JP2009025424A - Temperature control method and wavelength conversion laser device - Google Patents

Temperature control method and wavelength conversion laser device Download PDF

Info

Publication number
JP2009025424A
JP2009025424A JP2007186403A JP2007186403A JP2009025424A JP 2009025424 A JP2009025424 A JP 2009025424A JP 2007186403 A JP2007186403 A JP 2007186403A JP 2007186403 A JP2007186403 A JP 2007186403A JP 2009025424 A JP2009025424 A JP 2009025424A
Authority
JP
Japan
Prior art keywords
temperature
target temperature
target
wavelength conversion
deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007186403A
Other languages
Japanese (ja)
Inventor
Ichiro Fukushi
一郎 福士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2007186403A priority Critical patent/JP2009025424A/en
Publication of JP2009025424A publication Critical patent/JP2009025424A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Feedback Control In General (AREA)
  • Control Of Temperature (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To simplify constitution by preventing temperature of an object to be temperature controlled from overshooting the target temperature and rising immediately after the turning-on of power. <P>SOLUTION: A wavelength conversion laser device includes a PID circuit (25) to PID control a Peltier device (27) based on a difference (ΔT) between a set temperature (Ts') and a temperature (Tx) of the object, and a temperature control circuit (20) to make the set temperature (Ts') be equal to the surrounding temperature (Tc) at the turning-on of the power, and subsequently to change the set temperature (Ts') from the surrounding temperature (Tc) into the target temperature (Ts) with a first order lag function of a predetermined time constant. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、温度制御方法および波長変換レーザ装置に関し、さらに詳しくは、電源投入直後に温度制御対象の温度が目標温度よりも行き過ぎて高くなることを抑制できると共に構成を簡単化することが出来る温度制御方法および波長変換レーザ装置に関する。   The present invention relates to a temperature control method and a wavelength conversion laser device, and more specifically, a temperature at which the temperature of a temperature control target can be suppressed from being excessively higher than a target temperature immediately after power is turned on and the configuration can be simplified. The present invention relates to a control method and a wavelength conversion laser device.

波長変換された光出力を一定レベル以上に保つため、半導体レーザや非線形光学素子を含む光共振器を所定の温度範囲に保つよう温度制御を行う「波長変換レーザー」が知られている(例えば特許文献1参照。)。   In order to keep the wavelength-converted optical output above a certain level, there is known a “wavelength conversion laser” that performs temperature control to keep an optical resonator including a semiconductor laser and a nonlinear optical element in a predetermined temperature range (for example, a patent) Reference 1).

他方、偏差が比例帯相当の偏差幅より大きいときは積分動作をオフし、偏差が偏差幅内では0〜1の範囲で且つ偏差が小さいほど大きな係数として偏差を係数倍して積分動作させる「PID調節計の積分動作のカット方法」が知られている(例えば特許文献2参照。)。
特開平8−171106号公報 特開平8−16204号公報
On the other hand, when the deviation is larger than the deviation width corresponding to the proportional band, the integration operation is turned off, and within the deviation width, the deviation is in the range of 0 to 1 and the smaller the deviation is, the larger the coefficient is, the larger the deviation is, and the integral operation is performed. A method for cutting the integration operation of a PID controller ”is known (for example, see Patent Document 2).
JP-A-8-171106 JP-A-8-16204

従来の波長変換レーザ装置における温度制御方法としてはPI制御もしくはPID制御が一般的に用いられている。このPI制御もしくはPID制御による温度制御では、電源投入時に設定温度と<-制御対象温度の偏差が大きい場合は、偏差が小さくなってくる頃すなわち設定温度に<-制御対象温度が到達する頃には積分動作による操作量が過大になるため、制御に行き過ぎ量が生じてしまう(∵アンダーシュートも考慮するため)。
しかし、光出力を一定に保つ制御を行う場合,制御対象温度に過大な行き過ぎ量が生じると,光出力が一定レベルを上回る温度領域から逸脱し,一時的な出力低下を招く。これは電源投入直後から光出力の安定性を必要とする用途では特に問題となる。また、<-制御対象温度に対して光出力がヒステリシス特性をもつような場合、一時的に行き過ぎた制御対象温度が定常状態,すなわち設定温度に達しても一定レベル以上の出力が得られなくなるという問題が起こる。
As a temperature control method in the conventional wavelength conversion laser device, PI control or PID control is generally used. In temperature control by PI control or PID control, if the deviation between the set temperature and <-control target temperature is large when the power is turned on, when the deviation decreases, that is, when the set temperature reaches the set temperature <- Since the operation amount due to the integral operation becomes excessive, an excessive amount of control is generated (because the undershoot is also taken into account).
However, when performing control to keep the light output constant, if an excessive amount of overshoot occurs in the temperature to be controlled, the light output deviates from a temperature region where the light output exceeds a certain level, causing a temporary decrease in output. This is a particular problem in applications that require stability of light output immediately after power-on. Also, if the light output has a hysteresis characteristic with respect to the control target temperature, the control target temperature that is temporarily overrun is in a steady state, that is, no output exceeding a certain level can be obtained even if it reaches the set temperature. Problems arise.

他方、特許文献2の技術を利用すれば、立上り時に積分動作がオフになるため、制御対象の温度が設定温度より行き過ぎて高くなるのを抑制できる。この抑制効果は、比例帯相当の偏差幅が小さい方が高くなる。
しかし、(∵波長変換レーザ装置の光共振器 ⇒ 比例動作が大きくできない ではないから)比例動作をあまり大きくできないような熱負荷では、比例帯相当の偏差幅はある程度の大きさを持ってしまうため、十分な抑制効果を得ることが出来ない問題点がある。
On the other hand, if the technique disclosed in Patent Document 2 is used, the integration operation is turned off at the time of rising, so that it is possible to suppress the temperature of the control target from exceeding the set temperature. This suppression effect becomes higher when the deviation width corresponding to the proportional band is smaller.
However, since the optical resonator of a wavelength conversion laser device ⇒ Proportional operation cannot be increased, a thermal load that does not allow the proportional operation to be increased so much that the deviation width corresponding to the proportional band has a certain size. There is a problem that a sufficient suppression effect cannot be obtained.

また、特許文献2では、積分動作を制御する係数を偏差に応じて連続的に変化させる構成になっている。
しかし、波長変換レーザ装置において駆動系も含めたレーザヘッドの構造を単純化したい場合などでは、プログラマブルな回路素子を搭載することは難しく、汎用もしくは専用のディスクリート素子を用いてできる限りコンパクトな回路構成にしなくてはならないので、積分動作を制御する係数を偏差に応じて連続的に変化させる構成とすることは現実的ではない。
Moreover, in patent document 2, it has the structure which changes the coefficient which controls integral operation | movement continuously according to a deviation.
However, when it is desired to simplify the structure of the laser head including the drive system in the wavelength conversion laser device, it is difficult to mount programmable circuit elements, and the circuit configuration is as compact as possible using general-purpose or dedicated discrete elements. Therefore, it is not realistic to change the coefficient for controlling the integration operation continuously according to the deviation.

そこで、本発明の目的は、電源投入直後に温度制御対象温度が設定温度よりも行き過ぎて高くなることを抑制できると共に構成を簡単化することが出来る温度制御方法および波長変換レーザ装置を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a temperature control method and a wavelength conversion laser device that can suppress the temperature control target temperature from exceeding the set temperature and increase immediately after the power is turned on, and can simplify the configuration. It is in.

第1の観点では、本発明は、設定温度(Ts’)と対象温度(Tx)の偏差(ΔT)に基づくPID制御により対象温度(Tx)を制御する温度制御方法であって、対象の電源投入時には環境温度(Tc)を前記設定温度(Ts’)とし、次いで所定の時定数の一次遅れの関数で前記環境温度(Tc)から目標温度(Ts)へと前記設定温度(Ts’)を変化させることを特徴とする温度制御方法を提供する。
上記第1の観点による温度制御方法では、対象温度(Tx)が環境温度(Tc)に一致している電源投入時は、環境温度(Tc)が設定温度(Ts’)になるため、偏差(ΔT)が0になる。電源投入後は、対象温度(Tx)が変化するが、一次遅れの関数の時定数を適正に設定すれば対象温度(Tx)の変化とほぼ同じ変化速度で設定温度(Ts’)が目標温度(Ts)に変化してゆくから、偏差(ΔT)が常に小さな値に維持されつつ対象温度(Tx)が目標温度(Ts)に収束してゆくことになる。このように、偏差(ΔT)が常に小さな値に維持されるから、電源投入直後に過積分により対象温度(Tx)が目標温度(Ts)よりも行き過ぎて高くなることを抑制できる。また、構成を簡単化することが出来る。
In a first aspect, the present invention is a temperature control method for controlling a target temperature (Tx) by PID control based on a deviation (ΔT) between a set temperature (Ts ′) and a target temperature (Tx), the power source of the target At the time of charging, the environmental temperature (Tc) is set as the set temperature (Ts ′), and then the set temperature (Ts ′) is changed from the environmental temperature (Tc) to the target temperature (Ts) by a first-order lag function of a predetermined time constant. A temperature control method characterized by changing the temperature is provided.
In the temperature control method according to the first aspect, the environmental temperature (Tc) becomes the set temperature (Ts ′) when the power is turned on when the target temperature (Tx) matches the environmental temperature (Tc). ΔT) becomes zero. After the power is turned on, the target temperature (Tx) changes. If the time constant of the first-order lag function is set appropriately, the set temperature (Ts') becomes the target temperature at almost the same rate of change as the target temperature (Tx). Since the deviation (ΔT) is always maintained at a small value, the target temperature (Tx) converges to the target temperature (Ts). Thus, since the deviation (ΔT) is always maintained at a small value, it is possible to suppress the target temperature (Tx) from exceeding the target temperature (Ts) due to overintegration immediately after the power is turned on. In addition, the configuration can be simplified.

第2の観点では、本発明は、半導体レーザ(1)と、前記半導体レーザ(1)によって励起され基本波光を出力する固体レーザ媒質(3)および前記基本波光を波長変換する非線形光学素子(4)を含む光共振器(6)と、前記半導体レーザ(1)および前記光共振器(6)を加熱しうる発熱手段(27)と、前記半導体レーザ(1)および前記光共振器(6)の温度である対象温度(Tx)を検知する対象温度検知手段(28)と、設定温度(Ts’)と前記対象温度(Tx)の偏差(ΔT)に基づいて前記発熱手段(27)をPID制御するPID制御手段(25,26)と、電源投入時には環境温度(Tc)を前記設定温度(Ts’)とし次いで所定の時定数の一次遅れの関数で前記環境温度(Tc)から目標温度(Ts)へと前記設定温度(Ts’)を変化させる設定温度制御手段(21,22,23)とを具備したことを特徴とする波長変換レーザ装置(100,100’)を提供する。
上記第2の観点による波長変換レーザ装置(100,100’)では、対象温度(Tx)が環境温度(Tc)に一致している電源投入時は、環境温度(Tc)が設定温度(Ts’)になるため、偏差(ΔT)が0になる。電源投入後は、対象温度(Tx)が変化するが、一次遅れの関数の時定数を適正に設定すれば対象温度(Tx)の変化とほぼ同じ変化速度で設定温度(Ts’)が目標温度(Ts)に変化してゆくから、偏差(ΔT)が常に小さな値に維持されつつ対象温度(Tx)が目標温度(Ts)に収束してゆくことになる。このように、偏差(ΔT)が常に小さな値に維持されるから、過積分により電源投入直後に対象温度(Tx)が目標温度(Ts)よりも行き過ぎて高くなることを抑制できる。また、一次遅れ関数は簡単な回路構成で実現できるので、構成を簡単化でき、電池駆動などの小型でポータブルな波長変換レーザ装置においても有用である。
In a second aspect, the present invention relates to a semiconductor laser (1), a solid-state laser medium (3) that is excited by the semiconductor laser (1) and outputs fundamental light, and a nonlinear optical element (4) that converts the wavelength of the fundamental light. ) Including an optical resonator (6), heat generating means (27) capable of heating the semiconductor laser (1) and the optical resonator (6), the semiconductor laser (1) and the optical resonator (6) The target temperature detecting means (28) for detecting the target temperature (Tx), which is the temperature of the target temperature, and the PID of the heat generating means (27) based on the deviation (ΔT) between the set temperature (Ts ′) and the target temperature (Tx) The PID control means (25, 26) to be controlled, and when the power is turned on, the environmental temperature (Tc) is set to the set temperature (Ts ′), and the target temperature (Tc) is determined from the environmental temperature (Tc) as a function of a first-order lag. Ts) to the set temperature Provided is a wavelength conversion laser device (100, 100 ′) characterized by comprising set temperature control means (21, 22, 23) for changing the degree (Ts ′).
In the wavelength conversion laser device (100, 100 ′) according to the second aspect, the environmental temperature (Tc) is set to the set temperature (Ts ′) when the target temperature (Tx) coincides with the environmental temperature (Tc). ), The deviation (ΔT) becomes zero. After the power is turned on, the target temperature (Tx) changes. If the time constant of the first-order lag function is set appropriately, the set temperature (Ts') becomes the target temperature at almost the same rate of change as the target temperature (Tx). Since the deviation (ΔT) is always maintained at a small value, the target temperature (Tx) converges to the target temperature (Ts). In this way, since the deviation (ΔT) is always maintained at a small value, it is possible to suppress the target temperature (Tx) from exceeding the target temperature (Ts) immediately after the power is turned on by overintegration. Further, since the first-order lag function can be realized with a simple circuit configuration, the configuration can be simplified, and it is also useful in a small and portable wavelength conversion laser device such as battery drive.

本発明の温度制御方法および波長変換レーザ装置によれば、電源投入直時に温度制御対象温度が設定温度よりも行き過ぎて高くなることを抑制できる。また、構成を簡単化することが出来る。   According to the temperature control method and the wavelength conversion laser apparatus of the present invention, it is possible to suppress the temperature control target temperature from exceeding the set temperature and increasing immediately after the power is turned on. In addition, the configuration can be simplified.

以下、図に示す実施例により本発明をさらに詳細に説明する。なお、これにより本発明が限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to the embodiments shown in the drawings. Note that the present invention is not limited thereby.

図1は、実施例1に係る波長変換レーザ装置100を示す説明図である。
この波長変換レーザ装置100は、励起レーザ光を発生する半導体レーザ1と、励起レーザ光を集光する集光レンズ系2と、励起レーザ光の入射面に反射面が形成され且つ励起レーザ光により励起されて基本波光を発生する固体レーザ媒質3と、基本波光が入射すると第2高調波光を発生する非線形光学素子4と、固体レーザ媒質3の反射面との間で光共振器6を形成する反射面を持つ出力側ミラー5と、出力側ミラー5から外部へ出力される出力レーザ光の一部を透過すると共に残りを分岐するビームスプリッタ7と、分岐光を受光し電気信号に変換するホトダイオード8と、ペルチェ素子27と対象温度センサ28とを有し半導体レーザ1および光共振器6の温調を行うための温調ユニット9と、半導体レーザ1に駆動電流を供給する半導体レーザ駆動回路12と、ペルチェ素子27に駆動電流を供給するペルチェ素子駆動回路26と、環境温度Tcを検知する環境温度センサ29と、対象温度センサ28で検知した対象温度Txが目標温度Tsに一致するようにペルチェ素子駆動回路26を制御する温調回路20と、ホトダイオード8で受光する分岐光の強度が一定になるように半導体レーザ駆動回路12を制御すると共に温調回路20に目標温度Tsを与える制御部11とを具備している。
FIG. 1 is an explanatory diagram illustrating a wavelength conversion laser device 100 according to the first embodiment.
This wavelength conversion laser device 100 includes a semiconductor laser 1 that generates excitation laser light, a condensing lens system 2 that condenses the excitation laser light, a reflection surface formed on the incident surface of the excitation laser light, and the excitation laser light. An optical resonator 6 is formed between the solid-state laser medium 3 that is excited to generate fundamental wave light, the nonlinear optical element 4 that generates second harmonic light when the fundamental wave light is incident, and the reflecting surface of the solid-state laser medium 3. An output-side mirror 5 having a reflecting surface, a beam splitter 7 that transmits a part of the output laser light output from the output-side mirror 5 to the outside and branches the remainder, and a photodiode that receives the branched light and converts it into an electrical signal 8, a temperature control unit 9 having a Peltier element 27 and a target temperature sensor 28 for controlling the temperature of the semiconductor laser 1 and the optical resonator 6, and a half for supplying a driving current to the semiconductor laser 1. The body laser drive circuit 12, the Peltier element drive circuit 26 that supplies a drive current to the Peltier element 27, the environmental temperature sensor 29 that detects the environmental temperature Tc, and the target temperature Tx detected by the target temperature sensor 28 become the target temperature Ts. The temperature control circuit 20 that controls the Peltier element driving circuit 26 so as to match, and the semiconductor laser driving circuit 12 are controlled so that the intensity of the branched light received by the photodiode 8 is constant, and the target temperature Ts is supplied to the temperature control circuit 20. And a control unit 11 for providing the above.

温調回路20は、目標温度Tsと環境温度Tcの温度差を出力する差分器21と、差分器21の出力を所定の時定数の一次遅れの関数で伝達する一次遅れ回路22と、一次遅れ回路22の出力に環境温度Tcを加えて設定温度Ts’とする加算器23と、設定温度Ts’と対象温度Txの偏差ΔTを出力する差分器24と、偏差ΔTが0になるようにペルチェ素子駆動回路26をPID制御するPID回路25とを含んでいる。   The temperature adjustment circuit 20 includes a subtractor 21 that outputs a temperature difference between the target temperature Ts and the environmental temperature Tc, a primary delay circuit 22 that transmits the output of the subtractor 21 as a function of a primary delay of a predetermined time constant, and a primary delay. An adder 23 that adds the environmental temperature Tc to the output of the circuit 22 to obtain a set temperature Ts ′, a difference unit 24 that outputs a deviation ΔT between the set temperature Ts ′ and the target temperature Tx, and a Peltier so that the deviation ΔT becomes zero. And a PID circuit 25 that performs PID control of the element driving circuit 26.

電源投入時からの経過時間をtとし、半導体レーザ1および光共振器6の持つ熱時定数に対応させた一次遅れの関数の時定数をτとするとき、設定温度Ts’は次式で示される。
Ts’=(Ts−Tc){1−exp(−t/τ)}+Tc
The set temperature Ts ′ is expressed by the following equation, where t is the elapsed time since the power is turned on, and τ is the time constant of the first-order lag function corresponding to the thermal time constant of the semiconductor laser 1 and the optical resonator 6. It is.
Ts ′ = (Ts−Tc) {1−exp (−t / τ)} + Tc

図2は、設定温度Ts’の変化を示すグラフである。
電源投入時はTs’=Tcとなり、次いで時定数τでTs’=TcからTs’=Tsまで変化する。
FIG. 2 is a graph showing changes in the set temperature Ts ′.
When the power is turned on, Ts ′ = Tc, and then the time constant τ changes from Ts ′ = Tc to Ts ′ = Ts.

図3は、実機での対象温度の変化の実測結果を示すグラフである。
実線はτ=9秒、点線はτ=8秒、破線はτ=7秒とした結果である。二点鎖線は電源投入と同時にTs’=Tsとした場合の比較例である。
比較例では対象温度Txが目標範囲Tsよりも大きく行き過ぎて高くなっているが、τ=9秒,τ=8秒,τ=7秒のいずれも比較例より改善されている。従って、τ=9秒〜7秒の範囲に設定すれば、電源投入直時に温度制御対象温度が設定温度よりも行き過ぎて高くなることを抑制できる。
FIG. 3 is a graph showing an actual measurement result of a change in target temperature in an actual machine.
The solid line is the result of τ = 9 seconds, the dotted line is τ = 8 seconds, and the broken line is the result of τ = 7 seconds. A two-dot chain line is a comparative example in the case where Ts ′ = Ts at the same time when the power is turned on.
In the comparative example, the target temperature Tx is much higher than the target range Ts and is high, but all of τ = 9 seconds, τ = 8 seconds, and τ = 7 seconds are improved from the comparative example. Therefore, if it sets in the range of (tau) = 9 second-7 second, it can suppress that temperature control object temperature goes too much and becomes higher than preset temperature immediately after power-on.

図4は、実機での対象温度の変化の別の実測結果を示すグラフである。
実線はτ=9秒、点線はτ=8秒、破線はτ=7秒とした結果である。二点鎖線は電源投入と同時にTs’=Tsとした場合の比較例である。
比較例では対象温度Txが目標範囲Tsよりも大きく行き過ぎて高くなっているが、τ=9秒,τ=8秒,τ=7秒のいずれも比較例より改善されている。従って、τ=9秒〜7秒の範囲に設定すれば、電源投入直時に温度制御対象温度が設定温度よりも行き過ぎて高くなることを抑制できる。
FIG. 4 is a graph showing another actual measurement result of the change in the target temperature in the actual machine.
The solid line is the result of τ = 9 seconds, the dotted line is τ = 8 seconds, and the broken line is the result of τ = 7 seconds. A two-dot chain line is a comparative example in the case where Ts ′ = Ts at the same time when the power is turned on.
In the comparative example, the target temperature Tx is much higher than the target range Ts and is high, but all of τ = 9 seconds, τ = 8 seconds, and τ = 7 seconds are improved from the comparative example. Therefore, if it sets in the range of (tau) = 9 second-7 second, it can suppress that temperature control object temperature goes too much and becomes higher than preset temperature immediately after power-on.

実施例1の波長変換レーザ装置100によれば次の効果が得られる。
(1)対象温度Txが環境温度Tcに一致している電源投入時は、環境温度Tcが設定温度Ts’になるため、偏差ΔTが0になる。電源投入後は、対象温度Txが変化するが、時定数τを適正に設定すれば対象温度Txの変化とほぼ同じ変化速度で設定温度Ts’が目標温度Tsに変化してゆくから、偏差ΔTが常に小さな値に維持されつつ対象温度Txが目標温度Tsに収束してゆくことになる。このように、偏差ΔTが常に小さな値に維持されるから、過積分により電源投入直後に対象温度Txが目標温度Tsよりも行き過ぎて高くなることを抑制できる。
(2)一次遅れ回路22は簡単な回路構成で実現できるので、構成を簡単化でき、電池駆動などの小型でポータブルな波長変換レーザ装置においても有用である。
According to the wavelength conversion laser device 100 of the first embodiment, the following effects can be obtained.
(1) When the power is turned on when the target temperature Tx matches the environmental temperature Tc, the environmental temperature Tc becomes the set temperature Ts ′, and thus the deviation ΔT becomes zero. After the power is turned on, the target temperature Tx changes, but if the time constant τ is set appropriately, the set temperature Ts ′ changes to the target temperature Ts at almost the same rate of change as the change in the target temperature Tx. Is kept at a small value while the target temperature Tx converges to the target temperature Ts. In this way, since the deviation ΔT is always maintained at a small value, it is possible to suppress the target temperature Tx from exceeding the target temperature Ts immediately after the power is turned on due to overintegration.
(2) Since the first-order lag circuit 22 can be realized with a simple circuit configuration, the configuration can be simplified, and it is also useful in a small and portable wavelength conversion laser device such as a battery drive.

図5は、実施例2に係る波長変換レーザ装置100’を示す説明図である。
この波長変換レーザ装置100’は、励起レーザ光を発生する半導体レーザ1と、励起レーザ光を集光する集光レンズ系2と、励起レーザ光の入射面に反射面が形成され且つ励起レーザ光により励起されて基本波光を発生する固体レーザ媒質3と、基本波光が入射すると第2高調波光を発生する非線形光学素子4と、固体レーザ媒質3の反射面との間で光共振器6を形成する反射面を持つ出力側ミラー5と、出力側ミラー5から外部へ出力される出力レーザ光の一部を透過すると共に残りを分岐するビームスプリッタ7と、分岐光を受光し電気信号に変換するホトダイオード8と、ペルチェ素子27と対象温度センサ28とを有し半導体レーザ1および光共振器6の温調を行うための温調ユニット9と、半導体レーザ1に駆動電流を供給する半導体レーザ駆動回路12と、ペルチェ素子27に駆動電流を供給するペルチェ素子駆動回路26と、対象温度センサ28で検知した対象温度Txが設定温度Ts’に一致するようにペルチェ素子駆動回路26を制御する温調回路20’と、ホトダイオード8で受光する分岐光の強度が一定になるように半導体レーザ駆動回路12を制御すると共に温調回路20’に設定温度Ts’を与える制御部11’とを具備している。
FIG. 5 is an explanatory diagram of a wavelength conversion laser device 100 ′ according to the second embodiment.
This wavelength conversion laser device 100 ′ includes a semiconductor laser 1 that generates excitation laser light, a condenser lens system 2 that condenses the excitation laser light, a reflection surface formed on the incident surface of the excitation laser light, and the excitation laser light. An optical resonator 6 is formed between the solid-state laser medium 3 that generates the fundamental wave light by being excited by the laser, the nonlinear optical element 4 that generates the second harmonic light when the fundamental wave light is incident, and the reflecting surface of the solid-state laser medium 3. An output-side mirror 5 having a reflecting surface, a beam splitter 7 that transmits a part of the output laser light output from the output-side mirror 5 to the outside and branches the remainder, and receives the branched light and converts it into an electrical signal. A temperature control unit 9 having a photodiode 8, a Peltier element 27, and a target temperature sensor 28 for controlling the temperature of the semiconductor laser 1 and the optical resonator 6, and a half for supplying a drive current to the semiconductor laser 1 The conductor laser drive circuit 12, the Peltier element drive circuit 26 that supplies a drive current to the Peltier element 27, and the Peltier element drive circuit 26 are controlled so that the target temperature Tx detected by the target temperature sensor 28 matches the set temperature Ts'. A temperature control circuit 20 ′ that controls the semiconductor laser drive circuit 12 so that the intensity of the branched light received by the photodiode 8 is constant, and a controller 11 ′ that supplies the temperature control circuit 20 ′ with a set temperature Ts ′. It has.

温調回路20’は、設定温度Ts’と対象温度Txの偏差ΔTを出力する差分器24と、偏差ΔTが0になるようにペルチェ素子駆動回路26をPID制御するPID回路25とを含んでいる。   The temperature control circuit 20 ′ includes a differentiator 24 that outputs a deviation ΔT between the set temperature Ts ′ and the target temperature Tx, and a PID circuit 25 that performs PID control of the Peltier element driving circuit 26 so that the deviation ΔT becomes zero. Yes.

制御部11’は、マイクロプロセッサであり、電源投入時の対象温度Txを記憶し環境温度Tcとして出力する環境温度メモリ29’と、目標温度Tsと環境温度Tcの温度差を出力する差分器21と、差分器21の出力を所定の時定数の一次遅れの関数で伝達する一次遅れ要素22’と、一次遅れ要素22’の出力に環境温度Tcを加えて設定温度Ts’とする加算器23とを処理プログラムの機能として有している。   The control unit 11 ′ is a microprocessor, and stores an ambient temperature memory 29 ′ that stores the target temperature Tx when the power is turned on and outputs it as the ambient temperature Tc, and a differencer 21 that outputs a temperature difference between the target temperature Ts and the ambient temperature Tc. A first-order lag element 22 ′ that transmits the output of the subtractor 21 as a function of a first-order lag with a predetermined time constant, and an adder 23 that adds the environmental temperature Tc to the output of the first-order lag element 22 ′ to obtain a set temperature Ts ′. As a function of the processing program.

実施例2の波長変換レーザ装置100’によれば、実施例1と同様の効果が得られる。   According to the wavelength conversion laser device 100 ′ of the second embodiment, the same effect as that of the first embodiment can be obtained.

本発明の波長変換レーザ装置は、バイオエンジニアリング分野や計測分野で利用できる。特に、乾電池で駆動する例えばレーザポインタに有用である。   The wavelength conversion laser device of the present invention can be used in the bioengineering field and the measurement field. In particular, it is useful for, for example, a laser pointer driven by a dry battery.

実施例1に係る波長変換レーザ装置を示す構成説明図である。1 is a configuration explanatory view showing a wavelength conversion laser device according to Example 1. FIG. 実施例1に係る設定温度の変化を示すグラフである。3 is a graph showing changes in set temperature according to Example 1. 実施例1に係る対象温度の変化を示すグラフである。3 is a graph showing a change in target temperature according to Example 1. 実施例1に係る対象温度の変化を示す別のグラフである。6 is another graph showing a change in target temperature according to Example 1. 実施例2に係る波長変換レーザ装置を示す構成説明図である。FIG. 6 is an explanatory diagram illustrating a wavelength conversion laser device according to a second embodiment.

符号の説明Explanation of symbols

1 半導体レーザ
2 集光レンズ系
3 固体レーザ媒質
4 非線形光学素子
5 出力側ミラー
6 光共振器
7 ビームスプリッタ
8 ホトダイオード
9 温調ユニット
11,11’ 制御部
12 半導体レーザ駆動回路
20,20’ 温調回路
21,24 差分器
22 一次遅れ回路
22’ 一次遅れ要素
23 加算器
26 ペルチェ素子駆動回路
27 ペルチェ素子
28 対象温度センサ
29 環境温度センサ
29’ 環境温度メモリ
100,100’ 波長変換レーザ装置
DESCRIPTION OF SYMBOLS 1 Semiconductor laser 2 Condensing lens system 3 Solid state laser medium 4 Nonlinear optical element 5 Output side mirror 6 Optical resonator 7 Beam splitter 8 Photodiode 9 Temperature control unit 11, 11 'Control part 12 Semiconductor laser drive circuit 20, 20' Temperature control Circuits 21, 24 Differentiator 22 Primary delay circuit 22 'Primary delay element 23 Adder 26 Peltier element drive circuit 27 Peltier element 28 Target temperature sensor 29 Environmental temperature sensor 29' Environmental temperature memory 100, 100 'Wavelength conversion laser device

Claims (2)

設定温度(Ts’)と対象温度(Tx)の偏差(ΔT)に基づくPID制御により対象温度(Tx)を制御する温度制御方法であって、対象の電源投入時には環境温度(Tc)を前記設定温度(Ts’)とし、次いで所定の時定数の一次遅れの関数で前記環境温度(Tc)から目標温度(Ts)へと前記設定温度(Ts’)を変化させることを特徴とする温度制御方法。 A temperature control method for controlling a target temperature (Tx) by PID control based on a deviation (ΔT) between a set temperature (Ts ′) and a target temperature (Tx), wherein the environmental temperature (Tc) is set when the target is turned on. A temperature control method characterized in that the set temperature (Ts ′) is changed from the environmental temperature (Tc) to the target temperature (Ts) as a function of a first-order delay with a predetermined time constant. . 半導体レーザ(1)と、前記半導体レーザ(1)によって励起され基本波光を出力する固体レーザ媒質(3)および前記基本波光を波長変換する非線形光学素子(4)を含む光共振器(6)と、前記半導体レーザ(1)および前記光共振器(6)を加熱しうる発熱手段(27)と、前記半導体レーザ(1)および前記光共振器(6)の温度である対象温度(Tx)を検知する対象温度検知手段(28)と、設定温度(Ts’)と前記対象温度(Tx)の偏差(ΔT)に基づいて前記発熱手段(27)をPID制御するPID制御手段(25,26)と、電源投入時には環境温度(Tc)を前記設定温度(Ts’)とし次いで所定の時定数の一次遅れの関数で前記環境温度(Tc)から目標温度(Ts)へと前記設定温度(Ts’)を変化させる設定温度制御手段(21,22,23)とを具備したことを特徴とする波長変換レーザ装置(100,100’)。 An optical resonator (6) including a semiconductor laser (1), a solid-state laser medium (3) that is excited by the semiconductor laser (1) and outputs fundamental light, and a nonlinear optical element (4) that converts the wavelength of the fundamental light; A heating means (27) capable of heating the semiconductor laser (1) and the optical resonator (6), and a target temperature (Tx) which is a temperature of the semiconductor laser (1) and the optical resonator (6). Target temperature detecting means (28) for detecting, and PID control means (25, 26) for PID controlling the heat generating means (27) based on a deviation (ΔT) between a set temperature (Ts ′) and the target temperature (Tx). When the power is turned on, the ambient temperature (Tc) is set to the preset temperature (Ts ′), and then the preset temperature (Ts ′) from the ambient temperature (Tc) to the target temperature (Ts) as a function of a first-order lag of a predetermined time constant. ) Set temperature control means (21, 22, 23) and a wavelength conversion laser device being characterized in that comprising a (100, 100 ').
JP2007186403A 2007-07-18 2007-07-18 Temperature control method and wavelength conversion laser device Pending JP2009025424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007186403A JP2009025424A (en) 2007-07-18 2007-07-18 Temperature control method and wavelength conversion laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007186403A JP2009025424A (en) 2007-07-18 2007-07-18 Temperature control method and wavelength conversion laser device

Publications (1)

Publication Number Publication Date
JP2009025424A true JP2009025424A (en) 2009-02-05

Family

ID=40397298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007186403A Pending JP2009025424A (en) 2007-07-18 2007-07-18 Temperature control method and wavelength conversion laser device

Country Status (1)

Country Link
JP (1) JP2009025424A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103425148A (en) * 2012-05-23 2013-12-04 信泰光学(深圳)有限公司 Temperature control method of laser device and electronic device using laser device
CN103677015A (en) * 2013-11-29 2014-03-26 北京七星华创电子股份有限公司 Temperature control system and method for semiconductor process heat treatment device
CN112462825A (en) * 2020-11-18 2021-03-09 北京自动化控制设备研究所 Low-power-consumption high-stability laser temperature closed-loop control system and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60166022A (en) * 1984-02-08 1985-08-29 Showa Denko Kk Thermal diffusion tower for removing and/or concentrating gaseous mixture or for separating isotope and apparatus therefor
JPH0816204A (en) * 1994-07-04 1996-01-19 Fuji Electric Co Ltd Method for cutting integration operation of pid controller
JP2005050847A (en) * 2003-07-29 2005-02-24 Noritsu Koki Co Ltd Laser device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60166022A (en) * 1984-02-08 1985-08-29 Showa Denko Kk Thermal diffusion tower for removing and/or concentrating gaseous mixture or for separating isotope and apparatus therefor
JPH0816204A (en) * 1994-07-04 1996-01-19 Fuji Electric Co Ltd Method for cutting integration operation of pid controller
JP2005050847A (en) * 2003-07-29 2005-02-24 Noritsu Koki Co Ltd Laser device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103425148A (en) * 2012-05-23 2013-12-04 信泰光学(深圳)有限公司 Temperature control method of laser device and electronic device using laser device
CN103677015A (en) * 2013-11-29 2014-03-26 北京七星华创电子股份有限公司 Temperature control system and method for semiconductor process heat treatment device
CN112462825A (en) * 2020-11-18 2021-03-09 北京自动化控制设备研究所 Low-power-consumption high-stability laser temperature closed-loop control system and method
CN112462825B (en) * 2020-11-18 2022-03-11 北京自动化控制设备研究所 Low-power-consumption high-stability laser temperature closed-loop control system and method

Similar Documents

Publication Publication Date Title
EP1933197A1 (en) Circuit and method for lessening noise in a laser system having a frequency converting element
JP2008085179A (en) Laser diode controller, and driving method of atc circuit
JP2006216791A (en) Laser device, control device thereof, control method thereof, wavelength-switching method thereof and control data thereof
JP2010251448A (en) Solid-state pulsed laser apparatus for output of third harmonic waves
JP2009026968A (en) Method of controlling semiconductor laser
JP2009025424A (en) Temperature control method and wavelength conversion laser device
JP5194795B2 (en) Laser light source standby method
JP6180213B2 (en) Optical module and optical module control method
JP4360619B2 (en) Temperature control device, temperature control method, and program
JP5070819B2 (en) Solid state laser equipment
JP5070820B2 (en) Solid state laser equipment
JP7105550B2 (en) LASER DEVICE AND SEMICONDUCTOR LASER DEVICE CONTROL METHOD
JP5305823B2 (en) Temperature control device
JP2016066671A (en) Wavelength variable light source, and method of determining temperature control initial value
CN107546570B (en) Current control device and laser device
JP5473451B2 (en) Optical transmitter, stabilized light source, and laser diode control method
US9083146B1 (en) Solid state laser device
US7529285B2 (en) Frequency stabilised gas laser
JP4968149B2 (en) Solid state laser equipment
JPH0346288A (en) Stabilized light source
JP5257428B2 (en) Method for setting proper temperature of solid-state laser device
JP2008141127A (en) Semiconductor laser excitation solid-state laser device
JP4856898B2 (en) Solid state laser equipment
JP2011118012A (en) Laser light source device
JP4415750B2 (en) Solid state laser equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090904

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20101005

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A02 Decision of refusal

Effective date: 20110308

Free format text: JAPANESE INTERMEDIATE CODE: A02