JP2009024621A - スクロール膨張機 - Google Patents

スクロール膨張機 Download PDF

Info

Publication number
JP2009024621A
JP2009024621A JP2007189300A JP2007189300A JP2009024621A JP 2009024621 A JP2009024621 A JP 2009024621A JP 2007189300 A JP2007189300 A JP 2007189300A JP 2007189300 A JP2007189300 A JP 2007189300A JP 2009024621 A JP2009024621 A JP 2009024621A
Authority
JP
Japan
Prior art keywords
scroll
slider
swing
expansion
slide surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007189300A
Other languages
English (en)
Inventor
Masayuki Tsunoda
昌之 角田
Hideaki Nagata
英彰 永田
Mihoko Shimoji
美保子 下地
Shin Sekiya
慎 関屋
Toshihide Koda
利秀 幸田
Fumihiko Ishizono
文彦 石園
Toshiyuki Nakamura
利之 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007189300A priority Critical patent/JP2009024621A/ja
Publication of JP2009024621A publication Critical patent/JP2009024621A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

【課題】この発明は、正転時および逆転時に、渦巻側面隙間の極小状態を維持して駆動力の減少を回避し、安定して動作できるスクロール膨張機を得る。
【解決手段】スライダ74には、第1および第2スライド面81a,81bの面間隔が孔中心と直交する方向に先細り形状の内形形状に形成された軸嵌入孔81が形成されている。主軸78には、第1および第2摺動面80a,80bの面間隔が偏心方向に狭まる先細り形状の外形形状に形成された偏心軸部80が形成されている。そして、主軸78が、偏心軸部80を軸嵌入孔81に嵌入して回転自在に配設されている。正転時に、第1スライド面81aが第1摺動面80a上を揺動半径が増大する方向に摺動移動するように第1スライド面81aの角度が設定され、かつ、逆転時に、第2スライド面81bが第2摺動面80b上を揺動半径が増大する方向に摺動移動するように第2スライド面81bの角度が設定されている。
【選択図】図4

Description

本発明は、冷凍・空調用途の冷凍サイクル内で用いられ、冷媒の膨張過程からエネルギーを動力として回収・利用するスクロール膨張機に関し、特に動力源により駆動される主圧縮機とは異なり、動力回収を行う膨張機構と動力利用を行うサブ圧縮機構とが一体の渦巻部品を揺動させることにより成り立つスクロール膨張機における半径方向隙間低減のための可変半径クランク機構に関するものである。
冷凍・空調用に用いられる冷凍サイクルにおいて、膨張過程の冷媒から機械エネルギーを回収して圧縮過程の一部の動力として利用する膨張機を、モータなどで駆動されて冷媒を圧縮する主圧縮機とは独立に構成したものが提案されている。このような膨張機では、サブ圧縮機構が膨張機構により回収された動力のみによって駆動されて昇圧動作を行うので、サブ圧縮に要する仕事に摺動損失などの諸処の損失動力を加えたものが、回収動力以下とならなければならない。従って、動力回収の効率を高めるためには、損失動力を小さく抑える必要がある。
ここで、膨張機構とサブ圧縮機構とをそれぞれ完結したものとし、膨張機構からサブ圧縮機構に動力を伝達する動力伝達部材を配する構成をとると、膨張機構およびサブ圧縮機構のそれぞれの可動部品に作動圧によるガス荷重が作用し、可動部品を潤滑支持する部分で摺動損失を生じてしまい、高効率の動力回収は望めない。
これに対し、膨張機構とサブ圧縮機構との可動部品の一体化を図り、ガス荷重をできる限り相殺することで、可動部品および動力伝達部品での摺動損失を抑えることが試みられている。
このような膨張機をスクロール型で構成する場合、台板の表面に膨張機構の渦巻を、台板の背面にサブ圧縮機構の渦巻をそれぞれ形成して揺動スクロールを構成し、圧縮/膨張過程で揺動スクロールに作用する軸方向のスラスト荷重を相殺する。このようなスクロール膨張機では、揺動スクロールの膨張側渦巻において回収された動力はそのまま背面のサブ圧縮側渦巻においてサブ圧縮仕事に用いられるため、動力伝達のための軸などの動力伝達部材は必要がない。そして、揺動スクロールの運動を規制するクランク軸とオルダムリングを備えるのが一般的であり、クランク軸は揺動スクロール中央部を貫通し、オルダムリングは揺動スクロールの台板と膨張側固定スクロール又はサブ圧縮側固定スクロールとの間で自転規制を行う。
一般に、揺動スクロールがクランク軸とオルダムリングとにより規制されながら揺動運動するスクロール流体機械においては、径方向の渦巻側面隙間の極小化を目的として、クランク軸と揺動スクロールとの間にブッシュを配し、クランク軸の回転中心とブッシュの外径中心との距離が変化する可変半径クランク機構を用いていた。そして、クランク軸に形成された平面上をブッシュがスライドする、スライダタイプの可変半径クランク機構において、逆転運転時の動作に配慮し、圧縮機の逆転運転時に揺動スクロールの揺動半径が小さくなる方向に動くようにスライダ摺動面の角度設定を行っていた(例えば、特許文献1参照)。
特開平5−248372号公報
特許文献1に記載のスクロール型圧縮機においては、圧縮機を逆転運転させた場合の圧縮室内真空運転を回避し、スクロール部品の渦巻歯先の損傷を防止するために、スライダの負荷側摺動面と反負荷側摺動面とが平行ではなく、揺動半径が大きくなる移動方向に対してスライダの軸嵌入穴が末広がりの形状となっている。これは、圧縮機における結線誤りなどによる逆転運転に対応したものであり、モータによって駆動されることが前提となっている。
そこで、サブ圧縮機構が膨張機構により回収された動力のみによって駆動されるスクロール膨張機に、揺動半径が大きくなる移動方向に対してスライダの軸嵌入穴が末広がりの形状となっている可変半径クランク機構を採用した場合、逆転運転では、径方向の渦巻側面隙間が拡がり、サブ圧縮機構を駆動するために十分な動力が得られず、機能停止に陥るという問題がある。
この発明は、上述のような問題を解決するためになされたものであり、駆動側の膨張ガス荷重と被駆動側のサブ圧縮ガス荷重との大小関係が逆転した場合においても、渦巻側面隙間の極小状態を維持して駆動力の減少を回避し、安定して動作できるスクロール膨張機を得ることを目的としている。
この発明のスクロール膨張機は、揺動スクロールと膨張側固定スクロールとが該揺動スクロールの一面に形成された渦巻歯と該膨張側固定スクロールに形成された渦巻歯とを咬合するように配置され、冷媒を膨張させて動力を回収する膨張機構と、上記揺動スクロールと圧縮側固定スクロールとが該揺動スクロールの他面に形成された渦巻歯と該圧縮側固定スクロールに形成された渦巻歯とを咬合するように配置され、上記膨張機構で回収した動力で冷媒を圧縮するサブ圧縮機構と、2つのスライド面の面間隔が孔中心と直交する方向に狭まる先細り形状の内形形状に形成された軸嵌入孔が形成され、上記揺動スクロールの中央に穿設された揺動軸受部に嵌入されたスライダと、2つの摺動面の面間隔が偏心方向に狭まる先細り形状の外形形状に形成された偏心軸部を有し、該偏心軸部を上記軸嵌入孔に嵌入して回転自在に配設された主軸と、を備えている。そして、上記スライダは、上記揺動スクロールの正転時に、正転側のスライド面が正転側の上記摺動面上を揺動半径が増大する方向に摺動移動するように正転側のスライド面角度が設定され、かつ、上記揺動スクロールの逆転時に、逆転側のスライド面が逆転側の上記摺動面上を揺動半径が増大する方向に摺動移動するように逆転側のスライド面角度が設定されている。
この発明によれば、揺動スクロールの正転時に、正転側のスライド面が正転側の摺動面上を揺動半径が増大する方向に摺動移動するように正転側のスライド面角度が設定されている。そこで、揺動スクロールの正転時には、渦巻歯側面の半径方向隙間が極小化され、漏れの少ない膨張が行われ、サブ圧縮機構を駆動するために十分な動力が得られる。
また、揺動スクロールの逆転時には、逆転側のスライド面が逆転側の摺動面上を揺動半径が増大する方向に摺動移動するように逆転側のスライド面角度が設定されているので、荷重逆転が発生しても、渦巻歯側面の半径方向隙間の極小化状態が維持され、主軸とスライダとの間のロックが回避される。そこで、渦巻歯側面の半径方向隙間の拡大に起因する駆動トルクの減少が起こらず、荷重逆転時からの復帰が容易となる。
図1はこの発明の実施の形態によるスクロール膨張機の構成を示す縦断面図である。図において、同一の符号を付したものは、同一またはこれに相当するものであり、このことは、明細書の全文において共通することである。さらに、明細書全文の表れている構成要素の形態は、あくまで例示であって、これらの記載の限定されるものではない。
図1において、スクロール膨張機1の密閉容器4内の下方には、膨張機構2が設置されており、膨張機構2の上方には、サブ圧縮機構3が設置されている。膨張機構2は、台板51aの上面に渦巻歯51cを形成した固定スクロール51(膨張側固定スクロール)と、台板53aの下面に渦巻歯53cを形成した揺動スクロール53とからなる。固定スクロール51の渦巻歯51cと揺動スクロール53の渦巻歯53cとは、逆の巻き方向で、咬合するように配置されている。また、サブ圧縮機構3は、台板52aの下面に渦巻歯52cを形成した固定スクロール52(圧縮側固定スクロール)と、台板53aの上面に渦巻歯53dを形成した揺動スクロール53とからなる。固定スクロール52の渦巻歯52cと揺動スクロール53の渦巻歯53dとは、逆の巻き方向で、咬合するように配置されている。ここで、サブ圧縮機構3の渦巻歯52c,53dは、膨張機構2の渦巻歯51c、53cと同じ巻き方向で、揺動スクロール53が揺動したときに、一方で圧縮、他方で膨張できるようになっている。
主軸78は、膨張機構2の固定スクロール51およびサブ圧縮機構3の固定スクロール52それぞれの中央に形成された軸受部51b,52bによって、回転自由に両持ち支持されている。スリーブ75が主軸78の軸受部51bに対応する部分に同軸に外嵌状態に嵌め込まれている。スライダ74が揺動スクロール53の中央に穿設された揺動軸受部53bに内嵌状態に嵌め込まれている。そして、主軸78の中央部に形成された偏心軸部80が、後述するスライダ74に穿設された軸嵌入孔81に嵌入されている。これにより、スライダ74の外径中心と主軸78の軸心との間の距離が変動可能で、スライダ74が揺動スクロール53に作用するガス圧による力で揺動半径が大きくなる方向に移動する可変半径クランク機構を構成し、揺動スクロール53が揺動運動できる。
膨張機構2の外周であって密閉容器4の側面には、冷媒を吸入する膨張吸入管15および膨張した冷媒を吐出する膨張吐出管16が設置されている。一方、サブ圧縮機構3の上方であって密閉容器4の上面には、冷媒を吸入するサブ圧縮吸入管19が設置されており、サブ圧縮機構3の外周であって密閉容器4の側面には、圧縮した冷媒を吐出するサブ圧縮吐出管20が設置されている。
サブ圧縮機構3においては、固定スクロール52および揺動スクロール53それぞれの渦巻歯52c,53dの先端には、固定スクロール52の渦巻歯52cと揺動スクロール53の渦巻歯53dとで形成されるサブ圧縮室3aを仕切るチップシール71が装着されている。また、固定スクロール52における揺動スクロール53に対向する面であって渦巻歯52cの外周には、揺動スクロール53と固定スクロール52とをシールする外周シール73が設けられている。
一方、膨張機構2においては、揺動スクロール53の固定スクロール51に対向する面であって揺動軸受部53bの外周には、揺動スクロール53と固定スクロール51とをシールする内周シール72が設けられている。また、固定スクロール51および揺動スクロール53の渦巻歯51c,53cの先端には、固定スクロール51の渦巻歯51cと揺動スクロール53の渦巻歯53cとで形成される膨張室2aを仕切るチップシール71が装着されている。
揺動スクロール53は、サブ圧縮機構3に設けたオルダムリング77によって、自転を規正される。また、揺動スクロール53が揺動運動することによって発生する遠心力を相殺するために、上および下バランサ79a,79bが主軸78の両端側に取り付けられている。主軸78の下端には、油ポンプ76が取り付けられ、密閉容器4の下部空間の底部に貯留されている潤滑油9を各軸受部に供給する。
主軸78内には、主に軸受部51bに給油する油孔78a、軸受部52bおよび揺動軸受部53bに給油する油孔78b、およびガス抜き孔78cが設けられている。そして、主軸78の軸受部52bに対応する部分の外周面には、螺旋溝(図示せず)が設けられており、油孔78bを介して軸受部52bに給油された潤滑油9が螺旋溝を通って上部空間にオーバーフローするようになっている。また、サブ圧縮される冷媒は、主圧縮機5から潤滑油を含んでサブ圧縮吸入管19を介して供給され、揺動スクロール53と固定スクロール52とによりサブ圧縮された後、上部空間に一旦開放されることにより油分離され、サブ圧縮吐出管20から排出される。そして、軸受部52bからオーバーフローされ、さらに油分離されて上部空間の下部に溜まった潤滑油9が、返油孔31を介して下部空間に戻される。
スリーブ75が主軸78の軸受部51bに対応する部分に同軸に外嵌状態に嵌め込まれ、スライダ74が主軸78の揺動軸受部53bに対応する部分に外嵌状態に嵌め込まれている。これにより、スライダ74の外径中心は主軸78の軸心からの距離が変動可能で、揺動スクロール53に作用するガス圧による力で揺動半径が大きくなる方向に移動する可変半径クランク機構が構成される。
つぎに、このように構成されたスクロール膨張機1を用いた冷凍サイクルについて図2を参照しつつ説明する。
冷凍サイクルでは、スクロール膨張機1のサブ圧縮機構3がガスクーラ11の上流側に配設され、膨張機構2がガスクーラ11の下流側に配設されている。この時、膨張機構2とサブ圧縮機構3とが一体に構成されていることの制約から、膨張機構2の通過流量を調整するためのバイパス膨張弁13が膨張機構2と並列に、膨張機構2の体積流量を調整するための予膨張弁14が膨張機構2と直列上流側に設けられている。また、膨張機構2が蒸発器12の上流側に配設され、サブ圧縮機構3が蒸発器12の下流側に配設された主圧縮機5の下流側に配設されている。
このように構成された冷凍サイクルでは、モータ6に給電されると、主圧縮機5が駆動され、冷媒が圧縮される。圧縮された冷媒は、サブ圧縮吸入管19からサブ圧縮機構3に送り込まれ、固定スクロール52の渦巻歯52cと揺動スクロール53の渦巻歯53dとで形成されるサブ圧縮室3a内で圧縮昇圧される。サブ圧縮室3a内で圧縮昇圧された冷媒は、吐出弁32から吐出されて密閉容器4の上部空間に一旦開放され、油分離された後、サブ圧縮吐出管20から密閉容器4外へ吐出される。サブ圧縮吐出管20から吐出された冷媒は、ガスクーラ11に送り込まれて冷却される。冷却された冷媒の一部が、予膨張弁14で膨張されて、あるいは膨張されずに膨張吸入管15から膨張機構2に送り込まれ、固定スクロール51の渦巻歯51cと揺動スクロール53の渦巻歯53cとで形成される膨張室2a内で膨張減圧される。ガスクーラ11で冷却された冷媒の残部は、バイパス膨張弁13で膨張減圧される。膨張室2a内で膨張減圧された冷媒は、膨張吐出管16から吐出され、バイパス膨張弁13で膨張減圧された冷媒の残部とともに蒸発器12に送り込まれ、加熱された後、主圧縮機5に送り込まれる。
この時の冷凍サイクルの動作について図3を用いて説明する。図3は冷凍サイクルの動作を説明するモリエル線図であり、縦軸は冷媒圧力を、横軸は比エンタルピを表している。なお、図3はCOのように高圧側が超臨界となる冷媒を用いることを想定している。
冷媒は、主圧縮機5にて中間圧Pmまで減圧される(a→d’)。主圧縮機5で圧縮された中間圧Pmの冷媒は、サブ圧縮吸入管19からサブ圧縮機構3のサブ圧縮室3a内に送り込まれ、高圧Phまで昇圧される(d’→d)。高圧Phまで昇圧された冷媒は、サブ圧縮吐出管20からガスクーラ11に送り込まれ、冷却される(d→c)。ついで、冷却された冷媒は、膨張吸入管15から膨張機構2の膨張室3a内に送り込まれ、低圧Plまで膨張減圧される(c→b)。この時、バイパス膨張弁13で減圧されると、点cから比エンタルピ一定で減圧して点b’に至る。この減圧時の比エンタルピ差(=b’−b)が膨張動力として回収され、サブ圧縮機構3における比エンタルピ差(=d−d’)分の圧縮動力として利用される。冷媒は、膨張過程でサブ圧縮に必要な動力を回収されてから、膨張吐出管16から吐出され、蒸発器12に送り込まれ、加熱される(b→a)。加熱された冷媒が主圧縮機5に送り込まれる。
ここで、揺動スクロール53の圧縮仕事を行うときの運動と位相を規制する主軸78およびオルダムリング77が設けられているので、この膨張機構2で回収された膨張動力が、サブ圧縮機構3の圧縮動力に加えて、揺動スクロール53、主軸78、オルダムリング77などの駆動に伴う摺動損失分の仕事をまかなうことになる。
サブ圧縮機構3のサブ圧縮室3a内が中間圧Pmであり、サブ圧縮機構3のサブ圧縮室3aの外周側が膨張後の低圧Plである。そこで、固定スクロール52における揺動スクロール53に対向する面であって渦巻歯52cの外周に設けられた外周シール73が、サブ圧縮室3aの内外の差圧をシールする。また、揺動スクロール53の固定スクロール51に対向する面であって揺動軸受部53bの外周に設けられた内周シール72が、膨張室2aと揺動軸受部53b側との差圧をシールする。
つぎに、このスクロール膨張機1の可変半径クランク機構について説明する。図4はこの発明の実施の形態に係るスクロール膨張機における揺動軸受部周りを示す横断面図であり、図4の(a)は揺動軸受部の正転時の状態を示し、図4の(b)は揺動軸受部が過渡的に逆転した状態、あるいは軸が先行しようとした状態を示している。
主軸78の揺動軸受部53bに対応する部位は、長さの異なる相対する2つの円弧の端部同士を直線で接続した断面形状の偏心軸部80に作製されている。つまり、偏心軸部80は2つの偏心軸部円弧面で2つの平面状の第1および第2摺動面80a,80bの端部同士を接続する外形形状の柱状に作製されている。スライダ74は、揺動スクロール53の台板53aの中央部に穿設された円形の揺動軸受部53bに回転自在に嵌入されている。このスライダ74には、長さの異なる相対する2つの円弧の端部同士を直線で接続した断面形状の軸嵌入孔81が穿設されている。つまり、軸嵌入孔81は、2つのスライダ円弧面で2つの平面状の第1および第2スライド面81a,81bの端部同士を接続する内形形状の筒状に作製され、偏心軸部80が遊嵌状態に嵌め込まれる。ここで、第1摺動面80aおよび第1スライド面81aが正転側の摺動面およびスライド面であり、第2摺動面80bおよび第2スライド面81bが逆転側の摺動面およびスライド面である。
まず、揺動スクロール53の正転時には、図4の(a)に示されるように、第1スライド面81aが第1摺動面80aに密接し、第2スライド面81bが第2摺動面80bから離間している。そして、駆動側(膨張側)のガス荷重Fgθが揺動スクロール53を介してスライダ74に作用する。ここで、第1スライド面81aが揺動スクロール53からの膨張側の周方向ガス荷重Fgθに対して揺動半径Rrが増大する方向に角度が付けられているので、このガス荷重Fgθがスライダ74に作用すると、第1スライド面81aが第1摺動面80aに接触した状態で、すなわち負荷側平面接触状態で図4の(a)中下方にスライド移動する。そして、揺動スクロール53の渦巻歯53cの側面が固定スクロール51の渦巻歯51cの側面に当接し、第1スライド面81aのスライド移動が停止する。この時、この周方向ガス荷重Fgθが第1スライド面81aに作用する反力Fnと渦巻歯53cの側面に作用する押し付け力Fwとの合力とつり合う。
そこで、スライダ74は第1摺動面80a上を揺動半径Rrが増大する方向へ移動して、揺動スクロール53の渦巻歯53cの側面を固定スクロール51の渦巻歯51cの側面に押し付け、渦巻歯53c,51c間の隙間がなく、漏れの少ない膨張を行うことができる。
正転時に諸処の原因により揺動スクロール53が減速して、慣性により主軸78が先行するとき、あるいは圧縮側の周方向ガス荷重が膨張側の周方向ガス荷重を上まわり逆転しようとするときは、図4の(b)に示されるようになる。つまり、第2スライド面81bと第2摺動面80bとの隙間分だけ、主軸78側の位相が進み、スライダ74と偏心軸部80との相対回転が点A,Bの2点で接触した状態で止まる。この状態から、圧縮側の周方向ガス荷重が膨張側の周方向ガス荷重を上まわる状態が継続すると、点Bを支点としてスライダ74側の位相が遅れ、第2スライド面81bが第2摺動面80bに密接して、逆転時可変半径クランク機構となる。
ここで、第2スライド面81bも揺動スクロール53からの圧縮側の周方向ガス荷重Fgθに対して揺動半径Rrが増大する方向に角度が付けられているので、このガス荷重Fgθがスライダ74に作用すると、第2スライド面81bが第2摺動面80bに接触した状態、即ち反負荷側平面接触状態で図4の(b)中下方にスライド移動する。そして、揺動スクロール53の渦巻歯53cの側面が固定スクロール51の渦巻歯51cの側面に当接し、第2スライド面81bのスライド移動が停止する。つまり、渦巻歯53c,51c間の隙間の極小化状態が維持される。
ついで、膨張側の周方向ガス荷重が圧縮側の周方向ガス荷重を上まわると、即ち駆動トルクが回復すると、図4の(b)の過渡状態に戻り、点Aを支点としてスライダ74側の移動が進み、図4の(a)の状態に戻る。
このように、負荷側平面接触状態(図4の(a)の状態)と反負荷側平面接触状態とは、図4の(b)の過渡状態を経由して入れ替わることになるが、第1および第2スライド面81a,81bが膨張側および圧縮側の周方向ガス荷重に対してそれぞれ揺動半径Rrが増大する方向に角度を付けられているので、渦巻歯53c,51c間の隙間の極小状態が維持される。従って、過渡的な荷重逆転時にも、偏心軸部80とスライダ74との間のロックが回避され、かつ渦巻歯間の隙間増大による駆動トルクの減少が起こらず、荷重逆転時からの復帰が容易となる。
なお、上記説明では、膨張機構2に着目して説明しているが、サブ圧縮機構3においても、同様に、渦巻歯53d,52c間の隙間の縮小状態も維持される。又、図4では分かりやすくするために、偏心軸部80とスライダ74とのクリアランスを拡大して示しているが、実機での偏心軸部80とスライダ74との間の相対回転は微小なものである。
つぎに、比較のために、本願の可変半径クランク機構に代えて、一般に圧縮機で用いられていた従来の可変半径クランク機構を用いた場合について説明する。図5は比較例のスクロール膨張機における揺動軸受部周りを示す横断面図であり、図5の(a)は揺動軸受部の正転時の状態を示し、図5の(b)は揺動軸受部が過渡的に逆転した状態、あるいは軸が先行しようとした状態を示している。
従来の可変半径クランク機構では、偏心軸部82は1つの円弧の端部同士を直線で接続した断面D字形状に作製されている。つまり、偏心軸部82は1つの偏心軸部円弧面82bで1つの平面状の摺動面82aの端部同士を接続する外形形状の柱状に作製されている。スライダ83には、1つの円弧の端部同士を直線で接続した断面形状の軸嵌入孔84が穿設されている。軸嵌入孔84は、1つのスライダ円弧面84bで1つの平面状のスライド面84aの端部同士を接続する内形形状の筒状に作製され、偏心軸部82が遊嵌状態に嵌め込まれる。
まず、揺動スクロール53の正転時には、図5の(a)に示されるように、スライド面84aが摺動面82aに密接している。そして、膨張側のガス荷重Fgθが揺動スクロール53を介してスライダ83に作用する。ここで、スライド面84aが揺動スクロール53からの膨張側の周方向ガス荷重Fgθに対して揺動半径Rrが増大する方向に角度が付けられているので、このガス荷重Fgθがスライダ83に作用すると、スライド面84aが摺動面82aに接触した状態で、すなわち負荷側平面接触状態で図5の(a)中下方にスライド移動する。そして、揺動スクロール53の渦巻歯53cの側面が固定スクロール51の渦巻歯51cの側面に当接し、スライド面84aのスライド移動が停止する。この時、この周方向ガス荷重Fgθがスライド面84aに作用する反力Fnと渦巻歯53cの側面に作用する押し付け力Fwとの合力とつり合う。
そこで、スライダ83は摺動面82a上を揺動半径Rrが増大する方向へ移動して、揺動スクロール53の渦巻歯53cの側面を固定スクロール51の渦巻歯51cの側面に押し付け、渦巻歯53c,51c間の隙間がなく、漏れの少ない膨張を行うことができる。
ついで、揺動スクロール53が減速して、慣性により偏心軸部82が先行するとき、あるいは圧縮側の周方向ガス荷重が膨張側の周方向ガス荷重を上まわり逆転しようとするときは、図5の(b)に示されるようになる。つまり、偏心軸部円弧面82bとスライダ円弧面84bとの隙間分だけ、偏心軸部82側の位相が進み、スライダ83と偏心軸部82との相対回転が点A,Bの2点で接触した状態で止まる。この時、点Bでは曲率半径が僅かに異なる偏心軸部円弧面82bとスライダ円弧面84bとの円筒面同士が接触している。このため、偏心軸部82が点Aを支点として点Bでスライダ83の軸嵌入孔84の内壁面を押し広げるように作用し、スライダ83の軸嵌入孔84の内壁面が弾性変形する。これにより、偏心軸部82とスライダ83とが相対運動しなくなる、いわゆるロック状態に陥りやすくなる。
この状態は、渦巻歯側面の隙間が極小状態で発生するとは限らない。そこで、過渡的な不安定な状態である渦巻歯側面の隙間がある状態、即ち揺動半径が最大より小さい状態でロックすると、渦巻歯側面の隙間からの漏れが多くなり、膨張による駆動側のガス荷重が減少する。このため、軽くロックした状態であっても、再び負荷側平面接触状態に戻す力が不足し、荷重逆転時からの復帰が困難となる。
また、ロック状態に陥らずに反負荷側平面接触状態に移行した場合でも、反負荷側にはスライド面が形成されていないので、偏心軸部円弧面82bとスライダ円弧面84bとの円筒面同士の接触点のガス荷重作用点に対する位置によって、揺動半径の増大/減少が変わり、渦巻歯側面の隙間シール機構として機能しない。このため、渦巻歯53cの渦巻歯51cへの押しつけが崩れた状態に一度陥ると、やはり負荷側平面接触状態への復帰が困難となる。
このように、動力源により軸側から駆動され、負荷側のガス荷重に対して、常にそれを上回る駆動力が供給されることが前提となっている圧縮機の場合と異なり、渦巻歯による膨張動力を回収して圧縮動力として利用する駆動形態をとり、逆転やそれに伴う過渡状態が常に想定され、渦巻歯側面の隙間が拡大すると駆動力を失う膨張機構とサブ圧縮機構とが一体に構成された膨張機においては、可変半径クランク機構を構成するスライダ形状は軸先行/逆転時の挙動も考慮したものとしておく必要がある。
つぎに、楔形状のスライダの形状パラメータについて検討する。図6は一般的な楔形状のスライダの形状パラメータを示す図であり、図6の(a)は正転側スライド面接触状態を示し、図6の(b)は逆転側スライド面接触状態を示している。
図6において、偏心軸部85は2つの偏心軸部円弧面で2つの平面状の第1および第2摺動面85a,85bの端部同士を接続する外形形状の柱状に作製されている。また、スライダ86に穿設された軸嵌入孔87は、2つのスライダ円弧面で2つの平面状の第1および第2スライド面87a,87bの端部同士を接続する内形形状の筒状に作製され、偏心軸部85が遊嵌状態に嵌め込まれる。ここで、正転側スライド面が第1スライド面87aに相当し、逆転側スライド面が第2スライド面87bに相当し、正転側摺動面が第1摺動面85aに相当し、逆転側摺動面が第2摺動面85bに相当する。
スライダの形状パラメータは下記の通りである。
:主軸中心
:スライダ中心
Rr:渦巻で定まる揺動半径
θ:正転時の正転側スライド面角度
:主軸中心と正転側摺動面との間の距離
:スライダ中心と正転側スライド面との間の距離
θ:正転時の逆転側スライド面角度
:主軸中心と逆転側摺動面との間の距離
:スライダ中心と逆転側スライド面との間の距離
δ:正転時の逆転側スライド面と逆転側摺動面との間の距離
θ’:逆転時の正転側スライド面角度
θ’:逆転時の逆転側スライド面角度
δ’:逆転時の正転側スライド面と正転側摺動面との間の距離
これらのパラメータについては、図6の(a)に示される正転側スライド面接触状態から、下記の式(1),(2)が成り立つ。
+Rr・sinθ=h ・・・(1)
+δ+Rr・sinθ=H ・・・(2)
同様に、図6の(b)に示される逆転側スライド面接触状態から、下記の式(3),(4)が成り立つ。
−Rr・sinθ’=h ・・・(3)
+Rr・sinθ’−h =δ’・・・(4)
式(1)は、渦巻から決まる揺動半径Rrに対して所定のスライダ角θで作動するようなスライダ機構のスライド面の位置を、h、Hで与えるもので、圧縮機(軸駆動)/膨張機(渦巻駆動)に拘わらず、通常のスライダ設計で寸法決定するときに成り立つ。
逆転時にもガス荷重によって揺動半径Rrが増大して渦巻歯側面の押し付けができるためには、θ’<0となる必要がある。式(3)から、θ’=sin−1{(H−h)/Rr}であり、この条件を満足するためには式(5)であることが必要となる。
<h ・・・(5)
また、正転時および逆転時に渦巻歯側面押し付け側として作動するスライダ角を与えるだけではなく、図6に示されるように、所定のクリアランスが非接触平面側に存在してスライド可能となる。そこで、式(2),(4)より、式(6),(7)を満たす必要がある。
δ=H−h+Rr・sinθ>0 ・・・(6)
δ’=H+Rr・sinθ’−h>0 ・・・(7)
ここで、Rr,H(又はh),θに対して、式(1)でh1(又はH)を定め、式(6)、(7)を満足するようにH,h,θ(又はδ)の組み合わせを選ぶことで、スライダ機構部分の形状を決定することができる。さらに、式(1),(4),(7)は正転側スライド面に関し、式(2),(3)および式(5),(6)は逆転側スライド面に関して記述しているので、正転時と逆転時とで部品自体の形状は同じであることから、式(8)で両者を関係づければよい。
θ’−θ’=θ−θ ・・・(8)
図7は本発明の楔形状のスライダの形状パラメータを示す図であり、図7の(a)は正転側スライド面接触状態を示し、図7の(b)は逆転側スライド面接触状態を示している。
図6の一般的な楔形状のスライダでは、式(5)を満たしていないが、図7の本願の楔形状のスライダでは、式(5)を満たしている。そこで、図6の一般的な楔形状のスライダでは、逆転時のスライダ角θ’が正(図6中反時計回りが正)となっており、渦巻歯側面が押し付けられない。一方、図7の本願の楔形状のスライダでは、逆転時のスライダ角θ’が負(図7中反時計回りが正)となっており、渦巻歯側面が押し付けられる。このように、偏心方向に対して両スライド面の間隔が狭まる所謂先細り形状をしていても、逆転時に押し付け方向に作動するとは限らないことがわかる。
以上のように、本発明によれば、台板53aの両面に膨張用の渦巻歯53cとサブ圧縮用の渦巻歯53dとを形成した揺動スクロール53の中央部に揺動軸受部53bを穿設し、スライダ74を揺動軸受部53bに嵌入し、主軸78の偏心軸部80をスライダ74に穿設された軸嵌入孔81に挿通している。そして、偏心軸部80および軸嵌入孔81には、それぞれ第1および第2摺動面80a,80b、および第1および第2スライド面81a,81bを形成し、揺動スクロール53の正転時および逆転時に、第1および第2スライド面81a,81bが第1および第2摺動面80a,80b上を揺動半径が増大する方向に摺動移動するようにスライド面角度を設定している。そこで、主軸78が先行し、あるいは逆転した時に、過渡的にもスライダ74がロックしたり、渦巻歯側面の接触関係が崩れたりすることがなく、ガス漏れにより駆動トルクが減少して、正転に復帰できなくなることが防止でき、安定して運転できる信頼性の高いスクロール膨張機が得られる。
この発明の実施の形態によるスクロール膨張機の構成を示す縦断面図である。 この発明の実施の形態によるスクロール膨張機を搭載した冷凍サイクルの回路図である。 図2に示される冷凍サイクルの動作を説明するモリエル線図である。 この発明の実施の形態に係るスクロール膨張機における揺動軸受部周りを示す横断面図である。 比較例のスクロール膨張機における揺動軸受部周りを示す横断面図である。 一般的な楔形状のスライダの形状パラメータを示す図である。 この発明のスライダの形状パラメータを示す図である。
符号の説明
1 スクロール膨張機、2 膨張機構、3 サブ圧縮機構、51 固定スクロール(膨張側固定スクロール)、52 固定スクロール(圧縮側固定スクロール)、53 揺動スクロール、53b 揺動軸受部、74 スライダ、78 主軸、80 偏心軸部、80a 第1摺動面、80b 第2摺動面、81 軸嵌入孔、81a 第1スライド面、81b 第2スライド面。

Claims (2)

  1. 揺動スクロールと膨張側固定スクロールとが該揺動スクロールの一面に形成された渦巻歯と該膨張側固定スクロールに形成された渦巻歯とを咬合するように配置され、冷媒を膨張させて動力を回収する膨張機構と、
    上記揺動スクロールと圧縮側固定スクロールとが該揺動スクロールの他面に形成された渦巻歯と該圧縮側固定スクロールに形成された渦巻歯とを咬合するように配置され、上記膨張機構で回収した動力で冷媒を圧縮するサブ圧縮機構と、
    2つのスライド面の面間隔が孔中心と直交する方向に狭まる先細り形状の内形形状に形成された軸嵌入孔が形成され、上記揺動スクロールの中央に穿設された揺動軸受部に嵌入されたスライダと、
    2つの摺動面の面間隔が偏心方向に狭まる先細り形状の外形形状に形成された偏心軸部を有し、該偏心軸部を上記軸嵌入孔に嵌入して回転自在に配設された主軸と、を備え、
    上記スライダは、上記揺動スクロールの正転時に、正転側のスライド面が正転側の上記摺動面上を揺動半径が増大する方向に摺動移動するように正転側のスライド面角度が設定され、かつ、上記揺動スクロールの逆転時に、逆転側のスライド面が逆転側の上記摺動面上を揺動半径が増大する方向に摺動移動するように逆転側のスライド面角度が設定されていることを特徴とするスクロール膨張機。
  2. 上記スライダと上記偏心軸部は、上記スライダの中心と逆転側の上記スライド面との距離をHとし、上記主軸の軸心と逆転側の上記摺動面との距離をhとしたときに、H<hを満足するように作製されていることを特徴とする請求項1記載のスクロール膨張機。
JP2007189300A 2007-07-20 2007-07-20 スクロール膨張機 Pending JP2009024621A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007189300A JP2009024621A (ja) 2007-07-20 2007-07-20 スクロール膨張機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007189300A JP2009024621A (ja) 2007-07-20 2007-07-20 スクロール膨張機

Publications (1)

Publication Number Publication Date
JP2009024621A true JP2009024621A (ja) 2009-02-05

Family

ID=40396643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007189300A Pending JP2009024621A (ja) 2007-07-20 2007-07-20 スクロール膨張機

Country Status (1)

Country Link
JP (1) JP2009024621A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014092065A1 (ja) * 2012-12-14 2014-06-19 サンデン株式会社 スクロール型流体機械
CN104047856A (zh) * 2013-03-14 2014-09-17 珠海格力节能环保制冷技术研究中心有限公司 双转子两级增焓压缩机及具有其的空调器、热泵热水器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014092065A1 (ja) * 2012-12-14 2014-06-19 サンデン株式会社 スクロール型流体機械
JP2014118865A (ja) * 2012-12-14 2014-06-30 Sanden Corp スクロール型流体機械
CN104854308A (zh) * 2012-12-14 2015-08-19 三电控股株式会社 涡旋型流体设备
CN104047856A (zh) * 2013-03-14 2014-09-17 珠海格力节能环保制冷技术研究中心有限公司 双转子两级增焓压缩机及具有其的空调器、热泵热水器

Similar Documents

Publication Publication Date Title
JP4516127B2 (ja) 冷凍空調装置
JP4584306B2 (ja) スクロール膨張機
JP2008101559A (ja) スクロール圧縮機およびそれを用いた冷凍サイクル
JP6689300B2 (ja) スクロール圧縮機
JP2011027076A (ja) スクロール圧縮機
JP2007332819A (ja) 容積形流体機械
US8690555B2 (en) Two-stage rotary expander, expander-compressor unit, and refrigeration cycle apparatus
JP4519489B2 (ja) スクロール圧縮機
JP4607221B2 (ja) スクロール膨張機
JP5138032B2 (ja) スクロール流体機械
JP4555231B2 (ja) スクロール膨張機
JP2009024621A (ja) スクロール膨張機
JP2006336597A (ja) 膨張機
JP2006152930A (ja) スクロール圧縮機
JP5786130B2 (ja) スクロール圧縮機
JP2009270529A (ja) 容積形流体機械
JP4940630B2 (ja) スクロール膨張機
JP2009299653A (ja) スクロール膨張機
JP4726914B2 (ja) スクロール流体機械
JP6071681B2 (ja) スクロール圧縮機
JP2008121445A (ja) スクロール圧縮機
JP5999971B2 (ja) スクロール圧縮機
KR0173575B1 (ko) 코로테이팅 스크롤형 유체기계
JP2003042087A (ja) スクロール圧縮機
JP2010116828A (ja) スクロール圧縮機および冷凍空調機