JP2009026965A - 電子部品、およびその製造方法 - Google Patents

電子部品、およびその製造方法 Download PDF

Info

Publication number
JP2009026965A
JP2009026965A JP2007188771A JP2007188771A JP2009026965A JP 2009026965 A JP2009026965 A JP 2009026965A JP 2007188771 A JP2007188771 A JP 2007188771A JP 2007188771 A JP2007188771 A JP 2007188771A JP 2009026965 A JP2009026965 A JP 2009026965A
Authority
JP
Japan
Prior art keywords
temperature
alloy
conductive member
glass transition
electronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007188771A
Other languages
English (en)
Inventor
Yutaka Makuchi
裕 馬久地
Hironori Sakamoto
宏規 坂元
Masaki Kuno
昌樹 久野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2007188771A priority Critical patent/JP2009026965A/ja
Publication of JP2009026965A publication Critical patent/JP2009026965A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/3201Structure
    • H01L2224/32012Structure relative to the bonding area, e.g. bond pad
    • H01L2224/32013Structure relative to the bonding area, e.g. bond pad the layer connector being larger than the bonding area, e.g. bond pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Die Bonding (AREA)

Abstract

【課題】接合部分の導電性に優れ、かつ、高温耐性にも優れた電子部品およびその製造方法を提供する。
【解決手段】ガラス転移温度と結晶化温度を有し、かつアモルファス組織を有する合金31を半導体チップ11と配線層14との間に配置して、これらを加圧しつつ、合金31をガラス転移温度から結晶化温度までの間の温度に加熱して半導体チップ11と配線層14接合する。その後これらを接合したものをさらに結晶化温度以上に加熱することで合金31を結晶化させる。
【選択図】図1

Description

本発明は、電子部品、および電子部品の製造方法に関する。
半導体チップを基板などに実装する際は、一般的にハンダ付けが使用されている。
ハンダ付けは、ハンダの融点まで温度を上げることでハンダ金属を溶解して半導体チップと配線などを接合する。高温耐性を有するはんだを使用する場合、融点の高いハンダを使用せざるを得ない。このためそのようなハンダを用いた接合では、当然に半導体チップも、接合時にはハンダが溶ける温度に曝されることになる。このため、半導体チップの方が接合時の高温で破損してしまうことがある。
一方、金属の接合部材として、接合時は比較的低温で、いったん固まった後は接合時の温度よりも高い温度まで耐えられる超塑性現象を利用した接合が注目されている。たとえば、過冷却温度を持つアモルファス組織の合金、いわゆる金属ガラスを用いたもので、金属同士の接合に用いられている(特許文献1参照)。
なお、その他の文献公知発明としては、特許文献2がある。
特開平11−33746号公報 特開平7−41906号公報
しかしながら、従来の金属ガラスによる超塑性現象を利用した接合では、加熱接合後、接合剤として用いた金属ガラスが、ガラスとしての性質がそのまま残る。このため、半導体チップを配線や基板と接合する場合のように、十分な電導性を必要とする際にはガラスとしての性質が強くでると導電性が悪くなるおそれがあり使用することができない。
そこで本発明の目的は、接合部分の導電性に優れ、かつ、高温耐性にも優れた電子部品を提供することである。また、本発明の他の目的は、部材接合時の温度が低く、かつ使用時の導電性、高温耐性に優れた電子部品の製造方法を提供することである。
上記課題を解決するための本発明の電子部品は、第1の導電性部材と第2の導電性部材と、これらを接合する接合層を有し、接合層はガラス転移温度および結晶化温度を有する合金からなる。そしてこの合金がガラス転移温度から結晶化温度の間の温度に加熱された後、さらに結晶化温度からこの合金の融点までの間の温度に加熱された熱履歴を持つ。
また、上記課題を解決するための本発明の電子部品は、第1の導電性部材と第2の導電性部材とをアモルファス組織の合金を、その合金のガラス転移温度および結晶化温度の範囲に加熱することで接合した後、さらにこの合金を結晶化温度から合金の融点までの間の温度に加熱されることで結晶化している接合層を持つ。
また、上記課題を解決するための本発明の電子部品の製造方法は、まず、ガラス転移温度と結晶化温度を有し、かつアモルファス組織を有する合金を第1の導電性部材と第2の導電性部材との間に配置する。その後、第1の導電性部材と第2の導電性部材の間を加圧しつつ、合金をガラス転移温度から結晶化温度の間の温度に加熱して第1の導電性部材と第2の導電性部材とを接合する。その後、第1の導電性部材、合金、および第2の導電性部材を接合したものをさらに結晶化温度から合金の融点までの間の温度に加熱する。
さらに、上記課題を解決するための本発明の電子部品の製造方法は、ガラス転移温度と結晶化温度を有し、かつアモルファス組織を有する合金を第1の導電性部材と第2の導電性部材との間に配置して、この合金をガラス転移温度から結晶化温度の間の温度に加熱することで塑性変形させるとともに第1の導電性部材と第2の導電性部材の間を加圧することで第1の導電性部材と第2の導電性部材を接合する。接合後さらに結晶化温度から合金の融点までの間の温度に加熱して結晶化させる。
以上のように構成された本発明によれば、第1の導電性部材と第2の導電性部材との接合時のヒートショックによる半導体チップの割れや剥離といった欠陥を少なくすることができ、かつ、接合部分の導電性、高温耐性に優れている。
以下、図面を参照して本発明を適用した最良の形態について説明する。
(実施形態1)
図1は本発明の電子部品の構造よりなる半導体装置の概略構成を示す断面図であり、図2および3は半導体チップと導電層との接合方法を工程順に説明するための断面図である。
この半導体装置1は、半導体チップ11がケース12内に充填材13を満たして封止されている。半導体チップ11は第1の導電性部材であり、配線層14上に金属ガラスよりなる接合層15によって接合されている。配線層14は導電層となるもので、第2の導電性部材である。配線層14は、たとえば基板16上に形成された銅薄膜よりなる。配線層14は基板16上に半導体装置1としての決められたパターンとして描かれている。基板16はヒートシンク17に接合されている。また、半導体チップ11は、半導体チップ11に設けられているパッド(不図示)からボンディングワイヤー21によって基板16上の他の配線22と接続されている。
ここで半導体チップ11は、たとえばシリコン製の増幅素子やスイッチング素子、炭化ケイ素(SiC)製の増幅素子やスイッチング素子などである。具体的には、たとえばパワーMOSFET、IGBTなど高電圧高電流向けの半導体素子である。このような電子部品はたとえばインバータなどにも使用可能である。しかし本発明で用いられる半導体チップ11はこのような半導体素子に限定されるものではない。
ケース12は、たとえば合成樹脂製である。また、充填材13もたとえば合成樹脂製である。基板16は、たとえばセラミック製やエポキシ製などの耐熱基板である。
接合層15は、ガラス転移温度および結晶化温度を有する、いわゆる金属ガラスと称される合金からなる。この接合層15は、配線層14と半導体チップ11との接合に用いられており、接合に際して、ガラス転移温度以上結晶化温度以下の温度に加熱された後いったん冷却され、さらに結晶化温度以上融点以下の温度まで加熱された熱履歴を持つ。
このような金属ガラスは超塑性接合によって配線層14と半導体チップ11とを接合する。金属ガラスはガラス転移温度と結晶化温度の中間温度で超塑性現象が発現する。一方、接合後、結晶化温度以上に加熱することで、いったんガラス性質となった金属ガラスが再び金属結晶化する。これにより高温耐性を持ちかつ導電性が良くなる。
したがって、低温での接合が可能でかつ接合後は高温耐性、導電性に優れた接合層15となる。
このような半導体チップ11の接合に用いる金属ガラスの組成としては、導電性の観点から、半導体装置1としての機能から接合部の電気抵抗は小さいことが必要である。たとえば、Cu、Alを主とするものがよい。また、たとえばAuやAgを含むものでもよい。
また、接合性の観点からは、金属ガラスになりうる組成の合金であっても加熱時にガラス転移温度および結晶化温度を有するもの、すなわち超塑性現象を発現する必要がある。この超塑性現象を発現させるためには初期の組織がアモルファスでなければならない。具体的には、たとえば、初期のアモルファス組織合金の形態は粉末であることが好ましい。粉末であれば、製造時に急冷されるのでアモルファス組織が用意に得られる。また、接合時に超塑性温度に加熱して軟化させ、加圧されたときに潰れて変形し、新生面が露出しやすく、容易に接合することができる。なお、粉末の寸法は特に限定するものではないが、製造しやすさ、取り扱いやすさなどから、たとえば5〜500μmが適当である。
また、初期のアモルファス組織合金の形態は箔や薄板形状であってもよい。たとえば回転ドラム上に溶融状態の合金を接触させて製造すれば急冷されるので、アモルファス組織のリボン状の箔や薄板が得られる。接合部にこの箔を適当な寸法に切り出したものをはさんだ状態でガラス転移温度以上に加熱・加圧すれば軟化して潰れて塑性変形して新生面を露出して接合することができる。箔や薄板の厚さは特に制約はないが、製造しやすさや取り扱い時のしなやかさを考慮して、たとえば5〜500μmが適当である。
さらに、接合時の温度の観点からは、接合時に半導体チップ11に与える熱の影響が少なくなるようにするために、ガラス転移温度が450℃、結晶化温度が550℃程度とすることが好ましい。これは、半導体チップ11は素子構造として多くの場合、アルミニウムが使用されている。アルミニウムの融点は660℃である。このため、半導体チップ11を接合する際にはこのアルミニウムの融点より低い温度である必要がある。結晶化温度が550℃以下であれば、十分に低温で接合できる。また、このような温度で接合することで、半導体チップ11へ与えるヒートショックが小さく、接合による半導体チップ11の破損などの不具合はほとんど発生しなくなる。
また、ガラス転移温度と結晶化温度の温度差がある程度あれば接合条件を選定しやすい。これらの温度は合金の組成やその温度に加熱する速度などによっても変化するので、接合温度や方法に応じて組成と加熱条件を選べばよい。
なお、金属ガラスの融点については、結晶化温度より高い温度であるが、どのような温度であってもよく特に限定されない。ただし、結晶化(後述)のために結晶化温度から融点温度の間の温度に再加熱する際は、半導体装置として許容できる温度、たとえば、半導体チップ11内部の配線層や、基板16上の配線層14などが溶融破壊しない温度が上限となる。
以上のような観点からもっとも好ましい金属ガラスの具体的な組成は、たとえばCu50at%−Zr45at%−Ti5at%、Cu47at%−Ti33at%−Zr11at%−Ni8at%−Si1at%、Cu50at%−Zr10at%−Ti40at%、Cu30at%−Zr55at%−Al10at%−Ni5at%などを挙げることができる。もちろんそのほかの組成であっても上記条件を満たすものであれば使用可能である。
次に、図2および3を参照して、金属ガラスを接合層として使用する接合方法(製造方法)について説明する。
まず、図2に示すように、金属ガラスとなるアモルファス組織の合金31を制作する。このアモルファス組織の合金31は、たとえば、金属ガラス組成の合金31を融点以上の温度で溶解し、鋳型に流し込んで急冷鋳造する。これにより合金31の組成がアモルファス組織となる。合金31の形状は接合に適するように薄板とすることが好ましい。薄板とすることで、取り扱いが容易となる。なお、薄板以外にも、接合面の形状や大きさに合わせて適宜な形状、たとえば、アモルファス組織となった合金31を粉末状や粒状などとして使用してもよい。
次に図3に示すように、この合金31を基板16上の配線層14と半導体チップ11の間に配置して、基板16と半導体チップ11を適度な圧力で加圧しつつ、合金31のガラス転移温度と結晶化温度の間の温度で加熱する。加圧力は合金31によって配線層14と半導体チップ11が接合される圧力であれば限定されない。
加圧加熱方法についても特に限定されないが、たとえば、以下のような方法がある。まず、基板16、合金31、半導体チップ11を積層した状態でヒートプレート上に載置する。その状態で半導体チップ11上から適度な加圧を行うためのプレス治具により圧力を加え(または半導体チップ11上に重りを乗せる)、ヒートプレートによりガラス転移温度と結晶化温度の間の温度となるように加熱する。他の方法としては、加圧治具(耐熱性のクランプなどでも良い)に基板16、合金31、半導体チップ11を積層した状態で加圧し、高周波誘導加熱により合金部分のみを加熱する。さらにはオーブン内に投入して、積層物全体をガラス転移温度と結晶化温度の間の温度となるように加熱するなど、さまざまな方法がある。
なお、例示したヒートプレートやオーブンを使用する場合はもとより、その他加熱手段を用いる場合でも、基板16、合金31、および半導体チップ11を積層したものをガラス転移温度と結晶化温度間で加熱できるように温度制御できる必要がある。また、加熱中の雰囲気は、真空中、または窒素やヘリウムなどを流すことで非酸化雰囲気とすることが好ましい。これは金属を加熱すると酸化されやすくなるので、加熱処理の最中における合金31の酸化を防止するためである。
この加熱処理により、合金31を塑性変形させ、合金31の新生面を露出させることができ、新生面が「のり」の役目をして半導体チップ11と配線層14を接合することができる(接合層15が形成される)。
加熱処理後、いったん室温程度まで冷却する。この冷却は、室温で放置すればよい。その後さらに結晶化温度以上に再加熱して、合金31をアモルファス組織から結晶相を有する組織に変化させる。この際、熱処理により金属ガラスである合金31が金属結晶となるので、導電性がアモルファス組織やガラス組成を含む状態での接合より良好なものとなる。したがって、半導体チップ11と配線層14との接合抵抗を低下させることができる。なお、この最初の加熱後の冷却は必ずしも必要ではない。つまり最初の加熱によって合金31を塑性変形させることで、半導体チップ11と配線層14を接合することができるので、そのまま結晶化のための再加熱を行ってもよい。
図4は、金属ガラスの温度と超塑性、および伝熱、導電性を説明するためのグラフである。なお、図4において、縦軸の変形抵抗とは変形のしやすさであり、上に行くほど変形しにくいことを示している(ここでは、変形のしやすさを説明するものであるため、具体的な数値は示していない。また、温度についても同様であり、具体的な数値は示していない)。
金属ガラスとなる合金31は、アモルファス(非晶質)状態のときでガラス転移温度Tg−結晶化温度Txの間で超塑性を発現する。この超塑性状態のときもっとも変形しやすく、変形によって新生面が露出して、合金31が半導体チップ11および配線層14と接合する。
一方、導電性は、アモルファス状態より結晶状態の方がよい。アモルファス状態から結晶状態に金属組織を変化させるためには、結晶化温度Tx以上に加熱する必要がある(ただし、融点Txを超えると溶解してしまうので好ましくない)。この加熱により超塑性状態はなくなり、金属ガラス特性を持たない合金31(接合層15)となる)となる。同様に伝熱性も結晶化後の方がよくなる。
そして再加熱後、すなわち結晶化後は、電子部品の使用中にガラス転移温度Tg以上の高温になろうとも、既に結晶化された後であるから、再び超塑性状態になることはなく、接合部分に損傷などが起きない。したがって、電子部品の高温での使用中における接合不良を防止することができる。
(実施例)
Cu50at%−Zr45at%−Ti5at%組成の合金をアーク溶解し、銅鋳型に急冷鋳造してアモルファス組織の薄板合金(金属ガラス)を作製した。薄板の大きさは直径8mm、厚さ1mmの円板形状とした。
熱分析により、薄板合金のガラス転移温度Tgと結晶化温度Txを測定したところ、それぞれ405℃、465℃であった。
直径8mm、厚さ10mmの円形の銅と炭化珪素板を用意した。前記の薄板合金をこの銅と炭化珪素板にはさんで真空中で410℃に高周波誘導加熱により加熱し、厚さが元の1/2になるまで加圧して塑性変形させた。その後室温まで冷却して、銅と炭化珪素板が接合されていることを確認した。
その後、さらに結晶化温度Tx以上の480℃で15分間加熱した。
冷却が銅と炭化珪素は割れや剥離もなく接合されていた。さらに250℃に高周波誘導加熱により加熱し冷却しても変化は見られなかった。再加熱後の比抵抗は10.8μΩ・cmであった。この比抵抗値はPb−Snハンダの14μΩ・cm程度よりよい値である。これは再加熱することで、アモルファス組織が結晶化して完全な金属組成となったため、良好な導電性を示すようになったものと考えられる。
(比較例)
市販のアルミニウムろうと同じ組成の合金31(JIS Z3263 4343合金)を実施例と同様にして作成し、真空中にて620℃に加熱・溶融させ銅と炭化珪素を接合した。アルミニウムろうの比抵抗は、4.5μΩ・cmであった。
接合部は炭化珪素板とアルミニウムろうの境界部に微小割れが発生した。
以上の実施例および比較例の結果から本発明を適用した場合には、接合時のヒートショックによる割れや剥離といった欠陥がないことがわかる。また、接合後の導電性もハンダと同等の良好な導電性を有することがわかる。
なお、接合状態の判定は、実施例、比較例ともに破壊試験により判定した。具体的には、接合後のサンプルの銅の部分をバイスにはさんで炭化珪素板の部分を冶具で押して剪断力を加え接合部を破断させた。そのとき、簡単にはがれてしまい、はがれた面に銅の表面、あるいは炭化珪素の研磨面がそのまま見えてしまっている場合を接合不良とした。一方、はがれなかった場合、およびはがれても銅または炭化珪素自体が破断した場合や接合部材が破断して銅または炭化珪素に付着している場合を接合良好とした。
(実施形態2)
実施形態2は、本発明の電子部品の構造よりなる集積回路である。図5は、本実施形態2の集積回路を説明するための断面図である。なお、前述した実施形態1と同様の部材については同じ符号を付し、説明を省略する。
この集積回路2は、一枚の基板56の両面に配線層54および55が形成されている。そしてこの基板56の第1の面側に半導体チップ11が配線層54上に金属ガラスよりなる接合層15によって接合されている。また、同じ第1面側には、チップコンデンサ64、チップ抵抗65が、同様に金属ガラスよりなる接合層15よって接合されている。また、半導体チップ11は、半導体チップ11に設けられているパッド(不図示)からボンディングワイヤー21によって基板16上の他の配線22と接続されている。また、半導体チップ11は、ボンディングワイヤー23によってチップ抵抗65が接続された配線層54部分に接続されている。基板16は第2面側の配線層55に絶縁層69を介してヒートシンク17に接合されている。また、この集積回路2は全体が内部の充填材(樹脂)13によって充填されケース12により封止されている。
ここで半導体チップ11は第1の導電性部材であり、配線層54および55は導電層であって第2の導電性部材である。配線層54および55は、たとえば銅薄膜よりなる。配線層54および55は基板16に、集積回路2として必要なパターンとなるように蒸着されたものである。
このように、本発明は、半導体チップ11だけでなく、チップコンデンサ64、チップ抵抗65などのさまざまな素子を基板16上に接合する際に利用することができる。接合方法は前述した実施形態1同様であり、接合面である配線層54上の、各素子を載せる部分に、アモルファス組織とした金属ガラスの合金を配置し、その上から半導体チップ11、チップコンデンサ64、チップ抵抗65などの素子を載せる。その状態で各素子と基板16の間を加圧しつつ、加熱する。加圧方法や加熱方法は実施形態1と同様でよい。接合後、全体を再加熱する。
これにより、半導体チップ11はもとより、チップコンデンサ64、チップ抵抗65などのさまざまな素子と配線との導電性を向上し、しかも、接合時における熱の影響による素子の損傷を防止することができる。また、ハンダなどの低融点の接合材を用いていないので、集積回路全体の高温耐性が向上する。
以上述べてきたように本実施形態1および2によれば、まずアモルファス組織の金属ガラスの合金を使って、その合金をガラス転移温度から結晶化温度の間の温度に加熱することで半導体チップ11などと配線を接合する。その後、結晶化温度から合金の融点までの間の温度に加熱することで再結晶化した。このため、ろう付けなどよりも低温で半導体チップ11や、そのほかのチップコンデンサ64、チップ抵抗65などの素子と配線層14を欠陥なく接合することができる。しかもこれら素子と配線層14との接合抵抗を下げることができる。
また、実施形態によれば、再加熱後の金属ガラスは結晶組成となり、耐熱性(融点が高い)ため、電子部品としての高温耐性も向上する。たとえばシリコンや炭化ケイ素などを使用した半導体チップ11による半導体装置や集積回路では、その動作温度範囲が高いものもある。シリコン製においては−40〜125℃程度、基板16や素子内配線の素材、封止材などを工夫することでさらに175〜200℃まで可能なものもある。また炭化ケイ素製においては100℃を超えた温度で動作が可能であり、700℃程度で動作するものもある。このような高温で動作させることが可能な半導体装置や集積回路では、半導体チップ11と配線層14との接合にハンダを使用したのでは、ハンダが溶融してしまい使用することができない。一方、銀ろうやりん銅ろう、横銅ろうなど1000℃近くまで接合を維持できるものもあるが、接合時に硬く接合しづらい。この点、本発明のように金属ガラス組成を持つ合金31を用いることで、比較的低温での接合が可能であるとともに、さらに接合後の再加熱処理によって、いっそう導電性を向上させることができる。また、接合時には、ろう付けのような液相状態とするまで加熱する必要がなく、固相状態で接合を行うことができるため、低温での接合が可能である。
また、実施形態では、ガラス転移温度は450℃より低く、結晶化温度はガラス転移温度から550℃の間の合金を用いることで、半導体チップ内配線層に多用されているアルミの融点より低い温度で接合可能であり、使用時にはこのような半導体チップ内配線層の融点に近い高温での使用に耐えうるようになる。
さらに、実施形態では、金属ガラスとする合金に、銅またはアルミニウムを含むものを用いることで、導電性が一層よくなる。
以上本発明の実施形態を説明したが、本発明はこれらの実施形態に限定されるものではない。たとえば、接合する素子(第1の導電性部材)としては、半導体チップやチップコンデンサ、チップ抵抗などのほか、チップインダクターなどさまざまな素子が可能である。また、これらの素子を接合する導電層(第2の導電性部材)としても、基板上の配線層に限らず、金属でできた配線部材(たとえばバスバーなど)や、基板そのものでもよい。さらに金属以外の基板であっても接合可能である。
さらに、電子部品の形状としては、上述した実施形態のようなケース内に充填材によって封止された形状に限らず、たとえば、缶体封止品、さらに封止されていない形態のものであってもよい。また、半導体チップを必ず含む製品に限らず半導体チップを含まない、チップコンデンサ、チップ抵抗、チップインダクターなどの素子からなるものであってもよい。さらに基板もセラミック基板に限定されるものではない。
また、上述した実施形態では、基板上の配線層は蒸着などによりセラミック基板などに直接形成したものであるが、これに代えて、基板と配線層の間をろう付けしたものであってもよい。さらには基板と配線層を本発明同様に金属ガラスを用いて接合したものであってもよい。
本発明は、半導体チップやチップコンデンサ、チップ抵抗、などのさまざまな素子と導電層とを接合した電子部品に適している。特に、高温で使用される電子部品に好適であり、たとえば、電気自動車やハイブリッド自動車、燃料電池車などにおける電力制御用の電子部品(たとえばインバータ回路、パワーヘッド、INVモジュールなど)に好適である。
本発明の実施形態1の半導体装置の概略構成を示す断面図である。 半導体チップと導電層との接合方法を工程順に説明するための断面図である。 半導体チップと導電層との接合方法を工程順に説明するための断面図である。 金属ガラスの温度と超塑性、および導電性を説明するためのグラフである。 本発明の実施形態2の集積回路を説明するための断面図である。
符号の説明
1 半導体装置、
2 集積回路、
11 半導体チップ(第1の導電性部材)、
12 ケース、
13 充填材、
14 配線層(導電層、第2の導電性部材)、
15 接合層、
16 基板、
17 ヒートシンク、
21 ボンディングワイヤー、
22 他の配線、
31 合金、
55 チップ抵抗。

Claims (10)

  1. 第1の導電性部材と、
    第2の導電性部材と、
    前記第1の導電性部材と前記第2の導電性部材の間に配置され、ガラス転移温度および結晶化温度を有する合金からなり、前記ガラス転移温度から前記結晶化温度の間の温度に加熱された後、さらに前記結晶化温度から当該合金の融点の間の温度に加熱された熱履歴を持つ接合層と、
    を有することを特徴とする電子部品。
  2. 前記第1の導電性部材は半導体チップであり、前記第2の導電性部材は基板上の導電層であることを特徴とする請求項1記載の電子部品。
  3. 前記合金の前記ガラス転移温度は450℃より低く、前記結晶化温度は前記ガラス転移温度から550℃の間であることを特徴とする請求項1または2記載の電子部品。
  4. 前記合金は、銅またはアルミニウムを含むことを特徴とする請求項1〜3のいずれか一つに記載の電子部品。
  5. 第1の導電性部材と、
    第2の導電性部材と、
    アモルファス組織の合金をガラス転移温度および結晶化温度の範囲の温度に加熱することで前記第1の導電性部材と前記第2の導電性部材が接合した後、前記結晶化温度から当該合金の融点の間の温度に加熱したことで当該合金を結晶化した接合層と、
    を有することを特徴とする電子部品。
  6. ガラス転移温度と結晶化温度を有し、かつアモルファス組織を有する合金を第1の導電性部材と第2の導電性部材との間に配置する段階と、
    前記第1の導電性部材と前記第2の導電性部材の間を加圧しつつ、前記合金を前記ガラス転移温度から前記結晶化温度までの間の温度に加熱して接合する段階と、
    前記第1の導電性部材、前記合金、および前記第2の導電性部材を接合したものをさらに前記結晶化温度から前記合金の融点までの間の温度に加熱する段階と、
    を有することを特徴とする電子部品の製造方法。
  7. 前記第1の導電性部材は半導体チップであり、前記第2の導電性部材は基板上の導電層であることを特徴とする請求項6記載の電子部品の製造方法。
  8. 前記合金の前記ガラス転移温度は450℃より低く、前記結晶化温度は前記ガラス転移温度から550℃の間であることを特徴とする請求項6または7記載の電子部品の製造方法。
  9. 前記合金は、銅またはアルミニウムを含むことを特徴とする請求項6〜8のいずれか一つに記載の電子部品の製造方法。
  10. ガラス転移温度と結晶化温度を有し、かつアモルファス組織を有する合金を第1の導電性部材と第2の導電性部材との間に配置して、前記合金を前記ガラス転移温度から前記結晶化温度の間の温度に加熱することで塑性変形させるとともに前記第1の導電性部材と前記第2の導電性部材の間を加圧しつつ接合し、接合後さらに前記結晶化温度から前記合金の融点までの間の温度に加熱して結晶化させることを特徴とする電子部品の製造方法。
JP2007188771A 2007-07-19 2007-07-19 電子部品、およびその製造方法 Pending JP2009026965A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007188771A JP2009026965A (ja) 2007-07-19 2007-07-19 電子部品、およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007188771A JP2009026965A (ja) 2007-07-19 2007-07-19 電子部品、およびその製造方法

Publications (1)

Publication Number Publication Date
JP2009026965A true JP2009026965A (ja) 2009-02-05

Family

ID=40398500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007188771A Pending JP2009026965A (ja) 2007-07-19 2007-07-19 電子部品、およびその製造方法

Country Status (1)

Country Link
JP (1) JP2009026965A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016163377A1 (ja) * 2015-04-09 2016-10-13 ナミックス株式会社 接合体の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016163377A1 (ja) * 2015-04-09 2016-10-13 ナミックス株式会社 接合体の製造方法
CN107408514A (zh) * 2015-04-09 2017-11-28 纳美仕有限公司 接合体的制造方法
US10290601B2 (en) 2015-04-09 2019-05-14 Namics Corporation Method of manufacturing bonded body
TWI691580B (zh) * 2015-04-09 2020-04-21 日商納美仕有限公司 接合體之製造方法

Similar Documents

Publication Publication Date Title
JP6111764B2 (ja) パワーモジュール用基板の製造方法
JP6272512B2 (ja) 半導体装置および半導体装置の製造方法
JP5672324B2 (ja) 接合体の製造方法及びパワーモジュール用基板の製造方法
JP6127833B2 (ja) 接合体の製造方法及びパワーモジュール用基板の製造方法
JP6320556B2 (ja) パワーモジュール
JP5720839B2 (ja) 接合体及びパワーモジュール用基板
JP5423076B2 (ja) パワーモジュール用基板、パワーモジュール及びパワーモジュール用基板の製造方法
JP6256176B2 (ja) 接合体の製造方法、パワーモジュール用基板の製造方法
JP5828352B2 (ja) 銅/セラミックス接合体、及び、パワーモジュール用基板
JP6819299B2 (ja) 接合体、パワーモジュール用基板、接合体の製造方法及びパワーモジュール用基板の製造方法
JP5904257B2 (ja) パワーモジュール用基板の製造方法
JP2017228693A (ja) 接合体、パワーモジュール用基板、接合体の製造方法、及び、パワーモジュール用基板の製造方法
JP2009026965A (ja) 電子部品、およびその製造方法
TWI708754B (zh) 接合體,電源模組用基板,電源模組,接合體的製造方法及電源模組用基板的製造方法
JP6201297B2 (ja) 銅板付きパワーモジュール用基板及び銅板付きパワーモジュール用基板の製造方法
JP5359953B2 (ja) パワーモジュール用基板、パワーモジュール及びパワーモジュール用基板の製造方法
JP6673635B2 (ja) 接合体の製造方法、ヒートシンク付パワーモジュール用基板の製造方法、ヒートシンクの製造方法、及び、接合体、ヒートシンク付パワーモジュール用基板、ヒートシンク
WO2017126641A1 (ja) 接合体、パワーモジュール用基板、接合体の製造方法及びパワーモジュール用基板の製造方法
TWI555125B (zh) 功率模組封裝體的製造方法
JP5359943B2 (ja) パワーモジュール用基板、パワーモジュール及びパワーモジュール用基板の製造方法
JP7398565B2 (ja) 金属-セラミック基板を生産する方法及びそのような方法によって生産された金属-セラミック基板
JP2018032731A (ja) ヒートシンク付パワーモジュール用基板、及びヒートシンク付パワーモジュール用基板の製造方法
JP5359942B2 (ja) パワーモジュール用基板、パワーモジュール及びパワーモジュール用基板の製造方法
CN104465578A (zh) 半导体装置及半导体模块
JP5245988B2 (ja) パワーモジュール用基板、冷却器付パワーモジュール用基板及びパワーモジュール用基板の製造方法