JP2009023870A - Method for manufacturing single crystal - Google Patents

Method for manufacturing single crystal Download PDF

Info

Publication number
JP2009023870A
JP2009023870A JP2007188191A JP2007188191A JP2009023870A JP 2009023870 A JP2009023870 A JP 2009023870A JP 2007188191 A JP2007188191 A JP 2007188191A JP 2007188191 A JP2007188191 A JP 2007188191A JP 2009023870 A JP2009023870 A JP 2009023870A
Authority
JP
Japan
Prior art keywords
crucible
single crystal
crystal
melt
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007188191A
Other languages
Japanese (ja)
Inventor
Shinji Yabuki
伸司 矢吹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2007188191A priority Critical patent/JP2009023870A/en
Publication of JP2009023870A publication Critical patent/JP2009023870A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a single crystal deciding the optimum number of rotations of a crucible suitable for the diameter of the crucible. <P>SOLUTION: When a crucible 4 containing a raw material is rotated and heated from the outer periphery of the crucible 4 to melt the raw material and a single crystal 10 is grown at the lower part of a seed crystal 9 by bringing the seed crystal 9 into contact with the liquid surface of the raw material melt 3 at the center of the crucible 4 and then removing the seed crystal 9 away from the liquid surface, the number of rotations n (rpm) of the crucible 4 is controlled with respect to the radius r (m) of the crucible 4 to be n≥4.3e<SP>8.0r</SP>(wherein e is the base of natural logarithm). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ルツボの径に合った最適なルツボの回転数が決定できる単結晶製造方法に関する。   The present invention relates to a method for producing a single crystal capable of determining an optimum number of crucible rotations suitable for the diameter of a crucible.

LEC法によるGaAs単結晶製造等の単結晶製造方法は、原料を入れたルツボを回転させつつ該ルツボを外周側から加熱して上記原料を融液化させ、上記ルツボの中央部で原料融液の液面に種結晶を接触させた後、該種結晶を液面から離していくことにより、該種結晶の下部に単結晶を成長させるものである。   In the single crystal manufacturing method such as GaAs single crystal manufacturing by the LEC method, while rotating the crucible containing the raw material, the crucible is heated from the outer peripheral side to melt the raw material, and the raw material melt is melted at the center of the crucible. After bringing the seed crystal into contact with the liquid surface, the seed crystal is separated from the liquid surface, whereby a single crystal is grown under the seed crystal.

特開平6−56582号公報JP-A-6-56582 特開2004−10467号公報JP 2004-10467 A 特開2004−10469号公報JP 2004-10469 A 特開平9−77590号公報JP-A-9-77590 特開2002−20193号公報JP 2002-20193 A 特開平9−142997号公報JP-A-9-142997

従来技術には、成長によって得られる結晶の外径が不安定であるという問題がある。結晶外径が所定値から大幅に外れると、その結晶から所定サイズのウェハが取得できない。また、結晶成長時に、結晶外径の不安定が原因で多結晶化が発生する。   The prior art has a problem that the outer diameter of the crystal obtained by growth is unstable. If the crystal outer diameter deviates significantly from the predetermined value, a wafer of a predetermined size cannot be obtained from the crystal. In addition, polycrystallization occurs due to instability of the crystal outer diameter during crystal growth.

結晶外径が不安定であるため、従来技術では結晶からのウェハ取得歩留まりは75%程度に留まっている。   Since the outer diameter of the crystal is unstable, the yield of obtaining a wafer from the crystal is about 75% in the prior art.

結晶外径が不安定な原因として、外径制御の精度不足もあるが、それ以上に、ルツボ内の融液の径方向の温度勾配がある。ルツボを回転させているため、融液の径方向の温度分布は、ルツボの中央部から外周部にかけて上昇する温度分布となる。この温度上昇は径方向に一様でなく、中央部付近は温度勾配が小さく、外周部に向かうほど温度勾配が大きい。   The cause of the unstable crystal outer diameter is insufficient accuracy of outer diameter control, but there is a temperature gradient in the radial direction of the melt in the crucible. Since the crucible is rotated, the temperature distribution in the radial direction of the melt is a temperature distribution that rises from the center to the outer periphery of the crucible. This temperature rise is not uniform in the radial direction, the temperature gradient near the center is small, and the temperature gradient increases toward the outer periphery.

外径制御を行うに当たっては、外周部付近での融液の径方向の温度勾配を管理することが重要である。外周部付近で温度勾配が小さいと、外乱要因の影響を受けやすく、結晶外径が不安定になる。   When performing outer diameter control, it is important to manage the temperature gradient in the radial direction of the melt near the outer periphery. If the temperature gradient is small in the vicinity of the outer periphery, it is easily affected by disturbance factors, and the crystal outer diameter becomes unstable.

ところで、ルツボ内の融液の径方向の温度勾配は、ルツボの径に依存する傾向がある。仮に、ルツボの回転数を一定とした場合、ルツボの径が大きいほど融液の径方向の温度勾配が小さいという知見は得られている。一方、ルツボの回転数を大きくすると、融液の径方向の温度勾配を大きくできるという知見が得られている。   By the way, the temperature gradient in the radial direction of the melt in the crucible tends to depend on the diameter of the crucible. Assuming that the number of revolutions of the crucible is constant, the knowledge that the temperature gradient in the radial direction of the melt is smaller as the diameter of the crucible is larger is obtained. On the other hand, it has been found that increasing the number of revolutions of the crucible can increase the temperature gradient in the radial direction of the melt.

しかしながら、ルツボの径に合った最適なルツボの回転数については、不明な点が多く、最適な回転数を決定する技術は確立されていない。   However, there are many unclear points about the optimum rotational speed of the crucible that matches the diameter of the crucible, and a technique for determining the optimal rotational speed has not been established.

そこで、本発明の目的は、上記課題を解決し、ルツボの径に合った最適なルツボの回転数が決定できる単結晶製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a method for producing a single crystal that solves the above-described problems and can determine the optimum number of rotations of the crucible in accordance with the diameter of the crucible.

上記目的を達成するために本発明は、原料を入れたルツボを回転させつつ該ルツボを外周側から加熱して上記原料を融液化させ、上記ルツボの中央部で原料融液の液面に種結晶を接触させた後、該種結晶を液面から離していくことにより、該種結晶の下部に単結晶を成長させる際に、上記ルツボの回転数n(rpm)を上記ルツボの半径r(m)に対して n≧4.3e8.0r(eは自然対数の底)
とするものである。
In order to achieve the above object, the present invention is to heat the crucible from the outer peripheral side while rotating the crucible containing the raw material, to melt the raw material, and to seed the liquid surface of the raw material melt at the center of the crucible. After contacting the crystal, when the single crystal is grown under the seed crystal by separating the seed crystal from the liquid surface, the crucible rotation speed n (rpm) is set to the radius r ( m) for n ≧ 4.3e 8.0r (e is the base of natural logarithm)
It is what.

上記原料としてガリウムと砒素を用い、ガリウム砒素単結晶を成長させてもよい。   Gallium arsenide single crystal may be grown using gallium and arsenic as the raw material.

本発明は次の如き優れた効果を発揮する。   The present invention exhibits the following excellent effects.

(1)ルツボの径に合った最適なルツボの回転数が決定できる。   (1) The optimum number of crucible rotations suitable for the diameter of the crucible can be determined.

以下、本発明の一実施形態を添付図面に基づいて詳述する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1に、本発明の単結晶製造方法の一実施形態として、LEC法GaAs単結晶製造装置を示す。図示のように、LEC法GaAs単結晶製造装置1は、炉体であるチャンバ2と、原料であるGa、As及びその融液であるGaAs融液3を入れる容器であるPBNルツボ(以下、単にルツボ)4と、そのルツボ4を支持し回転させるルツボ軸5と、ルツボ4を外周側及び底側から加熱するために、ルツボ4の周囲に配置された側方カーボンヒータ6及び下方カーボンヒータ7と、原料と共にルツボ4に投入され、Asの揮発防止剤である三酸化硼素8と、ルツボ4の中央部に上方から臨み、結晶の元となる種結晶9を保持すると共に、ルツボ4と反対方向に回転しつつ上昇することにより、種結晶9から成長される結晶であるGaAs単結晶10を引き上げる引上軸11と、その引上軸11に取り付けられ、GaAs単結晶10の重量を測定するロードセル12とを備える。   FIG. 1 shows an LEC GaAs single crystal manufacturing apparatus as an embodiment of the single crystal manufacturing method of the present invention. As shown in the figure, an LEC GaAs single crystal manufacturing apparatus 1 includes a chamber 2 as a furnace body, a PBN crucible (hereinafter simply referred to as a container for containing Ga and As as raw materials, and a GaAs melt 3 as a melt thereof. 4), a crucible shaft 5 that supports and rotates the crucible 4, and a side carbon heater 6 and a lower carbon heater 7 disposed around the crucible 4 in order to heat the crucible 4 from the outer peripheral side and the bottom side. In addition to the raw material, it is put into the crucible 4, boron trioxide 8 which is an As volatilization preventive agent, and the central part of the crucible 4 from above, while holding the seed crystal 9 which is the base of the crystal, and opposite to the crucible 4 The pulling shaft 11 that pulls up the GaAs single crystal 10 that is a crystal grown from the seed crystal 9, and the weight of the GaAs single crystal 10 is attached to the pulling shaft 11. And a load cell 12 to a constant.

図1のLEC法GaAs単結晶製造装置1によるGaAs単結晶10の製造方法を説明する。まず、ルツボ4にGa、As及び三酸化硼素8を投入し、そのルツボ4をチャンバ2内のルツボ軸5に支持させる。引上軸11の下端に種結晶9を保持させる。種結晶9は、GaAs融液3に接する面を(100)面とするのが一般的である。   A method of manufacturing the GaAs single crystal 10 using the LEC GaAs single crystal manufacturing apparatus 1 shown in FIG. 1 will be described. First, Ga, As, and boron trioxide 8 are charged into the crucible 4, and the crucible 4 is supported by the crucible shaft 5 in the chamber 2. The seed crystal 9 is held at the lower end of the pulling shaft 11. The seed crystal 9 generally has a (100) plane that is in contact with the GaAs melt 3.

この後、チャンバ2内を真空にしてから、不活性ガスを充填する。側方カーボンヒータ6及び下方カーボンヒータ7に通電することにより、チャンバ2内の温度を昇温させることにより、GaとAsを合成し、GaAsを作製する。その後、さらに昇温させることにより、GaAsを融液化させる。   Thereafter, the chamber 2 is evacuated and then filled with an inert gas. By energizing the side carbon heater 6 and the lower carbon heater 7 to raise the temperature in the chamber 2, Ga and As are synthesized to produce GaAs. Thereafter, GaAs is melted by further raising the temperature.

次いで、引上軸11とルツボ軸5を互いの回転方向が逆になるよう回転させる。ここで、ルツボ軸5によりルツボ4を回転させることで、ルツボ4内のGaAs融液3の径方向の温度分布がルツボ4の中央部から外周部に向かって徐々に高温となる温度分布となる。   Next, the pull-up shaft 11 and the crucible shaft 5 are rotated so that the rotation directions of the pull-up shaft 11 and the crucible shaft 5 are reversed. Here, when the crucible 4 is rotated by the crucible shaft 5, the temperature distribution in the radial direction of the GaAs melt 3 in the crucible 4 becomes a temperature distribution in which the temperature gradually increases from the center to the outer periphery of the crucible 4. .

この状態で、引上軸11を下降させて種結晶9をGaAs融液3に接触させる。次いで、側方カーボンヒータ6及び下方カーボンヒータ7の設定温度を徐々に下げつつ、引上軸11を一定の速度で上昇させ、種結晶9を液面から離していくことで、種結晶9から徐々に結晶径を太らせながら結晶肩部を形成する。目標とする結晶外径となったら、外径を一定に保つため、外径を制御しつつ引上軸11の上昇を続けてGaAs単結晶10を成長させる。   In this state, the pulling shaft 11 is lowered to bring the seed crystal 9 into contact with the GaAs melt 3. Next, while gradually lowering the set temperature of the side carbon heater 6 and the lower carbon heater 7, the pulling shaft 11 is raised at a constant speed, and the seed crystal 9 is separated from the liquid surface. A crystal shoulder is formed while gradually increasing the crystal diameter. When the target crystal outer diameter is reached, the GaAs single crystal 10 is grown by continuing to raise the pull-up shaft 11 while controlling the outer diameter in order to keep the outer diameter constant.

従来から行われている外径制御では、ロードセル12で測定したGaAs単結晶10の重量の単位時間当たりの増加量と引上軸11の単位時間当たりの上昇距離とからGaAs単結晶10の外径を算出する。この算出した外径と目標とする外径との差分を側方カーボンヒータ6及び下方カーボンヒータ7の設定温度にフィードバックさせることで外径制御を行う。   In the conventional outer diameter control, the outer diameter of the GaAs single crystal 10 is calculated from the increase per unit time of the weight of the GaAs single crystal 10 measured by the load cell 12 and the rising distance per unit time of the pulling shaft 11. Is calculated. The outer diameter control is performed by feeding back the difference between the calculated outer diameter and the target outer diameter to the set temperature of the side carbon heater 6 and the lower carbon heater 7.

このとき、結晶外径の安定化を図るためには、融液の径方向の温度勾配を最適化させることが重要である。その温度勾配にはルツボの径とルツボの回転数が関係していることは知見が得られていたが、既に述べたように、ルツボの径に合った最適なルツボの回転数については、不明な点が多く、最適な回転数を決定する技術は確立されていなかった。   At this time, in order to stabilize the crystal outer diameter, it is important to optimize the temperature gradient in the radial direction of the melt. Although it has been known that the temperature gradient is related to the crucible diameter and the crucible rotation speed, as described above, the optimum crucible rotation speed suitable for the crucible diameter is unknown. However, a technique for determining the optimum rotational speed has not been established.

そこで、本発明者は、これを解明するべく、さまざまな径のルツボを用いて、結晶外径が安定化するルツボの回転数を調べる実験を実施した。その結果、ルツボの回転数n(rpm)とルツボの半径r(m)との関係が
n≧4.3e8.0r(eは自然対数の底)
を満たすときに結晶外径が安定することを発見した。
Therefore, the present inventor conducted an experiment to investigate the number of rotations of the crucible where the outer diameter of the crystal is stabilized, using crucibles of various diameters in order to clarify this. As a result, the relationship between the crucible rotation speed n (rpm) and the crucible radius r (m) is
n ≧ 4.3e 8.0r (e is the base of natural logarithm)
It was found that the outer diameter of the crystal is stable when satisfying

以下、本発明の実施例を兼ねて、上記実験の経過、結果を説明する。   Hereinafter, the progress and results of the above-described experiment will be described using the example of the present invention.

図1のLEC法GaAs単結晶製造装置1を用い、φ0.15mサイズのGaAs単結晶10をさまざまの条件にて試作した。   Using the LEC method GaAs single crystal manufacturing apparatus 1 shown in FIG. 1, a GaAs single crystal 10 having a size of φ0.15 m was manufactured under various conditions.

試作の手順は、どの条件でも同じであり、まず、ルツボ4にGa、As及び三酸化硼素8を投入し、このルツボ4をチャンバ2内にセットする。引上軸11の下端に種結晶9を取り付け、GaAs融液3に接する種結晶9面を(100)面とする。その後、チャンバ2内を真空にし、不活性ガスを充填し、側方カーボンヒータ6及び下方カーボンヒータ7に通電してチャンバ2内の温度を昇温させ、GaとAsを合成してGaAsを作製し、さらに昇温してGaAsを融液化させる。   The procedure of the trial production is the same under all conditions. First, Ga, As, and boron trioxide 8 are introduced into the crucible 4 and the crucible 4 is set in the chamber 2. A seed crystal 9 is attached to the lower end of the pull-up shaft 11, and the surface of the seed crystal 9 in contact with the GaAs melt 3 is defined as a (100) plane. Thereafter, the inside of the chamber 2 is evacuated, filled with an inert gas, the side carbon heater 6 and the lower carbon heater 7 are energized to raise the temperature in the chamber 2, and GaAs is produced by synthesizing Ga and As. Then, the temperature is further raised to melt GaAs.

次いで、引上軸11とルツボ軸5を互いに逆方向に回転させる。この状態で、引上軸11を下降させて種結晶9をGaAs融液3に接触させ、次いで、側方カーボンヒータ6及び下方カーボンヒータ7の設定温度を徐々に下げつつ、引上軸11を10mm/hの速度で上昇させ、GaAs単結晶10を成長させる。   Next, the pull-up shaft 11 and the crucible shaft 5 are rotated in opposite directions. In this state, the pull-up shaft 11 is lowered to bring the seed crystal 9 into contact with the GaAs melt 3, and then the pull-up shaft 11 is moved while gradually lowering the set temperatures of the side carbon heater 6 and the lower carbon heater 7. The GaAs single crystal 10 is grown at a rate of 10 mm / h.

ルツボ4の半径の条件は、4,7,9(×2.54×10−2)mの3種類とする。その際のGa、As及び三酸化硼素8のセット重量は、GaとAsの合成後のGaAs融液3の厚み(液面から底まで)が100mmとなり、三酸化硼素8の厚みが15mmとなるように調整する。 There are three types of conditions for the radius of the crucible 4: 4, 7, 9 (× 2.54 × 10 −2 ) m. The set weight of Ga, As, and boron trioxide 8 at that time is such that the thickness (from the liquid surface to the bottom) of the GaAs melt 3 after the synthesis of Ga and As is 100 mm, and the thickness of boron trioxide 8 is 15 mm. Adjust as follows.

この3種類のルツボ4に対してルツボ4の回転数の条件として、回転数を0rpmから1rpmずつ上げては試作を繰り返すこととした。   With respect to the three types of crucibles 4, as a condition for the rotational speed of the crucible 4, the trial production was repeated by increasing the rotational speed from 0 rpm by 1 rpm.

上記のようにして各条件下で試作されたGaAs単結晶10について、ウェハ取得枚数を調査し、歩留まりを求めた。その結果を図2に示す。図示のように、3種類の全てのルツボ4において、ルツボ4の回転数を高くするとウェハ取得歩留まりが向上することが分かった。さらに、各種類のルツボ4について、ある一定の回転数を超えると、ウェハ取得歩留まりが約85%で安定することが分かった。   For the GaAs single crystal 10 prototyped under each condition as described above, the number of wafers acquired was investigated and the yield was determined. The result is shown in FIG. As shown in the figure, it was found that, in all three types of crucibles 4, increasing the number of rotations of the crucible 4 improves the wafer acquisition yield. Furthermore, for each type of crucible 4, it was found that the wafer acquisition yield was stabilized at about 85% when a certain number of rotations was exceeded.

この結果を受けて、半径が4〜9(×2.54×10−2)mの間でさらに数種類のルツボ4を製作し、上記同様の試作を行い、ウェハ取得歩留まりが約85%を超えた時点でのルツボ4の回転数を調査した。その結果を図3に示す。図示のように、ウェハ取得歩留まりが約85%を超えた時点でのルツボ4の回転数は、ルツボ4の径と関係する。 In response to this result, several types of crucibles 4 with a radius of 4 to 9 (× 2.54 × 10 −2 ) m were manufactured, and the same trial production was performed. The wafer acquisition yield exceeded about 85%. The number of rotations of the crucible 4 at that time was investigated. The result is shown in FIG. As shown in the figure, the number of rotations of the crucible 4 when the wafer acquisition yield exceeds about 85% is related to the diameter of the crucible 4.

図3のデータから近似曲線を算出したところ、
n=4.3e8.0r
となった。このことから、
n≧4.3e8.0r
の関係が満たされるときに、安定した歩留まりでウェハ取得が可能であると結論できる。この要因は、上記関係が満たされた条件で結晶を成長させると、結晶外径が安定化することによると思われる。
When the approximate curve was calculated from the data of FIG.
n = 4.3e 8.0r
It became. From this,
n ≧ 4.3e 8.0r
When the above relationship is satisfied, it can be concluded that wafer acquisition is possible with a stable yield. This factor seems to be due to the stabilization of the crystal outer diameter when the crystal is grown under the condition where the above relationship is satisfied.

上記実施形態では、LEC法GaAs単結晶製造を行ったが、他の原料を用いたLEC法単結晶製造やCZ法についても本発明は適用可能である。   In the above embodiment, the LEC GaAs single crystal is manufactured. However, the present invention can also be applied to the LEC single crystal manufacturing using other raw materials and the CZ method.

本発明は、結晶外径の安定化によるウェハ取得歩留まりの向上により、採算性の向上が図れる。   The present invention can improve profitability by improving the wafer acquisition yield by stabilizing the crystal outer diameter.

本発明の一実施形態を示すLEC法GaAs単結晶製造装置の構成図である。It is a block diagram of the LEC method GaAs single-crystal manufacturing apparatus which shows one Embodiment of this invention. ルツボ径をパラメータとするルツボ回転数対ウェハ取得歩留まり特性グラフである。It is a crucible rotation speed vs. wafer acquisition yield characteristic graph using a crucible diameter as a parameter. ルツボ径に対しウェハ取得歩留まりが約85%以上となるルツボ回転数を表したグラフである。It is a graph showing the crucible rotation speed at which the wafer acquisition yield is about 85% or more with respect to the crucible diameter.

符号の説明Explanation of symbols

1 LEC法GaAs単結晶製造装置
2 チャンバ
3 GaAs融液
4 ルツボ
5 ルツボ軸
6 側方カーボンヒータ
7 下方カーボンヒータ
8 三酸化硼素
9 種結晶
10 GaAs単結晶
11 引上軸
12 ロードセル
DESCRIPTION OF SYMBOLS 1 LEC method GaAs single crystal manufacturing apparatus 2 Chamber 3 GaAs melt 4 Crucible 5 Crucible shaft 6 Side carbon heater 7 Lower carbon heater 8 Boron trioxide 9 Seed crystal 10 GaAs single crystal 11 Pull up shaft 12 Load cell

Claims (2)

原料を入れたルツボを回転させつつ該ルツボを外周側から加熱して上記原料を融液化させ、上記ルツボの中央部で原料融液の液面に種結晶を接触させた後、該種結晶を液面から離していくことにより、該種結晶の下部に単結晶を成長させる際に、上記ルツボの回転数n(rpm)を上記ルツボの半径r(m)に対して
n≧4.3e8.0r(eは自然対数の底)
とすることを特徴とする単結晶製造方法。
While rotating the crucible containing the raw material, the crucible is heated from the outer peripheral side to melt the raw material, and the seed crystal is brought into contact with the liquid surface of the raw material melt at the center of the crucible. When the single crystal is grown under the seed crystal by being separated from the liquid surface, the crucible rotation speed n (rpm) is set to the crucible radius r (m).
n ≧ 4.3e 8.0r (e is the base of natural logarithm)
A method for producing a single crystal, comprising:
上記原料としてガリウムと砒素を用い、ガリウム砒素単結晶を成長させることを特徴とする請求項1記載の単結晶製造方法。   2. The method for producing a single crystal according to claim 1, wherein gallium and arsenic are used as the raw material to grow a gallium arsenide single crystal.
JP2007188191A 2007-07-19 2007-07-19 Method for manufacturing single crystal Pending JP2009023870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007188191A JP2009023870A (en) 2007-07-19 2007-07-19 Method for manufacturing single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007188191A JP2009023870A (en) 2007-07-19 2007-07-19 Method for manufacturing single crystal

Publications (1)

Publication Number Publication Date
JP2009023870A true JP2009023870A (en) 2009-02-05

Family

ID=40396033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007188191A Pending JP2009023870A (en) 2007-07-19 2007-07-19 Method for manufacturing single crystal

Country Status (1)

Country Link
JP (1) JP2009023870A (en)

Similar Documents

Publication Publication Date Title
JP2005350347A (en) Method and apparatus for growing silicon crystal by controlling melt-solid interface shape as function of axial length
JP5240191B2 (en) Silicon single crystal pulling device
JP6579046B2 (en) Method for producing silicon single crystal
JP6631460B2 (en) Method for producing silicon single crystal and silicon single crystal
JP5169814B2 (en) Method for growing silicon single crystal and silicon single crystal grown by the method
JP2010024120A (en) Silicon single crystal and its growing method
JP2015205793A (en) Method for drawing up single crystal
KR101862157B1 (en) Method and apparatus for manufacturing silicon monocrystalline ingot
TWI635199B (en) Manufacturing method of single crystal silicon
JP2020114802A (en) Method for manufacturing silicon single crystal
JP2009292662A (en) Method for forming shoulder in growing silicon single crystal
JP4899608B2 (en) Semiconductor single crystal manufacturing apparatus and manufacturing method
CN114616361B (en) Method for producing silicon single crystal
JP2019094251A (en) Method for manufacturing single crystal
JP2007284324A (en) Manufacturing device and manufacturing method for semiconductor single crystal
JP2009023870A (en) Method for manufacturing single crystal
JP2018002490A (en) Production method of silicon single crystal
JP5145176B2 (en) Silicon single crystal pulling apparatus and silicon single crystal pulling method
JP2009292702A (en) Method for growing silicon single crystal
JP2005145724A (en) Method for manufacturing silicon single crystal and silicon single crystal
JP4341379B2 (en) Single crystal manufacturing method
JP5053426B2 (en) Silicon single crystal manufacturing method
KR20100071507A (en) Apparatus, method of manufacturing silicon single crystal and method of controlling oxygen density of silicon single crystal
JP6488975B2 (en) Pulling method of silicon single crystal
JP2018043904A (en) Method for manufacturing silicon single crystal