強度も弱いので、強度の弱いケーシング3に整流部材9からの変動応力が伝達されないことによって、ケーシング3の耐久性が向上することになる。
The rectifying member 9 formed as shown in FIG. 3 (a) is held in a cantilever state only by the staying 4, and the rectifying member 9 and the casing 3 are not connected. Does not touch directly. Therefore, even if fluctuating stress is generated in the rectifying member 9 due to the flow of pressure water, it is not transmitted to the casing 3.
In general, since the member of the casing 3 is thinner and weaker than the staying 4 for weight reduction and the like, the fluctuating stress from the rectifying member 9 is not transmitted to the casing 3 having a lower strength. This will improve the durability.

さらに、前記のようにケーシング3は薄い部材であるため、流路3aを流れる圧力水の圧力の変化に伴って、断面形状が微小に膨張・縮小を繰り返す。従前の技術のように、例えば図2に示す如くケーシング3と整流部材9とが連結されている場合、ケーシング3の断面形状の微小な膨張・縮小によって、ケーシング3と整流部材9との接合部分に応力集中を発生させることから、強度の面において改善の余地がある。
これに対して、本実施形態においては、図3の(a)に示すように整流部材9とケーシング3は非接続であるため、ケーシング3の断面形状の微小な膨張・縮小の繰り返しによって、整流部材9とケーシング3の接続部分に応力が集中することもなく、接続部分が破損することはない。このように、本実施形態においては、ケーシング3と整流部材9との接合部に破損が発生しないという、優れた効果を奏する。
Furthermore, since the casing 3 is a thin member as described above, the cross-sectional shape repeatedly expands and contracts minutely with changes in the pressure of the pressure water flowing through the flow path 3a. For example, when the casing 3 and the rectifying member 9 are connected as shown in FIG. 2 as in the conventional technique, the joint portion between the casing 3 and the rectifying member 9 is obtained by minute expansion / contraction of the sectional shape of the casing 3. Since stress concentration occurs in the surface, there is room for improvement in terms of strength.
On the other hand, in the present embodiment, as shown in FIG. 3A, the rectifying member 9 and the casing 3 are not connected, so that the rectification is performed by repeating minute expansion / reduction of the cross-sectional shape of the casing 3. The stress is not concentrated on the connecting portion between the member 9 and the casing 3, and the connecting portion is not damaged. Thus, in this embodiment, there exists an outstanding effect that damage does not generate | occur | produce in the junction part of the casing 3 and the rectification | straightening member 9.

また、本実施形態にかかる整流部材9は、ケーシング3との溶接をしないことから、溶接にかかる工数を削減することができるため、フランシス水車1(図1参照)を設置や改修するのに要する工期を短縮できる。
そして、図3の(a)に示すように、整流部材9は支持部材11によってステーリング4に固定されるため、ケーシング3の流路を流れる圧力水からの流体反力を支えることができることから、コンクリートミルク等の充填材10(図2参照)が必要なくなる。このことによって、充填材10を充填する工数の削減および充填材10が硬化するまでの待機時間の削減が可能であることからも、フランシス水車1を設置や改修する工期を短縮できる。
Moreover, since the rectifying member 9 according to the present embodiment does not weld with the casing 3, it is possible to reduce the number of man-hours required for welding. Therefore, it is necessary to install or repair the Francis turbine 1 (see FIG. 1). The construction period can be shortened.
And since the rectifying member 9 is fixed to the staying 4 by the support member 11 as shown in FIG. 3A, the fluid reaction force from the pressure water flowing through the flow path of the casing 3 can be supported. The filler 10 such as concrete milk (see FIG. 2) is not necessary. Accordingly, the man-hour for filling the filler 10 and the waiting time until the filler 10 is hardened can be reduced, so that the time for installing and repairing the Francis turbine 1 can be shortened.

なお、図3の(a)に示すように整流部材9を取り付ける方法は限定するものではないが、ケーシング3の直径が、作業人が中で作業可能なほど大きい場合は、例えば作業人がケーシング3の中に入って、ケーシング3が固定されたステーリング4の外周縁に、支持部材11を予め溶接などの方法で固定し、その支持部材11に整流部材9を溶接などの方法で固定する方法が考えられる。
また、本実施形態においては、整流部材9をケーシング3の内部に固定(溶接)する必要がないので、ケーシング3が固定されない状態のステーリング4の外周縁に、支持部材11を予め溶接などの方法で固定し、その支持部材11に整流部材9を溶接などの方法で固定した後に、ケーシング3を固定する方法も考えられる。
As shown in FIG. 3 (a), the method of attaching the rectifying member 9 is not limited. However, when the diameter of the casing 3 is large enough for the worker to work in, the worker, for example, 3, the support member 11 is fixed to the outer peripheral edge of the staying 4 to which the casing 3 is fixed in advance by a method such as welding, and the rectifying member 9 is fixed to the support member 11 by a method such as welding. A method is conceivable.
In this embodiment, since it is not necessary to fix (weld) the rectifying member 9 to the inside of the casing 3, the support member 11 is previously welded to the outer peripheral edge of the staying 4 in a state where the casing 3 is not fixed. A method of fixing the casing 3 after fixing the rectifying member 9 to the support member 11 by a method such as welding is also conceivable.

ここで、整流部材9の長手方向の形状について考える。図3の(b)に示すように、整流部材9はケーシング3の外壁部およびステーリング4の最外周に沿って備わるため、整流部材9の長手方向は、ケーシング3の外壁部およびステーリング4の最外周と同じ曲率半径で湾曲する。特に、図2に示すように、ケーシング3、ステーリング4及び整流部材9で囲まれた領域にコンクリートミルクなどの充填材10を充填する場合には、充填材10を充填する領域を密封することが必要になるため、整流部材9がステーリング4およびケーシング3と密着するように、すなわち、整流部材9とステーリング4およびケーシング3との間に隙間が生じないように、整流部材9の長手方向を湾曲させる必要がある。   Here, the shape of the straightening member 9 in the longitudinal direction will be considered. As shown in FIG. 3 (b), the straightening member 9 is provided along the outer wall of the casing 3 and the outermost periphery of the staying 4, so the longitudinal direction of the straightening member 9 is the outer wall of the casing 3 and the staying 4. It bends with the same radius of curvature as the outermost circumference. In particular, as shown in FIG. 2, when the filler 10 such as concrete milk is filled in the area surrounded by the casing 3, the staying 4 and the rectifying member 9, the area filled with the filler 10 is sealed. Therefore, the straightening of the straightening member 9 so that the straightening member 9 is in close contact with the staying 4 and the casing 3, that is, no gap is formed between the straightening member 9 and the staying 4 and the casing 3. It is necessary to bend the direction.

これに対して、本実施形態においては、整流部材9は、ステーリング4に支持部材11を介して固定されるとともに、整流部材9がステーリング4およびケーシング3と密着する必要がないため、例えば図4に示すように、直線状に形成される部材をつなぎ合わせて整流部材9を形成してもよい。   On the other hand, in this embodiment, the rectifying member 9 is fixed to the staying 4 via the support member 11 and the rectifying member 9 does not need to be in close contact with the staying 4 and the casing 3. As shown in FIG. 4, the straightening member 9 may be formed by joining linearly formed members.

整流部材9は、例えば中空のパイプ部材を長手方向に切断した、断面が半円形の部材を使用して形成できる。そして、図4に示すように、直線状の部材をつなぎ合わせて整流部材9を形成するには、断面が半円形の部材を適宜切断して、例えば溶接などでつなぎ合わせればよい。このことによって、断面が半円形の部材を、図3の(b)に示すようにケーシング3の外壁部およびステーリング4の最外周に沿った形状に長手方向に湾曲するよりも、作業しやすい工程で整流部材9を形成できる。したがって作業性が向上し、フランシス水車1(図1参照)を設置や改修する工期の短縮および生産コストの削減が可能という優れた効果を奏する。   The rectifying member 9 can be formed using, for example, a member having a semicircular cross section obtained by cutting a hollow pipe member in the longitudinal direction. And as shown in FIG. 4, in order to join a linear member and form the rectification | straightening member 9, what is necessary is just to cut | disconnect a member with a semicircular cross section suitably, and to join by welding etc., for example. This makes it easier to work on a member having a semicircular cross-section than bending it in the longitudinal direction into a shape along the outer wall of the casing 3 and the outermost periphery of the staying 4 as shown in FIG. The flow regulating member 9 can be formed in the process. Therefore, workability is improved, and an excellent effect is achieved that the work period for installing and refurbishing the Francis turbine 1 (see FIG. 1) can be shortened and the production cost can be reduced.

なお、整流部材9(図3の(a)参照)は、ケーシング3(図3の(a)参照)の流路3a(図3の(a)参照)に突き出たステーリング4(図3の(a)参照)の外周縁の全周にわたって備わる構造であってもよいし、ステーリング4の外周縁の一部分にのみ整流部材9が備わる構造であってもよい。
ケーシング3を流れる圧力水は、その上流部が下流部に比べて流量が多く圧力も高い。したがって、上流部は下流部に比べて流路3aからステーリング4の導水路4cに流入する水量も多く、流路3aからステーリング4の導水路4cに圧力水が流入するときに発生する流れの乱れも発生しやすい。このことから、例えば整流部材9をステーリング4の外周縁の全周にわたって備えることなく、ケーシング3の上流部にのみ備えてもよい。
さらに、整流部材9を上部板4a(図3の(a)参照)もしくは下部板4b(図3の(a)参照)のどちらか一方に備える形態であってもよい。
The rectifying member 9 (see FIG. 3A) is attached to the stay ring 4 (see FIG. 3) protruding into the flow path 3a (see FIG. 3A) of the casing 3 (see FIG. 3A). (A) may be provided over the entire circumference of the outer peripheral edge, or a structure in which the rectifying member 9 is provided only at a part of the outer peripheral edge of the staying 4 may be employed.
The pressure water flowing through the casing 3 has a higher flow rate and a higher pressure in the upstream portion than in the downstream portion. Therefore, the upstream part has a larger amount of water flowing from the flow path 3a to the water conduit 4c of the staying 4 than the downstream part, and the flow generated when pressure water flows from the flow path 3a to the water guide path 4c of the staying 4 Disturbance is also likely to occur. For this reason, for example, the rectifying member 9 may be provided only in the upstream portion of the casing 3 without being provided over the entire circumference of the outer peripheral edge of the staying 4.
Furthermore, the form which equips either the upper board 4a (refer (a) of FIG. 3) or the lower board 4b (refer (a) of FIG. 3) with the baffle member 9 may be sufficient.

以上、本発明にかかる整流部材9(図3参照)をフランシス水車1(図1参照)に適用した例を示したが、本発明にかかる整流部材9の適用はフランシス水車1に限定されるものではない。
図5は、本発明にかかる整流部材をフランシスポンプ水車に適用した例を示す図であり、図6は、本発明にかかる整流部材を斜流水車に適用した例を示す図であり、図7は、本発明にかかる整流部材をカプラン水車に適用した例を示す図である。
As mentioned above, although the example which applied the straightening member 9 (refer FIG. 3) concerning this invention to the Francis turbine 1 (refer FIG. 1) was shown, application of the straightening member 9 concerning this invention is limited to the Francis turbine 1 is not.
5 is a diagram showing an example in which the rectifying member according to the present invention is applied to a Francis pump turbine, and FIG. 6 is a diagram showing an example in which the rectifying member according to the present invention is applied to a mixed-flow turbine. These are figures which show the example which applied the baffle member concerning this invention to the Kaplan turbine.

図5乃至図7に示すように、使用する水車がフランシスポンプ水車1a(図5参照)、斜流水車1b(図6参照)およびカプラン水車(図7参照)のように異なる種類であっても、ステーリング4とケーシング3との接合部の形状は、図1に示すフランシス水車1の場合と同じであるため、ケーシング3の流路3aにステーリング4の外周縁が突き出た形状になる。
したがって、例えば図3の(a)に示す整流部材9と同じ形状の整流部材9を、ステーリング4の外周縁に備えることができる。そして、作業性の向上、工期の短縮および生産コストの削減が可能であるという、フランシス水車1(図1参照)の場合と同様な作用効果を奏する。
As shown in FIG. 5 to FIG. 7, even if the used turbines are different types such as Francis pump turbine 1a (see FIG. 5), mixed flow turbine 1b (see FIG. 6) and Kaplan turbine (see FIG. 7). Since the shape of the joint between the staying 4 and the casing 3 is the same as that of the Francis turbine 1 shown in FIG. 1, the outer peripheral edge of the staying 4 protrudes into the flow path 3 a of the casing 3.
Therefore, for example, the rectifying member 9 having the same shape as the rectifying member 9 shown in FIG. And the same effect as the case of the Francis turbine 1 (refer FIG. 1) that an improvement of workability | operativity, shortening of a work period, and reduction of production cost is possible is produced.

水力発電に用いられるフランシス水車の概略断面図である。It is a schematic sectional drawing of the Francis turbine used for hydroelectric power generation. 従来の整流部材を取り付けたことを示す図である。It is a figure which shows having attached the conventional rectification | straightening member. (a)は、フランシス水車における、本実施形態にかかる整流部材を示す図、(b)は、図3の(a)におけるX−X断面の斜視図である。(A) is a figure which shows the rectification | straightening member concerning this embodiment in a Francis turbine, (b) is a perspective view of the XX cross section in (a) of FIG. 図3の(a)におけるX−X断面の斜視図において、直線状の部材で形成された整流部材を固定したことを示す図である。In the perspective view of the XX section in Drawing 3 (a), it is a figure showing fixing the straightening member formed with the linear member. 本発明にかかる整流部材をフランシスポンプ水車に適用した例を示す図である。It is a figure which shows the example which applied the rectification | straightening member concerning this invention to the Francis pump turbine. 本発明にかかる整流部材を斜流水車に適用した例を示す図である。It is a figure which shows the example which applied the rectification | straightening member concerning this invention to a mixed flow turbine. 本発明にかかる整流部材をカプラン水車に適用した例を示す図である。It is a figure which shows the example which applied the baffle member concerning this invention to the Kaplan turbine.

符号の説明Explanation of symbols

1 フランシス水車(水力機械)
2 回転体
3 ケーシング
3a 流路
4 ステーリング
4a 上部板
4b 下部板
4c、5d 導水路
7 ガイドベーン
8 ステーベーン
9 整流部材
11 支持部材
1 Francis turbine (hydraulic machinery)
DESCRIPTION OF SYMBOLS 2 Rotating body 3 Casing 3a Flow path 4 Staying 4a Upper plate 4b Lower plate 4c, 5d Water conduit 7 Guide vane 8 Stay vane 9 Rectification member 11 Support member

Claims (3)

外周縁が円形の上部板と下部板とが平行に配置され、前記上部板と前記下部板との間を水が流れて導水路となる平行平板型のステーリングと、
前記ステーリングの周囲に、円周方向に水が流れる渦巻状の流路を形成し、前記上部板と前記下部板の外周縁が前記流路に突き出るように前記ステーリングを固定するとともに、前記流路に突き出た前記上部板と前記下部板の外周縁の間を開口して、前記流路と前記導水路とを連通させるケーシングと、
前記流路から前記導水路に流れ込む水の流れを整流する整流部材と、を含んで構成され、前記水の流れによって回転体を回転させる水力機械であって、
前記整流部材は、前記流路に突き出した前記ステーリングの外周縁に固定される支持部材に固定され、前記整流部材および前記支持部材は、前記ケーシングとは非接続に前記ステーリングの外周縁に保持されることを特徴とする水力機械。
A parallel plate type staying in which an upper plate and a lower plate having a circular outer periphery are arranged in parallel, and water flows between the upper plate and the lower plate to form a water conduit,
Around the staying is formed a spiral flow path in which water flows in the circumferential direction, and the staying is fixed so that the outer peripheral edges of the upper plate and the lower plate protrude into the flow path, and A casing that opens between the outer peripheral edges of the upper plate and the lower plate protruding into the flow path, and communicates the flow path and the water conduit;
A rectifying member that rectifies the flow of water flowing into the water conduit from the flow path, and a hydraulic machine that rotates a rotating body by the water flow,
The rectifying member is fixed to a support member that is fixed to the outer peripheral edge of the staying protruding into the flow path, and the rectifying member and the support member are not connected to the casing and are connected to the outer peripheral edge of the staying. A hydraulic machine characterized by being held.
前記整流部材が、前記ステーリングの外周縁の全周もしくは一部分に備わることを特徴とする請求項1に記載の水力機械。   The hydraulic machine according to claim 1, wherein the rectifying member is provided on an entire periphery or a part of an outer peripheral edge of the staying. 前記整流部材が、前記上部板と前記下部板の両方もしくはどちらか一方に備わることを特徴とする請求項1または請求項2に記載の水力機械。   The hydraulic machine according to claim 1, wherein the rectifying member is provided on both or either of the upper plate and the lower plate.
JP2007208392A 2007-08-09 2007-08-09 Hydraulic machine Pending JP2009041482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007208392A JP2009041482A (en) 2007-08-09 2007-08-09 Hydraulic machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007208392A JP2009041482A (en) 2007-08-09 2007-08-09 Hydraulic machine

Publications (1)

Publication Number Publication Date
JP2009041482A true JP2009041482A (en) 2009-02-26

Family

ID=40442472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007208392A Pending JP2009041482A (en) 2007-08-09 2007-08-09 Hydraulic machine

Country Status (1)

Country Link
JP (1) JP2009041482A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105057855A (en) * 2015-08-31 2015-11-18 哈尔滨电机厂有限责任公司 Erecting welding technological method for single-upper-ring type large segmented stand ring with sole plates
JP2019027314A (en) * 2017-07-27 2019-02-21 株式会社東芝 Hydraulic machine and assembly and disassembly methods of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105057855A (en) * 2015-08-31 2015-11-18 哈尔滨电机厂有限责任公司 Erecting welding technological method for single-upper-ring type large segmented stand ring with sole plates
JP2019027314A (en) * 2017-07-27 2019-02-21 株式会社東芝 Hydraulic machine and assembly and disassembly methods of the same

Similar Documents

Publication Publication Date Title
US20110293416A1 (en) Hydropower plant
JP6121239B2 (en) Pull-out vertical shaft pump
US20110008150A1 (en) Wheel for a hydraulic machine, a hydraulic machine including such a wheel, and an energy conversion installation equipped with such a hydraulic machine
JP2009228608A (en) Hydraulic power generation device
JP5809126B2 (en) Micro hydro generator
CN101713364A (en) hydraulic machine
CN213175916U (en) Hollow shaft pipeline type hydroelectric generation device
CN204755377U (en) Vertical axial -flow pump
JP2009041482A (en) Hydraulic machine
KR20170056517A (en) Francis turbine with short blade and short band
KR101959887B1 (en) Pipe type small hydroelectric generator having oar shaped blades
JP6935589B2 (en) Wind Turbine Steel Tower Ring Segments and Methods
JP2009235951A (en) Vertical shaft valve type hydraulic turbine generator
US20100119353A1 (en) Systems For Improved Fluid Flows Through A Turbine
JP4876797B2 (en) Hydraulic machinery and hydraulic machinery staying
JP2020528512A (en) Wind power generation equipment for towers Wind power generation equipment Steel tower part and its manufacturing method
JP4924170B2 (en) Hydraulic machine stay vanes
KR20090053476A (en) Maintenance system of helical turbine
CA2438429C (en) Method of re-building francis turbine runners
JP2014163238A (en) Power generating spiral turbine and manufacturing method thereof, and power generator
JP5725575B2 (en) Impeller with booster function
JP2013096245A (en) Hydraulic machine, and method for disassembling the same
KR101075538B1 (en) Wave power generation system
JP4607494B2 (en) Vertical shaft water turbine
JP2007285284A (en) Bulb turbine