JP5132235B2 - Cutting method and cutting apparatus - Google Patents

Cutting method and cutting apparatus Download PDF

Info

Publication number
JP5132235B2
JP5132235B2 JP2007248403A JP2007248403A JP5132235B2 JP 5132235 B2 JP5132235 B2 JP 5132235B2 JP 2007248403 A JP2007248403 A JP 2007248403A JP 2007248403 A JP2007248403 A JP 2007248403A JP 5132235 B2 JP5132235 B2 JP 5132235B2
Authority
JP
Japan
Prior art keywords
cutting
cutting tool
workpiece
axis
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007248403A
Other languages
Japanese (ja)
Other versions
JP2009078318A (en
Inventor
誠司 木村
将彦 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP2007248403A priority Critical patent/JP5132235B2/en
Publication of JP2009078318A publication Critical patent/JP2009078318A/en
Application granted granted Critical
Publication of JP5132235B2 publication Critical patent/JP5132235B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Milling, Broaching, Filing, Reaming, And Others (AREA)

Description

本発明は、切削工具を用いて、被加工物の表面に凹部または凸部を切削加工する切削加工方法および切削加工装置に関する。   The present invention relates to a cutting method and a cutting apparatus for cutting a concave portion or a convex portion on the surface of a workpiece using a cutting tool.

切削工具を用いて、被加工物の表面に微細な凹凸を加工する装置や方法として、特許文献1に開示された「微細表面形状切削加工装置および微細切削加工方法」が知られている。
これは、被加工物を搭載し、往復運動をする第1のスライド機構と、この第1のスライド機構の運動方向と直角方向に間欠位置決め運動をする第2のスライド機構と、これら第1および第2のスライド機構の運動軸とそれぞれ直角な方向に切削工具の切込み量を高速かつ微細に制御する工具切込み機構と、第1のスライド機構の運動に従ってパルス信号を発生する位置検出器とを備えて構成されている。
As a device or method for processing fine irregularities on the surface of a workpiece using a cutting tool, “a fine surface shape cutting device and a fine cutting method” disclosed in Patent Document 1 is known.
This includes a first slide mechanism that carries a workpiece and reciprocates, a second slide mechanism that intermittently moves in a direction perpendicular to the direction of movement of the first slide mechanism, A tool cutting mechanism for controlling the cutting depth of the cutting tool at high speed and finely in directions perpendicular to the movement axis of the second slide mechanism, and a position detector for generating a pulse signal according to the movement of the first slide mechanism. Configured.

被加工物の表面に微細表面形状を加工するには、第1のスライド機構の正方向の運動時に、位置検出器から発生するパルス信号に同期して工具切込み機構により切削工具の切込み量を高速に変化させ、第1のスライド機構の逆方向の運動時には、切削工具を被加工物から退避させ、かつ、第1のスライド機構が一往復する毎に第2のスライド機構を一定量送る。これによって、被加工物の表面に微細表面形状を加工することができる。   In order to machine a fine surface shape on the surface of the workpiece, the cutting depth of the cutting tool is increased by the tool cutting mechanism in synchronization with the pulse signal generated from the position detector during the forward movement of the first slide mechanism. When the first slide mechanism moves in the reverse direction, the cutting tool is retracted from the workpiece and the second slide mechanism is fed by a certain amount each time the first slide mechanism reciprocates once. Thereby, a fine surface shape can be processed on the surface of the workpiece.

特開2006−123085号公報JP 2006-123085 A

上述した特許文献1に開示された加工装置や加工方法では、被加工物の加工形状によっては、加工できない場合がある。
いま、図7に示す通常の切削工具(バイト)8を使用し、図8に示すように、ワークWの表面に断面略半円形状の凹部Gを切削加工する場合を考える。使用する切削工具8は、前逃げ角(水平面に対する前逃げ面8Aの角度)がγ、すくい角(垂直面に対するすくい面8Bの角度)がα(=0度)、刃物角(前逃げ面8Aとすくい面8Bとの角度)がβである。
In the processing apparatus and the processing method disclosed in Patent Document 1 described above, processing may not be possible depending on the processing shape of the workpiece.
Consider a case where a normal cutting tool (bite) 8 shown in FIG. 7 is used and a recess G having a substantially semicircular cross section is cut on the surface of the workpiece W as shown in FIG. The cutting tool 8 to be used has a front clearance angle (angle of the front clearance surface 8A with respect to the horizontal surface) γ, a rake angle (angle of the rake surface 8B with respect to the vertical surface) α (= 0 degrees), and a cutter angle (front clearance surface 8A). And the angle to the rake face 8B) is β.

凹部Gの入口側(加工方向前半側)形状接線角度δ(形状接線とワークW表面との角度)が、切削工具8の前逃げ角γよりも大きいと、切削工具8がワークWに切り込まれた際、切削工具8の前逃げ面8AがワークWの凹部G以外の部分に干渉してしまう。つまり、ワークWの形状接線角度δが切削工具8の前逃げ角γより大きくなると、切削工具8の前逃げ面8AがワークWの加工部位(凹部G)以外の部分9に転写されるため、凹部Gを目標形状に正確に加工できないという課題がある。
また、このような課題は、断面略半円形状の凹部を切削加工する場合だけでなく、断面略半円形状の凸部を切削加工する場合にも生じる課題でもある。
When the shape side tangent angle δ (angle between the shape tangent and the surface of the workpiece W) of the recess G is larger than the front clearance angle γ of the cutting tool 8, the cutting tool 8 cuts into the workpiece W. When this occurs, the front flank 8 </ b> A of the cutting tool 8 interferes with a portion other than the recess G of the workpiece W. That is, when the shape tangent angle δ of the workpiece W is larger than the front clearance angle γ of the cutting tool 8, the front clearance surface 8A of the cutting tool 8 is transferred to the portion 9 other than the processing portion (concave portion G) of the workpiece W. There exists a subject that the recessed part G cannot be processed into a target shape correctly.
Moreover, such a problem is a problem that occurs not only when cutting a concave portion having a substantially semicircular cross section, but also when cutting a convex portion having a substantially semicircular cross section.

本発明の目的は、このような課題を解消し、被加工物の形状接線角度が大きくなっても、目標形状に凹部または凸部を切削加工することができる切削加工方法および切削加工装置を提供することにある。   An object of the present invention is to provide a cutting method and a cutting apparatus capable of solving such problems and cutting a concave portion or a convex portion into a target shape even when the shape tangent angle of the workpiece increases. There is to do.

本発明者等は、上記課題を解決すべく検討した結果、まず、切削工具の前逃げ面が被加工物に干渉して被加工物の加工部位以外の部分に転写されるのを防止するには、切削工具の前逃げ角を、被加工物の形状接線角度よりも大きくすれば解決できる。しかし、これでは、刃物角が小さくなってしまい、切削工具としての強度が低下し、耐久性のある切削工具が得られない。   As a result of studying the above problems, the present inventors firstly prevented the front flank of the cutting tool from interfering with the workpiece and being transferred to a portion other than the machining portion of the workpiece. Can be solved by making the front clearance angle of the cutting tool larger than the shape tangent angle of the workpiece. However, in this case, the blade angle becomes small, the strength as a cutting tool is lowered, and a durable cutting tool cannot be obtained.

そこで、図3に示すように、刃物角βを維持するために、すくい角αを負(すくい面8Bが垂直面に対して切削方向へ傾いている)にした切削工具8を用いれば、形状接線角度が正の場合、前逃げ面8Aが被加工物に干渉しなくなるため、被加工物を正確に加工できる。
しかし、このようにすると、次のような新たな課題が生じる。
Therefore, as shown in FIG. 3, in order to maintain the blade angle β, if the cutting tool 8 having a negative rake angle α (the rake face 8B is inclined in the cutting direction with respect to the vertical plane) is used, the shape When the tangent angle is positive, the front flank 8A does not interfere with the work piece, so that the work piece can be processed accurately.
However, if this is done, the following new problem arises.

例えば、凹部を加工する場合、凹部の加工方向後半側において、形状接線角度が負の場合、切削工具8のすくい角αが負になることにより、せん断角が減るため、バリが発生するという新たな課題が生じる。
つまり、図4に示すように、切削工具8をワークWに切り込んで、断面略半円形状の凹部Gを加工する際、切削工具8の前逃げ角γを凹部Gの入口側つまり加工方向前半側形状接線角度δ1より大きくしておけば、凹部Gの加工方向前半側については、前逃げ面8AがワークWの加工部位以外の部分に干渉しないため、凹部Gを正確に加工できる。
しかし、図5に示すように、凹部Gの出口側つまり加工方向後半側については、加工方向後半側形状接線角度δ2が負で、しかも、切削工具8のすくい角も負であるから、せん断角が減り、バリ31が発生するという課題が生じる。
For example, when processing a recess, if the shape tangent angle is negative in the second half of the recess processing direction, the rake angle α of the cutting tool 8 becomes negative, so that the shear angle is reduced, so that burrs are generated. Challenges arise.
That is, as shown in FIG. 4, when the cutting tool 8 is cut into the workpiece W to process the recess G having a substantially semicircular cross section, the front clearance angle γ of the cutting tool 8 is set to the inlet side of the recess G, that is, the first half in the processing direction. If the side shape tangent angle δ1 is set larger than the front half of the concave portion G in the machining direction, the front clearance surface 8A does not interfere with portions other than the machining portion of the workpiece W, so that the concave portion G can be machined accurately.
However, as shown in FIG. 5, on the exit side of the recess G, that is, the latter half of the machining direction, the shape tangent angle δ2 of the latter half of the machining direction is negative and the rake angle of the cutting tool 8 is also negative. Decreases, and the problem that the burr 31 occurs occurs.

また、断面略半円形状の凸部を加工する場合、切削工具8の前逃げ角γを凸部の加工方向後半側形状接線角度より大きくしておけば、凸部の加工方向後半側につては、前逃げ面がワークの加工部位以外の部分に干渉しないため、凸部を正確に加工できる。
しかし、凸部の入口側つまり加工方向前半側については、形状接線角度が負で、しかも、切削工具8のすくい角も負であるから、せん断角が減り、確実な切削加工が行えないという課題が生じる。
Also, when machining a convex part having a substantially semicircular cross section, if the front clearance angle γ of the cutting tool 8 is set larger than the shape tangent angle in the second half of the convex part in the machining direction, Since the front flank does not interfere with any part other than the processing part of the workpiece, the convex part can be processed accurately.
However, on the entrance side of the convex portion, that is, the first half of the machining direction, the shape tangent angle is negative, and the rake angle of the cutting tool 8 is also negative, so that the shear angle is reduced and reliable cutting cannot be performed. Occurs.

本発明では、この問題を解決するために、切削工具の両面、つまり、前逃げ面とすくい面との両面を用いて、往復経路で凹部または凸部の切削加工を行う。例えば、凹部の加工の場合、往路加工で発生したバリを復路加工で除去するようにしたものである。具体的には、本発明の切削加工方法および切削加工装置は、次の構成を採用している。   In the present invention, in order to solve this problem, the concave or convex portion is cut by a reciprocating path using both surfaces of the cutting tool, that is, both the front flank surface and the rake surface. For example, in the case of recess processing, burrs generated in the outward processing are removed by the backward processing. Specifically, the cutting method and the cutting apparatus of the present invention employ the following configuration.

本発明の切削加工方法は、加工方向前半側形状接線と被加工物表面との角度と、加工方向後半側形状接線と被加工物表面との角度とが略等しく、かつ、これらの形状接線角度が20°以上の断面半円形状を有する凹部または凸部を切削加工する切削加工方法において、工具軸線に対するすくい面のすくい角が−5°〜−70°、前逃げ角が20°〜60°の切削工具を用い、前記切削工具の工具軸線方向の切り込み量を高速で変化させるとともに、前記切削工具を被加工物の表面往路に沿って移動させながら、被加工物に凹部または凸部を切削加工したのち、前記切削工具の姿勢を変えずに、前記切削工具の工具軸線方向の切り込み量を高速で変化させるとともに、前記切削工具を被加工物の表面復路に沿って移動させながら、前記被加工物に加工した前記凹部または凸部を再度切削加工する、ことを特徴とする。 In the cutting method of the present invention, the angle between the first half tangent line in the machining direction and the workpiece surface, and the angle between the second half tangent line in the machining direction and the workpiece surface are substantially equal, and these shape tangent angles In a cutting method of cutting a concave or convex portion having a semicircular cross section of 20 ° or more, the rake angle of the rake face with respect to the tool axis is −5 ° to −70 °, and the front clearance angle is 20 ° to 60 °. With this cutting tool, the cutting amount in the tool axis direction of the cutting tool is changed at high speed, and the concave or convex portion is cut in the workpiece while moving the cutting tool along the surface outward path of the workpiece. After machining, without changing the posture of the cutting tool, the cutting amount in the tool axial direction of the cutting tool is changed at high speed, and the cutting tool is moved along the surface return path of the workpiece. Add to workpiece The processed concave or convex portion is cut again.

この構成によれば、すくい角が負の切削工具を用いているから、前逃げ角を大きくしても、つまり、被加工物の形状接線角度よりも大きくしても、刃物角を維持できる。従って、切削工具の強度低下が少ないので、耐久性を維持できる。
このような切削工具を用いて、まず、切削工具の切り込み量を高速で変化させるとともに、切削工具を被加工物の表面往路に沿って移動させながら、被加工物に凹部または凸部を切削加工する。
According to this configuration, since the cutting tool having a negative rake angle is used, the blade angle can be maintained even if the front clearance angle is increased, that is, the shape tangent angle of the workpiece is increased. Accordingly, the durability of the cutting tool can be maintained since the strength is not lowered.
Using such a cutting tool, first, the cutting amount of the cutting tool is changed at high speed, and the concave or convex portion is cut into the workpiece while moving the cutting tool along the surface outward path of the workpiece. To do.

例えば、被加工物に凹部を加工する際、切削工具の前逃げ角が、凹部の加工方向前半側形状接線角度よりも大きくできるから、前逃げ面が被加工物に干渉して転写されることがなく、凹部の加工方向前半側を正確に切削加工できる。
次に、切削工具の切り込み量を高速で変化させるとともに、切削工具を被加工物の表面復路に沿って移動させながら、被加工物に加工した前記凹部を再度切削加工する。これにより、復路加工において、往路加工で発生したバリを除去できるから、被加工物の形状接線角度が大きくなっても、目標形状に凹部を切削加工することができる。
For example, when machining the recess in the workpiece, the front clearance angle of the cutting tool can be larger than the tangent angle of the front half side shape of the recess in the machining direction, so that the front clearance surface is transferred by interference with the workpiece. There is no, and the first half side in the processing direction of the recess can be cut accurately.
Next, the cutting amount of the cutting tool is changed at a high speed, and the concave portion processed into the workpiece is cut again while moving the cutting tool along the surface return path of the workpiece. Thereby, since the burr | flash which generate | occur | produced in the outward path | route process can be removed in a return path | route process, even if the shape tangent angle of a workpiece becomes large, a recessed part can be cut into a target shape.

また、被加工物に凸部を加工する際、切削工具の前逃げ角が、凸部の加工方向後半側形状接線角度よりも大きくできるから、前逃げ面が被加工物に干渉して転写されることがなく、凸部の加工方向後半側を正確に切削加工できる。
次に、切削工具の切り込み量を高速で変化させるとともに、切削工具を被加工物の表面復路に沿って移動させながら、被加工物に加工した前記凸部を再度切削加工する。これにより、復路加工において、往路加工で発生したバリ、あるいは、加工できなかった部分を除去できるから、被加工物の形状接線角度が大きくなっても、目標形状に凸部を切削加工することができる。
In addition, when machining the convex part on the workpiece, the front clearance angle of the cutting tool can be made larger than the shape tangent angle on the second half of the convex direction in the machining direction, so that the front clearance surface is transferred by interference with the workpiece. Therefore, it is possible to accurately cut the latter half of the convex portion in the machining direction.
Next, the cutting amount of the cutting tool is changed at a high speed, and the convex portion processed into the workpiece is cut again while moving the cutting tool along the surface return path of the workpiece. As a result, the burr generated in the forward path machining or the part that could not be machined can be removed in the backward path machining, so that even if the shape tangent angle of the workpiece increases, the convex portion can be cut into the target shape. it can.

しかも、従来の加工では、往路のみで加工して、復路は戻りの目的のみで無駄時間となっていたが、本発明の切削加工方法では、その戻りの時間を利用して加工を行うので、加工時間が増えるのを防止できる。
また、切削工具は、すくい角が−5°〜−70°、前逃げ角が20°〜60°であるから、凹部または凸部の形状接線角度が20°以上の形状でも、正確に加工することができる。
とくに、凹部または凸部の形状が、加工方向前半側形状接線と被加工物表面との角度と、加工方向後半側形状接線と被加工物表面との角度とが略等しく、かつ、これらの形状接線角度が20°以上である断面半円形状を有する凹部または凸部の切削加工に適する。例えば、半球形状の凹部や凸部、断面が半円形状の溝部や凸条部、あるいは、断面がV字状、台形状などの凹部または凸部の加工に適する。
Moreover, in the conventional processing, processing was performed only in the forward path, and the return path was a waste time only for the purpose of return, but in the cutting method of the present invention, processing is performed using the return time. An increase in processing time can be prevented.
In addition, since the cutting tool has a rake angle of -5 ° to -70 ° and a front clearance angle of 20 ° to 60 °, the cutting tool accurately processes even a shape where the shape tangent angle of the concave portion or the convex portion is 20 ° or more. be able to.
In particular, the shape of the concave or convex portion is such that the angle between the tangent line in the first half of the machining direction and the surface of the workpiece, and the angle between the tangent line in the latter half of the machining direction and the surface of the workpiece are substantially equal. It is suitable for cutting a concave portion or a convex portion having a semicircular cross section whose tangent angle is 20 ° or more. For example, it is suitable for processing a concave or convex portion having a hemispherical shape, a groove or convex portion having a semicircular cross section, or a concave or convex portion having a V-shaped or trapezoidal cross section.

本発明の切削加工方法において、前記往路加工では、前記凹部または凸部の加工方向前半または加工方向後半を切削加工し、前記復路加工では、前記凹部または凸部の残りの半分を切削加工することが好ましい。
例えば、凹部を加工する際、切削工具のすくい角を負にすると、往路加工において、凹部の加工方向後半側の切削加工ではせん断角が減るため正確な形状に切削加工することが困難になるが、上記構成によれば、往路加工では、凹部の加工方向前半側の約半分を切削加工し、復路加工では、凹部の残りの約半分を切削加工するので、凹部を正確に切削加工できる。
In the cutting method of the present invention, in the forward path machining, the first half or the second half in the machining direction of the recess or projection is cut, and in the backward path, the remaining half of the recess or projection is cut. Is preferred.
For example, when machining the recess, if the rake angle of the cutting tool is made negative, it is difficult to cut into an accurate shape because the shear angle is reduced in the machining in the latter half of the recess machining direction in the forward path machining. According to the above configuration, about half of the front half of the recess in the processing direction is cut in the forward pass processing, and the remaining half of the recess is cut in the return pass processing, so that the recess can be cut accurately.

本発明の加工装置は、加工方向前半側形状接線と被加工物表面との角度と、加工方向後半側形状接線と被加工物表面との角度とが略等しく、かつ、これらの形状接線角度が20°以上の断面半円形状を有する凹部または凸部を切削加工する切削加工装置であって、前記被加工物を載置したテーブルおよび切削工具と、前記テーブルおよび前記切削工具を互いに直交するX軸およびY軸方向へ相対移動させるX軸移動機構およびY軸移動機構と、前記切削工具を前記X軸およびY軸方向に対して直交するZ軸方向へ進退させる切込軸を有するZ軸移動機構と、前記切込軸に設けられ前記Z軸方向への前記切削工具の切込量を高速で変化させる往復動ステージと、前記X軸移動機構、前記Y軸移動機構前記Z軸移動機構および前記往復動ステージの駆動を制御する制御手段とを備えた切削加工装置において、前記切削工具は、工具軸線に対するすくい面のすくい角が−5°〜−70°、前逃げ角が20°〜60°の切削工具が用いられ、かつ、該工具軸線が前記Z軸に一致して取り付けられ、前記制御手段によって、前記切削工具の工具軸線方向の切り込み量を高速で変化させるとともに、前記切削工具を被加工物の表面往路に沿って移動させながら、被加工物に凹部または凸部を切削加工したのち、前記切削工具の姿勢を変えずに、前記切削工具の工具軸線方向の切り込み量を高速で変化させるとともに、前記切削工具を被加工物の表面復路に沿って移動させながら、前記被加工物に加工した前記凹部または凸部を再度切削加工するよう構成されていることを特徴とする。 In the processing apparatus of the present invention, the angle between the first half shape tangent of the machining direction and the workpiece surface is substantially equal to the angle between the second half shape tangent of the machining direction and the workpiece surface, and these shape tangent angles are A cutting device that cuts a concave portion or a convex portion having a semicircular cross section of 20 ° or more, wherein the table and the cutting tool on which the workpiece is placed, and the table and the cutting tool are orthogonal to each other X Z-axis movement having an X-axis movement mechanism and a Y-axis movement mechanism that move relative to each other in the axis and Y-axis directions, and a cutting axis that moves the cutting tool back and forth in the Z-axis direction perpendicular to the X-axis and Y-axis directions A mechanism, a reciprocating stage provided at the cutting shaft for changing the cutting amount of the cutting tool in the Z-axis direction at high speed, the X-axis moving mechanism, the Y-axis moving mechanism , and the Z-axis moving mechanism And the reciprocating stay In cutting and control means for controlling the drive of the cutting tool, the rake angle of the rake face with respect to the tool axis is -5 ° ~-70 °, the cutting tool before clearance angle 20 ° to 60 ° And the tool axis is attached to coincide with the Z-axis, and the control means changes the cutting amount of the cutting tool in the tool axis direction at a high speed, and the cutting tool is moved to the workpiece. While moving along the surface outward path, after cutting the concave or convex portion on the workpiece , without changing the posture of the cutting tool, the cutting amount in the tool axis direction of the cutting tool is changed at high speed, The concave portion or the convex portion processed into the workpiece is cut again while moving the cutting tool along the surface return path of the workpiece.

この構成によれば、制御手段によって、X軸移動機構、Y軸移動機構およびZ軸移動機構の駆動が制御される。つまり、各軸移動機構によって被加工物と切削工具とが三次元方向へ相対移動されるとともに、切削工具が予め設定した切込量で進退するように、往復動ステージを駆動されるから、この装置を利用して、前記加工方法で述べた凹部または凸部の加工を実現することができる。   According to this configuration, the driving of the X-axis movement mechanism, the Y-axis movement mechanism, and the Z-axis movement mechanism is controlled by the control unit. In other words, the workpiece and the cutting tool are relatively moved in the three-dimensional direction by each axis moving mechanism, and the reciprocating stage is driven so that the cutting tool advances and retreats by a preset cutting amount. Using the apparatus, the processing of the concave portion or the convex portion described in the processing method can be realized.

本発明の切削加工装置において、前記往復動ステージは、複数の圧電素子を積層した圧電素子積層体によって構成されていることを特徴とする。
この構成によれば、往復動ステージに、複数の圧電素子を積層した圧電素子積層体を用いたので、切削工具の切込量を高速で制御することができる。従って、被加工物の表面に微細な形状を高精度にかつ高い仕上げ精度に加工できる。
In the cutting apparatus according to the present invention, the reciprocating stage is configured by a piezoelectric element laminate in which a plurality of piezoelectric elements are laminated.
According to this configuration, since the piezoelectric element laminate in which a plurality of piezoelectric elements are laminated is used for the reciprocating stage, the cutting amount of the cutting tool can be controlled at high speed. Therefore, it is possible to process a fine shape on the surface of the workpiece with high accuracy and high finishing accuracy.

以下、本発明の実施形態を図面に基づいて説明する。
<図1の説明>
図1は、本発明の切削加工装置の実施形態を示す正面図である。同切削加工装置は、ベース1と、このベース1の上面にY軸方向(図1の紙面に対して直交する方向)へ移動可能に設けられ上面に被加工物としてのワークWを載置したテーブル2と、ベース1の両側に立設されたコラム3と、このコラム3の上端間に掛け渡されたクロスレール4と、このクロスレール4に沿ってX軸方向へ移動可能に設けられたスライダ5と、このスライダ5にZ軸方向へ移動可能に設けられた切込軸6と、この切込軸6に往復動ステージ7を介して取り付けられた切削工具8とを備える。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
<Description of FIG. 1>
FIG. 1 is a front view showing an embodiment of a cutting apparatus of the present invention. The cutting apparatus is provided with a base 1 and a work W as a workpiece on the upper surface, which is provided on the upper surface of the base 1 so as to be movable in the Y-axis direction (direction orthogonal to the paper surface of FIG. 1). A table 2, columns 3 erected on both sides of the base 1, a cross rail 4 spanned between the upper ends of the column 3, and a cross rail 4 provided so as to be movable in the X-axis direction The slider 5 includes a cutting shaft 6 provided on the slider 5 so as to be movable in the Z-axis direction, and a cutting tool 8 attached to the cutting shaft 6 via a reciprocating stage 7.

ベース1とテーブル2との間には、テーブル2をY軸方向へ移動させるY軸駆動機構11が設けられている。クロスレール4とスライダ5との間には、スライダ5をX軸方向へ移動させるX軸駆動機構12が設けられている。スライダ5と切込軸6との間には、切込軸6を含みこの切込軸6をZ軸方向へ移動させるZ軸駆動機構13が設けられている。つまり、ワークWを載置したテーブル2および切削工具8を互いに直交するX軸およびY軸方向へ相対移動させるX軸移動機構12およびY軸移動機構11と、切削工具8をX軸およびY軸方向に対して直交するZ軸方向へ進退させるZ軸移動機構13とを備えている。なお、これらの駆動機構11,12,13は、ボールねじ送り機構などによって構成されているが、これに限られない。   Between the base 1 and the table 2, a Y-axis drive mechanism 11 that moves the table 2 in the Y-axis direction is provided. An X-axis drive mechanism 12 that moves the slider 5 in the X-axis direction is provided between the cross rail 4 and the slider 5. Between the slider 5 and the cutting shaft 6, a Z-axis drive mechanism 13 that includes the cutting shaft 6 and moves the cutting shaft 6 in the Z-axis direction is provided. That is, the X-axis moving mechanism 12 and the Y-axis moving mechanism 11 that relatively move the table 2 on which the workpiece W is placed and the cutting tool 8 in the X-axis and Y-axis directions orthogonal to each other, and the cutting tool 8 as the X-axis and Y-axis. And a Z-axis moving mechanism 13 that moves back and forth in the Z-axis direction orthogonal to the direction. In addition, although these drive mechanisms 11, 12, and 13 are comprised by the ball screw feed mechanism etc., it is not restricted to this.

往復動ステージ7は、切込軸6と切削工具8との間に設けられ、切削工具8の切込量、つまり、Z軸方向へ進退量を高速で変化させることができるものあればいずれでもよい。例えば、複数の圧電素子を積層した圧電素子積層体によって構成することができる。このほか、リニアモータやボイスコイルなどを用いて構成することもできる。   The reciprocating stage 7 is provided between the cutting shaft 6 and the cutting tool 8, and any reciprocating stage 7 can change the cutting amount of the cutting tool 8, that is, the amount of advance / retreat in the Z-axis direction at high speed. Good. For example, it can be constituted by a piezoelectric element laminate in which a plurality of piezoelectric elements are laminated. In addition, a linear motor or a voice coil can be used.

<図2の説明>
図2は、切削加工装置の制御システムを示している。同システムには、X軸駆動機構12、Y軸駆動機構11、Z軸駆動機構13などを制御する制御手段としてのNC装置21と、このNC装置21からのトリガー信号を受けて往復動ステージ7を駆動する往復動ステージ駆動手段22と、入力装置23と、出力装置24とを備える。
<Description of FIG. 2>
FIG. 2 shows a control system of the cutting apparatus. The system includes an NC device 21 as control means for controlling the X-axis drive mechanism 12, the Y-axis drive mechanism 11, the Z-axis drive mechanism 13, and the like, and a reciprocating stage 7 that receives a trigger signal from the NC device 21. Is provided with a reciprocating stage driving means 22 for driving the motor, an input device 23, and an output device 24.

NC装置21は、X軸駆動機構12、Y軸駆動機構11、Z軸駆動機構13の駆動を制御する駆動プログラムなどを記憶し、これらの駆動プログラムに従ってX軸駆動機構12、Y軸駆動機構11、Z軸駆動機構13の駆動を制御するともに、予め設定されたタイミングでトリガー信号を往復動ステージ駆動手段22に与える。   The NC device 21 stores a drive program for controlling the drive of the X-axis drive mechanism 12, the Y-axis drive mechanism 11, and the Z-axis drive mechanism 13, and the X-axis drive mechanism 12 and the Y-axis drive mechanism 11 according to these drive programs. In addition to controlling the drive of the Z-axis drive mechanism 13, a trigger signal is given to the reciprocating stage drive means 22 at a preset timing.

往復動ステージ駆動手段22は、ワークWの表面加工形状を加工するための往復動ステージ7の駆動データを記憶し、NC装置21からトリガー信号を受けたとき、この記憶した駆動データをアナログ電圧に変換して往復動ステージ7に与える。これにより、予め設定された切込量で切削工具8が進退される。   The reciprocating stage driving means 22 stores driving data of the reciprocating stage 7 for processing the surface processed shape of the workpiece W, and when the trigger signal is received from the NC device 21, the stored driving data is converted into an analog voltage. This is converted and given to the reciprocating stage 7. Thereby, the cutting tool 8 is advanced and retracted by the preset cutting amount.

入力装置23は、キーボードなどによって構成されているが、これに限られない。
出力装置24は、表示装置やプリンタなどによって構成されているが、これに限られない。
The input device 23 is configured by a keyboard or the like, but is not limited thereto.
The output device 24 is configured by a display device, a printer, or the like, but is not limited thereto.

<図3の説明>
図3は、凹部加工に用いる切削工具8を示している。
切削工具8は、前逃げ面8AがワークWに干渉してワークWの加工部位(凹部G)以外の部分に転写されるのを防止するために、切削工具8の前逃げ角γを、ワークWの形状接線角度よりも大きくし、かつ、これに伴って刃物角βが小さくなってしまう点を、すくい角αを負(すくい面8Bが垂直面、つまり、工具軸線に対して切削方向へ傾いている)にすることによって刃物角βを維持している。
<Description of FIG. 3>
FIG. 3 shows a cutting tool 8 used for recess processing.
In order to prevent the front flank 8 </ b> A from interfering with the workpiece W and being transferred to a portion other than the machining portion (concave portion G) of the workpiece W, the cutting tool 8 is configured to set the front clearance angle γ of the cutting tool 8 to the workpiece. The rake angle α is negative (the rake face 8B is a vertical plane , that is, in the cutting direction with respect to the tool axis) . The blade angle β is maintained.

具体的には、切削工具8は、工具本体と、工具本体の先端に接着固定された刃先チップとから構成され、刃先チップにおいて、前逃げ角(水平面に対する前逃げ面8Aの角度)γが20°〜60°、すくい角(垂直面に対するすくい面8Bの角度)αが−5°〜−70°、刃物角βが75°〜80°に形成されている。従って、すくい角αが負の切削工具8を用いているから、前逃げ角γを大きくしても、つまり、ワークWの形状接線角度よりも大きくしても、刃物角βを強度低下に影響ない角度に維持できる。
本実施形態では、前逃げ角γが50°、すくい角αが40°、刃物角βが80°の切削工具8が用いられている。
Specifically, the cutting tool 8 is composed of a tool body and a cutting edge tip that is bonded and fixed to the tip of the tool body. The cutting edge tip has a front clearance angle (an angle of the front clearance surface 8A with respect to the horizontal plane) γ of 20. The rake angle (angle of the rake face 8B with respect to the vertical plane) α is -5 ° to -70 °, and the blade angle β is 75 ° to 80 °. Therefore, since the cutting tool 8 having a negative rake angle α is used, the blade angle β has an effect on the strength reduction even if the front clearance angle γ is increased, that is, larger than the shape tangent angle of the workpiece W. Can maintain no angle.
In this embodiment, a cutting tool 8 having a front clearance angle γ of 50 °, a rake angle α of 40 °, and a cutter angle β of 80 ° is used.

<図4、図5および図6の説明>
ワークWの表面に断面半円形状の凹部G(凹部Gの加工方向前半側および加工方向後半側形状接線角度が45°の断面半円形状の凹部G)を一定ピッチで切削加工する場合について説明する。
NC装置21によって駆動プログラムが開始されると、この駆動プログラムに従って、X軸移動機構12、Y軸移動機構11およびZ軸移動機構13の駆動が制御される。
<Explanation of FIGS. 4, 5 and 6>
A description will be given of a case in which a concave portion G having a semicircular cross section (a concave portion G having a semicircular cross section having a tangent angle of 45 ° in the processing direction first half side and the second half in the processing direction) is cut at a constant pitch on the surface of the workpiece W. To do.
When the driving program is started by the NC device 21, the driving of the X-axis moving mechanism 12, the Y-axis moving mechanism 11, and the Z-axis moving mechanism 13 is controlled according to this driving program.

まず、X軸移動機構12の駆動制御により、切削工具8がX軸方向の第1の位置(図1中右位置)から第2の位置(図1中左位置)へ相対移動される(往路動作)。また、駆動プログラム開始時から所定時間経過後(つまり、切削工具8がワークWの加工位置真上に到達したとき)、NC装置21からトリガー信号が往復動ステージ駆動手段22に与えられる。
すると、往復動ステージ駆動手段22は、NC装置21からのトリガー信号を受けて、予め設定した切込量で切削工具8が進退するように、往復動ステージ7を駆動させる。つまり、一定周期毎に、切削工具8の切込量が次第に大きくなったのち小さくなり、こののち一定に維持されるように制御される。これにより、ワークWの表面に断面半円形状を有する凹部Gが一定ピッチ間隔で加工される。
First, the cutting tool 8 is relatively moved from the first position in the X-axis direction (right position in FIG. 1) to the second position (left position in FIG. 1) by driving control of the X-axis moving mechanism 12 (outward path). Operation). In addition, after a predetermined time has elapsed from the start of the drive program (that is, when the cutting tool 8 has reached just above the machining position of the workpiece W), a trigger signal is given from the NC device 21 to the reciprocating stage drive means 22.
Then, the reciprocating stage driving means 22 receives the trigger signal from the NC device 21 and drives the reciprocating stage 7 so that the cutting tool 8 advances and retreats by a preset cutting amount. That is, the control is performed so that the cutting amount of the cutting tool 8 gradually increases and decreases after every predetermined period, and then is maintained constant. Thereby, the recessed part G which has a semicircular cross-sectional shape on the surface of the workpiece | work W is processed by a fixed pitch space | interval.

この際、切削工具8がワークWの表面に沿って往路移動しながら、ワークWに凹部Gを切削加工する工程(往路加工工程)において、図4に示すように、切削工具8がワークWの表面に切り込まれると、切削工具8の前逃げ角γが、凹部Gの加工方向前半側形状接線角度δ1よりも大きいから、前逃げ面8AがワークWの加工部位(凹部G)以外の部分に干渉して転写されることがなく、凹部Gの入口側を正確に切削加工できる。従って、凹部Gの加工方向前半側、つまり、入口側の約半分については、この往路加工において、正確に切削加工できる。   At this time, in the process of cutting the recess G in the work W while the cutting tool 8 moves along the surface of the workpiece W (outward machining process), as shown in FIG. When cut into the surface, the front clearance angle γ of the cutting tool 8 is larger than the processing direction front half side shape tangent angle δ1 of the concave portion G, so that the front clearance surface 8A is a portion other than the processing portion (concave portion G) of the workpiece W. Accordingly, the entrance side of the recess G can be accurately cut without being transferred. Accordingly, the front half of the recess G in the machining direction, that is, about half of the inlet side can be accurately cut in the forward machining.

やがて、図5に示すように、切削工具8が凹部Gの加工方向後半側、つまり、出口側に到達する。この段階では、凹部Gの加工方向後半側形状接線角度δ2が負で、しかも、切削工具8のすくい角αが負であるから、せん断角が減り、バリ31が発生する。
この問題を解決するために、切削工具8の両面、つまり、前逃げ面8Aとすくい面8Bとの両面を用いて、往復経路で凹部Gの切削加工を行う。つまり、往路加工で発生したバリ31を復路加工で除去する。
Eventually, as shown in FIG. 5, the cutting tool 8 reaches the second half in the machining direction of the recess G, that is, the outlet side. At this stage, since the shape tangent angle δ2 in the second half of the machining direction of the recess G is negative and the rake angle α of the cutting tool 8 is negative, the shear angle is reduced and the burr 31 is generated.
In order to solve this problem, the recess G is cut in a reciprocating path using both sides of the cutting tool 8, that is, both the front flank 8A and the rake face 8B. In other words, the burr 31 generated in the outward process is removed by the return process.

具体的には、X軸移動機構12の駆動制御により、切削工具8が第1の位置から第2の位置へ移動(往路移動)されたのち、今度は、切削工具8が第2の位置から第1の位置へ移動(復路移動)される。この復路移動開始から所定時間経過後(つまり、切削工具8がワークWの加工位置真上に到達したとき)、NC装置21からトリガー信号が往復動ステージ駆動手段22に与えられる。
すると、往復動ステージ駆動手段22は、NC装置21からのトリガー信号を受けて、予め設定した切込量で切削工具8が進退するように、往復動ステージ7を駆動させる。これにより、ワークWの表面に切削加工された断面半円形状を有する凹部Gが再度切削加工される。
Specifically, after the cutting tool 8 is moved from the first position to the second position (forward movement) by the drive control of the X-axis moving mechanism 12, this time, the cutting tool 8 is moved from the second position. It is moved to the first position (return trip). After a lapse of a predetermined time from the start of the return path movement (that is, when the cutting tool 8 reaches just above the machining position of the workpiece W), a trigger signal is given from the NC device 21 to the reciprocating stage driving means 22.
Then, the reciprocating stage driving means 22 receives the trigger signal from the NC device 21 and drives the reciprocating stage 7 so that the cutting tool 8 advances and retreats by a preset cutting amount. As a result, the concave portion G having a semicircular cross section cut on the surface of the workpiece W is cut again.

この際、切削工具8がワークWの表面復路に沿って移動しながら、ワークWに凹部Gを切削加工する工程(復路加工工程)において、図6(A)に示すように、切削工具8がワークWの表面に切り込まれると、切削工具8の前逃げ面8Aによって、往路加工で発生したバリ31が切削除去されるとともに、凹部Gの残りの半分(凹部Gの加工方向後半側)が正確に切削加工される。つまり、往路と復路との交点が、凹部Gの形状接線角度が小さい凹部Gの略中間位置に設定されている。
なお、すくい面8Bと水平面とのなす角度が、凹部Gの加工方向後半側形状接線角度δ2よりも大きくしておけば、すくい面8Bが凹部G以外の部分に転写されることがないから、切削工具8の復路切り込み時にも凹部Gを正確に加工することができる。
At this time, in the process of cutting the recess G in the workpiece W while the cutting tool 8 moves along the surface return path of the workpiece W (return path machining process), as shown in FIG. When cut into the surface of the workpiece W, the front flank 8A of the cutting tool 8 cuts and removes the burrs 31 generated in the forward processing, and the remaining half of the concave portion G (the second half in the processing direction of the concave portion G). It is cut accurately. That is, the intersection of the forward path and the return path is set at a substantially intermediate position of the concave portion G where the shape tangent angle of the concave portion G is small.
In addition, if the angle formed by the rake face 8B and the horizontal plane is larger than the shape tangent angle δ2 in the latter half of the processing direction of the recess G, the rake face 8B will not be transferred to a portion other than the recess G. The concave portion G can be accurately machined even when the cutting tool 8 cuts the return path.

やがて、図6(B)に示すように、切削工具8が凹部Gの加工方向前半側に到達する。この段階では、切削工具8の移動軌跡が、凹部Gの加工方向後半側の形状より内側に沿っているため、凹部Gの形状に影響を与えることもなく、凹部Gを正確に維持できる。   Eventually, as shown in FIG. 6 (B), the cutting tool 8 reaches the first half of the recess G in the machining direction. At this stage, since the movement trajectory of the cutting tool 8 is along the inner side of the shape of the recess G in the latter half of the machining direction, the recess G can be accurately maintained without affecting the shape of the recess G.

このようにして、ワークWの表面に、X軸方向に沿って凹部Gを一定ピッチで加工したのち、Y軸駆動機構11を一定ピッチ移動させて位置決めし、この位置において、上記の動作を繰り返せば、ワークWの表面全面にわたって凹部Gを一定ピッチで加工することができる。つまり、ワークWの表面全面にわたって凹凸形状を加工することができる。   In this way, after processing the recesses G on the surface of the workpiece W along the X-axis direction at a constant pitch, the Y-axis drive mechanism 11 is moved and positioned at a constant pitch, and the above operation can be repeated at this position. For example, the recesses G can be processed at a constant pitch over the entire surface of the workpiece W. That is, the uneven shape can be processed over the entire surface of the workpiece W.

<実施形態の効果>
本実施形態では、次に述べる効果が期待できる。
(1)すくい角αが負の切削工具8を用いているから、前逃げ角γを大きくしても、つまり、ワークWの加工方向前半側形状接線角度δ1よりも大きくしても、刃物角βを維持できる。従って、切削工具8の強度低下が少ないので、耐久性を維持できる。
<Effect of embodiment>
In the present embodiment, the following effects can be expected.
(1) Since the cutting tool 8 having a negative rake angle α is used, even if the front clearance angle γ is increased, that is, the tangent angle δ1 of the workpiece W is larger than the tangent angle δ1 in the processing direction, β can be maintained. Therefore, since the strength reduction of the cutting tool 8 is small, durability can be maintained.

(2)また、すくい角αが負で、前逃げ角γが大きい切削工具8を用いて、まず、切削工具8の切り込み量を高速で変化させるとともに、切削工具8をワークWの表面往路に沿って移動させながら、ワークWに凹部Gを切削加工する。この際、切削工具8の前逃げ角γが、凹部Gの加工方向前半側形状接線角度δ1よりも大きくできるから、前逃げ面8AがワークWに干渉して転写されることがなく、凹部Gの加工方向前半側を正確に切削加工できる。 (2) Further, using the cutting tool 8 having a negative rake angle α and a large front clearance angle γ, first, the cutting amount of the cutting tool 8 is changed at a high speed, and the cutting tool 8 is moved to the surface of the workpiece W. The concave portion G is cut in the workpiece W while being moved along. At this time, since the front clearance angle γ of the cutting tool 8 can be larger than the processing direction front half side shape tangent angle δ1 of the recess G, the front clearance surface 8A does not interfere with the workpiece W and is not transferred. The first half of the machining direction can be accurately cut.

(3)次に、切削工具8の切り込み量を高速で変化させるとともに、切削工具8をワークWの表面復路に沿って移動させながら、ワークWに加工した前記凹部Gを再度切削加工する。これにより、復路加工において、往路加工で発生したバリ31を除去できるから、ワークWの加工方向前半側形状接線角度δ1が大きくなっても、目標形状に凹部Gを切削加工することができる。
しかも、従来の加工では、往路のみで加工して、復路は戻りの目的のみで無駄時間となっていたが、その戻りの時間を利用して加工を行うので、加工時間が増えるのを防止できる。
(3) Next, the cutting amount of the cutting tool 8 is changed at high speed, and the concave portion G processed into the workpiece W is cut again while the cutting tool 8 is moved along the surface return path of the workpiece W. Accordingly, since the burr 31 generated in the forward path machining can be removed in the backward path machining, the concave portion G can be cut into the target shape even when the shape tangent angle δ1 of the first half side in the machining direction of the workpiece W is increased.
In addition, in the conventional processing, the processing is performed only in the forward path, and the return path is a waste time only for the purpose of returning. However, since the processing is performed using the return time, it is possible to prevent an increase in the processing time. .

(4)往路加工では、凹部Gの加工方向前半側の約半分を切削加工し、復路加工では、凹部Gの残りの約半分を切削加工するので、凹部Gを正確に切削加工できる。つまり、切削工具8のすくい角αを負にすると、往路加工において、凹部Gの加工方向後半側の切削加工ではせん断角が減るため正確な形状に切削加工することが困難になるが、上記構成によれば、往路加工と復路加工とで凹部Gを半分ずつ切削加工するようにしたので、凹部Gを正確に切削加工できる。 (4) In the forward process, about half of the front half of the recess G in the processing direction is cut, and in the backward process, the remaining half of the recess G is cut, so that the recess G can be accurately cut. In other words, if the rake angle α of the cutting tool 8 is negative, in the forward path machining, the cutting of the recess G in the latter half of the machining direction will reduce the shear angle, making it difficult to cut into an accurate shape. According to the above, since the concave portion G is cut by half in the forward path processing and the backward path processing, the concave portion G can be accurately cut.

(5)切削工具8は、すくい角αが−5°〜−70°、前逃げ角γが20°〜60°の範囲で、このような切削工具8を用いれば、凹部Gの加工方向前半側形状接線角度δ1が20度以上の形状、例えば、加工方向前半側形状接線角度δ1と、加工方向後半側形状接線δ2とが略等しく、かつ、これらの形状接線角度が20°以上である断面半円形状を有する凹部Gの切削加工に適する。例えば、半球形状の凹部や断面が半円形状の溝部などの加工に適する。 (5) The cutting tool 8 has a rake angle α in the range of −5 ° to −70 ° and a front clearance angle γ in the range of 20 ° to 60 °. A shape in which the side shape tangent angle δ1 is 20 degrees or more, for example, a cross section in which the first half shape tangent angle δ1 in the machining direction is substantially equal to the second half shape tangent δ2 in the machining direction and the shape tangent angle is 20 ° or more. It is suitable for cutting the recess G having a semicircular shape. For example, it is suitable for processing a hemispherical recess or a groove having a semicircular cross section.

(6)また、往復動ステージ7に、複数の圧電素子を積層した圧電素子積層体を用いたので、切削工具8の切込量を高速で制御することができる。従って、ワークWの表面に微細な形状を高精度にかつ高い仕上げ精度に加工できる。 (6) Moreover, since the piezoelectric element laminated body which laminated | stacked the several piezoelectric element was used for the reciprocating stage 7, the cutting amount of the cutting tool 8 can be controlled at high speed. Therefore, a fine shape can be processed on the surface of the workpiece W with high accuracy and high finishing accuracy.

<変形例>
本発明は、上記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。
上記実施形態では、断面半円形状の凹部Gを切削加工する例を示したが、必ずしも、この例に限られるものではない。例えば、断面がV字形状や台形形状の凹部の加工にも適する。
<Modification>
The present invention is not limited to the above-described embodiment, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention.
In the said embodiment, although the example which cuts the recessed part G of a cross-sectional semicircle shape was shown, it is not necessarily restricted to this example. For example, it is suitable for processing a recess having a V-shaped or trapezoidal cross section.

また、凹部に限らず、凸部の切削加工にも適用できる。
例えば、断面略半円形状の凸部を加工する場合、切削工具8の前逃げ角γを凸部の加工方向後半側形状接線角度より大きくしておけば、凸部の加工方向後半側につては、前逃げ面8AがワークWの加工部位以外の部分に干渉しないため、凸部を正確に加工できる。しかし、凸部の入口側つまり加工方向前半側については、形状接線角度が負で、しかも、切削工具8のすくい角αも負であるから、せん断角が減り、確実な切削加工が行えないという課題が生じる。
Moreover, it is applicable not only to a recessed part but to the cutting process of a convex part.
For example, when machining a convex portion having a substantially semicircular cross section, if the front clearance angle γ of the cutting tool 8 is set larger than the shape tangent angle in the second half of the convex direction in the machining direction, Since the front flank 8A does not interfere with a portion other than the processing portion of the workpiece W, the convex portion can be processed accurately. However, on the entrance side of the convex portion, that is, the first half of the machining direction, the shape tangent angle is negative and the rake angle α of the cutting tool 8 is also negative, so that the shear angle is reduced and reliable cutting cannot be performed. Challenges arise.

このような場合でも、切削工具8の前逃げ角γが、凸部の加工方向後半側形状接線角度よりも大きくできるから、往路において、前逃げ面8AがワークWに干渉して転写されることがなく、凸部の加工方向後半側を正確に切削加工できる。
次に、切削工具8の切り込み量を高速で変化させるとともに、切削工具8をワークWの表面復路に沿って移動させながら、ワークWに加工した前記凸部を再度切削加工する。これにより、復路加工において、往路加工で発生したバリ、あるいは、加工できなかった部分を除去できるから、ワークWの形状接線角度が大きくなっても、目標形状に凸部を切削加工することができる。
Even in such a case, the front clearance angle γ of the cutting tool 8 can be made larger than the shape tangent angle on the second half in the machining direction of the convex portion, and therefore, the front clearance surface 8A is transferred by interference with the workpiece W in the forward path. There is no, and it is possible to accurately cut the latter half of the convex portion in the machining direction.
Next, while changing the cutting amount of the cutting tool 8 at high speed, the convex part processed into the workpiece W is cut again while moving the cutting tool 8 along the surface return path of the workpiece W. As a result, the burr generated in the forward path machining or the part that could not be machined can be removed in the backward path machining, so that even if the shape tangent angle of the workpiece W increases, the convex portion can be cut into the target shape. .

上記実施形態では、テーブル2をY軸方向へ移動可能に構成するとともに、切削工具8をX軸方向へ移動可能に構成したが、これとは逆な構成でもよい。つまり、テーブル2をX軸方向へ移動可能に構成するとともに、切削工具8をY軸方向へ移動可能に構成してもよい。あるいは、テーブル2および切削工具8のいずれか一方を、X軸方向およびY軸方向へ移動可能に構成してもよい。   In the above embodiment, the table 2 is configured to be movable in the Y-axis direction and the cutting tool 8 is configured to be movable in the X-axis direction. However, a configuration opposite to this may be used. That is, the table 2 may be configured to be movable in the X-axis direction, and the cutting tool 8 may be configured to be movable in the Y-axis direction. Alternatively, any one of the table 2 and the cutting tool 8 may be configured to be movable in the X-axis direction and the Y-axis direction.

上記実施形態では、X軸駆動機構12によって切削工具8をX軸方向へ移動させながら、往復動ステージ7を駆動して切削工具8の切込量を制御するようにしたが、Y軸駆動機構11によって切削工具8をY軸方向へ移動させながら、往復動ステージ7を駆動して切削工具8の切込量を制御するようにしてもよい。
あるいは、X軸駆動機構12およびY軸駆動機構11によって、切削工具8をXおよびY軸方向へ同時に移動させながら、往復動ステージ7を駆動して切削工具8の切込量を制御するようにしてもよい。
In the above embodiment, while the cutting tool 8 is moved in the X-axis direction by the X-axis drive mechanism 12, the reciprocating stage 7 is driven to control the cutting amount of the cutting tool 8. 11, the reciprocating stage 7 may be driven while the cutting tool 8 is moved in the Y-axis direction to control the cutting amount of the cutting tool 8.
Alternatively, the cutting amount of the cutting tool 8 is controlled by driving the reciprocating stage 7 while simultaneously moving the cutting tool 8 in the X and Y axis directions by the X axis driving mechanism 12 and the Y axis driving mechanism 11. May be.

上記実施形態では、ワークWの表面に凹部Gを一定ピッチ間隔で加工する加工方法について説明したが、これに限られない。例えば、ワークWの表面に凹部または凸部を不規則に加工する場合にも適用できる。   Although the said embodiment demonstrated the processing method which processes the recessed part G on the surface of the workpiece | work W with a fixed pitch space | interval, it is not restricted to this. For example, the present invention can be applied to a case where a concave portion or a convex portion is irregularly processed on the surface of the workpiece W.

本発明は、例えば、ワークの表面に微細な凹部または凸部を一定ピッチ間隔で配列したマイクロレンズ成形用金型などの加工に利用できる。   The present invention can be used for, for example, processing of a microlens molding die in which fine concave portions or convex portions are arranged at a constant pitch interval on the surface of a workpiece.

本発明の切削加工装置の一実施形態を示す正面図。The front view which shows one Embodiment of the cutting device of this invention. 同上実施形態の制御システムを示すブロック図。The block diagram which shows the control system of embodiment same as the above. 同上実施形態において、切削工具を示す図。The figure which shows a cutting tool in embodiment same as the above. 同上実施形態において、往路加工の加工初期を示す図。The figure which shows the process initial stage of an outward process in embodiment same as the above. 同上実施形態において、往路加工の加工終期を示す図。The figure which shows the process end of an outward process in embodiment same as the above. 同上実施形態において、復路加工を示す図。The figure which shows a return path process in embodiment same as the above. 従来の一般的切削工具を示す図。The figure which shows the conventional general cutting tool. 一般的切削工具を用いて凹部を加工する状態を示す図。The figure which shows the state which processes a recessed part using a general cutting tool.

符号の説明Explanation of symbols

2…テーブル、
6…切込軸、
7…往復動ステージ、
8…切削工具、
11…Y軸駆動機構、
12…X軸駆動機構、
13…Z軸駆動機構、
21…NC装置(制御手段)、
W…ワーク(被加工物)
G…凹部
α…すくい角、
β…刃物角、
γ…前逃げ角、
δ1…加工方向前半側形状接線角度、
δ2…加工方向後半側形状接線角度。
2 ... Table,
6 ... Infeed shaft,
7 ... reciprocating stage,
8 ... Cutting tools,
11 ... Y-axis drive mechanism,
12 ... X-axis drive mechanism,
13 ... Z-axis drive mechanism,
21 ... NC device (control means),
W ... Workpiece (workpiece)
G ... recess α ... rake angle,
β ... Cut angle,
γ ... Front clearance angle,
δ1 ... The first half side shape tangent angle in the processing direction,
δ2 ... Shape tangent angle in the latter half of the machining direction.

Claims (4)

加工方向前半側形状接線と被加工物表面との角度と、加工方向後半側形状接線と被加工物表面との角度とが略等しく、かつ、これらの形状接線角度が20°以上の断面半円形状を有する凹部または凸部を切削加工する切削加工方法において、
工具軸線に対するすくい面のすくい角が−5°〜−70°、前逃げ角が20°〜60°の切削工具を用い、
前記切削工具の工具軸線方向の切り込み量を高速で変化させるとともに、前記切削工具を被加工物の表面往路に沿って移動させながら、被加工物に凹部または凸部を切削加工したのち、
前記切削工具の姿勢を変えずに、前記切削工具の工具軸線方向の切り込み量を高速で変化させるとともに、前記切削工具を被加工物の表面復路に沿って移動させながら、前記被加工物に加工した前記凹部または凸部を再度切削加工する、
ことを特徴とする切削加工方法。
Cross-sectional semicircle in which the angle between the first half tangent line in the machining direction and the workpiece surface is substantially equal to the angle between the second half tangent line in the machining direction and the workpiece surface, and these shape tangent angles are 20 ° or more In a cutting method for cutting a concave portion or a convex portion having a shape ,
Using a cutting tool having a rake angle of the rake face with respect to the tool axis of -5 ° to -70 ° and a front clearance angle of 20 ° to 60 ° ,
After changing the cutting amount in the tool axis direction of the cutting tool at a high speed and cutting the concave or convex portion on the workpiece while moving the cutting tool along the surface outward path of the workpiece,
Without changing the posture of the cutting tool, the cutting amount in the tool axis direction of the cutting tool is changed at high speed, and the cutting tool is moved along the surface return path of the workpiece, and the workpiece is processed. Cutting the recessed portion or protruding portion again,
The cutting method characterized by the above-mentioned.
請求項1に記載の切削加工方法において、
前記往路加工では、前記凹部または凸部の加工方向前半または加工方向後半を切削加工し、
前記復路加工では、前記凹部または凸部の残りの半分を切削加工することを特徴とする切削加工方法。
The cutting method according to claim 1,
In the forward path machining, the first half of the machining direction or the second half of the machining direction of the concave part or convex part is cut,
In the return path machining, the remaining half of the concave portion or convex portion is cut.
加工方向前半側形状接線と被加工物表面との角度と、加工方向後半側形状接線と被加工物表面との角度とが略等しく、かつ、これらの形状接線角度が20°以上の断面半円形状を有する凹部または凸部を切削加工する切削加工装置であって、
前記被加工物を載置したテーブルおよび切削工具と、
前記テーブルおよび前記切削工具を互いに直交するX軸およびY軸方向へ相対移動させるX軸移動機構およびY軸移動機構と、
前記切削工具を前記X軸およびY軸方向に対して直交するZ軸方向へ進退させる切込軸を有するZ軸移動機構と、
前記切込軸に設けられ前記Z軸方向への前記切削工具の切込量を高速で変化させる往復動ステージと、
前記X軸移動機構、前記Y軸移動機構前記Z軸移動機構および前記往復動ステージの駆動を制御する制御手段とを備えた切削加工装置において、
前記切削工具は、工具軸線に対するすくい面のすくい角が−5°〜−70°、前逃げ角が20°〜60°の切削工具が用いられ、かつ、該工具軸線が前記Z軸に一致して取り付けられ、
前記制御手段によって、前記切削工具の工具軸線方向の切り込み量を高速で変化させるとともに、前記切削工具を被加工物の表面往路に沿って移動させながら、被加工物に凹部または凸部を切削加工したのち、前記切削工具の姿勢を変えずに、前記切削工具の工具軸線方向の切り込み量を高速で変化させるとともに、前記切削工具を被加工物の表面復路に沿って移動させながら、前記被加工物に加工した前記凹部または凸部を再度切削加工するよう構成されていることを特徴とする切削加工装置。
Cross-sectional semicircle in which the angle between the first half tangent line in the machining direction and the workpiece surface is substantially equal to the angle between the second half tangent line in the machining direction and the workpiece surface, and these shape tangent angles are 20 ° or more A cutting device for cutting a concave portion or a convex portion having a shape,
A table and a cutting tool which is placed the workpiece,
An X-axis moving mechanism and a Y-axis moving mechanism for relatively moving the table and the cutting tool in the X-axis and Y-axis directions orthogonal to each other;
A Z-axis moving mechanism having a cutting axis for moving the cutting tool back and forth in the Z-axis direction orthogonal to the X-axis and Y-axis directions;
A reciprocating stage that is provided on the cutting shaft and changes the cutting amount of the cutting tool in the Z-axis direction at a high speed;
In a cutting apparatus provided with a control means for controlling driving of the X-axis moving mechanism, the Y-axis moving mechanism , the Z-axis moving mechanism, and the reciprocating stage ,
As the cutting tool, a cutting tool having a rake angle of -5 ° to -70 ° and a front clearance angle of 20 ° to 60 ° with respect to the tool axis is used, and the tool axis coincides with the Z axis. Attached,
The control means changes the cutting depth in the tool axis direction of the cutting tool at a high speed, and cuts the concave portion or the convex portion on the workpiece while moving the cutting tool along the surface outward path of the workpiece. After that, without changing the posture of the cutting tool, while changing the cutting amount of the cutting tool in the tool axis direction at a high speed and moving the cutting tool along the surface return path of the workpiece, A cutting apparatus configured to cut the concave portion or the convex portion processed into an object again.
請求項に記載の切削加工装置において、
前記往復動ステージは、複数の圧電素子を積層した圧電素子積層体によって構成されていることを特徴とする切削加工装置。
In the cutting device according to claim 3 ,
The reciprocating stage is constituted by a piezoelectric element laminate in which a plurality of piezoelectric elements are laminated.
JP2007248403A 2007-09-26 2007-09-26 Cutting method and cutting apparatus Active JP5132235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007248403A JP5132235B2 (en) 2007-09-26 2007-09-26 Cutting method and cutting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007248403A JP5132235B2 (en) 2007-09-26 2007-09-26 Cutting method and cutting apparatus

Publications (2)

Publication Number Publication Date
JP2009078318A JP2009078318A (en) 2009-04-16
JP5132235B2 true JP5132235B2 (en) 2013-01-30

Family

ID=40653466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007248403A Active JP5132235B2 (en) 2007-09-26 2007-09-26 Cutting method and cutting apparatus

Country Status (1)

Country Link
JP (1) JP5132235B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012020446A1 (en) * 2010-08-09 2012-02-16 日本省力機械株式会社 Scraper-type burr removing device
CN103567462A (en) * 2012-07-20 2014-02-12 鸿准精密模具(昆山)有限公司 Lathe

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002219609A (en) * 2001-01-26 2002-08-06 Toyota Motor Corp Spring neck machining method
JP2003311527A (en) * 2002-04-25 2003-11-05 Hitachi Ltd Method and apparatus for producing undulation by cutting
JP2005138264A (en) * 2003-11-10 2005-06-02 Canon Inc Cutting method and cutting apparatus
JP2007181882A (en) * 2004-12-06 2007-07-19 Konica Minolta Opto Inc Machining method for transfer optical surface, forming die for optical element and optical element

Also Published As

Publication number Publication date
JP2009078318A (en) 2009-04-16

Similar Documents

Publication Publication Date Title
TWI789382B (en) Machine tool control device and machine tool
US9815125B2 (en) Machine tool
US10675688B2 (en) High-speed grooving method
WO2021117526A1 (en) Processing device, processing method, and cutting tool
TWI760536B (en) Control device for machine tool and machine tool
JP5631467B1 (en) Drilling method and numerical control device
WO2016157456A1 (en) Tool path-generating method, drilling method, and tool path-generating device
JP5100230B2 (en) Fine shape cutting apparatus and fine shape cutting method.
TW201634176A (en) Machine tool and control device for machine tool
WO1985001682A1 (en) Approaching method in area machining
TW201639658A (en) Machine tool and control device for said machine tool
US10007247B2 (en) Numerical control device with plurality of spindles and associated synchronous tapping
JP5132235B2 (en) Cutting method and cutting apparatus
JP5080120B2 (en) Polygon processing apparatus and polygon processing method
JP6249904B2 (en) Work processing control device for machine tool, work processing method using the control device, and work processing program
TW201728389A (en) Machine tool and device for controlling machine tool
JP2010076069A (en) Machining method and apparatus therefor
JPH10193239A (en) Working device
JP2014054679A (en) Nc knurling lathe
US10315282B2 (en) Control device and control method
JP2009202258A (en) Method and apparatus for finishing curved surface shape
JP2021117608A (en) Machine tool, control method of machine tool, and control program of machine tool
JP5255905B2 (en) Fine shape cutting method and fine shape cutting apparatus
JPWO2006068083A1 (en) Processing equipment
JP4813052B2 (en) Workpiece copying stylus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121030

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5132235

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350