JP2005127198A - Turbine and sealing structure of stationary blade root section and moving blade root section - Google Patents

Turbine and sealing structure of stationary blade root section and moving blade root section Download PDF

Info

Publication number
JP2005127198A
JP2005127198A JP2003362680A JP2003362680A JP2005127198A JP 2005127198 A JP2005127198 A JP 2005127198A JP 2003362680 A JP2003362680 A JP 2003362680A JP 2003362680 A JP2003362680 A JP 2003362680A JP 2005127198 A JP2005127198 A JP 2005127198A
Authority
JP
Japan
Prior art keywords
blade
rotor
stationary blade
turbine
brush seal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003362680A
Other languages
Japanese (ja)
Inventor
Hidetoshi Fujii
秀敏 藤井
So Chiyouka
創 潮下
Masahito Machida
雅人 町田
Kiyoshi Segawa
清 瀬川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003362680A priority Critical patent/JP2005127198A/en
Publication of JP2005127198A publication Critical patent/JP2005127198A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/55Seals
    • F05D2240/56Brush seals

Abstract

<P>PROBLEM TO BE SOLVED: To remarkably and securely reduce leak amount, reduce a manufacturing cost for a rotor disk, and facilitate setting and maintenance operations on the seal structure of the stationary blade/moving blade root pars of a turbine. <P>SOLUTION: A brush seal 9 and a fixed part 7 are installed on the inner ring 5 of the stationary blade root part, and the seal structure is formed in the clearance thereof from a rotor disk projected part 8 formed on the rotor disk 6 of a moving blade 1. A clearance between the tip of the brush seal 9 and the rotor disk projected part 8 is set to zero or a nearly zero in stationary operation. The rotor disk projected part 8 is formed in a tapered shape so that a clearance between the tip of the brush seal 9 and the rotor disk projected part 8 is increased at starting. Since a static blade side structure such as a casing is displaced in a direction shown by 10 along the axial direction according to its extension by heat, and a moving blade side structure such as a rotor is displaced in a direction shown by 11, and the clearance is adjusted. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、蒸気タービン,ガスタービン等の静翼及び動翼根元部のシール構造に関する。   The present invention relates to a seal structure of a stationary blade and a blade root portion of a steam turbine, a gas turbine or the like.

静止体と回転体との間隙から発生する漏洩損失は、タービン内で発生する各種損失の中でも大きな割合を占める。このため、タービン内部効率を大幅に向上する上で高性能なシール技術の確立が重要となっている。さらに、タービン効率が向上すれば、エネルギー資源の節約、CO2 などの環境破壊因子の削減につながる。 Leakage loss generated from the gap between the stationary body and the rotating body accounts for a large proportion of the various losses generated in the turbine. For this reason, it is important to establish a high-performance sealing technique in order to greatly improve the internal efficiency of the turbine. Further, if the turbine efficiency is improved, energy resources can be saved and environmental destruction factors such as CO 2 can be reduced.

特に、タービンの静翼下流側と動翼上流側との間には、根元部に間隙が存在する。蒸気タービンの例を挙げると、タービンの静翼を蒸気が通過する際、静翼内周端部を拘束する内輪とロータとの間隙を通過する漏洩蒸気が発生し、この漏洩蒸気が静翼下流側と動翼上流側との間に存在する根元部の間隙を通過して静翼を通過した蒸気に合流する。この合流により、静翼出口から動翼入口へ流れる蒸気は、翼根元付近において流れの乱れが引き起こされ、それによりタービンの内部効率低下が引き起こされる。このため、タービン内部効率を向上する上で、この静翼・動翼間根元部の間隙における高性能なシール技術の確立が必要となっている。   In particular, a gap exists at the root between the downstream side of the turbine and the upstream side of the moving blade. As an example of a steam turbine, when steam passes through the stationary blades of the turbine, leaked steam that passes through the gap between the inner ring and the rotor that restrains the inner peripheral edge of the stationary blade is generated, and this leaked steam is downstream of the stationary blade. Passes through the gap at the root portion existing between the side and the upstream side of the rotor blade, and merges with the steam that has passed through the stationary blade. Due to this merging, the steam flowing from the stationary blade outlet to the moving blade inlet causes a turbulence in the vicinity of the blade root, thereby reducing the internal efficiency of the turbine. For this reason, in order to improve the internal efficiency of the turbine, it is necessary to establish a high-performance sealing technique in the gap between the roots of the stationary blade and the moving blade.

現在まで多くのタービンで使われている静翼・動翼間根元部のシール装置は、静翼下流側根元部に内輪と一体構造となるフィンを半径方向に向けて設けており、さらにタービンロータの動翼上流側根元部には、内輪に設置されたフィンの先端とシール構造を形成することを目的とした突起部を設置し、その突起部のシール面とフィン先端部との間隙が最小限となる様に設定されている。   The sealing device for the base part between the stationary blades and the moving blades used in many turbines up to now has fins that are integrated with the inner ring in the radial direction on the downstream side base part of the stationary blades. At the base of the rotor blade upstream side, there is a protrusion for the purpose of forming a seal structure with the tip of the fin installed on the inner ring, and the gap between the seal surface of the protrusion and the tip of the fin is minimal It is set to be limited.

このフィンがタービン設備の静翼・動翼間根元部に使用される場合、運転時の内輪及びロータの熱的及び力学的変形により、内輪側のフィン端部とロータ側の突起部が接触することによってフィンが破損する恐れがあると共に、破損した状態で運転を継続すると、静翼・動翼間根元部の間隙寸法が大幅に増大することによりシール性能が低下し、内部効率の低下が引き起こされる。これを防ぐため、フィン先端部と突起部との間は変形による間隙寸法の減少分を考慮した間隙を確保する必要がある。このことから、従来のフィン構造の場合、静翼・動翼間根元部における漏洩に伴うタービンの内部効率低下は不可避である。   When this fin is used at the root part between the stationary blade and moving blade of turbine equipment, the inner ring side fin end and the rotor side projection contact each other due to thermal and mechanical deformation of the inner ring and rotor during operation. As a result, the fins may be damaged, and if the operation is continued in the damaged state, the gap size at the root between the stationary and moving blades will increase significantly, resulting in a decrease in sealing performance and a decrease in internal efficiency. It is. In order to prevent this, it is necessary to secure a gap between the fin tip and the protrusion in consideration of the reduction in gap size due to deformation. For this reason, in the case of the conventional fin structure, it is inevitable that the internal efficiency of the turbine is reduced due to leakage at the root portion between the stationary blade and the moving blade.

この問題を解決するための手段として、ロータと動翼を固定するロータディスク部に適当な断面積の孔を設け、内輪とロータとの間隙を通過する漏洩蒸気を静翼・動翼間根元部の間隙を通過させない様にする方法がある。この方法により、静翼及び動翼を通過する主流からロータディスク部方向への逆方向リークを発生させ、根元部蒸気流れの乱れを抑えることにより内部効率低下を防ぐことができる。   As a means for solving this problem, a hole having an appropriate cross-sectional area is provided in the rotor disk portion for fixing the rotor and the rotor blade, and the leaked steam passing through the gap between the inner ring and the rotor is caused to flow between the stationary blade and the rotor blade. There is a method of not passing through the gap. By this method, a reverse leak from the main flow passing through the stationary blades and the moving blades toward the rotor disk portion is generated, and the turbulence of the root portion steam flow can be suppressed to prevent the internal efficiency from being lowered.

しかし一方、この方法では、静翼出口部において蒸気の一部が根元部間隙からロータディスク部の孔を通過して動翼出口部へと流れることになり、動翼翼間部分を通過しない為、動翼入口に流入する蒸気量の減少に伴い仕事量が減少する事により、性能低下が発生する。この方法においても、根元部フィンが破損を起こした場合には重大事故になるだけではなく、破損を起こしたまま運転を続けた場合、根元部間隙寸法が増大することから流出蒸気量がさらに増大し、さらなる効率低下が起こる。   On the other hand, in this method, a part of the steam at the stationary blade outlet portion flows from the root gap to the rotor blade outlet portion through the hole in the rotor disk portion, and does not pass through the portion between the rotor blades. As the amount of steam flowing into the rotor blade inlet decreases, the work volume decreases, resulting in performance degradation. Even in this method, if the root fin is damaged, not only will it cause a serious accident, but if the operation is continued with the damage, the gap between the roots will increase and the amount of outflow steam will increase further. However, further efficiency reduction occurs.

さらに、以上に示した従来のフィンによるシール構造の場合、フィンは内輪と一体構造となっており、フィンの交換及び補修の為には内輪全体を取り外す作業が必要となる。特に通常静翼は内輪と溶接にて固定されており、内輪全体の交換の際には静翼と内輪との切断作業が発生する為、これらの作業には多大な労力が必要である。   Further, in the case of the conventional sealing structure using fins as described above, the fins are integrated with the inner ring, and it is necessary to remove the entire inner ring in order to replace and repair the fins. In particular, the stationary vane is usually fixed to the inner ring by welding, and when the entire inner ring is replaced, the cutting operation of the stationary vane and the inner ring occurs. Therefore, a great deal of labor is required for these operations.

一方、蒸気タービンのタービンバケットホイールまたはタービンバケットダブテイルのうちの1つに軸方向に延びる突出部を設け、ブラシシールを、この突出部に対向させたシール構造が特許文献1に記載されている。この特許文献1では蒸気タービンロータの熱湾曲をなくすことを目的としている。   On the other hand, Patent Document 1 discloses a seal structure in which a protruding portion extending in the axial direction is provided on one of a turbine bucket wheel or a turbine bucket dovetail of a steam turbine and a brush seal is opposed to the protruding portion. This patent document 1 aims to eliminate the thermal curvature of the steam turbine rotor.

特表2002−535563号Special Table 2002-535563

しかし、特許文献1では、突出部とブラシシールとの間隙が一定であるため、定常運転時を想定して間隙が設定されていると、起動時において間隙が小さくなり、シール構造物の摩耗が大きくなる可能性がある。   However, in Patent Document 1, since the gap between the protruding portion and the brush seal is constant, if the gap is set assuming steady operation, the gap becomes small at the time of start-up, and the seal structure wears. It can grow.

本発明は、静翼・動翼間根元部のシール構造に関し、漏洩量を低減すると共に、シール構造物の摩耗を低減することが可能なシール構造を提供することにある。   The present invention relates to a seal structure of a root portion between a stationary blade and a moving blade, and provides a seal structure capable of reducing the amount of leakage and reducing wear of the seal structure.

本発明は、回転体であるロータと静止体である静翼を固定する内輪との間隙からの漏洩を封止するシール構造として、静翼下流側根元部から動翼上流側根元部に向けて、可とう性のある金属の素線を材料とした剛毛より成るブラシシールを突き出させる構造とし、間隙を起動時と定常運転時で異なるよう構成したものである。   The present invention provides a sealing structure that seals leakage from a gap between a rotor that is a rotating body and an inner ring that fixes a stationary blade that is a stationary body, from the root portion on the downstream side of the stationary blade toward the root portion on the upstream side of the moving blade. In this structure, a brush seal made of bristles made of a flexible metal strand is projected, and the gap is configured to be different between startup and steady operation.

以下に、蒸気タービン設備の静翼・動翼間根元部シール装置の一実施例を図面を参照して説明する。   In the following, an embodiment of a root seal portion between a stationary blade and a moving blade of a steam turbine facility will be described with reference to the drawings.

本発明のシール構造を備えた一実施例を図1及び図2に示す。本実施例のシール構造は、蒸気タービン静翼根元部の内輪に設置されるシール構造である。図1中、1は動翼(ブレード)、2は蒸気流入方向、3は動翼1に蒸気を誘導する静翼(ノズル)、4は静翼3の外周端部をケーシング(図示省略)に固定する環状の外輪、5は静翼3の内周端部を拘束する環状の内輪、6は動翼をロータ(図示省略)に固定するためのディスク、7は静翼・動翼間根元部のシール構造を支持する固定部品で環状の内輪5に固定される。動翼1は、ロータの円周方向(回転方向)に対して複数枚配置される。静翼3は、動翼1に対して蒸気流入方向2の上流側に、動翼1に対応して配置される。この動翼1と静翼3との組合せを「タービン段落」と称す。かかるタービン段落は、ロータの軸方向に対して、複数段配置される。蒸気タービン各セクション内においては、蒸気の流れの下流に向かうにつれて、動翼1の翼長は大きくなる。静翼3により誘導された蒸気は、動翼1を介してロータを回転させる。ロータの端部には発電機(図示省略)が設けられており、その発電機で、回転エネルギーを電気エネルギーに変換して発電を行う。   One embodiment provided with the seal structure of the present invention is shown in FIGS. The seal structure of the present embodiment is a seal structure installed on the inner ring of the root portion of the steam turbine stationary blade. In FIG. 1, 1 is a moving blade (blade), 2 is a steam inflow direction, 3 is a stationary blade (nozzle) for guiding steam to the moving blade 1, and 4 is a casing (not shown) with an outer peripheral end of the stationary blade 3 An annular outer ring 5 for fixing, an annular inner ring for restraining the inner peripheral end of the stationary blade 3, 6 a disk for fixing the moving blade to the rotor (not shown), and 7 a root portion between the stationary blade and the moving blade. It is fixed to the annular inner ring 5 by a fixing part that supports the seal structure. A plurality of rotor blades 1 are arranged in the circumferential direction (rotation direction) of the rotor. The stationary blade 3 is disposed on the upstream side in the steam inflow direction 2 with respect to the moving blade 1 so as to correspond to the moving blade 1. The combination of the moving blade 1 and the stationary blade 3 is referred to as a “turbine stage”. Such turbine stages are arranged in a plurality of stages with respect to the axial direction of the rotor. Within each section of the steam turbine, the blade length of the moving blade 1 increases as it goes downstream of the steam flow. The steam induced by the stationary blade 3 rotates the rotor via the moving blade 1. A generator (not shown) is provided at the end of the rotor, and the generator generates electric power by converting rotational energy into electric energy.

内輪5には固定部品7がボルト締め等の取り外し可能な固定方法によって固定されており、さらにその固定部品7からはロータディスク部から軸方向に向けて設けられた突起部8に向けてシール部材が下りている。シール部材としてはブラシシール9がただ一つ配置されている。   A fixing component 7 is fixed to the inner ring 5 by a detachable fixing method such as bolting, and a sealing member is further provided from the fixing component 7 toward a protruding portion 8 provided in the axial direction from the rotor disk portion. Is going down. As the seal member, only one brush seal 9 is arranged.

蒸気タービンの場合、運転時においては、動翼が固定されたロータ及び静翼が固定されたケーシングに対し、蒸気の流入及び回転による温度上昇に伴う熱延び現象が発生する。この為、停止時から起動時を経て定常運転まで達する時間において、動翼側構造物及び静翼側構造物の相対的な位置関係は変化する。特に蒸気タービンは、軸方向の寸法が他方向の寸法と比較して大きいことから、軸方向の熱延びによる変位量が最も大きい。この為、ブラシシール9の先端とロータディスク突起部8との間でシール構造を形成する、突起部8表面の軸方向位置は、停止時から起動時及び定常運転時で変化する。これらの変化量は、ケーシングおよびロータに用いられる材料の特性、タービン定常運転時の温度及び軸方向寸法から計算により求める事が可能である。   In the case of a steam turbine, during operation, a hot elongation phenomenon occurs due to an increase in temperature due to inflow and rotation of steam with respect to a rotor to which a moving blade is fixed and a casing to which a stationary blade is fixed. For this reason, the relative positional relationship between the moving blade side structure and the stationary blade side structure changes during the time from the stop to the steady operation after starting. In particular, since the dimension in the axial direction of the steam turbine is larger than the dimension in the other direction, the displacement amount due to the thermal extension in the axial direction is the largest. For this reason, the axial position of the surface of the protrusion 8 that forms a seal structure between the tip of the brush seal 9 and the rotor disk protrusion 8 changes from the time of stop to the time of startup and the steady operation. These amounts of change can be obtained by calculation from the characteristics of the materials used for the casing and the rotor, the temperature during steady turbine operation, and the axial dimensions.

一方、ロータの停止時には、定常運転時と異なり、ロータの自重によるたわみの影響で、シール構造の一部にロータと接触する箇所が発生する。そのため、起動時などにロータが回転する際、通常運転時には十分な間隙が確保出来る箇所でもロータとフィン・ブラシシールなどのシール構造物が接触しながら回転する結果となり(ラビング現象)、この状態で回転する時間が長ければ長いほど、シール構造物の摩耗による経年劣化の度合いは大きくなる。   On the other hand, when the rotor is stopped, unlike the steady operation, a portion of the seal structure that comes into contact with the rotor is generated due to the influence of deflection due to the weight of the rotor. For this reason, when the rotor rotates during startup, etc., the rotor and the sealing structure such as the fin / brush seal rotate while in contact with each other even in places where a sufficient gap can be secured during normal operation (rubbing phenomenon). The longer the rotation time, the greater the degree of aging due to wear of the seal structure.

本実施例では、この起動時の接触を原因とする摩耗を低減するようにされている。本実施例では、ブラシシール9の先端とロータディスク突起部8との間隙を、起動時の位置関係においては広く、定常運転時の位置関係においては零あるいはほぼ零に近づく様、ロータディスク突起部8のシール構造形成面に傾斜を設けてあり、シール構造形成面のロータ中心軸からの径寸法を位置によって変化させたものである。本実施例は、ケーシング等の静翼側構造物は熱延びに伴い軸方向に沿い符号10に示す方向へ、ロータ等の動翼側構造物は逆に符号11に示す方向へ変位する様、それぞれの構造物の固定点が設定されている例である。図1が停止時、図2が定常運転時の状態を示す。   In this embodiment, the wear caused by the contact at the start-up is reduced. In this embodiment, the gap between the tip of the brush seal 9 and the rotor disk protrusion 8 is wide in the positional relationship at the time of startup and close to zero or nearly zero in the positional relationship during steady operation. The seal structure forming surface 8 is inclined, and the diameter of the seal structure forming surface from the rotor central axis is changed depending on the position. In this embodiment, the stationary blade side structure such as the casing is displaced in the direction indicated by reference numeral 10 along the axial direction as the heat extends, and the moving blade side structure such as the rotor is displaced in the direction indicated by reference numeral 11 on the contrary. This is an example in which a fixed point of a structure is set. FIG. 1 shows a state during stop and FIG. 2 shows a state during steady operation.

図1におけるシール構造部の拡大図を図3に示す。停止時は図3に示す如くブラシシール9の先端はロータディスク突起部8と、起動時の状態でも接触が発生しないだけの間隔a(これはロータの形状・材質及びスパン長等から軸たわみを求めることにより計算可能である)を保った状態で設定されており、起動後定格運転状態に至った際に動翼側及び静翼側構造物の軸方向への熱伸びによる変位の影響で、図のbの距離だけ位置関係が軸方向へ移動する。このbは先に示す通り材質及び寸法等から予測可能であり、停止時のブラシシール9とロータディスク突起部8との間隙寸法aを、ラビング現象が発生しない様に決定する事により、tanθ=a/b の式から、ロータディスク突起部の傾斜角θを決定する事ができる。   An enlarged view of the seal structure in FIG. 1 is shown in FIG. When the motor is stopped, the tip of the brush seal 9 is in contact with the rotor disk protrusion 8 at an interval a so that no contact occurs even when the actuator is started (this is due to the shaft deflection due to the shape, material, span length, etc. of the rotor). It is set in a state that is maintained), and when it reaches the rated operating state after startup, it is affected by the displacement due to thermal expansion in the axial direction of the moving blade side and stationary blade side structures. The positional relationship moves in the axial direction by the distance b. This b can be predicted from the material, dimensions, etc. as described above, and by determining the gap dimension a between the brush seal 9 and the rotor disk protrusion 8 at the time of stopping so that the rubbing phenomenon does not occur, tan θ = From the a / b equation, the inclination angle θ of the rotor disk protrusion can be determined.

本実施例では、起動時においてはタービン段落を流れる蒸気量は定常運転時と比較して少なく、漏洩による損失量は定常運転時よりも少なくなる為、本シール構造部における間隙が広くなっていても損失は少ない。段落を流れる蒸気量が増大するに伴い、本シール構造部の間隙が徐々に狭くなり、定常運転時では零あるいはほぼ零に近くなり、シール性能は、常時間隙寸法が零に近い場合と比較しても大きな低下は無く、さらに先に述べた起動時の摩耗を回避出来る事により、ブラシシール9とロータディスク突起部8との接触時間が短くする事が可能であり、ブラシシール9先端部の長寿命化が実現でき、これに伴いタービンのメンテナンス性が向上する。   In this embodiment, the amount of steam flowing through the turbine stage is smaller at startup than in steady operation, and the loss due to leakage is less than in steady operation, so the gap in the seal structure is wide. There is little loss. As the amount of steam flowing through the paragraph increases, the gap of this seal structure gradually narrows, and becomes zero or nearly zero during steady operation, and the sealing performance is always compared to the case where the gap dimension is nearly zero. However, since the wear at the time of start-up described above can be avoided, the contact time between the brush seal 9 and the rotor disk protrusion 8 can be shortened. A longer service life can be realized, and as a result, the maintainability of the turbine is improved.

また本実施例によれば、ロータ及びケーシング等の熱及び力学的変形により、ブラシシール9と突起部8との間隙が減少することにより両者が強い力で接触したとしても、ブラシシール9にバネ作用があるため、これらが破損することはなく、常時良好なシール性能を確保できると同時に、両者の間隙管理も容易となる。   Further, according to the present embodiment, even if the gap between the brush seal 9 and the protruding portion 8 decreases due to thermal and mechanical deformation of the rotor and the casing and the like, even if both contact with a strong force, the spring is applied to the brush seal 9. Since there is an action, they are not damaged, and a good sealing performance can be ensured at the same time, and at the same time, the gap management between them becomes easy.

固定部品7は取り外し可能な構造となっており、ブラシシール9の摩耗等により、交換が必要となった場合においても、固定部品7のみ交換すれば良く、内輪5を取り外す必要は無い。   The fixed part 7 has a detachable structure, and even when replacement is necessary due to wear of the brush seal 9, only the fixed part 7 needs to be replaced, and the inner ring 5 does not need to be removed.

さらに、本実施例において、ブラシシール9の先端と動翼根元部の突起部8間の間隙がほぼ零である為、通常のフィンによるシール構造と比較してこの間隙を通過する漏洩蒸気量をほぼ零とする事が可能であることから、従来静翼・動翼間に吹出す漏洩蒸気を抑える目的でロータのディスクに加工していた孔を設ける必要が無い。このことは、ロータディスクの加工費用を削減するだけでなく、孔を設定する事に伴うディスクの強度低下を防止することになり、ディスク側の強度設計に対しても良い影響を及ぼすこととなる。   Further, in the present embodiment, since the gap between the tip of the brush seal 9 and the protrusion 8 at the base of the rotor blade is almost zero, the amount of leaked steam passing through this gap is smaller than that of a seal structure using ordinary fins. Since it can be made almost zero, there is no need to provide a hole that has been machined in the rotor disk for the purpose of suppressing leaked steam that has conventionally been blown between the stationary blade and the moving blade. This not only reduces the processing cost of the rotor disk, but also prevents a decrease in the disk strength associated with the setting of the holes, and has a positive effect on the strength design on the disk side. .

本発明の他の実施例を図4及び図5を用いて説明する。本実施例では、静翼出口側の内輪部に固定されたブラシシール9及び固定部品7が、ブラシシールが軸方向と平行な向きとなる様固定されており、ブラシシール9の先端はロータディスク6の動翼根元部上流側の面とシール構造を形成している。   Another embodiment of the present invention will be described with reference to FIGS. In this embodiment, the brush seal 9 and the fixed component 7 fixed to the inner ring portion on the stationary blade outlet side are fixed so that the brush seal is oriented parallel to the axial direction, and the tip of the brush seal 9 is the rotor disk. A seal structure is formed with the upstream surface of the rotor blade 6.

本実施例では、上述の実施例と同様に、タービン設備が停止時から起動を開始し、定常運転に至るまでに発生する熱延びにより引き起こされるケーシング及びロータの軸方向の相対位置変化を考慮し、停止時にはシール構造部の間隙は大きく、定常運転の状態に近づくにつれて間隙が少なくなり、定常運転時には間隙が零あるいはほぼ零に近づく様に、ブラシシール9の位置が設定されている。図4が停止時の、図5が定常運転時の状態である。この場合、熱延びによる軸方向の変位が、ケーシング側は10に示す方向に、ロータ側は11に示す方向になる様に各々の構造物の基礎に対する固定点が設定されている。拡大図を図6に示す。   In this embodiment, in the same manner as in the above-described embodiment, the change in the relative position in the axial direction of the casing and the rotor caused by the thermal expansion that occurs until the turbine facility starts from the stop and reaches the steady operation is considered. The position of the brush seal 9 is set so that the gap of the seal structure portion is large at the time of stopping, and the gap decreases as the state of steady operation approaches, and the gap approaches zero or nearly zero during steady operation. FIG. 4 shows a state at the time of stopping, and FIG. 5 shows a state at the time of steady operation. In this case, the fixed points with respect to the foundations of the respective structures are set so that the axial displacement due to the thermal extension is in the direction indicated by 10 on the casing side and the direction indicated by 11 on the rotor side. An enlarged view is shown in FIG.

この実施例では、上述の実施例のように、ブラシシール9の先端部のロータディスク6との接触時間低減によるブラシシール9の長寿命化が実現するだけでなく、シール構造の形成面を持つ突起部8の設置が不要となる。これにより、ディスクロータの加工費を削減する事が可能となる。   In this embodiment, the life of the brush seal 9 is not only increased by reducing the contact time of the tip of the brush seal 9 with the rotor disk 6 as in the above-described embodiment, but also has a sealing structure forming surface. Installation of the protrusion 8 becomes unnecessary. Thereby, it is possible to reduce the processing cost of the disk rotor.

しかしこの実施例においては、上述の実施例と異なり、停止時のシール構造部間隙寸法cが熱伸びによる変位寸法bと常時等しくなり、bの寸法が大きいタービンの場合、停止時の間隙寸法が大き過ぎる事により起動時のタービン内の蒸気の乱れが引き起こされ、起動時間等への影響が発生する可能性もある。その場合、図7に示す例の如く、ディスクロータのブラシシール先端接触部近辺に一定の深さのディスクロータ部溝12を設ける事により、停止時のシール構造部間隙寸法cを、漏洩蒸気量が許容範囲内になる様計算された適度な値に確保出来る。ディスクロータ部溝12の設定位置及び幅については、起動・停止時の半径方向への微小な変位量をカバー可能な様に、例えば半径方向に設定した場合の起動・停止時間隙aと同程度の間隙を半径方向に確保可能な寸法に設定すれば良い。   However, in this embodiment, unlike the above-described embodiment, the seal structure gap dimension c when stopped is always equal to the displacement dimension b due to thermal elongation. If it is too large, the turbulence of the steam in the turbine at the time of start-up may be caused, which may affect the start-up time. In that case, as shown in the example shown in FIG. 7, by providing a disk rotor groove 12 having a certain depth in the vicinity of the brush seal tip contact portion of the disk rotor, the gap c of the seal structure at the time of stop is set to the amount of leaked steam. It is possible to secure an appropriate value calculated so that is within the allowable range. The setting position and width of the disk rotor groove 12 are approximately the same as the starting / stopping gap a when set in the radial direction, for example, so as to cover a small amount of radial displacement at the starting / stopping. The gap may be set to a dimension that can be secured in the radial direction.

上述の実施例により、静翼・動翼間根元部の漏洩蒸気量をほぼ零に近づける事が可能であり、このことから、ロータディスクの加工費削減が可能であると共に、シール構造部を取り外し可能な構造にする事によるメンテナンス性の向上が実現できる。   According to the above-described embodiment, it is possible to make the amount of leaked steam at the root portion between the stationary blade and the moving blade close to zero, which makes it possible to reduce the processing cost of the rotor disk and remove the seal structure portion. Maintenance can be improved by using a possible structure.

以上説明した全ての本発明による実施例は、蒸気タービンの静翼及び動翼を対象としているが、ガスタービンのような軸流タービンに本発明を適用しても同様の効果が得られる。   All of the embodiments according to the present invention described above are intended for the stationary blades and moving blades of a steam turbine, but the same effect can be obtained by applying the present invention to an axial flow turbine such as a gas turbine.

本発明によれば、タービンの静翼・動翼間根元部に対し、ブラシシールの高性能シール効果が十分に発揮される。その結果、漏れ損失を抑制するため、タービン効率が向上する。また、メンテナンスの際、ブラシシールの固定部品のみを静翼を固定する内輪から取り外し可能な為、メンテナンス作業が容易となる。さらに、シール効果向上に伴い、従来のフィン構造の際に効率低下の防止を目的として設置していたロータディスク部の孔加工も不要となり、タービンの加工費用が削減されると共に、ロータディスクの強度が向上できる。そして、ブラシシールの先端の接触時間低減及びラビングの回避により、ブラシシールの高寿命化が可能となり、メンテナンス費用がさらに削減出来る。   According to the present invention, the high-performance sealing effect of the brush seal is sufficiently exerted on the root portion between the stationary blade and the moving blade of the turbine. As a result, since leakage loss is suppressed, turbine efficiency is improved. In addition, during maintenance, only the fixing part of the brush seal can be removed from the inner ring that fixes the stationary blade, so that maintenance work is facilitated. Furthermore, along with the improvement of the sealing effect, the drilling of the rotor disk part, which was installed for the purpose of preventing the efficiency reduction in the conventional fin structure, is no longer necessary, reducing the machining cost of the turbine and increasing the strength of the rotor disk. Can be improved. Further, by reducing the contact time at the tip of the brush seal and avoiding rubbing, it is possible to extend the life of the brush seal and further reduce maintenance costs.

本発明の一実施例を表す模式図のうち、タービン停止時の状態を示す図である。It is a figure which shows the state at the time of a turbine stop among the schematic diagrams showing one Example of this invention. 本発明の一実施例を表す模式図のうち、タービン定常運転時の状態を示す図である。It is a figure which shows the state at the time of turbine steady operation among the schematic diagrams showing one Example of this invention. 本発明の一実施例を表す模式図のうち、シール構造部近傍の拡大図である。It is an enlarged view of the seal structure part vicinity among the schematic diagrams showing one Example of this invention. 本発明の第二の実施例を表す模式図のうち、タービン停止時の状態を示す図である。It is a figure which shows the state at the time of a turbine stop among the schematic diagrams showing the 2nd Example of this invention. 本発明の第二の実施例を表す模式図のうち、タービン定常運転時の状態を示す図である。It is a figure which shows the state at the time of turbine steady operation among the schematic diagrams showing the 2nd Example of this invention. 本発明の第二の実施例を表す模式図のうち、シール構造部近傍の拡大図である。It is an enlarged view of the seal structure part vicinity among the schematic diagrams showing the 2nd Example of this invention. 本発明の第三の実施例を表す模式図であり、シール構造部近傍の拡大図である。It is a schematic diagram showing the 3rd example of the present invention, and is an enlarged view near a seal structure part.

符号の説明Explanation of symbols

1…動翼、2…蒸気流入方向、3…静翼、4…外輪、5…内輪、6…ロータディスク、7…固定部品、8…突起部、9…ブラシシール、10…静翼側構造物の熱延びによる変位方向、11…動翼側構造物の熱延びによる変位方向、12…ディスクロータ部溝。


DESCRIPTION OF SYMBOLS 1 ... Rotor blade, 2 ... Steam inflow direction, 3 ... Stator blade, 4 ... Outer ring, 5 ... Inner ring, 6 ... Rotor disk, 7 ... Fixed part, 8 ... Projection part, 9 ... Brush seal, 10 ... Stator blade side structure 11: Displacement direction due to the thermal extension of the blade, 11... Displacement direction due to the thermal extension of the rotor blade side structure, 12.


Claims (5)

タービンロータの円周方向に沿って複数個設けられた動翼と、該動翼の上流側に設けられた静翼と、前記動翼及び静翼を内包するケーシングと、前記静翼を内周及び外周端で拘束し前記ケーシングに保持される環状の内輪及び外輪と、該内輪の静翼出口側根元部に設置され、動翼根元部との間でシール構造を形成するブラシシールを有し、該ブラシシールはタービンロータの半径方向に向けて設置され、前記動翼を固定するロータディスクの動翼根元部に、前記ブラシシールの端部とシール構造を形成する面を持ち、その面のロータ軸中心からの径寸法が、軸方向の位置に応じて変化する形状の突起を設けたタービン。   A plurality of moving blades provided along the circumferential direction of the turbine rotor, a stationary blade provided upstream of the moving blade, a casing containing the moving blade and the stationary blade, and an inner periphery of the stationary blade And an annular inner ring and an outer ring that are constrained at the outer peripheral end and held by the casing, and a brush seal that is installed at the root part of the inner ring on the stationary blade outlet side and forms a seal structure The brush seal is installed in the radial direction of the turbine rotor, and has a surface that forms a seal structure with the end of the brush seal at the rotor blade root portion of the rotor disk that fixes the rotor blade. A turbine provided with a protrusion having a shape in which a diameter dimension from a rotor shaft center changes according to a position in an axial direction. タービンロータの円周方向に沿って複数個設けられた動翼と、該動翼の上流側に設けられた静翼と、前記動翼及び静翼を内包するケーシングと、前記静翼を内周及び外周端で拘束し前記ケーシングに保持される環状の内輪及び外輪と、該内輪の静翼出口側根元部に設置され、動翼根元部との間でシール構造を形成するブラシシールを有し、該ブラシシールが前記タービンロータの軸方向に向けて設置され、前記動翼を固定するロータディスクの動翼根元部上流側の表面とシール構造を形成するタービン。   A plurality of moving blades provided along the circumferential direction of the turbine rotor, a stationary blade provided upstream of the moving blade, a casing containing the moving blade and the stationary blade, and an inner periphery of the stationary blade And an annular inner ring and an outer ring that are restrained at the outer peripheral end and held by the casing, and a brush seal that is installed at the root part of the inner ring on the stationary blade outlet side and forms a seal structure The brush seal is installed in the axial direction of the turbine rotor, and forms a seal structure with the upstream surface of the rotor blade root portion of the rotor disk that fixes the rotor blade. 請求項2において、前記ブラシシールの先端部とシール構造を形成する箇所に、前記ディスクロータの接触面に一定の深さの溝を設定しているタービン。   The turbine according to claim 2, wherein a groove having a certain depth is set on a contact surface of the disk rotor at a position where a tip structure of the brush seal and a seal structure are formed. 請求項1〜3の何れかにおいて、前記ブラシシールを固定する部品が、前記静翼又は動翼根元部に対してボルト締め等の取り外し可能な固定方法にて固定されていることを特徴とするタービン。   4. The component for fixing the brush seal according to claim 1, wherein the component that fixes the brush seal is fixed to the stationary blade or the root of the moving blade by a detachable fixing method such as bolting. 5. Turbine. タービンロータの円周方向に沿って複数個設けられた動翼と、該動翼の上流側に設けられた静翼と、前記動翼及び静翼を内包するケーシングと、前記静翼を内周及び外周端で拘束する目的で前記ケーシングに保持される環状の内輪及び外輪を有する静翼根元部及び動翼根元部のシール構造であって、
前記シール構造はブラシシールより形成され定常運転時にはその間隙が略零となり起動時にはその間隙が大きくなるように構成した静翼根元部,動翼根元部のシール構造。
A plurality of moving blades provided along the circumferential direction of the turbine rotor, a stationary blade provided upstream of the moving blade, a casing containing the moving blade and the stationary blade, and an inner periphery of the stationary blade And a stationary blade root portion and a rotor blade root portion sealing structure having an annular inner ring and an outer ring held by the casing for the purpose of restraining at the outer peripheral end,
The seal structure is formed of a brush seal, and the gap is substantially zero during steady operation, and the gap is large at startup.
JP2003362680A 2003-10-23 2003-10-23 Turbine and sealing structure of stationary blade root section and moving blade root section Pending JP2005127198A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003362680A JP2005127198A (en) 2003-10-23 2003-10-23 Turbine and sealing structure of stationary blade root section and moving blade root section

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003362680A JP2005127198A (en) 2003-10-23 2003-10-23 Turbine and sealing structure of stationary blade root section and moving blade root section

Publications (1)

Publication Number Publication Date
JP2005127198A true JP2005127198A (en) 2005-05-19

Family

ID=34642231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003362680A Pending JP2005127198A (en) 2003-10-23 2003-10-23 Turbine and sealing structure of stationary blade root section and moving blade root section

Country Status (1)

Country Link
JP (1) JP2005127198A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013220276A1 (en) * 2013-10-08 2015-04-09 MTU Aero Engines AG flow machine
CN106194279A (en) * 2016-08-27 2016-12-07 朱艳君 The axially mounted brush steam seal of steam turbine
CN114635757A (en) * 2022-02-23 2022-06-17 潍柴动力股份有限公司 Rotor sealing device
CN114876838A (en) * 2021-02-05 2022-08-09 中国航发商用航空发动机有限责任公司 Blade tip clearance adjusting structure for adjustable stationary blade of impeller and gas compressor using same
DE102022116105A1 (en) 2022-06-28 2023-12-28 MTU Aero Engines AG Seal for a radial gap

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013220276A1 (en) * 2013-10-08 2015-04-09 MTU Aero Engines AG flow machine
US9835040B2 (en) 2013-10-08 2017-12-05 MTU Aero Engines AG Turbomachine
CN106194279A (en) * 2016-08-27 2016-12-07 朱艳君 The axially mounted brush steam seal of steam turbine
CN114876838A (en) * 2021-02-05 2022-08-09 中国航发商用航空发动机有限责任公司 Blade tip clearance adjusting structure for adjustable stationary blade of impeller and gas compressor using same
CN114876838B (en) * 2021-02-05 2023-08-18 中国航发商用航空发动机有限责任公司 Blade tip gap adjusting structure for impeller adjustable stationary blade and impeller and compressor using same
CN114635757A (en) * 2022-02-23 2022-06-17 潍柴动力股份有限公司 Rotor sealing device
CN114635757B (en) * 2022-02-23 2023-12-12 潍柴动力股份有限公司 Rotor sealing device
DE102022116105A1 (en) 2022-06-28 2023-12-28 MTU Aero Engines AG Seal for a radial gap

Similar Documents

Publication Publication Date Title
US6916021B2 (en) Sealing arrangement
JP5227114B2 (en) Labyrinth compression seal and turbine incorporating it
JP2007321721A (en) Axial flow turbine stage and axial flow turbine
JP5147885B2 (en) Rotor vibration preventing structure and steam turbine using the same
JP2008291846A (en) Method for centrally installing cutter tooth on turbine blade with shroud
EP3190267B1 (en) Structure for multi-stage sealing of turbine
KR20080020478A (en) Axial flow turbine
JP2013151936A (en) Retrofittable interstage angled seal
JP2015094220A (en) Axial flow turbine
JP2009085185A (en) Axial flow turbine and axial flow turbine stage structure
JP2011106474A (en) Axial flow turbine stage and axial flow turbine
JP2014119080A (en) Slide bearing device
JP6192990B2 (en) Axial flow turbine
JP5643245B2 (en) Turbo machine
US9574453B2 (en) Steam turbine and methods of assembling the same
CN107614948B (en) Sealing device and rotary machine
JP2014141912A (en) Rotary machine
JP6066948B2 (en) Shroud, blades, and rotating machinery
JP2005127198A (en) Turbine and sealing structure of stationary blade root section and moving blade root section
RU2612309C1 (en) Centripetal turbine
JP2016037875A (en) Fluid machine
WO2021039811A1 (en) Swirl breaker assembly and rotating machine
KR101920693B1 (en) Turbine including a sealing member for preventing gas ingestion.
JP2006283595A (en) Steam turbine seal device
JP7185503B2 (en) Fluid machinery and method of refurbishing fluid machinery