JP2009023043A - Fine shape cutting device and fine shape cutting method - Google Patents

Fine shape cutting device and fine shape cutting method Download PDF

Info

Publication number
JP2009023043A
JP2009023043A JP2007188024A JP2007188024A JP2009023043A JP 2009023043 A JP2009023043 A JP 2009023043A JP 2007188024 A JP2007188024 A JP 2007188024A JP 2007188024 A JP2007188024 A JP 2007188024A JP 2009023043 A JP2009023043 A JP 2009023043A
Authority
JP
Japan
Prior art keywords
axis
cutting
cutting tool
workpiece
driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007188024A
Other languages
Japanese (ja)
Other versions
JP5100230B2 (en
Inventor
Seiji Kimura
誠司 木村
Sumihisa Kondo
純久 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2007188024A priority Critical patent/JP5100230B2/en
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to KR1020080069899A priority patent/KR101011092B1/en
Priority to US12/175,948 priority patent/US8579563B2/en
Priority to TW97127342A priority patent/TWI355313B/en
Priority to CN200810137771XA priority patent/CN101347846B/en
Publication of JP2009023043A publication Critical patent/JP2009023043A/en
Priority to KR1020100058316A priority patent/KR101012964B1/en
Application granted granted Critical
Publication of JP5100230B2 publication Critical patent/JP5100230B2/en
Priority to US14/047,922 priority patent/US9126347B2/en
Priority to US14/728,665 priority patent/US9687991B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fine shape cutting device and method for performing work for a highly accurate fine shape on the surface of a workpiece. <P>SOLUTION: The fine shape cutting work device comprises: a NC device 21 for outputting a timer count starting command in starting a driving program for controlling the drive of X or Y moving mechanisms 12, 11; an arrival time computing means 22 for computing an arrival time T1 until a cutting tool arrives at a working starting position after the timer count starting command is outputted, in accordance with relative moving speed information for the moving mechanisms and working starting position information for a workpiece W; an elapsed time determining means 23 for determining that an elapsed time T2 after the timer count starting command is outputted corresponds to the arrival time T1 and for outputting a trigger signal when it corresponds thereto; and a reciprocating stage driving means 24 for driving a reciprocating stage so that the cutting tool is moved forward and backward with a predetermined infeed amount, after receiving the trigger signal. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、切削工具を用いて、被加工物の表面に微細な凹凸を加工する微細形状切削加工装置および微細形状切削加工方法に関する。   The present invention relates to a fine shape cutting apparatus and a fine shape cutting method for machining fine irregularities on the surface of a workpiece using a cutting tool.

切削工具を用いて、被加工物の表面に微細な凹凸を加工する装置や方法として、特許文献1に開示された「微細表面形状切削加工装置および微細切削加工方法」が知られている。
これは、被加工物を搭載し、往復運動をする第1のスライド機構と、この第1のスライド機構の運動方向と直角方向に間欠位置決め運動をする第2のスライド機構と、これら第1および第2のスライド機構の運動軸とそれぞれ直角な方向に切削工具の切込み量を高速かつ微細に制御する工具切込み機構と、第1のスライド機構の運動に従ってパルス信号を発生する位置検出器とを備えて構成されている。
As a device or method for processing fine irregularities on the surface of a workpiece using a cutting tool, “a fine surface shape cutting device and a fine cutting method” disclosed in Patent Document 1 is known.
This includes a first slide mechanism that carries a workpiece and reciprocates, a second slide mechanism that intermittently moves in a direction perpendicular to the direction of movement of the first slide mechanism, A tool cutting mechanism for controlling the cutting depth of the cutting tool at high speed and finely in directions perpendicular to the movement axis of the second slide mechanism, and a position detector for generating a pulse signal according to the movement of the first slide mechanism. Configured.

被加工物の表面に微細表面形状を加工するには、第1のスライド機構の正方向の運動時に、位置検出器から発生するパルス信号に同期して工具切込み機構により切削工具の切込み量を高速に変化させ、第1のスライド機構の逆方向の運動時には、切削工具を被加工物から退避させ、かつ、第1のスライド機構が一往復する毎に第2のスライド機構を一定量送る。これによって、被加工物の表面に微細表面形状を加工することができる。   In order to machine a fine surface shape on the surface of the workpiece, the cutting depth of the cutting tool is increased by the tool cutting mechanism in synchronization with the pulse signal generated from the position detector during the forward movement of the first slide mechanism. When the first slide mechanism moves in the reverse direction, the cutting tool is retracted from the workpiece and the second slide mechanism is fed by a certain amount each time the first slide mechanism reciprocates once. Thereby, a fine surface shape can be processed on the surface of the workpiece.

特開2006−123085号公報JP 2006-123085 A

上述した特許文献1に開示された加工装置や加工方法では、第1のスライド機構の正方向の運動時に、第1のスライド機構の位置情報を位置検出器で検出し、この位置検出器からのパルス信号をカウントし、カウント値が予め設定した値に一致したか否かを判定し、両者が一致したときにトリガー信号を出力し、このトリガー信号で工具切込み機構により切削工具の切込み量を高速に変化させている。そのため、位置検出器からのパルス信号をカウントし、設定値と一致するか否かを判定する処理が必要になるため、切削工具が進退するタイミングに遅れが生じやすく、被加工物の表面に高精度な微細表面形状を加工できない場合が考えられる。   In the processing apparatus and the processing method disclosed in Patent Document 1 described above, the position information of the first slide mechanism is detected by the position detector during the forward movement of the first slide mechanism, Counts the pulse signal, determines whether or not the count value matches the preset value, outputs a trigger signal when both match, and uses this trigger signal to increase the cutting depth of the cutting tool by the tool cutting mechanism To change. For this reason, it is necessary to count the pulse signal from the position detector and determine whether or not it matches the set value. A case where an accurate fine surface shape cannot be processed is considered.

とくに、シートに複数のマイクロレンズを転写成形するために用いられるマイクロレンズ転写成形用ロールや転写成形金型を加工する場合、加工されるマイクロレンズ成形部は、外径が概ね10〜300μm程のほぼ円形状、深さが0.6〜50μmの凹レンズあるいは凸レンズなどの微小単位レンズであるため、切削工具が進退するタイミングにばらつきが発生すると、被加工物の表面に高精度な微細表面形状を加工できない。   In particular, when processing a microlens transfer molding roll or transfer mold used to transfer and mold a plurality of microlenses on a sheet, the processed microlens molding portion has an outer diameter of about 10 to 300 μm. Since it is a minute unit lens such as a concave lens or a convex lens having a substantially circular shape and a depth of 0.6 to 50 μm, when the cutting tool moves back and forth, a highly accurate fine surface shape is formed on the surface of the workpiece. It cannot be processed.

本発明の目的は、このような課題を解消し、被加工物の表面に高精度な微細形状を加工することができる微細形状切削加工装置および微細形状切削加工方法を提供することにある。   An object of the present invention is to provide a fine shape cutting apparatus and a fine shape cutting method capable of solving such problems and machining a highly accurate fine shape on the surface of a workpiece.

本発明の微細加工切削装置は、被加工物を載置したテーブルおよび切削工具と、前記テーブルおよび前記切削工具を互いに直交するX軸およびY軸方向へ相対移動させるX軸移動機構およびY軸移動機構と、前記切削工具を前記X軸およびY軸方向に対して直交するZ軸方向へ進退させる切込軸を有するZ軸移動機構と、前記切込軸に設けられ前記Z軸方向への前記切削工具の切込量を高速で変化させる往復動ステージとを備えた微細形状切削加工装置において、前記各移動機構の駆動を制御する駆動プログラムを記憶し、この駆動プログラムに従って前記各移動機構の駆動を制御するともに、前記駆動プログラム開始時にタイマーカウント開始指令を出力する制御手段と、前記X軸移動機構およびY軸移動機構の少なくとも一方の相対移動速度情報と前記被加工物の加工開始位置情報とから、前記タイマーカウント開始指令が出力されてから前記切削工具が前記被加工物の加工開始位置に到達するまでの到達時間を演算する到達時間演算手段と、前記制御手段からタイマーカウント開始指令が出力されてからの経過時間を計測し、この経過時間が前記到達時間演算手段で演算された到達時間に一致したか否か判定し、両者が一致したときにトリガー信号を出力する経過時間判定手段と、前記経過時間判定手段からのトリガー信号を受けて、予め設定した切込量で前記切削工具が進退するように前記往復動ステージを駆動させる往復動ステージ駆動手段とを備えることを特徴とする。   A micromachining cutting apparatus according to the present invention includes a table and a cutting tool on which a workpiece is placed, an X-axis moving mechanism and a Y-axis movement for relatively moving the table and the cutting tool in the X-axis and Y-axis directions orthogonal to each other. A mechanism, a Z-axis moving mechanism having a cutting axis for moving the cutting tool back and forth in the Z-axis direction orthogonal to the X-axis and Y-axis directions, and the Z-axis moving mechanism provided on the cutting axis in the Z-axis direction. In a fine shape cutting apparatus provided with a reciprocating stage that changes a cutting depth of a cutting tool at high speed, a driving program for controlling driving of each moving mechanism is stored, and driving of each moving mechanism is performed according to this driving program And a relative movement of at least one of the X-axis movement mechanism and the Y-axis movement mechanism, and a control means for outputting a timer count start command at the start of the drive program The arrival time calculation for calculating the arrival time from when the timer count start command is output until the cutting tool reaches the processing start position of the workpiece from the degree information and the processing start position information of the workpiece And an elapsed time after the timer count start command is output from the control means, and it is determined whether or not the elapsed time matches the arrival time calculated by the arrival time calculation means. An elapsed time determination unit that outputs a trigger signal when the operation is performed, and a reciprocation that drives the reciprocating stage to receive the trigger signal from the elapsed time determination unit and to move the cutting tool forward and backward with a preset cutting amount. Moving stage driving means.

この構成によれば、制御手段によって駆動プログラムが開始されると、駆動プログラムに従って、X軸移動機構、Y軸移動機構およびZ軸移動機構の駆動が制御されるとともに、駆動プログラム開始時にタイマーカウント開始指令が出力される。
すると、経過時間判定手段において、制御手段からタイマーカウント開始指令が出力されてからの経過時間が計測され、この経過時間が到達時間演算手段で演算された到達時間に一致したか否か判定される。経過時間判定手段で計測された経過時間と到達時間演算手段で演算された到達時間とが一致すると、トリガー信号が出力される。
往復動ステージ駆動手段は、経過時間判定手段からのトリガー信号を受けて、予め設定した切込量で切削工具が進退するように、往復動ステージを駆動させる。これにより、切削工具が予め設定した切込量で進退されるため、被加工物の表面に微細形状が加工される。
According to this configuration, when the driving program is started by the control means, the driving of the X-axis moving mechanism, the Y-axis moving mechanism, and the Z-axis moving mechanism is controlled according to the driving program, and the timer count is started when the driving program starts. A command is output.
Then, the elapsed time determination means measures the elapsed time from the output of the timer count start command from the control means, and determines whether or not this elapsed time matches the arrival time calculated by the arrival time calculation means. . When the elapsed time measured by the elapsed time determination means matches the arrival time calculated by the arrival time calculation means, a trigger signal is output.
The reciprocating stage driving means receives the trigger signal from the elapsed time determining means and drives the reciprocating stage so that the cutting tool advances and retreats by a preset cutting amount. Thereby, since the cutting tool is advanced and retracted by a preset cutting amount, a fine shape is processed on the surface of the workpiece.

本発明では、駆動プログラム開始時にタイマーカウント開始指令が出力されてからの経過時間を計測し、この経過時間が予め到達時間演算手段で演算された到達時間に一致したときに出されるトリガー信号をトリガーとして、往復動ステージが駆動されるから、被加工物の表面に高精度な微細形状を加工することができる
つまり、従来のように、位置情報を位置検出器で検出し、この位置検出器からのパルス信号をカウントし、カウント値が設定した値に一致したか否かを判定し、両者が一致したときのトリガー信号で、工具切込み機構により切削工具の切込み量を高速に変化させるものではないから、被加工物の表面に高精度な微細形状を加工することができる。
In the present invention, the elapsed time after the timer count start command is output at the start of the drive program is measured, and a trigger signal is output that is triggered when the elapsed time coincides with the arrival time calculated in advance by the arrival time calculation means. As the reciprocating stage is driven, it is possible to process a highly accurate fine shape on the surface of the workpiece. That is, as in the past, position information is detected by a position detector, and from this position detector This is a trigger signal when the count value matches the set value, and the trigger value when both match, and the tool cutting mechanism does not change the cutting depth of the cutting tool at high speed. Therefore, a highly accurate fine shape can be processed on the surface of the workpiece.

本発明の微細形状切削加工装置において、前記制御手段は、前記X軸移動機構の駆動を制御して前記テーブルおよび前記切削工具をX軸方向の第1の位置から第2の位置へ相対移動させるフィード動作と、前記Z軸移動機構を制御して前記切削工具を前記第2の位置からZ軸方向でかつ前記テーブルから退避する方向の第3の位置へ移動させる退避動作と、前記X軸移動機構の駆動を制御して前記テーブルおよび前記切削工具を第3の位置からX軸方向でかつ前記フィード動作とは逆方向の第4の位置へ相対移動させるリターン動作と、前記Z軸移動機構を制御して前記切削工具を前記第4の位置から前記第1の位置へ移動させる接近動作とを実行させ、前記フィード動作において、前記往復動ステージが駆動されることが好ましい。   In the fine shape cutting apparatus according to the present invention, the control means controls the drive of the X-axis moving mechanism to move the table and the cutting tool relative to each other from the first position in the X-axis direction to the second position. A feed operation; a retreat operation for controlling the Z-axis movement mechanism to move the cutting tool from the second position to a third position in the Z-axis direction and the direction of retreating from the table; and the X-axis movement A return operation for controlling the drive of the mechanism to relatively move the table and the cutting tool from the third position to the fourth position in the X-axis direction and in the direction opposite to the feed operation; and the Z-axis moving mechanism; It is preferable that the reciprocating stage is driven in the feed operation by performing an approaching operation to control and move the cutting tool from the fourth position to the first position.

この構成によれば、テーブルおよび切削工具とが、第1の位置から第2の位置へフィード動作され、次に、第2の位置から第3の位置へ退避動作され、次に、第3の位置から第4の位置へリターン動作され、最後に、第4の位置から第1の位置へ接近動作する矩形状の軌跡で相対移動される。この相対移動の第1の位置から第2の位置へのフィード動作において、往復動ステージの駆動が制御され、切削工具が予め設定した切込量で被加工物の表面に対して進退され、その結果、被加工物の表面に高精度な微細形状が加工されるから、移動機構の制御も比較的簡単に行える。   According to this configuration, the table and the cutting tool are fed from the first position to the second position, then retracted from the second position to the third position, and then the third position Return operation is performed from the position to the fourth position, and finally, relative movement is performed along a rectangular trajectory that moves from the fourth position to the first position. In the feed operation from the first position to the second position of the relative movement, the driving of the reciprocating stage is controlled, and the cutting tool is advanced and retracted with respect to the surface of the workpiece by a preset cutting amount. As a result, since a highly accurate fine shape is processed on the surface of the workpiece, the movement mechanism can be controlled relatively easily.

本発明の微細形状切削加工装置において、前記往復動ステージは、複数の圧電素子を積層した圧電素子積層体によって構成されていることが好ましい。
この構成によれば、往復動ステージに、複数の圧電素子を積層した圧電素子積層体を用いたので、切削工具の切込量を高速で制御することができる。従って、被加工物の表面に微細な形状を高精度にかつ高い仕上げ精度に加工できる。
In the fine shape cutting apparatus of the present invention, it is preferable that the reciprocating stage is constituted by a piezoelectric element laminate in which a plurality of piezoelectric elements are laminated.
According to this configuration, since the piezoelectric element laminate in which a plurality of piezoelectric elements are laminated is used for the reciprocating stage, the cutting amount of the cutting tool can be controlled at high speed. Therefore, it is possible to process a fine shape on the surface of the workpiece with high accuracy and high finishing accuracy.

本発明の微細形状切削加工方法は、被加工物を載置したテーブルおよび切削工具と、前記テーブルおよび前記切削工具を互いに直交するX軸およびY軸方向へ相対移動させるX軸移動機構およびY軸移動機構と、前記切削工具を前記X軸およびY軸方向に対して直交するZ軸方向へ進退させる切込軸を有するZ軸移動機構と、前記切込軸に設けられ前記Z軸方向への前記切削工具の切込量を高速で変化させる往復動ステージとを備えた微細形状切削加工装置を用いて、前記被加工物の表面に微細形状を切削加工する微細形状切削加工方法であって、前記各移動機構の駆動を制御する駆動プログラムに従って前記各移動機構の駆動を制御するともに、前記駆動プログラム開始時にタイマーカウント開始指令を出力するステップと、前記X軸移動機構およびY軸移動機構の少なくとも一方の相対移動速度情報と前記被加工物の加工開始位置情報とから、前記タイマーカウント開始指令が出力されてから前記切削工具が前記被加工物の加工開始位置に到達するまでの到達時間を演算する到達時間演算ステップと、前記タイマーカウント開始指令が出力されてからの経過時間を計測し、この経過時間が前記到達時間演算ステップで演算された到達時間に一致したか否かを判定し、両者が一致したときにトリガー信号を出力する経過時間判定ステップと、前記トリガー信号が出力されたとき、予め設定した切込量で前記切削工具が進退するように前記往復動ステージを駆動させる往復動ステージ駆動ステップとを備えることを特徴とする。   The fine shape cutting method of the present invention includes a table and a cutting tool on which a workpiece is placed, an X-axis moving mechanism and a Y-axis that move the table and the cutting tool in the X-axis and Y-axis directions orthogonal to each other. A moving mechanism, a Z-axis moving mechanism having a cutting axis for moving the cutting tool back and forth in the Z-axis direction orthogonal to the X-axis and Y-axis directions, and provided in the cutting shaft in the Z-axis direction. Using a fine shape cutting device provided with a reciprocating stage that changes the cutting amount of the cutting tool at high speed, a fine shape cutting method for cutting a fine shape on the surface of the workpiece, Controlling the driving of each moving mechanism in accordance with a driving program for controlling the driving of each moving mechanism, and outputting a timer count start command at the start of the driving program; After the timer count start command is output from the relative movement speed information of at least one of the structure and the Y-axis moving mechanism and the processing start position information of the workpiece, the cutting tool is set to the processing start position of the workpiece. An arrival time calculating step for calculating an arrival time until reaching and an elapsed time from the output of the timer count start command are measured, and this elapsed time coincides with the arrival time calculated in the arrival time calculating step. An elapsed time determination step of outputting a trigger signal when both coincide with each other, and when the trigger signal is output, the reciprocation is performed so that the cutting tool advances and retreats by a preset cutting amount. And a reciprocating stage driving step for driving the moving stage.

この構成によれば、上述した微細形状切削加工装置で述べた効果と同様な効果が期待できる。   According to this configuration, an effect similar to the effect described in the fine shape cutting apparatus described above can be expected.

以下、本発明の実施形態を図面に基づいて説明する。
<図1の説明>
図1は、本発明の微細形状切削加工装置の実施形態を示す正面図である。同微細形状切削加工装置は、ベース1と、このベース1の上面にY軸方向(図1の紙面に対して直交する方向)へ移動可能に設けられ上面に被加工物としてのワークWを載置したテーブル2と、ベース1の両側に立設されたコラム3と、このコラム3の上端間に掛け渡されたクロスレール4と、このクロスレール4に沿ってX軸方向へ移動可能に設けられたスライダ5と、このスライダ5にZ軸方向へ移動可能に設けられた切込軸6と、この切込軸6に往復動ステージ7を介して取り付けられた切削工具8とを備える。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
<Description of FIG. 1>
FIG. 1 is a front view showing an embodiment of a fine shape cutting apparatus of the present invention. The fine shape cutting apparatus is provided with a base 1 and a top surface of the base 1 so as to be movable in the Y-axis direction (a direction orthogonal to the paper surface of FIG. 1). Table 2 placed on both sides of the base 1, a cross rail 4 spanned between the upper ends of the column 3, and a cross rail 4 that is movable in the X-axis direction. The slider 5 is provided, a cutting shaft 6 provided on the slider 5 so as to be movable in the Z-axis direction, and a cutting tool 8 attached to the cutting shaft 6 via a reciprocating stage 7.

ベース1とテーブル2との間には、テーブル2をY軸方向へ移動させるY軸駆動機構11が設けられている。クロスレール4とスライダ5との間には、スライダ5をX軸方向へ移動させるX軸駆動機構12が設けられている。スライダ5と切込軸6との間には、切込軸6を含みこの切込軸6をZ軸方向へ移動させるZ軸駆動機構13が設けられている。つまり、ワークWを載置したテーブル2および切削工具8を互いに直交するX軸およびY軸方向へ相対移動させるX軸移動機構12およびY軸移動機構11と、切削工具8をX軸およびY軸方向に対して直交するZ軸方向へ進退させるZ軸移動機構13とを備えている。なお、これらの駆動機構11,12,13は、ボールねじ送り機構などによって構成されているが、これに限られない。   Between the base 1 and the table 2, a Y-axis drive mechanism 11 that moves the table 2 in the Y-axis direction is provided. An X-axis drive mechanism 12 that moves the slider 5 in the X-axis direction is provided between the cross rail 4 and the slider 5. Between the slider 5 and the cutting shaft 6, a Z-axis drive mechanism 13 that includes the cutting shaft 6 and moves the cutting shaft 6 in the Z-axis direction is provided. That is, the X-axis moving mechanism 12 and the Y-axis moving mechanism 11 that relatively move the table 2 on which the workpiece W is placed and the cutting tool 8 in the X-axis and Y-axis directions orthogonal to each other, and the cutting tool 8 as the X-axis and Y-axis. And a Z-axis moving mechanism 13 that moves back and forth in the Z-axis direction orthogonal to the direction. In addition, although these drive mechanisms 11, 12, and 13 are comprised by the ball screw feed mechanism etc., it is not restricted to this.

往復動ステージ7は、切込軸6と切削工具8との間に設けられ、切削工具8の切込量、つまり、Z軸方向へ進退量を高速で変化させることができるものあればいずれでもよい。例えば、複数の圧電素子を積層した圧電素子積層体によって構成することができる。このほか、リニアモータやボイスコイルなどを用いて構成することもできる。   The reciprocating stage 7 is provided between the cutting shaft 6 and the cutting tool 8, and any reciprocating stage 7 can change the cutting amount of the cutting tool 8, that is, the amount of advance / retreat in the Z-axis direction at high speed. Good. For example, it can be constituted by a piezoelectric element laminate in which a plurality of piezoelectric elements are laminated. In addition, a linear motor or a voice coil can be used.

<図2の説明>
図2は、微細形状切削加工装置の制御システムを示している。同システムには、X軸駆動機構12、Y軸駆動機構11、Z軸駆動機構13などを制御する制御手段としてのNC装置21と、到達時間演算手段22と、経過時間判定手段23と、往復動ステージ駆動手段24とを備える。
<Description of FIG. 2>
FIG. 2 shows a control system of the fine shape cutting apparatus. The system includes an NC device 21 as control means for controlling the X-axis drive mechanism 12, Y-axis drive mechanism 11, Z-axis drive mechanism 13, etc., arrival time calculation means 22, elapsed time determination means 23, and reciprocation. Moving stage driving means 24.

NC装置21は、X軸駆動機構12、Y軸駆動機構11、Z軸駆動機構13の駆動を制御する駆動プログラムを記憶し、この駆動プログラムに従ってX軸駆動機構12、Y軸駆動機構11、Z軸駆動機構13の駆動を制御するともに、この駆動プログラムに基づいて駆動プログラム開始時にタイマーカウント開始指令(例えば、M80コード)を出力する。   The NC device 21 stores a drive program for controlling the drive of the X-axis drive mechanism 12, the Y-axis drive mechanism 11, and the Z-axis drive mechanism 13, and according to this drive program, the X-axis drive mechanism 12, the Y-axis drive mechanism 11, Z While controlling the drive of the shaft drive mechanism 13, a timer count start command (for example, M80 code) is output at the start of the drive program based on this drive program.

到達時間演算手段22は、予めX軸移動機構12およびY軸移動機構11の少なくとも一方の相対移動速度情報(送り速度情報および加速度情報)と、ワークWの加工形状つまり加工開始位置情報とから、タイマーカウント開始指令が出力されてから切削工具8がワークWの加工開始位置に到達するまでの到達時間T1を演算する。   The arrival time calculation means 22 is based on the relative movement speed information (feed speed information and acceleration information) of at least one of the X-axis movement mechanism 12 and the Y-axis movement mechanism 11 in advance and the machining shape of the workpiece W, that is, the machining start position information. An arrival time T1 from when the timer count start command is output until the cutting tool 8 reaches the machining start position of the workpiece W is calculated.

経過時間判定手段23は、カウンタを有し、そのカウンタでNC装置21からタイマーカウント開始指令が出力されてからの経過時間T2を計測する。そして、この経過時間T2が到達時間演算手段22で演算された到達時間T1に一致したか否か判定し、両者が一致したときにトリガー信号を出力する。   The elapsed time determination means 23 has a counter, and measures the elapsed time T2 after the timer count start command is output from the NC device 21 with the counter. Then, it is determined whether or not this elapsed time T2 coincides with the arrival time T1 calculated by the arrival time calculating means 22, and a trigger signal is output when both coincide.

往復動ステージ駆動手段24は、経過時間判定手段23からのトリガー信号を受けて、予め設定した切込量で切削工具8が進退するように往復動ステージ7を駆動させる。具体的には、ワークWの表面加工形状を加工するための往復動ステージ7の駆動データを記憶し、経過時間判定手段23からのトリガー信号を受けたとき、記憶した駆動データをアナログ電圧に変換して往復動ステージ7に与える。   The reciprocating stage driving means 24 receives the trigger signal from the elapsed time determining means 23 and drives the reciprocating stage 7 so that the cutting tool 8 advances and retreats by a preset cutting amount. Specifically, the drive data of the reciprocating stage 7 for processing the surface processed shape of the workpiece W is stored, and when the trigger signal is received from the elapsed time determination means 23, the stored drive data is converted into an analog voltage. To the reciprocating stage 7.

<図3の説明>
図3は、NC装置21によって制御される切削工具8とワークWとの相対移動軌跡を示している。
NC装置21によって駆動プログラムが開始されると、この駆動プログラムに従って、X軸移動機構12、Y軸移動機構11およびZ軸移動機構13の駆動が制御されるとともに、駆動プログラム開始時にタイマーカウント開始指令が出力される。
<Description of FIG. 3>
FIG. 3 shows a relative movement locus between the cutting tool 8 and the workpiece W controlled by the NC device 21.
When the driving program is started by the NC device 21, the driving of the X-axis moving mechanism 12, the Y-axis moving mechanism 11, and the Z-axis moving mechanism 13 is controlled according to this driving program, and a timer count start command is issued when the driving program starts. Is output.

まず、X軸移動機構12の駆動制御により、切削工具8がX軸方向の第1の位置P1から第2の位置P2へ相対移動される(フィード動作)。次に、Z軸移動機構13の駆動制御により、切削工具8が第2の位置P2からZ軸方向でかつテーブル2から退避する方向の第3の位置P3へ移動される(退避動作)。次に、X軸移動機構12の駆動制御により、切削工具8が第3の位置P3からX軸方向でかつフィード動作とは逆方向の第4の位置P4へ移動される(リターン動作)。最後に、Z軸移動機構13の駆動制御により、切削工具8が第4の位置P4から第1の位置P1へ移動される(接近動作)。つまり、切削工具8がワークWに対して、トラバース運動を行う。
また、この駆動プログラム開始時に、つまり、フィード動作開始時において、NC装置21からはタイマーカウント開始指令が出力される。
First, the cutting tool 8 is relatively moved from the first position P1 in the X-axis direction to the second position P2 by the drive control of the X-axis moving mechanism 12 (feed operation). Next, the cutting tool 8 is moved from the second position P2 to the third position P3 in the Z-axis direction and in the direction in which the cutting tool 8 is retracted from the table 2 by the drive control of the Z-axis moving mechanism 13 (retraction operation). Next, by the drive control of the X-axis moving mechanism 12, the cutting tool 8 is moved from the third position P3 to the fourth position P4 in the X-axis direction and in the direction opposite to the feed operation (return operation). Finally, the cutting tool 8 is moved from the fourth position P4 to the first position P1 by the drive control of the Z-axis moving mechanism 13 (approach operation). That is, the cutting tool 8 performs a traverse motion with respect to the workpiece W.
Further, at the start of this drive program, that is, at the start of the feed operation, the NC device 21 outputs a timer count start command.

<図4および図5の説明>
図4および図5は、NC装置21によって駆動プログラムが開始されてから、切削工具8がワークWに対して切削加工を行う過程を示している。
まず、NC装置21による駆動プログラムの開始前に、到達時間演算手段22において、X軸移動機構12の相対移動速度情報とワークWの加工開始位置情報などから、NC装置21からタイマーカウント開始指令が出力されてから切削工具8がワークWの加工開始位置に到達するまでの到達時間T1が演算される。つまり、図4に示すように、NC装置21からタイマーカウント開始指令が出力されたときの切削工具8の位置からワークWの加工開始位置までのX軸方向の距離、送り速度、加速度情報などを基に、NC装置21からタイマーカウント開始指令が出力されてから、切削工具8がワークWの加工開始位置に到達するまでの到達時間T1が演算される。
<Description of FIGS. 4 and 5>
4 and 5 show a process in which the cutting tool 8 performs the cutting process on the workpiece W after the drive program is started by the NC device 21. FIG.
First, before the drive program by the NC device 21 is started, the arrival time calculation means 22 issues a timer count start command from the NC device 21 based on the relative movement speed information of the X-axis moving mechanism 12 and the machining start position information of the workpiece W. An arrival time T <b> 1 until the cutting tool 8 reaches the machining start position of the workpiece W after the output is calculated. That is, as shown in FIG. 4, the distance in the X-axis direction from the position of the cutting tool 8 when the timer count start command is output from the NC device 21 to the machining start position of the workpiece W, feed speed, acceleration information, etc. Based on this, an arrival time T1 from when the timer count start command is output from the NC device 21 until the cutting tool 8 reaches the machining start position of the workpiece W is calculated.

NC装置21によって駆動プログラムが開始されると、到達時間判定手段23において、NC装置21からタイマーカウント開始指令が出力されてから切削工具8がワークWの加工開始位置に到達するまでの経過時間T2が計測され、この経過時間T2が到達時間演算手段22で演算された到達時間T1に一致したか否か判定される。到達時間判定手段23で計測された経過時間T2と到達時間演算手段22で演算された到達時間T1とが一致すると、トリガー信号が出力される。   When the drive program is started by the NC device 21, the elapsed time T2 until the cutting tool 8 reaches the machining start position of the workpiece W after the timer count start command is output from the NC device 21 in the arrival time determination means 23. Is measured, and it is determined whether or not the elapsed time T2 coincides with the arrival time T1 calculated by the arrival time calculation means 22. When the elapsed time T2 measured by the arrival time determination means 23 and the arrival time T1 calculated by the arrival time calculation means 22 match, a trigger signal is output.

往復動ステージ駆動手段24は、経過時間判定手段23からのトリガー信号を受けて、予め設定した切込量で切削工具8が進退するように、往復動ステージ7を駆動させる。例えば、図5に示すように、一定周期毎に、切削工具8の切込量が次第に大きくなったのち小さくなり、こののち一定に維持されるように制御される。これにより、ワークWの表面に深さhの凹部31が一定ピッチ間隔で加工される。つまり、ワークWの表面に微細な凹凸形状が加工される。   The reciprocating stage driving unit 24 receives the trigger signal from the elapsed time determining unit 23 and drives the reciprocating stage 7 so that the cutting tool 8 advances and retreats by a preset cutting amount. For example, as shown in FIG. 5, the control is performed so that the cutting amount of the cutting tool 8 gradually increases and decreases after every predetermined period, and then is maintained constant. Thereby, the recessed part 31 of the depth h is processed on the surface of the workpiece | work W with a fixed pitch space | interval. That is, a fine uneven shape is processed on the surface of the workpiece W.

このようにして、ワークWの表面に、X軸方向に沿って微細な凹凸形状を加工したのち、Y軸駆動機構11を一定ピッチ移動させて位置決めし、この位置において、上記の動作を繰り返せば、ワークWの表面全面にわたって微細な凹凸形状を加工することができる。   In this way, after processing a fine uneven shape on the surface of the workpiece W along the X-axis direction, the Y-axis drive mechanism 11 is moved by a predetermined pitch and positioned, and the above operation is repeated at this position. A fine uneven shape can be processed over the entire surface of the workpiece W.

<実施形態の効果>
本実施形態では、駆動プログラム開始時にタイマーカウント開始指令が出力されてからの経過時間T2を計測し、この経過時間T2が予め到達時間演算手段22で演算された到達時間T1に一致したときに出力されるトリガー信号をトリガーとして、往復動ステージ7が駆動されるから、ワークWの表面に高精度な微細形状を加工することができる。
つまり、従来のように、位置情報を位置検出器で検出し、この位置検出器からのパルス信号をカウントし、カウント値が設定した値に一致したか否かを判定し、両者が一致したときのトリガー信号で、工具切込み機構により切削工具の切込み量を高速に変化させるものではないから、被加工物の表面に高精度な微細形状を加工することができる。例えば、ワークの表面に微細な球面状凹部を一定ピッチ間隔で配列したマイクロレンズ成形用金型などを加工することができる。
<Effect of embodiment>
In this embodiment, the elapsed time T2 from when the timer count start command is output at the start of the drive program is measured, and output when this elapsed time T2 coincides with the arrival time T1 calculated in advance by the arrival time calculating means 22. Since the reciprocating stage 7 is driven using the triggered signal as a trigger, a highly accurate fine shape can be processed on the surface of the workpiece W.
That is, when the position information is detected by the position detector, the pulse signal from the position detector is counted, and it is determined whether or not the count value matches the set value as in the conventional case. With this trigger signal, the cutting depth of the cutting tool is not changed at high speed by the tool cutting mechanism, so that a highly accurate fine shape can be machined on the surface of the workpiece. For example, it is possible to process a microlens molding die or the like in which fine spherical concave portions are arranged at a constant pitch interval on the surface of the workpiece.

また、切削工具8が、第1の位置P1から第2の位置P1へフィード動作され、次に、第2の位置P2から第3の位置P3へ退避動作され、次に、第3の位置P3から第4の位置P4へリターン動作され、最後に、第4の位置P4から第1の位置P1へ接近動作される。この矩形の相対移動動作のうち、第1の位置P1から第2の位置P2へのフィード動作において、往復動ステージ7の駆動が制御され、切削工具8が予め設定した切込量でワークWの表面に対して進退され、その結果、ワークWの表面に高精度な微細形状が加工されるから、移動機構の制御も比較的簡単に行える。   Further, the cutting tool 8 is fed from the first position P1 to the second position P1, and then retracted from the second position P2 to the third position P3, and then the third position P3. From the fourth position P4 to the first position P1. Among the relative movement operations of the rectangle, in the feed operation from the first position P1 to the second position P2, the drive of the reciprocating stage 7 is controlled, and the cutting tool 8 sets the workpiece W at a preset cutting amount. As a result, the surface of the workpiece W is processed with a fine shape with high accuracy, so that the movement mechanism can be controlled relatively easily.

また、往復動ステージ7に、複数の圧電素子を積層した圧電素子積層体を用いたので、切削工具8の切込量を高速で制御することができる。従って、ワークWの表面に微細な形状を高精度にかつ高い仕上げ精度に加工できる。   Moreover, since the piezoelectric element laminated body which laminated | stacked the several piezoelectric element was used for the reciprocating stage 7, the cutting amount of the cutting tool 8 can be controlled at high speed. Therefore, a fine shape can be processed on the surface of the workpiece W with high accuracy and high finishing accuracy.

<変形例>
本発明は、上記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。
上記実施形態では、テーブル2をY軸方向へ移動可能に構成するとともに、切削工具8をX軸方向へ移動可能に構成したが、これとは逆方向な構成でもよい。つまり、テーブル2をX軸方向へ移動可能に構成するとともに、切削工具8をY軸方向へ移動可能に構成してもよい。あるいは、テーブル2および切削工具8のいずれか一方を、X軸方向およびY軸方向へ移動可能に構成してもよい。
<Modification>
The present invention is not limited to the above-described embodiment, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention.
In the above embodiment, the table 2 is configured to be movable in the Y-axis direction and the cutting tool 8 is configured to be movable in the X-axis direction. However, a configuration opposite to this may be used. That is, the table 2 may be configured to be movable in the X-axis direction, and the cutting tool 8 may be configured to be movable in the Y-axis direction. Alternatively, any one of the table 2 and the cutting tool 8 may be configured to be movable in the X-axis direction and the Y-axis direction.

上記実施形態では、X軸駆動機構12によって切削工具8をX軸方向へ移動させながら、往復動ステージ7を駆動して切削工具8の切込量を制御するようにしたが、Y軸駆動機構11によって切削工具8をY軸方向へ移動させながら、往復動ステージ7を駆動して切削工具8の切込量を制御するようにしてもよい。
あるいは、X軸駆動機構12およびY軸駆動機構11によって、切削工具8をXおよびY軸方向へ同時に移動させながら、往復動ステージ7を駆動して切削工具8の切込量を制御するようにしてもよい。
In the above embodiment, while the cutting tool 8 is moved in the X-axis direction by the X-axis drive mechanism 12, the reciprocating stage 7 is driven to control the cutting amount of the cutting tool 8. 11, the reciprocating stage 7 may be driven while the cutting tool 8 is moved in the Y-axis direction to control the cutting amount of the cutting tool 8.
Alternatively, the cutting amount of the cutting tool 8 is controlled by driving the reciprocating stage 7 while simultaneously moving the cutting tool 8 in the X and Y axis directions by the X axis driving mechanism 12 and the Y axis driving mechanism 11. May be.

上記実施形態では、ワークWの表面に凹部31を一定ピッチ間隔で加工する加工方法について説明したが、これに限られない。例えば、ワークWの表面に凹部や溝を不規則に加工する場合にも適用できる。   Although the said embodiment demonstrated the processing method which processes the recessed part 31 on the surface of the workpiece | work W with a fixed pitch space | interval, it is not restricted to this. For example, the present invention can be applied to a case where recesses and grooves are irregularly processed on the surface of the workpiece W.

本発明は、例えば、ワークの表面に微細な球面状凹部を一定ピッチ間隔で配列したマイクロレンズ成形用金型などの加工に利用できる。   The present invention can be used, for example, for processing a microlens molding die in which fine spherical concave portions are arranged at a constant pitch interval on the surface of a workpiece.

本発明の微細形状切削加工装置の一実施形態を示す正面図。The front view which shows one Embodiment of the fine shape cutting processing apparatus of this invention. 同上実施形態の制御システムを示すブロック図。The block diagram which shows the control system of embodiment same as the above. 同上実施形態において、切削工具の移動軌跡を示す図。The figure which shows the movement locus | trajectory of a cutting tool in embodiment same as the above. 同上実施形態において、切削工具とワークとの関係を示す図。The figure which shows the relationship between a cutting tool and a workpiece | work in embodiment same as the above. 同上実施形態において、切削工具がワークを加工している状態を示す図。The figure which shows the state which the cutting tool is processing the workpiece | work in embodiment same as the above.

符号の説明Explanation of symbols

6…切込軸、
7…往復動ステージ、
8…切削工具、
11…Y軸駆動機構、
12…X軸駆動機構、
13…Z軸駆動機構、
21…NC装置(制御手段)、
22…到達時間演算手段、
23…経過時間判定手段、
24…往復動ステージ駆動手段、
31…凹部、
P1…第1の位置、
P2…第2の位置、
P3…第3の位置、
P4…第4の位置、
T1…到達時間、
T2…経過時間、
W…ワーク(被加工物)。
6 ... Infeed shaft,
7 ... reciprocating stage,
8 ... Cutting tools,
11 ... Y-axis drive mechanism,
12 ... X-axis drive mechanism,
13 ... Z-axis drive mechanism,
21 ... NC device (control means),
22 ... Arrival time calculation means,
23. Elapsed time determination means,
24. Reciprocating stage driving means,
31 ... recess,
P1 ... first position,
P2 ... second position,
P3 ... third position,
P4 ... Fourth position,
T1 ... arrival time,
T2: Elapsed time,
W: Workpiece (workpiece).

Claims (4)

被加工物を載置したテーブルおよび切削工具と、前記テーブルおよび前記切削工具を互いに直交するX軸およびY軸方向へ相対移動させるX軸移動機構およびY軸移動機構と、前記切削工具を前記X軸およびY軸方向に対して直交するZ軸方向へ進退させる切込軸を有するZ軸移動機構と、前記切込軸に設けられ前記Z軸方向への前記切削工具の切込量を高速で変化させる往復動ステージとを備えた微細形状切削加工装置において、
前記各移動機構の駆動を制御する駆動プログラムを記憶し、この駆動プログラムに従って前記各移動機構の駆動を制御するともに、前記駆動プログラム開始時にタイマーカウント開始指令を出力する制御手段と、
前記X軸移動機構およびY軸移動機構の少なくとも一方の相対移動速度情報と前記被加工物の加工開始位置情報とから、前記タイマーカウント開始指令が出力されてから前記切削工具が前記被加工物の加工開始位置に到達するまでの到達時間を演算する到達時間演算手段と、
前記制御手段からタイマーカウント開始指令が出力されてからの経過時間を計測し、この経過時間が前記到達時間演算手段で演算された到達時間に一致したか否か判定し、両者が一致したときにトリガー信号を出力する経過時間判定手段と、
前記経過時間判定手段からのトリガー信号を受けて、予め設定した切込量で前記切削工具が進退するように前記往復動ステージを駆動させる往復動ステージ駆動手段とを備えることを特徴とする微細形状切削加工装置。
A table and a cutting tool on which a workpiece is placed, an X-axis moving mechanism and a Y-axis moving mechanism for moving the table and the cutting tool in the X-axis and Y-axis directions orthogonal to each other, and the cutting tool for the X A Z-axis moving mechanism having a cutting axis for moving back and forth in the Z-axis direction perpendicular to the axis and the Y-axis direction, and a cutting amount of the cutting tool in the Z-axis direction provided on the cutting axis at high speed In a fine shape cutting apparatus equipped with a reciprocating stage to be changed,
Control means for storing a driving program for controlling the driving of each moving mechanism, controlling the driving of each moving mechanism according to the driving program, and outputting a timer count start command at the start of the driving program;
From the relative movement speed information of at least one of the X-axis movement mechanism and the Y-axis movement mechanism and the processing start position information of the workpiece, the cutting tool is moved to the workpiece after the timer count start command is output. An arrival time calculating means for calculating an arrival time until reaching the machining start position;
The elapsed time after the timer count start command is output from the control means is measured, and it is determined whether or not this elapsed time matches the arrival time calculated by the arrival time calculating means. An elapsed time judging means for outputting a trigger signal;
Reciprocating stage driving means for receiving the trigger signal from the elapsed time judging means and driving the reciprocating stage so that the cutting tool advances and retreats by a preset cutting amount. Cutting device.
請求項1に記載の微細形状切削加工装置において、
前記制御手段は、前記X軸移動機構の駆動を制御して前記テーブルおよび前記切削工具をX軸方向の第1の位置から第2の位置へ相対移動させるフィード動作と、前記Z軸移動機構を制御して前記切削工具を前記第2の位置からZ軸方向でかつ前記テーブルから退避する方向の第3の位置へ移動させる退避動作と、前記X軸移動機構の駆動を制御して前記テーブルおよび前記切削工具を第3の位置からX軸方向でかつ前記フィード動作とは逆方向の第4の位置へ相対移動させるリターン動作と、前記Z軸移動機構を制御して前記切削工具を前記第4の位置から前記第1の位置へ移動させる接近動作とを実行させ、
前記フィード動作において、前記往復動ステージが駆動されることを特徴とする微細形状切削加工装置。
In the fine shape cutting apparatus according to claim 1,
The control means controls the drive of the X-axis movement mechanism to move the table and the cutting tool relative to each other from the first position in the X-axis direction to the second position, and the Z-axis movement mechanism. Controlling the retraction operation to move the cutting tool from the second position to the third position in the Z-axis direction and retreating from the table; and controlling the drive of the X-axis movement mechanism to control the table and A return operation for relatively moving the cutting tool from the third position to the fourth position in the X-axis direction and in the direction opposite to the feed operation, and the Z-axis moving mechanism to control the cutting tool to the fourth position. And an approaching operation for moving from the position to the first position,
In the feed operation, the reciprocating stage is driven.
請求項1または請求項2に記載の微細形状切削加工装置において、
前記往復動ステージは、複数の圧電素子を積層した圧電素子積層体によって構成されていることを特徴とする微細形状切削加工装置。
In the fine shape cutting apparatus according to claim 1 or 2,
The reciprocating stage is constituted by a piezoelectric element laminate in which a plurality of piezoelectric elements are laminated.
被加工物を載置したテーブルおよび切削工具と、前記テーブルおよび前記切削工具を互いに直交するX軸およびY軸方向へ相対移動させるX軸移動機構およびY軸移動機構と、前記切削工具を前記X軸およびY軸方向に対して直交するZ軸方向へ進退させる切込軸を有するZ軸移動機構と、前記切込軸に設けられ前記Z軸方向への前記切削工具の切込量を高速で変化させる往復動ステージとを備えた微細形状切削加工装置を用いて、前記被加工物の表面に微細形状を切削加工する微細形状切削加工方法であって、
前記各移動機構の駆動を制御する駆動プログラムに従って前記各移動機構の駆動を制御するともに、前記駆動プログラム開始時にタイマーカウント開始指令を出力するステップと、
前記X軸移動機構およびY軸移動機構の少なくとも一方の相対移動速度情報と前記被加工物の加工開始位置情報とから、前記タイマーカウント開始指令が出力されてから前記切削工具が前記被加工物の加工開始位置に到達するまでの到達時間を演算する到達時間演算ステップと、
前記タイマーカウント開始指令が出力されてからの経過時間を計測し、この経過時間が前記到達時間演算ステップで演算された到達時間に一致したか否かを判定し、両者が一致したときにトリガー信号を出力する経過時間判定ステップと、
前記トリガー信号が出力されたとき、予め設定した切込量で前記切削工具が進退するように前記往復動ステージを駆動させる往復動ステージ駆動ステップとを備えることを特徴とする微細形状切削加工方法。
A table and a cutting tool on which a workpiece is placed, an X-axis moving mechanism and a Y-axis moving mechanism for moving the table and the cutting tool in the X-axis and Y-axis directions orthogonal to each other, and the cutting tool for the X A Z-axis moving mechanism having a cutting axis for moving back and forth in the Z-axis direction perpendicular to the axis and the Y-axis direction, and a cutting amount of the cutting tool in the Z-axis direction provided on the cutting axis at high speed Using a fine shape cutting apparatus equipped with a reciprocating stage to be changed, a fine shape cutting method for cutting a fine shape on the surface of the workpiece,
Controlling the driving of each moving mechanism according to a driving program for controlling the driving of each moving mechanism, and outputting a timer count start command at the start of the driving program;
From the relative movement speed information of at least one of the X-axis movement mechanism and the Y-axis movement mechanism and the processing start position information of the workpiece, the cutting tool is moved to the workpiece after the timer count start command is output. An arrival time calculating step for calculating an arrival time until reaching the machining start position;
Measure the elapsed time from the output of the timer count start command, determine whether this elapsed time coincides with the arrival time calculated in the arrival time calculation step, trigger signal when both match An elapsed time determination step for outputting,
And a reciprocating stage driving step of driving the reciprocating stage so that the cutting tool advances and retreats by a preset cutting amount when the trigger signal is output.
JP2007188024A 2007-07-19 2007-07-19 Fine shape cutting apparatus and fine shape cutting method. Active JP5100230B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2007188024A JP5100230B2 (en) 2007-07-19 2007-07-19 Fine shape cutting apparatus and fine shape cutting method.
US12/175,948 US8579563B2 (en) 2007-07-19 2008-07-18 Microscopic geometry cutting device including an arrival time calculator
TW97127342A TWI355313B (en) 2007-07-19 2008-07-18 Microscopic geometry cutting device and microscopi
CN200810137771XA CN101347846B (en) 2007-07-19 2008-07-18 Microscopic geometry cutting device and microscopic geometry cutting method
KR1020080069899A KR101011092B1 (en) 2007-07-19 2008-07-18 Microscopic geometry cutting device and microscopic geometry cutting method
KR1020100058316A KR101012964B1 (en) 2007-07-19 2010-06-21 Microscopic geometry cutting device and microscopic geometry cutting method
US14/047,922 US9126347B2 (en) 2007-07-19 2013-10-07 Microscopic geometry cutting device and microscopic geometry cutting method
US14/728,665 US9687991B2 (en) 2007-07-19 2015-06-02 Microscopic geometry cutting device and microscopic geometry cutting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007188024A JP5100230B2 (en) 2007-07-19 2007-07-19 Fine shape cutting apparatus and fine shape cutting method.

Publications (2)

Publication Number Publication Date
JP2009023043A true JP2009023043A (en) 2009-02-05
JP5100230B2 JP5100230B2 (en) 2012-12-19

Family

ID=40266905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007188024A Active JP5100230B2 (en) 2007-07-19 2007-07-19 Fine shape cutting apparatus and fine shape cutting method.

Country Status (2)

Country Link
JP (1) JP5100230B2 (en)
CN (1) CN101347846B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010110861A (en) * 2008-11-06 2010-05-20 Fanuc Ltd Straight line grooving method and straight line grooving device
KR101194204B1 (en) * 2010-03-25 2012-10-29 화낙 코퍼레이션 Method and apparatus for machining linear groove
TWI380888B (en) * 2010-03-30 2013-01-01 Fanuc Ltd Straight groove processing method and straight groove processing device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101126426B1 (en) * 2010-01-26 2012-03-28 박영근 Apparatus for forming groove
JP5581082B2 (en) * 2010-03-12 2014-08-27 東芝機械株式会社 Reciprocating device and molding machine using the same
CN104400837A (en) * 2014-10-31 2015-03-11 合肥鼎雅家具有限责任公司 Material fixing platform of material digging saw

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1120045A (en) * 1997-06-30 1999-01-26 Mitsubishi Heavy Ind Ltd Method and device for working fluted paper laminate
JPH11305819A (en) * 1998-04-27 1999-11-05 Hitachi Via Mechanics Ltd Driller
JP2003311527A (en) * 2002-04-25 2003-11-05 Hitachi Ltd Method and apparatus for producing undulation by cutting
JP2005007487A (en) * 2003-06-17 2005-01-13 Okamoto Machine Tool Works Ltd Method of grooving work and cutting apparatus
JP2006123085A (en) * 2004-10-28 2006-05-18 National Institute Of Advanced Industrial & Technology Fine surface shape cutting work device and fine cutting work method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1597215A (en) * 2004-08-16 2005-03-23 吉林大学 Method of processing revolving surface on wire-cutting lathe
CN2925718Y (en) * 2006-07-06 2007-07-25 上海交通大学 Multifunctional fine electric machine tool

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1120045A (en) * 1997-06-30 1999-01-26 Mitsubishi Heavy Ind Ltd Method and device for working fluted paper laminate
JPH11305819A (en) * 1998-04-27 1999-11-05 Hitachi Via Mechanics Ltd Driller
JP2003311527A (en) * 2002-04-25 2003-11-05 Hitachi Ltd Method and apparatus for producing undulation by cutting
JP2005007487A (en) * 2003-06-17 2005-01-13 Okamoto Machine Tool Works Ltd Method of grooving work and cutting apparatus
JP2006123085A (en) * 2004-10-28 2006-05-18 National Institute Of Advanced Industrial & Technology Fine surface shape cutting work device and fine cutting work method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010110861A (en) * 2008-11-06 2010-05-20 Fanuc Ltd Straight line grooving method and straight line grooving device
JP4554701B2 (en) * 2008-11-06 2010-09-29 ファナック株式会社 Straight groove processing method and straight groove processing apparatus
KR101194204B1 (en) * 2010-03-25 2012-10-29 화낙 코퍼레이션 Method and apparatus for machining linear groove
TWI380888B (en) * 2010-03-30 2013-01-01 Fanuc Ltd Straight groove processing method and straight groove processing device

Also Published As

Publication number Publication date
CN101347846B (en) 2010-06-16
CN101347846A (en) 2009-01-21
JP5100230B2 (en) 2012-12-19

Similar Documents

Publication Publication Date Title
JP5100230B2 (en) Fine shape cutting apparatus and fine shape cutting method.
JP4336092B2 (en) NC processing machine with polishing unit
US9687991B2 (en) Microscopic geometry cutting device and microscopic geometry cutting method
JP5355950B2 (en) V-groove processing method and apparatus
JP5384196B2 (en) Ultra precision roll lathe
JP6462858B2 (en) Drilling method
TWI760536B (en) Control device for machine tool and machine tool
KR20190134697A (en) Machine tools and machine tools
TW201634176A (en) Machine tool and control device for machine tool
JP2007021593A (en) Machining device
WO2021117526A1 (en) Processing device, processing method, and cutting tool
US10007247B2 (en) Numerical control device with plurality of spindles and associated synchronous tapping
TW201728389A (en) Machine tool and device for controlling machine tool
JP5132235B2 (en) Cutting method and cutting apparatus
JP5255905B2 (en) Fine shape cutting method and fine shape cutting apparatus
JPH0341281B2 (en)
JP2021064363A (en) Numerical value control unit and control method
KR101389175B1 (en) device for identifying location of tail stock of lathe
JP2003094204A (en) Nc machining machine for machining works such as a plurality of lenses at the same time
JPH07241766A (en) Polishing head
JP2512403B2 (en) Gear square chamfer
JP2001300801A (en) Control method of nc lathe
JPH07156000A (en) Device for controlling punching command output timing
JP2001239440A (en) Machining center
JPH03142025A (en) Table moving controller for machine tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120925

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5100230

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350