WO2012020446A1 - Scraper-type burr removing device - Google Patents

Scraper-type burr removing device Download PDF

Info

Publication number
WO2012020446A1
WO2012020446A1 PCT/JP2010/004999 JP2010004999W WO2012020446A1 WO 2012020446 A1 WO2012020446 A1 WO 2012020446A1 JP 2010004999 W JP2010004999 W JP 2010004999W WO 2012020446 A1 WO2012020446 A1 WO 2012020446A1
Authority
WO
WIPO (PCT)
Prior art keywords
scraper
thrust
chamfering
cutting edge
robot
Prior art date
Application number
PCT/JP2010/004999
Other languages
French (fr)
Japanese (ja)
Inventor
田中 章夫
孝明 星
政弘 吉田
池田 篤
Original Assignee
日本省力機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本省力機械株式会社 filed Critical 日本省力機械株式会社
Priority to PCT/JP2010/004999 priority Critical patent/WO2012020446A1/en
Priority to CN201080067750.0A priority patent/CN103038039B/en
Priority to JP2010533781A priority patent/JP4685976B1/en
Publication of WO2012020446A1 publication Critical patent/WO2012020446A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/02Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
    • B24B9/20Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B27/00Other grinding machines or devices
    • B24B27/003Other grinding machines or devices using a tool turning around the work-piece

Definitions

  • the present invention relates to a scraper type deburring apparatus suitable for chamfering a resin molded product.
  • the present invention has been made in view of the above-described circumstances, and provides a scraper-type deburring apparatus capable of accurately cutting burrs and improving the finish of a chamfer without damaging the workpiece surface.
  • the purpose is to
  • a tip end arm of a robot supports a scraper through a floating mechanism
  • the floating mechanism includes a plurality of thrust applying members for applying thrust to the scraper in directions crossing each other
  • the cutting edge portion is sent along the chamfered portion by the robot to perform chamfering while pressing against the chamfered portion and directing the resultant force of each thrust by the plurality of thrust applying members in the normal direction of the chamfered portion.
  • the floating mechanism has a plurality of thrust imparting members, and when chamfering the chamfered portion, the resultant force of each thrust of the thrust imparting member points in the normal direction of the chamfer, for example, one thrust Compared with the case where the thrust of the applying member is directed in the normal direction, a stable resultant (thrust) can be applied in the normal direction of the chamfered portion. Therefore, the size of the chamfered portion and the like become constant, and the finish feeling of the machined surface is improved.
  • burrs are generated at the chamfered portion of the resin molded product
  • the generation direction of burrs such as vertical burrs and horizontal burrs, differs depending on the position of the parting surface of the mold in the resin molding machine .
  • the reaction force acting on the blade edge of the scraper changes according to the burr generation direction.
  • the thrust is applied in the direction of increasing the reaction force for burr removal.
  • the chamfered portion is chamfered by posture control of the robot, but a greater effect is exhibited in the case where the chamfered portion is a curved portion than in the case where the chamfered portion is a linear portion.
  • a thrust is applied in one direction
  • the thrust in the normal direction is reduced, and the finish feeling of the processed surface is reduced.
  • the thrust acts in the intersecting direction, even if attitude control is performed by the robot in a direction in which any thrust does not act, the blade tip of the scraper is pushed in the normal direction by the thrust of the remaining thrust applying members. Therefore, the thrust always acts even at the time of chamfering of the curved portion, and the finish feeling of the processed surface of the curved portion is improved.
  • the scraper may be formed of a wide flat plate, and a cutting edge of the scraper may be integrally formed on a side edge of the flat plate.
  • the edge of the scraper may comprise a rake surface having a negative rake angle. In this configuration, the cutting resistance is reduced due to the negative rake angle.
  • the blade tip portion of the scraper may have a flank surface having a clearance angle from the curved surface portion when chamfering the curved surface portion.
  • the flank surface may be configured to function when chamfering a curved portion with a radius smaller than the thickness of the scraper.
  • the resin molded product is a frame-like work having an outer peripheral portion and an inner peripheral portion, the scraper is formed of a wide flat plate, a cutting edge portion for chamfering the outer peripheral portion is formed on one side edge, and an inner side is formed on the other side edge A cutting edge for chamfering the periphery may be formed.
  • the edge portion of the scraper may be provided with a curved portion for R-chamfering.
  • FIG. 3 is a cross-sectional view taken along the line III-III in FIG.
  • A) is an enlarged front view in the vicinity of the scraper
  • B) is a cross-sectional view taken along the line BB in (A)
  • C) is a cross-sectional view taken along the line CC in (A).
  • A) is a perspective view which shows typically the relationship between the attitude
  • (B) is the same perspective view in chamfering process of outer periphery.
  • FIG. 6 is a cross-sectional view taken along the line VI-VI in FIG. (A) is a principal part enlarged view of FIG. 6, (B) is B arrow line view in (A). It is a figure which shows typically the relationship between the attitude
  • FIG. 4 (A) is a corresponding view.
  • FIG. 1 is a perspective view showing an embodiment of a scraper type deburring apparatus.
  • reference numeral 1 denotes an articulated robot.
  • a distal end arm 4 is connected to the wrist shaft 3 of the articulated robot 1
  • a floating mechanism 5 is attached to the distal end arm 4, and a scraper 9 made of carbide is supported by the floating mechanism 5.
  • the articulated robot 1 is connected to a controller (not shown), and the operation of the articulated robot 1 is determined by data input in advance by teaching or a program, and is controlled by the controller.
  • the floating mechanism 5 is provided with a mounting plate 11 with reference to FIGS. 1 to 3, and is attached to a tip arm 4 of the articulated robot 1 via the mounting plate 11.
  • a mounting plate 11 At four corners of the mounting plate 11, four radial linear shafts 13 extending in a direction parallel to the wrist shaft 3 are fixed.
  • the radial linear shafts 13, 13 on one side edge 11A side of the mounting plate 11 slidably penetrate the radial linear bushes 14, 14 fixed to the radial movable plate 19, and the respective tips are connected by the retaining member 15 ing.
  • the radial linear shafts 13, 13 on the other side 11B side of the mounting plate 11 slidably penetrate the radial linear bushes 16, 16 similarly fixed to the radial movable plate 19, and the respective tip portions are prevented from coming off It is connected by a member 17.
  • the two adjacent radial linear shafts are connected by the retaining members 15 and 17 to increase the rigidity.
  • Radial air cylinders (thrust applying members) 21 and 21 having axes parallel to the wrist shaft 3 are fixed to one side edge 19A side and the other side edge 19B side of the radial movable plate 19, and pistons of the radial air cylinders
  • the tips of the rods 21A and 21A are connected to the fixing portion 11C of the mounting plate 11, respectively.
  • the radial air cylinders 21, 21 the radial movable plate 19 is always pressed in the direction of the arrow Z1 by the air pressure, and when a pressure higher than the air pressure acts in the direction of the arrow Z2, the radial movable plate 19 is pushed back. And become floating.
  • the radial air cylinders 21, 21 are connected to a control device (not shown), and are configured to be able to simultaneously control the respective air pressures to the same amount.
  • a pair of side plates 23, 23 are fixed by bolts 24 to the remaining side edges 19C, 19D other than one side edge 19A and the other side edge 19B of the radially movable plate 19, and a pair is formed between the side plates 23, 23.
  • Thrust linear shafts 25, 25 are provided.
  • a pair of thrust linear bushes 26, 26 is slidably fitted to the respective thrust linear shafts 25, 25, and the thrust linear bushes 26, 26 are fixed to the thrust movable plate 27.
  • the thrust linear bushes 26, 26 slide along the thrust linear shafts 25, 25 to guide the thrust movable plate 27 in the direction perpendicular to the wrist axis 3. That is, the thrust movable plate 27 is slidably supported in both directions of the arrow X1 and the arrow X2.
  • the outer peripheral thrust air cylinder (thrust applying member) 31 and the inner peripheral thrust air cylinder (thrust) have an axis parallel to the axis of the thrust linear shafts 25, 25 on the side plates 23, 23.
  • An application member) 32 is attached to face each other.
  • a receiving member 33 is disposed between the outer peripheral thrust air cylinder 31 and the piston rods 31A and 32A of the inner peripheral thrust air cylinder 32, and the receiving member 33 is provided to project from the plate surface of the thrust movable plate 27.
  • the piston rod 31A of the outer peripheral thrust air cylinder 31 is extended to press the receiving member 33, and the piston rod 32A of the inner peripheral thrust air cylinder 32 is retracted to separate from the receiving member 33.
  • the thrust movable plate 27 is pressed in the direction of the arrow X2 by the air pressure, and when a pressure greater than the air pressure acts in the direction of the arrow X1, the thrust movable plate 27 is pushed back to be in a floating state.
  • the piston rod 32A of the inner peripheral thrust air cylinder 32 is extended to press the receiving member 33, and the piston rod 31A of the outer peripheral thrust air cylinder 31 is retracted to receive the receiving member 33.
  • the thrust movable plate 27 is pressed in the direction of the arrow X1 by the air pressure by air pressure, and when the pressure more than the air pressure acts in the arrow X2 direction, the thrust movable plate 27 is pushed back to be in a floating state .
  • the outer peripheral thrust air cylinder 31 and the inner peripheral thrust air cylinder 32 are connected to a control device (not shown).
  • the outer peripheral thrust air cylinder 31, the inner peripheral thrust air cylinder 32, and the pair of radial air cylinders 21, 21 described above are connected to a pressure adjusting device such as a regulator, for example, and the air pressure supplied to each cylinder is independent. And is configured to be controllable.
  • the receiving member 33 is held between the piston rods 31A and 32A by operating either the outer peripheral thrust air cylinder 31 or the inner peripheral thrust air cylinder 32, and the thrust movable plate 27 It is configured to prevent rattling.
  • a flange-like holder support member 35 is attached to the thrust movable plate 27, and a holder 36 is fixed to the holder support member 35.
  • a blade attachment surface 36A is formed at the tip end of the holder 36, and the blade attachment surface 36A is parallel to a plane including the axial air lines of the inner peripheral thrust air cylinder 31, the outer peripheral thrust air cylinder 32 and the axis 3A of the wrist shaft 3. It is extended.
  • a cemented carbide scraper 9 is positioned and fixed to the cutter attachment surface 36A by two screws 37, 37.
  • two air blow nozzles 38, 38 At the central portion of the holder support member 35, two air blow nozzles 38, 38 extending toward the scraper 9 side are attached. The air blow nozzles 38, 38 eject compressed air from their tips in order to remove chips from the processing surface.
  • the scraper 9 is a flat blade having a substantially triangular shape in a front view, is formed of cemented carbide, and prevents breakage and chipping of the blade.
  • the cemented carbide is prevented from chatter vibration due to its high natural frequency.
  • two notches 9B and 9C whose opening directions are different by 90 ° are formed, and the screws 37 and 37 are screwed into the notches 9B and 9C, whereby the scraper 9 is formed. Is positioned and attached to the blade attachment surface 36A.
  • the blade attachment surface 36A is formed so as to be parallel to the axis 3A of the wrist shaft 3 and to be a half of the thickness t of the scraper 9 with respect to the axis 3A of the wrist shaft 3. Therefore, the surface at the center of the plate thickness t of the scraper 9 includes the axis 3 A of the wrist axis 3.
  • the scraper 9 is provided with a bottom surface 9D substantially perpendicular to the axis 3A of the wrist shaft 3, a first inclined surface 9E provided on the arrow X1 direction side and forming an inclination angle ⁇ 1 with the bottom surface 9D, and an inclination for the bottom surface 9D.
  • An inner peripheral cutting edge 41 is formed on the tip end side of the first slope 9E, and an outer peripheral cutting edge 42 is formed on the tip end side of the second inclined face 9F. .
  • the inclination angle ⁇ 1 and the inclination angle ⁇ 2 are uniquely set in accordance with the angle of the processing planned surface of the workpiece.
  • FIG. 4B is a cross-sectional view taken along the line BB in FIG. 4A, and is a cross-sectional view of the inner circumferential cutting edge 41.
  • FIG. 4C is a cross-sectional view taken along the line CC in FIG. 4A and is a cross-sectional view of the outer peripheral cutting edge portion 42.
  • the inner peripheral cutting edge portion 41 has a rake surface 41A and a flank surface 41B, and an angle ⁇ 1 between the rake surface 41A and the scraper surface 9G is set to 5 to 30 °, and the rake surface 41A and the flank surface 41B
  • the formed angle (cutting edge angle) ⁇ 1 is set to 60 ° to 120 °.
  • the outer peripheral cutting edge portion 42 has a rake surface 42A and a flank surface 42B, and an angle ⁇ 2 formed between the rake surface 42A and the scraper surface 9G is set to 5 to 30 °, and the rake surface 42A and the flank surface 42B
  • the angle (cutting edge angle) ⁇ 2 made by the lens is set to 60 ° to 120 °.
  • FIGS. 5A and 5B are diagrams schematically showing the relationship between the posture of the scraper-type deburring apparatus in the chamfering process and the work (resin-formed product) 100.
  • FIG. This work 100 is, for example, a resin injection molded product such as a television frame or a notebook personal computer frame, and since all the surface 100A on the front side is configured as a design surface, the suction jig is addressed to the back with the back facing downward. It is held by suction.
  • burrs generated during injection molding remain at the corners of the inner circumferential portion 100B and at the corners of the outer circumferential portion 100C. 100C deburring and chamfering are performed.
  • deburring and chamfering of the inner peripheral portion 100B of the work 100 (hereinafter, chamfering of the inner peripheral portion) is performed by the inner peripheral cutting edge portion 41 of the scraper 9, as shown in FIG. 5B
  • deburring of the outer peripheral portion 100C and chamfering (hereinafter, chamfering of the outer peripheral portion) are performed by the outer peripheral cutting edge portion 42 of the scraper 9.
  • the chamfering process procedure of the workpiece 100 will be described by taking the chamfering process of the inner peripheral portion 100B as an example. In the following description, the case where the workpiece 100 is held horizontally and processed will be described. Note that the holding posture of the work 100 is not limited to horizontal. As shown in FIG.
  • the processing planned surface 100D of the inner peripheral portion 100B is substantially rectangular, and includes a flat surface portion 100DL of four sides and a curved surface portion 100DR connecting the adjacent flat surface portions 100DL.
  • Chamfering of the inner peripheral portion 100B is started from any one of four flat portions 100DL, for example, the flat portion 100DL in the X1 direction. Then, the processing of the flat surface portion 100DL and the processing of the curved surface portion 100DR are alternately repeated to complete the process planned surface 100D.
  • the chamfering process of the flat portion 100DL will be described in detail by taking the deburring start time as an example.
  • the scraper 9 is lowered from above the workpiece 100 so as not to interfere with the inner circumferential portion 100B of the workpiece 100 while keeping the direction of the axis 3A of the wrist axis 3 in the vertical direction.
  • the scraper 9 is moved in the X1 direction, and the cutting edge portion 41 for the inner circumference is brought into contact with the inner circumference portion 100B of the workpiece 100.
  • thrust FX is generated by the operation of the thrust air cylinder 32 for the inner circumference
  • thrust FZ is generated by the operation of the radial air cylinders 21, 21,
  • the scraper 9 is generated by the resultant F of thrust FX and FZ.
  • the inner peripheral cutting edge 41 is pressed against the flat portion 100DL.
  • the air pressure of the inner peripheral thrust air cylinder 32 is controlled to be 2 tan ⁇ 1 times the air pressure output from one radial air cylinder 21 by a control device (not shown), as shown in FIGS.
  • the direction of the resultant force F between the pressing force FX by the inner peripheral thrust air cylinder 32 and the pressing force FZ by the radial air cylinders 21 is the normal 150 direction of the flat portion 100DL of the workpiece.
  • the resultant force F of the thrust force FX and the thrust force FZ is set to a predetermined force, for example, in the range of 0.5 to 50 (N).
  • the resultant force F is in the range of 0.5 to 50 (N)
  • the pressing force is a load exceeding 50 (N)
  • the cutting amount increases and chatter vibration occurs in the scraper 9, and the finish of the processed surface is deteriorated, and the pressing force is less than 0.5 (N)
  • the amount of cutting was small and the burr could not be removed sufficiently.
  • the scraper 9 is moved along the flat portion 100DL to a predetermined moving speed (for example, 10 to 1500 mm / sec) along the flat portion 100DL while pressing the inner peripheral cutting edge portion 41 of the scraper 9 against the work 100.
  • a predetermined moving speed for example, 10 to 1500 mm / sec
  • the moving speed of the scraper is set to a predetermined speed, for example, in the range of 10 to 1500 mm / sec. It was found that when the moving speed is in the range of 10 to 1500 mm / sec, it is possible to execute chamfering with an excellent feeling of finish while securing a sufficient amount of cutting.
  • the moving speed is less than 10 mm / sec, the amount of cutting increases and chatter vibration occurs to deteriorate the finish of the machined surface, and if the moving speed exceeds 1500 mm / sec, the cutting amount is small, It turned out that the burr can not be removed sufficiently.
  • the posture of the scraper 9 is controlled by the articulated robot 1 so that the scraper surface 9G is orthogonal to the processing surface of the inner peripheral portion 100B of the workpiece 100. Since the scraper surface 9G is orthogonal to the flat portion 100DL of the processing planned surface 100D, the rake angle ⁇ in the chamfering process is negative at the same angle as the angle ⁇ 1 (for example, 5 ° to 30 °) between the rake surface 41A and the scraper surface 9G. It will be a rake corner.
  • the rake angle is a negative rake angle of 5 ° to 30 °, it is possible to execute chamfering with an excellent finish feeling while securing a sufficient amount of cutting. If the rake angle is a positive rake angle or a negative rake angle of less than 5 °, the amount of cutting increases and chatter vibration occurs, the finish of the machined surface deteriorates, and if it is a negative rake angle exceeding 30 °, cutting It was found that the amount was small and the burr could not be removed sufficiently.
  • the floating mechanism 5 applies the thruster FZ in the direction of the axis 3A (vertical direction) of the wrist axis 3 (vertical direction) to the scraper 9 and the thrust FX in the direction (horizontal direction) orthogonal to the axis 3A of the wrist axis 3 And direct the resultant force F between the thrust FX and the thrust FZ in the direction of the normal 150 of the planned work surface 100D, while pressing the scraper 9 against the planned work surface 100D of the workpiece 100, along with the scraper 9 along the planned work surface 100D. Move and chamfer.
  • the articulated robot 1 makes the scraper 9 a flat portion 100DL. Only by moving along, it is possible to execute the chamfering process with high precision and excellent finish feeling. In addition, the operation of the articulated robot 1 becomes a simple operation with the axis 3A of the wrist axis 3 directed vertically downward, which simplifies teaching and is stable because the robot operation speed does not change. I can carry out processing.
  • the articulated robot 1 makes the scraper surface 9G orthogonal to the flat portion 100DL which is the processing surface of the inner peripheral portion 100B of the workpiece 100.
  • the attitude of the scraper 9 is controlled, and chamfering is performed by moving the scraper 9 while maintaining the attitude.
  • the blade position of the scraper 9 is moved by robot operation. The position and posture of the scraper 9 are controlled such that the scraper surface 9 G is rotated about the axis 3 A and is orthogonal to the contact surface 120 of the curved portion 100 DR in the blade contact portion 110.
  • the rake angle ⁇ of the chamfering process is between the rake surface 41A and the scraper surface 9G also in the processing of the curved surface portion 100DR. It is a negative rake angle ⁇ which is the same as the angle ⁇ 1 formed.
  • the robot moves the scraper 9 along the chamfer
  • the chamfering process can be performed with high precision and excellent finish just by Further, even in the processing of the curved surface portion 100DR, the operation of the articulated robot 1 is a simple operation with the axis 3A of the wrist axis 3 directed vertically downward, so teaching becomes easy and the robot operation speed is increased. Since no change occurs, stable machining can be performed.
  • the chamfering process of the processing planned surface 100D is performed by controlling the posture and the position of the articulated robot 1, but a larger effect is exhibited in the curved surface portion 100DR than in the case of the flat surface portion 100DL.
  • the thrust force FX acts only in the horizontal direction
  • the articulated robot 1 performs posture control in a direction in which the thrust force FX does not work
  • the normal 150 of the contact surface 120 of the curved surface portion 100DR in the blade edge contact portion 110 The thrust force FX in the direction is reduced, and the finish feeling of the curved surface portion 100DR is reduced.
  • the thrust FZ in the direction of the axis 3A of the wrist axis 3 and the thrust FX in the direction orthogonal to the axis 3A of the wrist axis 3 act on the scraper 9, either thrust FZ or thrust FX
  • the inner peripheral cutting edge portion 41 of the scraper 9 is directed to the normal 150 of the contact surface 120 of the curved surface portion 100DR in the cutting edge contact portion 110 by the remaining thrust. Therefore, the thrust always acts even when chamfering the curved surface portion 100DR, and the finish feeling of the curved surface portion 100DR can be improved.
  • the operation of the inner peripheral cutting edge portion 41 has been described above, it goes without saying that the outer peripheral cutting edge portion 42 also operates in the same manner at the time of cutting.
  • the radius of curvature of the curved surface portion 100DR on the inner periphery of the workpiece 100 is as small as about 1 mm.
  • the thickness t of the scraper is set to 1 mm or more, and breakage of the blade and breakage of the blade are prevented.
  • the generation direction of the burr generated in the chamfered portion of the workpiece 100 depends on the structure of the mold in the resin molding machine, and depending on the type of workpiece, the lateral burr 131 shown in solid line in FIG. Vertical burrs 132 are generated.
  • the direction of the burrs is different, since the direction of the reaction force that the scraper 9 receives from the workpiece 100 is different, it is necessary to adjust the thrust forces FX and FZ.
  • the pressure of the thrust cylinder 32 for the inner circumference is set by the control device (not shown) so that the thrust force FX corresponding to the direction of the lateral burr can be increased. increase.
  • the pressure of the radial air cylinders 21 is increased so that the thrust FZ corresponding to the direction of the vertical burrs can be increased.
  • the resultant force F is slightly inclined toward the thrust FX and FZ with respect to the normal 150 direction, but in this specification, this action direction is also approximately the normal 150 direction. It is defined as the thrust of Thereby, the influence by the direction of a burr
  • the floating mechanism 5 generates the thrust FZ in the direction of the axis 3A (vertical direction) of the wrist axis 3 with respect to the scraper 9 and the thrust FX in the direction (horizontal) orthogonal to the axis 3A of the wrist axis 3
  • the robot directs the scraper 9 to the processing planned surface 100D while directing the resultant force F of the thrust force FX and the thrust force FZ in the direction of the normal 150 of the processing planned surface 100D and pressing the scraper 9 against the processing planned surface 100D. Move along to chamfer.
  • the burr 131 (132) is accurately cut without damaging the surface 100A on the design side of the work 100, the inner peripheral portion 100B, and the outer peripheral portion 100C, and the processing planned surface (chamfered portion) 100D
  • the finish feeling can be improved.
  • the inner peripheral thrust air cylinder 32 that generates the thrust force FX and the radial air cylinders 21 that generate the thrust force FZ are controlled independently, and each air pressure can be adjusted.
  • the thrusts FX and FZ can be adjusted even if the direction and the magnitude of the reaction force applied to the scraper 9 change at the time of chamfering, for example, because the direction, height and width of the burr 131 (132) are different.
  • the finish feeling of the processing planned surface (chamfered portion) 100D can be maintained.
  • the processing planned surface 100D has been described as a horizontal surface, it may not be a horizontal surface, or may be a planned surface including a portion that is not horizontal.
  • the resultant force F can be applied in an appropriate direction by an air pressure adjusting mechanism such as a regulator.
  • the blade rigidity can be increased by the wide width, and for the inner peripheral cutting edge portion 41 and the outer periphery at both side edges of the scraper 9 whose blade rigidity is enhanced. Since the cutting edge portion 42 is integrally formed, chatter vibration when cutting with the inner peripheral cutting edge portion 41 and chatter vibration when cutting with the outer peripheral cutting edge portion 42 are suppressed to improve the finish feeling of the processing planned surface 100D. be able to.
  • the rake surface 41A is formed in the inner peripheral cutting edge portion 41 of the scraper 9 so that the angle formed with the scraper surface 9G is ⁇ 1, and the outer peripheral cutting edge portion 42 with the scraper surface 9G.
  • the rake face 42A is formed such that the formed angle is ⁇ 1. Therefore, when chamfering is performed by moving the scraper 9 to the rake surface 42A side by controlling the posture of the scraper 9 so that the scraper surface 9G is perpendicular to the processing planned surface 100D, the rake angle ⁇ is negative for the angle ⁇ 1.
  • the inner peripheral cutting edge portion 41 of the scraper 9 is provided with a flank 41B having a clearance angle ⁇ from the curved surface portion 100DR when the curved surface portion 100DR is chamfered. Therefore, when processing the curved portion 100DR while controlling the posture of the scraper 9 so that the scraper surface 9G is orthogonal to the contact surface 120 at the blade edge contact portion 110 of the curved portion 100DR, the plate thickness is larger than the radius of curvature of the curved portion 100DR. Even if the scraper 9 having a large t is used, the corner 9H (the blade No. 2) of the scraper 9 does not interfere with the curved surface portion 100DR. Thereby, it is possible to avoid the interference of the corner 9H (the second blade) with the workpiece 100 while improving the rigidity of the blade, and it is possible to suppress chatter vibration and improve the finish feeling of the processing planned surface 100D. .
  • the blade edge parts 41 and 42 of the scraper 9 are linear form.
  • the inner peripheral portion 100B or the outer peripheral portion 100C of the workpiece 100 is C-chamfered.
  • the curved portions 9I may be provided on the cutting edges 41 and 42 of the scraper 9.
  • the inner peripheral portion 100B or the outer peripheral portion 100C is addressed to the curved portion 9I and chamfered, the inner peripheral portion 100B or the outer peripheral portion 100C is R-chamfered to correspond to the shape of the curved portion 9I.
  • the embodiment described above merely shows one aspect of the present invention, and arbitrary modifications and applications are possible within the scope of the present invention.
  • the thrust FX in the direction (horizontal direction) orthogonal to the axis 3A of the wrist axis 3 and the thrust FZ in the axis 3A (vertical direction) of the wrist axis 3 are independently made.
  • a controllable floating mechanism 5 is provided, and the scraper 9 is pressed against the planned work surface 100D of the workpiece 100 by directing the resultant force F of the thrust FX and the thrust FZ in the direction of the normal 150 of the planned work surface 100D.
  • the direction of the thrust provided by the floating mechanism 5 is not limited to this, What is necessary is just to cross.
  • the thrust in the direction of the axis 3A of the wrist axis 3 and the thrust in the direction forming an angle of 45 ° with the axis 3A of the wrist axis 3 may be used.
  • the scraper 9 since the scraper 9 is pressed against the processing planned surface 100D by the combined force of the thrusts in these two directions, it is possible to stably apply the thrust (synthetic force) in the direction of the normal 150 of the processing planned surface 100D.
  • the cut-in size becomes constant.
  • the burr 131 (132) is accurately cut without damaging the surface 100A on the design side of the work 100, the inner peripheral portion 100B, and the outer peripheral portion 100C, and the processing planned surface (chamfered portion) 100D
  • the finish feeling can be improved.
  • the shape of the scraper 9 is not limited to the flat, and may be, for example, a wedge-shaped scraper having a rake face and a flank face.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Milling Processes (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Manipulator (AREA)

Abstract

Provided is a scraper-type burr removing device capable of correctly cutting burrs and improving finish at a chamfered portion, without damaging a work surface. A scraper (9) is supported by a front end arm of a robot (1) through a floating mechanism (5), and a plurality of thrust application members (21, 31, 32) are provided so that the floating mechanism (5) applies thrusts (FX, FZ) to the scraper (9) in the mutually intersecting directions. Blade edges (41, 42) of the scraper (9) are pressed onto a chamfered portion (100D) of a resin molded product (100), and a total force (F) of the thrusts by the plurality of thrust application members (21, 31) is directed in the direction of the normal line (150) of the chamfered portion (100D), so that the robot (1) chamfers by feeding the blade edges (41, 42) along the chamfered portion (100D).

Description

スクレイパー式バリ取り装置Scraper type deburring device
 本発明は、樹脂成形品の面取りに好適なスクレイパー式バリ取り装置に関する。 The present invention relates to a scraper type deburring apparatus suitable for chamfering a resin molded product.
 従来、樹脂成形品の角部などに生じるバリを切削する装置として、倣いガイド部材をワーク表面の倣い基準面に押圧しながら移動させることにより、ワークに対する刃物の相対位置を一定として、バリを正確に切削するバリ取り装置が提案されている。(例えば、特許文献1参照)。このバリ取り装置によれば、バリを正確に切削して仕上がり感を向上させることができる。 Conventionally, as a device for cutting burrs generated at corners of resin molded products, by moving the copying guide member while pressing against the copying reference surface of the workpiece surface, the relative position of the blade to the workpiece is made constant, and the burrs are accurate. A deburring device has been proposed to cut into. (See, for example, Patent Document 1). According to this deburring device, the burr can be cut accurately to improve the finish.
特許3587171号公報Patent No. 3587171
 しかし、例えば薄型テレビジョンやノートパソコンなどの樹脂製枠体など、表側の面がすべて意匠面で構成される化粧板のバリ取り、面取り加工においては、バリを正確に切削して、面取り部の仕上がり感を向上させたいというニーズがあるが、化粧板のバリ取り、面取り加工に特許文献1記載のバリ取り装置を適用した場合、倣いガイド部材が意匠面に押圧されながら移動することになり、工具痕が残ってしまう。
 そのため、従来、テレビジョン枠やノートパソコン枠などの化粧板のバリ取り加工は、例えばスクレイパーを加工面に押し当てて、これを加工面に沿って移動させて手作業による人海戦術でバリの除去、及び面取り作業を行うのが一般的である。
 このような手作業によるバリ取り、面取り加工では、スクレイパー加工面の仕上がりにばらつきが生じるうえ、加工不良が発生し易く、歩留まりが大きく低下するという問題がある。また、手作業に適した工具では、加工部の曲率半径が小さい場合、加工が困難になるなどの問題がある。
However, for example, in resin panels such as flat-screen TVs and notebook computers, deburring of decorative panels whose front side is composed entirely of design surfaces, in chamfering, the burrs are cut exactly and There is a need to improve the finish feeling, but when the deburring device described in Patent Document 1 is applied to deburring and chamfering of a decorative plate, the copying guide member moves while being pressed by the design surface, Tool marks will remain.
Therefore, conventionally, for deburring of decorative boards such as television frames and laptop computer frames, for example, a scraper is pressed against the processing surface, and this is moved along the processing surface and the burrs are manually removed by manual operation. It is common to perform removal and chamfering operations.
In such manual deburring and chamfering, the finish of the scraped surface varies, and processing defects are likely to occur, resulting in a problem that the yield is greatly reduced. In addition, with a tool suitable for manual work, there is a problem that processing becomes difficult if the radius of curvature of the processing portion is small.
 本発明は、上述した事情に鑑みてなされたものであり、ワーク表面に傷をつけることなく、バリを正確に切削し、面取り部の仕上がり感を向上させることができるスクレイパー式バリ取り装置を提供することを目的とする。 The present invention has been made in view of the above-described circumstances, and provides a scraper-type deburring apparatus capable of accurately cutting burrs and improving the finish of a chamfer without damaging the workpiece surface. The purpose is to
 本発明は、ロボットの先端アームにフローティング機構を介してスクレイパーを支持し、フローティング機構がスクレイパーに対し互いに交差する方向に推力を付与する複数の推力付与部材を備え、スクレイパーの刃先部を樹脂成形品の面取り部に押し当て、複数の推力付与部材による各推力の合力を面取り部の法線方向に指向させながら、ロボットにより刃先部を面取り部に沿って送って面取りを行うように構成したことを特徴とする。 According to the present invention, a tip end arm of a robot supports a scraper through a floating mechanism, and the floating mechanism includes a plurality of thrust applying members for applying thrust to the scraper in directions crossing each other The cutting edge portion is sent along the chamfered portion by the robot to perform chamfering while pressing against the chamfered portion and directing the resultant force of each thrust by the plurality of thrust applying members in the normal direction of the chamfered portion. It features.
 本発明では、フローティング機構が、複数の推力付与部材を有し、面取り部の面取り加工時には、推力付与部材の各推力の合力が、面取り部の法線方向を指向するため、例えば、一つの推力付与部材の推力を法線方向に指向させた場合と比べ、面取り部の法線方向に安定した合力(推力)を付与できる。したがって、面取り部の削り込み寸法などが一定となり、加工面の仕上がり感が向上する。
 また、樹脂成形品の面取り部にはバリが発生するが、一般的には、樹脂成形機における金型のパーティング面の位置に応じて、縦バリや横バリなど、バリの発生方向が異なる。面取り時にはバリも一体に除去するため、バリの発生方向に応じ、スクレイパーの刃先部に作用する反力が変化し、この構成では、例えばバリの除去のために反力が大きくなる方向の推力付与部材の推力を、他よりも大きく調整することで、加工面の削り込み寸法が一定となるなど、加工面の仕上がり感が向上する。
 この構成では、ロボットの姿勢制御により、面取り部の面取りを行うが、面取り部が直線部の場合より、曲線部となっている場合において、大きな効果を発揮する。例えば、一方向に推力を作用させた場合では、この推力が働かない方向にロボットで姿勢制御されると、法線方向への推力が低下し、加工面の仕上がり感が低下する。この構成では、交差する方向に推力が作用するため、いずれかの推力が働かない方向にロボットで姿勢制御されても、残りの推力付与部材の推力によって、スクレイパーの刃先部が法線方向に押されるため、曲線部の面取り時においても常時推力が働くこととなり、曲線部の加工面の仕上がり感が向上する。
In the present invention, the floating mechanism has a plurality of thrust imparting members, and when chamfering the chamfered portion, the resultant force of each thrust of the thrust imparting member points in the normal direction of the chamfer, for example, one thrust Compared with the case where the thrust of the applying member is directed in the normal direction, a stable resultant (thrust) can be applied in the normal direction of the chamfered portion. Therefore, the size of the chamfered portion and the like become constant, and the finish feeling of the machined surface is improved.
In addition, although burrs are generated at the chamfered portion of the resin molded product, generally, the generation direction of burrs, such as vertical burrs and horizontal burrs, differs depending on the position of the parting surface of the mold in the resin molding machine . At the time of chamfering, since the burrs are integrally removed, the reaction force acting on the blade edge of the scraper changes according to the burr generation direction. In this configuration, for example, the thrust is applied in the direction of increasing the reaction force for burr removal. By adjusting the thrust of the member to be larger than the others, the finish dimension of the machined surface is improved, such as the machined dimension of the machined surface becomes constant.
In this configuration, the chamfered portion is chamfered by posture control of the robot, but a greater effect is exhibited in the case where the chamfered portion is a curved portion than in the case where the chamfered portion is a linear portion. For example, in the case where a thrust is applied in one direction, if attitude control is performed by the robot in a direction in which the thrust does not work, the thrust in the normal direction is reduced, and the finish feeling of the processed surface is reduced. In this configuration, since the thrust acts in the intersecting direction, even if attitude control is performed by the robot in a direction in which any thrust does not act, the blade tip of the scraper is pushed in the normal direction by the thrust of the remaining thrust applying members. Therefore, the thrust always acts even at the time of chamfering of the curved portion, and the finish feeling of the processed surface of the curved portion is improved.
 前記スクレイパーが幅広の平板で形成され、前記スクレイパーの刃先部が、前記平板の側縁に一体に形成されていてもよい。
 この構成では、スクレイパーが幅広の平板で形成されるため、幅広の分だけスクレイパーの剛性が高くなり、この平板の側縁に刃先部が形成されているため、切削時のひびり振動などが発生せず、加工面の仕上がり感が向上する。
 前記スクレイパーの刃先部が、負のすくい角を有するすくい面を備えてもよい。
 この構成では、負のすくい角を有するため、切削抵抗が減少する。
 前記スクレイパーの刃先部が、曲面部の面取りを行うときの当該曲面部からの逃げ角を有する逃げ面を備えていてもよい。
 前記逃げ面が、スクレイパーの板厚よりも小さい半径の曲面部の面取りを行うときに機能する構成としてもよい。
 前記樹脂成形品が外周部及び内周部を有する枠状ワークであり、前記スクレイパーが幅広の平板で形成され、一側縁に外周部の面取り用の刃先部が形成され、他側縁に内周部の面取り用の刃先部が形成されていてもよい。
 前記スクレイパーの刃先部にR面取り用の湾曲部を備えてもよい。
The scraper may be formed of a wide flat plate, and a cutting edge of the scraper may be integrally formed on a side edge of the flat plate.
In this configuration, since the scraper is formed of a wide flat plate, the rigidity of the scraper is increased by the wide width, and a cutting edge portion is formed on the side edge of this flat plate, so that crack vibration etc. occur during cutting. Without it, the finish of the machined surface is improved.
The edge of the scraper may comprise a rake surface having a negative rake angle.
In this configuration, the cutting resistance is reduced due to the negative rake angle.
The blade tip portion of the scraper may have a flank surface having a clearance angle from the curved surface portion when chamfering the curved surface portion.
The flank surface may be configured to function when chamfering a curved portion with a radius smaller than the thickness of the scraper.
The resin molded product is a frame-like work having an outer peripheral portion and an inner peripheral portion, the scraper is formed of a wide flat plate, a cutting edge portion for chamfering the outer peripheral portion is formed on one side edge, and an inner side is formed on the other side edge A cutting edge for chamfering the periphery may be formed.
The edge portion of the scraper may be provided with a curved portion for R-chamfering.
 本発明によれば、ワーク表面に傷をつけることなく、バリを正確に切削し、面取り部の仕上がり感を向上させることができる。 According to the present invention, it is possible to accurately cut the burr and to improve the finish of the chamfer without damaging the surface of the workpiece.
本発明の実施形態に係るスクレイパー式バリ取り装置の構成を示す斜視図である。It is a perspective view showing the composition of the scraper type deburring device concerning the embodiment of the present invention. バリ取り装置の正面図である。It is a front view of a deburring device. 図2におけるIII-III断面図である。FIG. 3 is a cross-sectional view taken along the line III-III in FIG. (A)は、スクレイパー近傍の拡大正面図、(B)は(A)におけるB-B断面図、(C)は(A)におけるC―C断面図である。(A) is an enlarged front view in the vicinity of the scraper, (B) is a cross-sectional view taken along the line BB in (A), and (C) is a cross-sectional view taken along the line CC in (A). (A)は、内周の面取り加工におけるバリ取り装置の姿勢とワークとの関係を模式的に示す斜視図、(B)は、外周の面取り加工における同斜視図である。(A) is a perspective view which shows typically the relationship between the attitude | position of the deburring apparatus in chamfering process of inner periphery, and a workpiece | work, (B) is the same perspective view in chamfering process of outer periphery. 図5におけるVI-VI断面図である。FIG. 6 is a cross-sectional view taken along the line VI-VI in FIG. (A)は図6の要部拡大図、(B)は(A)におけるB矢視図である。(A) is a principal part enlarged view of FIG. 6, (B) is B arrow line view in (A). 曲面部の面取り加工におけるスクレイパーの姿勢とワークとの関係を模式的に示す図である。It is a figure which shows typically the relationship between the attitude | position of the scraper in chamfering of a curved-surface part, and a workpiece | work. 図4(A)対応図である。FIG. 4 (A) is a corresponding view.
 以下、図面を参照して本発明の実施形態について説明する。
 図1は、スクレイパー式バリ取り装置の一実施形態を示す斜視図である。
 図1において、1は多関節ロボットを示している。多関節ロボット1の手首軸3には先端アーム4が連結され、先端アーム4にフローティング機構5が取り付けられ、フローティング機構5に超硬製のスクレイパー9が支持されている。多関節ロボット1は制御装置(不図示)と接続され、多関節ロボット1の動作は、ティーチング又はプログラムにより予め入力されるデータにより決定され、当該制御装置により制御される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a perspective view showing an embodiment of a scraper type deburring apparatus.
In FIG. 1, reference numeral 1 denotes an articulated robot. A distal end arm 4 is connected to the wrist shaft 3 of the articulated robot 1, a floating mechanism 5 is attached to the distal end arm 4, and a scraper 9 made of carbide is supported by the floating mechanism 5. The articulated robot 1 is connected to a controller (not shown), and the operation of the articulated robot 1 is determined by data input in advance by teaching or a program, and is controlled by the controller.
 フローティング機構5は、図1~図3を参照し、取り付けプレート11を備え、この取り付けプレート11を介して多関節ロボット1の先端アーム4に取り付けられている。取り付けプレート11の4隅には手首軸3と平行方向に延びる四本のラジアルリニアシャフト13が固定されている。取り付けプレート11の一側縁11A側のラジアルリニアシャフト13,13は、ラジアル可動プレート19に固定されたラジアルリニアブッシュ14,14を摺動自在に貫通し、各先端が抜け止め部材15により連結されている。
 また、取り付けプレート11の他側縁11B側のラジアルリニアシャフト13,13は、同じくラジアル可動プレート19に固定されたラジアルリニアブッシュ16,16を摺動自在に貫通し、各先端部が、抜け止め部材17により連結されている。これら抜け止め部材15,17により、隣り合う二本のラジアルリニアシャフトが連結されることで、剛性が高められている。
The floating mechanism 5 is provided with a mounting plate 11 with reference to FIGS. 1 to 3, and is attached to a tip arm 4 of the articulated robot 1 via the mounting plate 11. At four corners of the mounting plate 11, four radial linear shafts 13 extending in a direction parallel to the wrist shaft 3 are fixed. The radial linear shafts 13, 13 on one side edge 11A side of the mounting plate 11 slidably penetrate the radial linear bushes 14, 14 fixed to the radial movable plate 19, and the respective tips are connected by the retaining member 15 ing.
Further, the radial linear shafts 13, 13 on the other side 11B side of the mounting plate 11 slidably penetrate the radial linear bushes 16, 16 similarly fixed to the radial movable plate 19, and the respective tip portions are prevented from coming off It is connected by a member 17. The two adjacent radial linear shafts are connected by the retaining members 15 and 17 to increase the rigidity.
 ラジアル可動プレート19の一側縁19A側、及び他側縁19B側には、手首軸3と平行な軸線を有するラジアルエアシリンダ(推力付与部材)21,21が固定され、各ラジアルエアシリンダのピストンロッド21A,21Aの先端が、取り付けプレート11の固定部11Cにそれぞれ連結されている。ラジアルエアシリンダ21,21の動作で、ラジアル可動プレート19は、エアー圧により、常時、矢印Z1の方向に押圧され、矢印Z2方向にエアー圧以上の圧力が作用すると、ラジアル可動プレート19が押し返され、フローティング状態となる。ラジアルエアシリンダ21、21は制御装置(不図示)に接続されており、それぞれのエアー圧を同時に同量に制御することができるように構成されている。 Radial air cylinders (thrust applying members) 21 and 21 having axes parallel to the wrist shaft 3 are fixed to one side edge 19A side and the other side edge 19B side of the radial movable plate 19, and pistons of the radial air cylinders The tips of the rods 21A and 21A are connected to the fixing portion 11C of the mounting plate 11, respectively. In the operation of the radial air cylinders 21, 21, the radial movable plate 19 is always pressed in the direction of the arrow Z1 by the air pressure, and when a pressure higher than the air pressure acts in the direction of the arrow Z2, the radial movable plate 19 is pushed back. And become floating. The radial air cylinders 21, 21 are connected to a control device (not shown), and are configured to be able to simultaneously control the respective air pressures to the same amount.
 ラジアル可動プレート19の一側縁19A、他側縁19B以外の、残りの側縁端19C,19Dには一対の側面プレート23,23がボルト24で固定され、側面プレート23,23間には一対のスラストリニアシャフト25,25が設けられている。各スラストリニアシャフト25,25には、それぞれ一対のスラストリニアブッシュ26,26が摺動自在に嵌合し、スラストリニアブッシュ26,26は、スラスト可動プレート27に固定されている。スラストリニアブッシュ26,26が、スラストリニアシャフト25,25に沿って摺動することで、スラスト可動プレート27が手首軸3と垂直な方向に案内される。すなわち、スラスト可動プレート27は、矢印X1及び矢印X2の双方向にスライド可能に支持されている。 A pair of side plates 23, 23 are fixed by bolts 24 to the remaining side edges 19C, 19D other than one side edge 19A and the other side edge 19B of the radially movable plate 19, and a pair is formed between the side plates 23, 23. Thrust linear shafts 25, 25 are provided. A pair of thrust linear bushes 26, 26 is slidably fitted to the respective thrust linear shafts 25, 25, and the thrust linear bushes 26, 26 are fixed to the thrust movable plate 27. The thrust linear bushes 26, 26 slide along the thrust linear shafts 25, 25 to guide the thrust movable plate 27 in the direction perpendicular to the wrist axis 3. That is, the thrust movable plate 27 is slidably supported in both directions of the arrow X1 and the arrow X2.
 側面プレート23,23には、図3に示すように、スラストリニアシャフト25,25の軸線と平行な軸線を有する外周用スラストエアシリンダ(推力付与部材)31、及び内周用スラストエアシリンダ(推力付与部材)32が対向して取り付けられている。外周用スラストエアシリンダ31,内周用スラストエアシリンダ32のピストンロッド31A,32A間には、受け部材33が配置され、受け部材33はスラスト可動プレート27のプレート面に突設されている。
 図3に破線示するように、外周用スラストエアシリンダ31のピストンロッド31Aを伸長させて受け部材33を押圧し、内周用スラストエアシリンダ32のピストンロッド32Aを縮退させて受け部材33から離間させることで、スラスト可動プレート27は、エアー圧により、矢印X2の方向に押圧され、矢印X1方向にエアー圧以上の圧力が作用すると、スラスト可動プレート27が押し返され、フローティング状態となる。一方、図3において実線示するように、内周用スラストエアシリンダ32のピストンロッド32Aを伸長させて受け部材33を押圧し、外周用スラストエアシリンダ31のピストンロッド31Aを縮退させて受け部材33から離間させることで、スラスト可動プレート27は、エアー圧により、矢印X1の方向に押圧され、矢印X2方向にエアー圧以上の圧力が作用すると、スラスト可動プレート27が押し返され、フローティング状態となる。
As shown in FIG. 3, the outer peripheral thrust air cylinder (thrust applying member) 31 and the inner peripheral thrust air cylinder (thrust) have an axis parallel to the axis of the thrust linear shafts 25, 25 on the side plates 23, 23. An application member) 32 is attached to face each other. A receiving member 33 is disposed between the outer peripheral thrust air cylinder 31 and the piston rods 31A and 32A of the inner peripheral thrust air cylinder 32, and the receiving member 33 is provided to project from the plate surface of the thrust movable plate 27.
As shown by a broken line in FIG. 3, the piston rod 31A of the outer peripheral thrust air cylinder 31 is extended to press the receiving member 33, and the piston rod 32A of the inner peripheral thrust air cylinder 32 is retracted to separate from the receiving member 33. As a result, the thrust movable plate 27 is pressed in the direction of the arrow X2 by the air pressure, and when a pressure greater than the air pressure acts in the direction of the arrow X1, the thrust movable plate 27 is pushed back to be in a floating state. On the other hand, as shown by a solid line in FIG. 3, the piston rod 32A of the inner peripheral thrust air cylinder 32 is extended to press the receiving member 33, and the piston rod 31A of the outer peripheral thrust air cylinder 31 is retracted to receive the receiving member 33. The thrust movable plate 27 is pressed in the direction of the arrow X1 by the air pressure by air pressure, and when the pressure more than the air pressure acts in the arrow X2 direction, the thrust movable plate 27 is pushed back to be in a floating state .
 外周用スラストエアシリンダ31、内周用スラストエアシリンダ32はそれぞれ制御装置(不図示)に接続されている。外周用スラストエアシリンダ31、内周用スラストエアシリンダ32および前述した一対のラジアルエアシリンダ21、21は、例えばレギュレータなどの圧力調整機器に接続され、それぞれのシリンダに供給されるエアー圧を独立して制御可能に構成されている。
 なお、フローティング状態でないときには、外周用スラストエアシリンダ31、内周用スラストエアシリンダ32のいずれか一方を動作させることで、受け部材33がピストンロッド31A,32A間に挟持され、スラスト可動プレート27のがたつきを防止できるように構成されている。
The outer peripheral thrust air cylinder 31 and the inner peripheral thrust air cylinder 32 are connected to a control device (not shown). The outer peripheral thrust air cylinder 31, the inner peripheral thrust air cylinder 32, and the pair of radial air cylinders 21, 21 described above are connected to a pressure adjusting device such as a regulator, for example, and the air pressure supplied to each cylinder is independent. And is configured to be controllable.
When not in the floating state, the receiving member 33 is held between the piston rods 31A and 32A by operating either the outer peripheral thrust air cylinder 31 or the inner peripheral thrust air cylinder 32, and the thrust movable plate 27 It is configured to prevent rattling.
 スラスト可動プレート27には、図1、図2を参照し、フランジ状のホルダ支持部材35が取り付けられ、ホルダ支持部材35にはホルダ36が固定されている。ホルダ36の先端部には、刃物取り付け面36Aが形成され、刃物取り付け面36Aは内周用スラストエアシリンダ31、外周用スラストエアシリンダ32の軸線および手首軸3の軸線3Aを含む平面と平行に延出している。刃物取り付け面36Aには、二つのねじ37,37により、超硬製のスクレイパー9が位置決めされて固定されている。ホルダ支持部材35の中央部には、スクレイパー9側に向かって延びる二本のエアブローノズル38,38が取り付けられている。エアブローノズル38,38は、加工面から切りくずを除去するために、その先端から圧縮空気を噴出させる。 Referring to FIGS. 1 and 2, a flange-like holder support member 35 is attached to the thrust movable plate 27, and a holder 36 is fixed to the holder support member 35. A blade attachment surface 36A is formed at the tip end of the holder 36, and the blade attachment surface 36A is parallel to a plane including the axial air lines of the inner peripheral thrust air cylinder 31, the outer peripheral thrust air cylinder 32 and the axis 3A of the wrist shaft 3. It is extended. A cemented carbide scraper 9 is positioned and fixed to the cutter attachment surface 36A by two screws 37, 37. At the central portion of the holder support member 35, two air blow nozzles 38, 38 extending toward the scraper 9 side are attached. The air blow nozzles 38, 38 eject compressed air from their tips in order to remove chips from the processing surface.
 スクレイパー9は、図4Aに示すように、正面視で略三角形をなす平板状刃物であり、超硬合金で形成され、刃の折損や刃欠けが防止されている。超硬合金は固有振動数が高いためびびり振動が防止される。スクレイパー9の基端9A側には、開口方向が90°異なる二つの切り欠き9B,9Cが形成されており、この切り欠き9B,9Cに上記ねじ37,37を螺合することで、スクレイパー9が位置決めされ、刃物取り付け面36Aに取り付けられている。刃物取り付け面36Aは、手首軸3の軸線3Aと平行、かつ手首軸3の軸線3Aとの距離がスクレイパー9の板厚tの半分となるように形成されている。したがって、スクレイパー9の板厚t中央の面は手首軸3の軸線3Aを含んでいる。スクレイパー9は、手首軸3の軸線3Aと略垂直な底面9Dと、矢印X1方向側に設けられ底面9Dと傾き角度θ1をなす第1斜面9Eと、矢印X2方向側に設けられ底面9Dと傾き角度θ2をなす第2斜面9Fとを備え、第1斜面9Eの先端側には内周用刃先部41が形成され、第2斜面9Fの先端側には外周用刃先部42が形成されている。傾き角度θ1、傾き角度θ2は、ワークの加工予定面の角度に従って一義的に設定されている。 As shown in FIG. 4A, the scraper 9 is a flat blade having a substantially triangular shape in a front view, is formed of cemented carbide, and prevents breakage and chipping of the blade. The cemented carbide is prevented from chatter vibration due to its high natural frequency. On the base end 9A side of the scraper 9, two notches 9B and 9C whose opening directions are different by 90 ° are formed, and the screws 37 and 37 are screwed into the notches 9B and 9C, whereby the scraper 9 is formed. Is positioned and attached to the blade attachment surface 36A. The blade attachment surface 36A is formed so as to be parallel to the axis 3A of the wrist shaft 3 and to be a half of the thickness t of the scraper 9 with respect to the axis 3A of the wrist shaft 3. Therefore, the surface at the center of the plate thickness t of the scraper 9 includes the axis 3 A of the wrist axis 3. The scraper 9 is provided with a bottom surface 9D substantially perpendicular to the axis 3A of the wrist shaft 3, a first inclined surface 9E provided on the arrow X1 direction side and forming an inclination angle θ1 with the bottom surface 9D, and an inclination for the bottom surface 9D. An inner peripheral cutting edge 41 is formed on the tip end side of the first slope 9E, and an outer peripheral cutting edge 42 is formed on the tip end side of the second inclined face 9F. . The inclination angle θ1 and the inclination angle θ2 are uniquely set in accordance with the angle of the processing planned surface of the workpiece.
 図4Bは、図4AのB-B断面図で、内周用刃先部41の断面図である。図4Cは、図4AのC-C断面図で、外周用刃先部42の断面図である。
 内周用刃先部41は、すくい面41Aと逃げ面41Bとを有し、すくい面41Aとスクレイパー表面9Gとのなす角α1が5~30°に設定され、すくい面41Aと逃げ面41Bとのなす角(刃先角)β1が60°~120°に設定されている。また、外周用刃先部42は、すくい面42Aと逃げ面42Bとを有し、すくい面42Aとスクレイパー表面9Gとのなす角α2が5~30°に設定され、すくい面42Aと逃げ面42Bとのなす角(刃先角)β2が60°~120°に設定されている。
FIG. 4B is a cross-sectional view taken along the line BB in FIG. 4A, and is a cross-sectional view of the inner circumferential cutting edge 41. FIG. 4C is a cross-sectional view taken along the line CC in FIG. 4A and is a cross-sectional view of the outer peripheral cutting edge portion 42.
The inner peripheral cutting edge portion 41 has a rake surface 41A and a flank surface 41B, and an angle α1 between the rake surface 41A and the scraper surface 9G is set to 5 to 30 °, and the rake surface 41A and the flank surface 41B The formed angle (cutting edge angle) β1 is set to 60 ° to 120 °. Further, the outer peripheral cutting edge portion 42 has a rake surface 42A and a flank surface 42B, and an angle α2 formed between the rake surface 42A and the scraper surface 9G is set to 5 to 30 °, and the rake surface 42A and the flank surface 42B The angle (cutting edge angle) β2 made by the lens is set to 60 ° to 120 °.
 つぎに、この実施の形態の作用を説明する。
 図5A、Bは、面取り加工におけるスクレイパー式バリ取り加工装置の姿勢とワーク(樹脂成形品)100との関係を模式的に示す図である。
 このワーク100は、例えばテレビジョン枠やノートパソコン枠などの樹脂射出成形品であり、表側の面100Aがすべて意匠面で構成されているため、裏面を下向きとして裏面に例えば吸着治具を宛がって吸着保持されている。このワーク100においては、内周部100Bの角部や、外周部100Cの角部に、射出成形時に生じたバリが残存しており、スクレイパー式バリ取り装置により、これら内周部100Bや外周部100Cのバリ取り、面取り加工が行われる。
Next, the operation of this embodiment will be described.
FIGS. 5A and 5B are diagrams schematically showing the relationship between the posture of the scraper-type deburring apparatus in the chamfering process and the work (resin-formed product) 100. FIG.
This work 100 is, for example, a resin injection molded product such as a television frame or a notebook personal computer frame, and since all the surface 100A on the front side is configured as a design surface, the suction jig is addressed to the back with the back facing downward. It is held by suction. In this work 100, burrs generated during injection molding remain at the corners of the inner circumferential portion 100B and at the corners of the outer circumferential portion 100C. 100C deburring and chamfering are performed.
 図5Aに示すように、ワーク100の内周部100Bのバリ取り、面取り加工(以下、内周部の面取り加工)は、スクレイパー9の内周用刃先部41によって行われ、図5Bに示すように、外周部100Cのバリ取り、面取り加工(以下、外周部の面取り加工)は、スクレイパー9の外周用刃先部42によって行われる。
 ワーク100の面取り加工手順を、内周部100Bの面取り加工を例にとって説明する。以下の説明では、ワーク100を水平に保持して加工する場合について説明する。なお、ワーク100の保持姿勢は、水平に限定されない。
 内周部100Bの加工予定面100Dは、図5Aに示すように、略矩形をなしており、四方の平面部100DLと、隣接する平面部100DLを接続する曲面部100DRとから構成される。内周部100Bの面取り加工は、四方いずれかの平面部100DLたとえばX1方向の平面部100DLから開始される。そして、平面部100DLの加工と、曲面部100DRの加工を交互に繰り返して、加工予定面100Dを一周して終了する。
As shown in FIG. 5A, deburring and chamfering of the inner peripheral portion 100B of the work 100 (hereinafter, chamfering of the inner peripheral portion) is performed by the inner peripheral cutting edge portion 41 of the scraper 9, as shown in FIG. 5B Further, deburring of the outer peripheral portion 100C and chamfering (hereinafter, chamfering of the outer peripheral portion) are performed by the outer peripheral cutting edge portion 42 of the scraper 9.
The chamfering process procedure of the workpiece 100 will be described by taking the chamfering process of the inner peripheral portion 100B as an example. In the following description, the case where the workpiece 100 is held horizontally and processed will be described. Note that the holding posture of the work 100 is not limited to horizontal.
As shown in FIG. 5A, the processing planned surface 100D of the inner peripheral portion 100B is substantially rectangular, and includes a flat surface portion 100DL of four sides and a curved surface portion 100DR connecting the adjacent flat surface portions 100DL. Chamfering of the inner peripheral portion 100B is started from any one of four flat portions 100DL, for example, the flat portion 100DL in the X1 direction. Then, the processing of the flat surface portion 100DL and the processing of the curved surface portion 100DR are alternately repeated to complete the process planned surface 100D.
 平面部100DLの面取り加工をバリ取り開始時を例にとって詳細に説明する。
 図6に破線示するように、まず、手首軸3の軸線3Aの向きを鉛直方向に保ったまま、ワーク100の内周部100Bに干渉しないように、ワーク100の上方からスクレイパー9を降下させる。
 ついで、図6に実線示するように、スクレイパー9をX1方向に移動させ、内周用刃先部41をワーク100の内周部100Bに当接させる。そして、図7Aに示すように、内周用スラストエアシリンダ32の動作で推力FXを発生し、ラジアルエアシリンダ21、21の動作で推力FZを発生し、推力FX、FZの合力Fでスクレイパー9の内周用刃先部41を平面部100DLに押し付ける。
The chamfering process of the flat portion 100DL will be described in detail by taking the deburring start time as an example.
As shown by a broken line in FIG. 6, first, the scraper 9 is lowered from above the workpiece 100 so as not to interfere with the inner circumferential portion 100B of the workpiece 100 while keeping the direction of the axis 3A of the wrist axis 3 in the vertical direction. .
Next, as shown by a solid line in FIG. 6, the scraper 9 is moved in the X1 direction, and the cutting edge portion 41 for the inner circumference is brought into contact with the inner circumference portion 100B of the workpiece 100. Then, as shown in FIG. 7A, thrust FX is generated by the operation of the thrust air cylinder 32 for the inner circumference, thrust FZ is generated by the operation of the radial air cylinders 21, 21, and the scraper 9 is generated by the resultant F of thrust FX and FZ. The inner peripheral cutting edge 41 is pressed against the flat portion 100DL.
 このとき、制御装置(不図示)により、内周用スラストエアシリンダ32のエアー圧は、一つのラジアルエアシリンダ21から出力されるエアー圧の2tanθ1倍となるように制御され、図7A、Bに示すように、内周用スラストエアシリンダ32による押し付け力FXと、ラジアルエアシリンダ21、21による押し付け力FZとの合力Fの方向が、ワークの平面部100DLの法線150方向となる。
 推力FXと推力FZとの合力Fは、例えば0.5~50(N)の範囲内で、所定の力に設定される。合力Fを0.5~50(N)の範囲内とすると、十分な切削量を確保しつつ、仕上がり感に優れた面取り加工を実行できることが判明した。例えば、押し付け力が50(N)を超える荷重になると切削量が増加してスクレイパー9にびびり振動が生じ、加工面の仕上がりが悪化し、押し付け力が0.5(N)未満の場合には、切削量が少なく、バリを十分に除去できないことが判明した。
At this time, the air pressure of the inner peripheral thrust air cylinder 32 is controlled to be 2 tan θ1 times the air pressure output from one radial air cylinder 21 by a control device (not shown), as shown in FIGS. As shown, the direction of the resultant force F between the pressing force FX by the inner peripheral thrust air cylinder 32 and the pressing force FZ by the radial air cylinders 21 is the normal 150 direction of the flat portion 100DL of the workpiece.
The resultant force F of the thrust force FX and the thrust force FZ is set to a predetermined force, for example, in the range of 0.5 to 50 (N). It was found that when the resultant force F is in the range of 0.5 to 50 (N), it is possible to execute chamfering with an excellent feeling of finish while securing a sufficient amount of cutting. For example, when the pressing force is a load exceeding 50 (N), the cutting amount increases and chatter vibration occurs in the scraper 9, and the finish of the processed surface is deteriorated, and the pressing force is less than 0.5 (N) It was found that the amount of cutting was small and the burr could not be removed sufficiently.
 そして、図5Aを参照し、スクレイパー9の内周用刃先部41をワーク100に押し付けたまま、スクレイパー9を平面部100DLに沿って、Y1方向へ所定の移動速度(例えば10~1500mm/sec)で移動させ平面部100DLの面取り加工を行う。
 スクレイパーの移動速度は、例えば10~1500mm/secの範囲内で、所定の速度に設定される。移動速度を10~1500mm/secの範囲内とすると、十分な切削量を確保しつつ、仕上がり感に優れた面取り加工を実行できることが判明した。一方、移動速度が10mm/sec未満の場合には、切削量が増加してびびり振動が生じ、加工面の仕上がりが悪化し、移動速度が1500mm/secを超える場合には、切削量が少なく、バリを十分に除去できないことが判明した。
Then, referring to FIG. 5A, the scraper 9 is moved along the flat portion 100DL to a predetermined moving speed (for example, 10 to 1500 mm / sec) along the flat portion 100DL while pressing the inner peripheral cutting edge portion 41 of the scraper 9 against the work 100. To move and chamfer the flat portion 100DL.
The moving speed of the scraper is set to a predetermined speed, for example, in the range of 10 to 1500 mm / sec. It was found that when the moving speed is in the range of 10 to 1500 mm / sec, it is possible to execute chamfering with an excellent feeling of finish while securing a sufficient amount of cutting. On the other hand, if the moving speed is less than 10 mm / sec, the amount of cutting increases and chatter vibration occurs to deteriorate the finish of the machined surface, and if the moving speed exceeds 1500 mm / sec, the cutting amount is small, It turned out that the burr can not be removed sufficiently.
 また、このとき、図7Bに示すように、スクレイパー表面9Gがワーク100の内周部100Bの加工面に直交するように、多関節ロボット1でスクレイパー9の姿勢が制御される。スクレイパー表面9Gが加工予定面100Dの平面部100DLに直交するので、面取り加工におけるすくい角γは、すくい面41Aとスクレイパー表面9Gとのなす角α1(例えば5°~30°)と同一角度の負のすくい角となる。
 すくい角を5°~30°の負のすくい角とすると、十分な切削量を確保しつつ、仕上がり感に優れた面取り加工を実行できることが判明した。すくい角を正のすくい角あるいは5°未満の負のすくい角とすると、切削量が増加してびびり振動が生じ、加工面の仕上がりが悪化し、30°を超える負のすくい角とすると、切削量が少なく、バリを十分に除去できないことが判明した。
At this time, as shown in FIG. 7B, the posture of the scraper 9 is controlled by the articulated robot 1 so that the scraper surface 9G is orthogonal to the processing surface of the inner peripheral portion 100B of the workpiece 100. Since the scraper surface 9G is orthogonal to the flat portion 100DL of the processing planned surface 100D, the rake angle γ in the chamfering process is negative at the same angle as the angle α1 (for example, 5 ° to 30 °) between the rake surface 41A and the scraper surface 9G. It will be a rake corner.
It was found that when the rake angle is a negative rake angle of 5 ° to 30 °, it is possible to execute chamfering with an excellent finish feeling while securing a sufficient amount of cutting. If the rake angle is a positive rake angle or a negative rake angle of less than 5 °, the amount of cutting increases and chatter vibration occurs, the finish of the machined surface deteriorates, and if it is a negative rake angle exceeding 30 °, cutting It was found that the amount was small and the burr could not be removed sufficiently.
 本実施形態では、フローティング機構5が、スクレイパー9に対し手首軸3の軸線3A方向(垂直方向)の推力FZと、手首軸3の軸線3Aと直交する方向(水平方向)の推力FXとを付与し、推力FXと推力FZとの合力Fを、加工予定面100Dの法線150方向に指向させ、スクレイパー9をワーク100の加工予定面100Dに押し付けながら、スクレイパー9を加工予定面100Dに沿って移動させて面取り加工を行う。
 従って、例えば、スクレイパー9に対して、水平方向の推力FXのみを付与する場合と比較して、加工予定面100Dの法線150方向に安定して推力(合力)を付与できる。よって、加工予定面100Dの削り込み寸法などが一定となり、加工予定面100Dの仕上がり感が向上する。
In this embodiment, the floating mechanism 5 applies the thruster FZ in the direction of the axis 3A (vertical direction) of the wrist axis 3 (vertical direction) to the scraper 9 and the thrust FX in the direction (horizontal direction) orthogonal to the axis 3A of the wrist axis 3 And direct the resultant force F between the thrust FX and the thrust FZ in the direction of the normal 150 of the planned work surface 100D, while pressing the scraper 9 against the planned work surface 100D of the workpiece 100, along with the scraper 9 along the planned work surface 100D. Move and chamfer.
Therefore, for example, compared with the case where only the thrust FX in the horizontal direction is applied to the scraper 9, it is possible to stably apply thrust (total force) in the direction of the normal 150 of the processing planned surface 100D. Therefore, the cutting-in dimension etc. of processing plan surface 100D becomes fixed, and the finish feeling of processing plan surface 100D improves.
 本実施形態では、つねにスクレイパー表面9Gが、加工予定面100Dの平面部100DLに直交し、かつ、刃先部41が負のすくい角γを備えるため、多関節ロボット1でスクレイパー9を平面部100DLに沿って移動させるだけで、精度の良い、仕上がり感にすぐれた面取り加工を実行できる。
 また、多関節ロボット1の動作は、手首軸3の軸線3Aを鉛直下向きに向けたままの簡単な動作となり、ティーチングが簡単となるうえ、ロボット動作速度に変化が生じることがないので、安定した加工を実行できる。
In the present embodiment, since the scraper surface 9G is always orthogonal to the flat portion 100DL of the processing planned surface 100D and the blade edge portion 41 has a negative rake angle γ, the articulated robot 1 makes the scraper 9 a flat portion 100DL. Only by moving along, it is possible to execute the chamfering process with high precision and excellent finish feeling.
In addition, the operation of the articulated robot 1 becomes a simple operation with the axis 3A of the wrist axis 3 directed vertically downward, which simplifies teaching and is stable because the robot operation speed does not change. I can carry out processing.
 つぎに、曲面部100DRの面取り加工を詳細に説明する。
 まず、平面部100DLの面取り加工においては、図8Aで実線示するように、スクレイパー表面9Gがワーク100の内周部100Bの加工面である平面部100DLに直交するように、多関節ロボット1でスクレイパー9の姿勢が制御され、この姿勢を保ったままスクレイパー9を移動させることで面取り加工が行われる。
 ついで、図8Aで破線示するように、ワーク100の終点すなわちR部の始点に刃先が到達した後は、ロボット動作により、スクレイパー9の刃先位置が移動されるとともに、スクレイパー9が手首軸3の軸線3A周りに回転され、スクレイパー表面9Gが、刃先接触部110における曲面部100DRの接面120と直交するように、スクレイパー9の位置および姿勢が制御される。
Below, the chamfering process of curved-surface part 100DR is demonstrated in detail.
First, in chamfering of the flat portion 100DL, as shown by a solid line in FIG. 8A, the articulated robot 1 makes the scraper surface 9G orthogonal to the flat portion 100DL which is the processing surface of the inner peripheral portion 100B of the workpiece 100. The attitude of the scraper 9 is controlled, and chamfering is performed by moving the scraper 9 while maintaining the attitude.
Next, as indicated by a broken line in FIG. 8A, after the blade edge reaches the end point of the workpiece 100, that is, the start point of the R portion, the blade position of the scraper 9 is moved by robot operation. The position and posture of the scraper 9 are controlled such that the scraper surface 9 G is rotated about the axis 3 A and is orthogonal to the contact surface 120 of the curved portion 100 DR in the blade contact portion 110.
 すなわち、つねにスクレイパー表面9Gが、刃先接触部110における曲面部100DRの接面120と直交するので、曲面部100DRの加工においても、面取り加工のすくい角γが、すくい面41Aとスクレイパー表面9Gとのなす角α1と同一角度の負のすくい角γとなる。本実施形態では、つねにスクレイパー表面9Gが、刃先接触部110における曲面部100DRの接面120と直交し、刃先部が負のすくい角γを備えるため、ロボットでスクレイパー9を面取り部に沿って移動させるだけで、精度の良い、仕上がり感にすぐれた面取り加工を実行できる。また、曲面部100DRの加工においても、多関節ロボット1の動作は、手首軸3の軸線3Aを鉛直下向きに向けたままの簡単な動作となるため、ティーチングが簡単となるうえ、ロボット動作速度に変化が生じることがないので、安定した加工を実行できる。 That is, since the scraper surface 9G is always orthogonal to the contact surface 120 of the curved surface portion 100DR in the blade edge contact portion 110, the rake angle γ of the chamfering process is between the rake surface 41A and the scraper surface 9G also in the processing of the curved surface portion 100DR. It is a negative rake angle γ which is the same as the angle α1 formed. In this embodiment, since the scraper surface 9G is always orthogonal to the contact surface 120 of the curved surface portion 100DR in the blade contact portion 110 and the blade edge has a negative rake angle γ, the robot moves the scraper 9 along the chamfer The chamfering process can be performed with high precision and excellent finish just by Further, even in the processing of the curved surface portion 100DR, the operation of the articulated robot 1 is a simple operation with the axis 3A of the wrist axis 3 directed vertically downward, so teaching becomes easy and the robot operation speed is increased. Since no change occurs, stable machining can be performed.
 また、本実施形態では、多関節ロボット1の姿勢および位置を制御することにより、加工予定面100Dの面取り加工を行うが、平面部100DLの場合より、曲面部100DRにおいて、大きな効果を発揮する。
 例えば、水平方向のみに推力FXを作用させた場合では、この推力FXが働かない方向に多関節ロボット1で姿勢制御されると、刃先接触部110における曲面部100DRの接面120の法線150方向への推力FXが低下し、曲面部100DRの仕上がり感が低下する。これに対し、本実施形態では、手首軸3の軸線3A方向の推力FZと、手首軸3の軸線3Aと直交する方向の推力FXとがスクレイパー9に作用するため、推力FZまたは推力FXのいずれかが働かない方向に多関節ロボット1で姿勢制御されても、残りの推力によって、スクレイパー9の内周用刃先部41が、刃先接触部110における曲面部100DRの接面120の法線150方向に押されるため、曲面部100DRの面取り加工時においても常時推力が働くこととなり、曲面部100DRの仕上がり感を向上させることができる。なお、以上は、内周用刃先部41の作用について説明したが、外周用刃先部42も切削時に同様に作用することは云うまでもない。
Further, in the present embodiment, the chamfering process of the processing planned surface 100D is performed by controlling the posture and the position of the articulated robot 1, but a larger effect is exhibited in the curved surface portion 100DR than in the case of the flat surface portion 100DL.
For example, in the case where the thrust force FX acts only in the horizontal direction, when the articulated robot 1 performs posture control in a direction in which the thrust force FX does not work, the normal 150 of the contact surface 120 of the curved surface portion 100DR in the blade edge contact portion 110 The thrust force FX in the direction is reduced, and the finish feeling of the curved surface portion 100DR is reduced. On the other hand, in the present embodiment, since the thrust FZ in the direction of the axis 3A of the wrist axis 3 and the thrust FX in the direction orthogonal to the axis 3A of the wrist axis 3 act on the scraper 9, either thrust FZ or thrust FX Even if posture control is performed by the articulated robot 1 in a direction in which the blade does not work, the inner peripheral cutting edge portion 41 of the scraper 9 is directed to the normal 150 of the contact surface 120 of the curved surface portion 100DR in the cutting edge contact portion 110 by the remaining thrust. Therefore, the thrust always acts even when chamfering the curved surface portion 100DR, and the finish feeling of the curved surface portion 100DR can be improved. Although the operation of the inner peripheral cutting edge portion 41 has been described above, it goes without saying that the outer peripheral cutting edge portion 42 also operates in the same manner at the time of cutting.
 また、本実施形態では、ワーク100の見栄え向上のため、ワーク100内周の曲面部100DRの曲率半径は1mm程度と非常に小さい。
 スクレイパー型の刃物は、その板厚が1mmを下回ると剛性の確保が難しく、刃の折損や刃欠けが生じやすいうえ、びびり振動が生じて加工面の仕上がりが悪化する。そこで、本実施形態では、スクレイパーの板厚tは1mm以上に設定され、刃の折損や刃欠けが防止されている。しかし、図8において、加工面の曲率半径rを超える板厚tを有するスクレイパー9で曲面部100DRを加工する場合、進行方向後ろ側のスクレイパー9の角部9H(すなわち刃物の2番)がワーク100に干渉しやすい。
Further, in the present embodiment, in order to improve the appearance of the workpiece 100, the radius of curvature of the curved surface portion 100DR on the inner periphery of the workpiece 100 is as small as about 1 mm.
When the thickness of the scraper-type blade is less than 1 mm, it is difficult to secure rigidity, and the blade is easily broken or chipped, and chatter vibration is generated to deteriorate the finish of the machined surface. Therefore, in the present embodiment, the thickness t of the scraper is set to 1 mm or more, and breakage of the blade and breakage of the blade are prevented. However, in FIG. 8, when processing the curved surface portion 100DR with the scraper 9 having a plate thickness t exceeding the curvature radius r of the processing surface, the corner 9H (i.e., the blade No. 2) of the scraper 9 on the rear side in the traveling direction It is easy to interfere with 100.
 この干渉を回避するため、第一に、図8A~図8Cに示すように、平面部100DLから曲面部100DRにおいて、スクレイパー9の刃先部が、常に、各面部(曲面部100DR、平面部100DL)に対し直角に当てられる。スクレイパー9を傾けると、その分だけ、進行方向後ろ側のスクレイパー9の角部9H(すなわち刃物の2番)がワーク100に干渉しやすくなるからである。
 第二に、すくい面41の反対側に逃げ角φを有する逃げ面42が形成される。逃げ面42が形成されているので、図8B、図8Cに示すように平面部100DLの加工に続いて曲面部100DRを加工し、さらに連続して平面部100DLの加工を行う場合にも、角部9H(刃物の2番)がワーク100に干渉することがない。従って、曲率半径rの小さい曲面部を精度良く仕上げられる。
 この一連の加工段階においては、図1を参照し、ホルダ支持部材35に、加工予定面100D近傍まで伸びるエアブローノズル38、38が設けられるため、エアブローノズル38、38の先端からエアーが噴出されて、面取り加工の際、切りくずがワーク100に付着することがない。
In order to avoid this interference, first, as shown in FIGS. 8A to 8C, in the flat surface portion 100DL to the curved surface portion 100DR, the blade edge portion of the scraper 9 is always each surface portion (curved surface portion 100DR, flat surface portion 100DL) It is applied at right angles to. When the scraper 9 is inclined, the corner 9H (i.e., the blade No. 2) of the scraper 9 on the rear side in the traveling direction is likely to interfere with the work 100 by that amount.
Second, on the opposite side of the rake face 41, a flank 42 having a clearance angle φ is formed. Since the flanks 42 are formed, as shown in FIGS. 8B and 8C, even when the curved surface portion 100DR is processed following the processing of the flat surface portion 100DL and the surface portion 100DL is processed further continuously, The part 9H (the blade No. 2) does not interfere with the workpiece 100. Therefore, a curved surface with a small radius of curvature r can be finished with high accuracy.
In this series of processing steps, referring to FIG. 1, air is jetted from the tips of the air blow nozzles 38, 38 because the holder support member 35 is provided with the air blow nozzles 38, 38 extending to the vicinity of the processing planned surface 100D. During the chamfering process, chips do not adhere to the workpiece 100.
 ところで、ワーク100の面取り部に発生するバリの発生方向は、樹脂成形機における金型の構造に依存し、ワークの種類によって、図7Aで実線示する横バリ131が発生したり、鎖線示する縦バリ132が発生したりする。バリの向きが異なる場合には、スクレイパー9がワーク100から受ける反力の方向が異なるため、各推力FX、FZの調整が必要となる。本構成では、たとえば、横バリ131が発生している場合には、横バリの方向に対応する推力FXを増加できるように、制御装置(不図示)により、内周用スラストシリンダ32の圧力を増加させる。一方、縦バリ132が発生している場合には縦バリの方向に対応する推力FZを増加できるように、ラジアルエアシリンダ21、21の圧力を増加させる。いずれかの推力FX、FZを増加したとき、合力Fは、法線150方向よりも推力FX、FZ側にわずかに傾いて作用するが、本明細書では、この作用方向もほぼ法線150方向の推力と定義される。これにより、バリの向きによる影響を排除して面取り部の仕上がりを向上させることができる。 By the way, the generation direction of the burr generated in the chamfered portion of the workpiece 100 depends on the structure of the mold in the resin molding machine, and depending on the type of workpiece, the lateral burr 131 shown in solid line in FIG. Vertical burrs 132 are generated. When the direction of the burrs is different, since the direction of the reaction force that the scraper 9 receives from the workpiece 100 is different, it is necessary to adjust the thrust forces FX and FZ. In this configuration, for example, when the lateral burr 131 is generated, the pressure of the thrust cylinder 32 for the inner circumference is set by the control device (not shown) so that the thrust force FX corresponding to the direction of the lateral burr can be increased. increase. On the other hand, when the vertical burrs 132 are generated, the pressure of the radial air cylinders 21 is increased so that the thrust FZ corresponding to the direction of the vertical burrs can be increased. When one of the thrusts FX and FZ is increased, the resultant force F is slightly inclined toward the thrust FX and FZ with respect to the normal 150 direction, but in this specification, this action direction is also approximately the normal 150 direction. It is defined as the thrust of Thereby, the influence by the direction of a burr | flash can be excluded and the finish of a chamfer can be improved.
 本実施形態によれば、フローティング機構5が、スクレイパー9に対し手首軸3の軸線3A方向(垂直方向)の推力FZと、手首軸3の軸線3Aと直交する方向(水平方向)の推力FXとを付与し、推力FXと推力FZとの合力Fを、加工予定面100Dの法線150方向に指向させ、スクレイパー9を加工予定面100Dに押し付けながら、ロボットが、スクレイパー9を加工予定面100Dに沿って移動させて面取り加工を行う。
 従って、加工予定面100Dの法線150方向に安定して推力(合力)を付与でき、加工予定面100Dの削り込み寸法が一定となる。これにより、ワーク100の意匠面である表側の面100A、内周部100B、外周部100Cに傷をつけることなく、バリ131(132)を正確に切削し、加工予定面(面取り部)100Dの仕上がり感を向上させることができる。
 また、本実施形態では、推力FXを発生させる内周用スラストエアシリンダ32と、推力FZを発生させるラジアルエアシリンダ21、21とは独立して制御され、各エアー圧力を調整可能である。従って、例えばバリ131(132)の向きや高さ、幅が異なるなどして、面取り加工時にスクレイパー9に加わる反力の方向や大きさが変動したとしても、推力FX,FZを調整できるので、加工予定面(面取り部)100Dの仕上がり感を維持することができる。
 加工予定面100Dは水平面で説明したが、水平面でなくてもよく、あるいは水平でない部位を含む予定面であっても良い。
 いずれの場合であっても、レギュレータなどの空気圧力調整機構により合力Fを適正な方向に付与できる。
According to the present embodiment, the floating mechanism 5 generates the thrust FZ in the direction of the axis 3A (vertical direction) of the wrist axis 3 with respect to the scraper 9 and the thrust FX in the direction (horizontal) orthogonal to the axis 3A of the wrist axis 3 The robot directs the scraper 9 to the processing planned surface 100D while directing the resultant force F of the thrust force FX and the thrust force FZ in the direction of the normal 150 of the processing planned surface 100D and pressing the scraper 9 against the processing planned surface 100D. Move along to chamfer.
Therefore, it is possible to stably apply a thrust (total force) in the direction of the normal 150 of the processing planned surface 100D, and the cut-in dimension of the processing planned surface 100D becomes constant. As a result, the burr 131 (132) is accurately cut without damaging the surface 100A on the design side of the work 100, the inner peripheral portion 100B, and the outer peripheral portion 100C, and the processing planned surface (chamfered portion) 100D The finish feeling can be improved.
Further, in the present embodiment, the inner peripheral thrust air cylinder 32 that generates the thrust force FX and the radial air cylinders 21 that generate the thrust force FZ are controlled independently, and each air pressure can be adjusted. Therefore, the thrusts FX and FZ can be adjusted even if the direction and the magnitude of the reaction force applied to the scraper 9 change at the time of chamfering, for example, because the direction, height and width of the burr 131 (132) are different. The finish feeling of the processing planned surface (chamfered portion) 100D can be maintained.
Although the processing planned surface 100D has been described as a horizontal surface, it may not be a horizontal surface, or may be a planned surface including a portion that is not horizontal.
In any case, the resultant force F can be applied in an appropriate direction by an air pressure adjusting mechanism such as a regulator.
 本実施形態では、スクレイパー9が幅広の平板で形成されているので、幅広の分だけ刃物剛性を高めることができ、刃物剛性を高めたスクレイパー9の両側縁に内周用刃先部41および外周用刃先部42を一体に形成したため、内周用刃先部41で切削するときのびびり振動、ならびに外周用刃先部42で切削するときのびびり振動を抑制して加工予定面100Dの仕上がり感を向上させることができる。 In the present embodiment, since the scraper 9 is formed of a wide flat plate, the blade rigidity can be increased by the wide width, and for the inner peripheral cutting edge portion 41 and the outer periphery at both side edges of the scraper 9 whose blade rigidity is enhanced. Since the cutting edge portion 42 is integrally formed, chatter vibration when cutting with the inner peripheral cutting edge portion 41 and chatter vibration when cutting with the outer peripheral cutting edge portion 42 are suppressed to improve the finish feeling of the processing planned surface 100D. be able to.
 本実施形態では、スクレイパー9の内周用刃先部41には、スクレイパー表面9Gとのなす角がα1となるようにすくい面41Aが形成され、外周用刃先部42には、スクレイパー表面9Gとのなす角がα1となるようにすくい面42Aが形成されている。
 従って、スクレイパー表面9Gが加工予定面100Dと垂直になるようにスクレイパー9の姿勢を制御して、すくい面42A側にスクレイパー9を移動させて面取り加工するときには、すくい角γが角度α1の負のすくい角となり、内周用刃先部41の加工予定面100Dへの食い込みを防止して、加工予定面100Dの削り込み寸法を一定とすることができる。したがって、びびり振動を抑制でき、加工予定面100Dの仕上がり感を向上させることができる。
In the present embodiment, the rake surface 41A is formed in the inner peripheral cutting edge portion 41 of the scraper 9 so that the angle formed with the scraper surface 9G is α1, and the outer peripheral cutting edge portion 42 with the scraper surface 9G. The rake face 42A is formed such that the formed angle is α1.
Therefore, when chamfering is performed by moving the scraper 9 to the rake surface 42A side by controlling the posture of the scraper 9 so that the scraper surface 9G is perpendicular to the processing planned surface 100D, the rake angle γ is negative for the angle α1. It becomes a rake angle, biting into the processing planned surface 100D of the cutting edge part 41 for inner circumferences can be prevented, and the cutting-in dimension of the processing planned surface 100D can be made constant. Therefore, chatter vibration can be suppressed, and the finish feeling of the processing planned surface 100D can be improved.
 本実施形態では、スクレイパー9の内周用刃先部41が、曲面部100DRの面取りを行うときの曲面部100DRからの逃げ角φを有する逃げ面41Bを備えている。
 従って、スクレイパー表面9Gが、曲面部100DRの刃先接触部110における接面120と直交するようにスクレイパー9の姿勢を制御しながら曲面部100DRを加工するとき、曲面部100DRの曲率半径よりも板厚tの大きなスクレイパー9を用いてもスクレイパー9の角部9H(刃物の2番)が曲面部100DRと干渉することがない。これにより、刃物剛性を向上させつつ、角部9H(刃物の2番)のワーク100への干渉を避けることができ、びびり振動を抑制して加工予定面100Dの仕上がり感を向上させることができる。
In the present embodiment, the inner peripheral cutting edge portion 41 of the scraper 9 is provided with a flank 41B having a clearance angle φ from the curved surface portion 100DR when the curved surface portion 100DR is chamfered.
Therefore, when processing the curved portion 100DR while controlling the posture of the scraper 9 so that the scraper surface 9G is orthogonal to the contact surface 120 at the blade edge contact portion 110 of the curved portion 100DR, the plate thickness is larger than the radius of curvature of the curved portion 100DR. Even if the scraper 9 having a large t is used, the corner 9H (the blade No. 2) of the scraper 9 does not interfere with the curved surface portion 100DR. Thereby, it is possible to avoid the interference of the corner 9H (the second blade) with the workpiece 100 while improving the rigidity of the blade, and it is possible to suppress chatter vibration and improve the finish feeling of the processing planned surface 100D. .
 上記実施の形態では、図4Aに示すように、スクレイパー9の刃先部41,42が直線状である。このときには、ワーク100の内周部100Bまたは外周部100CがC面取りされる。これに限定されず、例えば、図9に示すように、スクレイパー9の刃先部41,42に湾曲部9Iを設けてもよい。この湾曲部9Iに内周部100Bまたは外周部100Cを宛がって面取り加工したときには、内周部100Bまたは外周部100Cが湾曲部9Iの形状に対応してR面取りされる。 In the said embodiment, as shown to FIG. 4A, the blade edge parts 41 and 42 of the scraper 9 are linear form. At this time, the inner peripheral portion 100B or the outer peripheral portion 100C of the workpiece 100 is C-chamfered. For example, as shown in FIG. 9, the curved portions 9I may be provided on the cutting edges 41 and 42 of the scraper 9. When the inner peripheral portion 100B or the outer peripheral portion 100C is addressed to the curved portion 9I and chamfered, the inner peripheral portion 100B or the outer peripheral portion 100C is R-chamfered to correspond to the shape of the curved portion 9I.
 なお、上述した実施形態は、あくまでも本発明の一態様を示すものであり、本発明の範囲内で任意に変形および応用が可能である。
 本実施形態では、スクレイパー9に対して、手首軸3の軸線3Aと直交する方向(水平方向)の推力FXと、手首軸3の軸線3A方向(垂直方向)の推力FZとを、独立して制御可能なフローティング機構5を設け、推力FXと推力FZとの合力Fを、加工予定面100Dの法線150方向に指向させてスクレイパー9をワーク100の加工予定面100Dに押し付けながら、スクレイパー9を加工予定面100Dに沿って移動させて面取り加工を行う構成を説明したが、フローティング機構5により付与される推力の方向はこれに限定されず、交差していればよい。たとえば手首軸3の軸線3A方向の推力と、手首軸3の軸線3Aと45°をなす方向の推力であってもよい。
 この場合にも、この2方向の推力の合力によりスクレイパー9を加工予定面100Dに押し付けるので、加工予定面100Dの法線150方向に安定して推力(合力)を付与でき、加工予定面100Dの削り込み寸法が一定となる。これにより、ワーク100の意匠面である表側の面100A、内周部100B、外周部100Cに傷をつけることなく、バリ131(132)を正確に切削し、加工予定面(面取り部)100Dの仕上がり感を向上させることができる。
 さらに、本実施形態では、平板状のスクレイパー9を例示したが、スクレイパー9の形状は平板状に限定されず、すくい面と逃げ面とを有する、例えばくさび形状のスクレイパーであってもよい。
The embodiment described above merely shows one aspect of the present invention, and arbitrary modifications and applications are possible within the scope of the present invention.
In this embodiment, with respect to the scraper 9, the thrust FX in the direction (horizontal direction) orthogonal to the axis 3A of the wrist axis 3 and the thrust FZ in the axis 3A (vertical direction) of the wrist axis 3 are independently made. A controllable floating mechanism 5 is provided, and the scraper 9 is pressed against the planned work surface 100D of the workpiece 100 by directing the resultant force F of the thrust FX and the thrust FZ in the direction of the normal 150 of the planned work surface 100D. Although the structure which moves along the process plan surface 100D and performs a chamfering process was demonstrated, the direction of the thrust provided by the floating mechanism 5 is not limited to this, What is necessary is just to cross. For example, the thrust in the direction of the axis 3A of the wrist axis 3 and the thrust in the direction forming an angle of 45 ° with the axis 3A of the wrist axis 3 may be used.
Also in this case, since the scraper 9 is pressed against the processing planned surface 100D by the combined force of the thrusts in these two directions, it is possible to stably apply the thrust (synthetic force) in the direction of the normal 150 of the processing planned surface 100D. The cut-in size becomes constant. As a result, the burr 131 (132) is accurately cut without damaging the surface 100A on the design side of the work 100, the inner peripheral portion 100B, and the outer peripheral portion 100C, and the processing planned surface (chamfered portion) 100D The finish feeling can be improved.
Furthermore, although the flat scraper 9 is illustrated in this embodiment, the shape of the scraper 9 is not limited to the flat, and may be, for example, a wedge-shaped scraper having a rake face and a flank face.
 1   多関節ロボット
 4   先端アーム
 5   フローティング機構
 9   スクレイパー
 9G  スクレイパー表面
 9I  湾曲部
 21  ラジアルエアシリンダ(推力付与部材)
 31  スラストエアシリンダ(推力付与部材)
 32  スラストエアシリンダ(推力付与部材)
 41  内周用刃先部(刃先部)
 42  外周用刃先部(刃先部)
 41A、42A すくい面
 41B、42B 逃げ面
 100 ワーク(樹脂成形品)
 100B 内周面(内周部)
 100C 外周面(外周部)
 100D 加工予定面(面取り部)
 100DL 平面部
 100DR 曲面部
 t   板厚
Reference Signs List 1 articulated robot 4 tip arm 5 floating mechanism 9 scraper 9G scraper surface 9I curved portion 21 radial air cylinder (force applying member)
31 Thrust air cylinder (thrust member)
32 Thrust air cylinder (thrust member)
41 Cutting edge for inner circumference (cutting edge)
42 Cutting edge for outer periphery (cutting edge)
41A, 42A scoop surface 41B, 42B flank surface 100 work (resin molded product)
100B inner circumferential surface (inner circumferential portion)
100C Outer peripheral surface (outer peripheral part)
100D surface to be machined (Chamfered)
100DL flat surface 100DR curved surface t thickness

Claims (7)

  1.  ロボットの先端アームにフローティング機構を介してスクレイパーを支持し、
     フローティング機構がスクレイパーに対し互いに交差する方向に推力を付与する複数の推力付与部材を備え、
     スクレイパーの刃先部を樹脂成形品の面取り部に押し当て、複数の推力付与部材による各推力の合力を面取り部の法線方向に指向させながら、ロボットにより刃先部を面取り部に沿って送って面取りを行うように構成したことを特徴とするスクレイパー式バリ取り装置。
    Support the scraper via the floating mechanism on the tip arm of the robot,
    The floating mechanism includes a plurality of thrust applying members that apply thrust to the scraper in directions intersecting each other,
    The blade edge of the scraper is pressed against the chamfer of the resin molded product, and the robot sends the blade edge along the chamfer with the robot while directing the resultant force of each thrust by the multiple thrust applying members in the normal direction of the chamfer. A scraper-type deburring device characterized in that it is configured to
  2.  前記スクレイパーが幅広の平板で形成され、前記スクレイパーの刃先部が、前記平板の側縁に一体に形成されていることを特徴とする請求項1に記載のスクレイパー式バリ取り装置。 The scraper type deburring apparatus according to claim 1, wherein the scraper is formed of a wide flat plate, and a cutting edge of the scraper is integrally formed on a side edge of the flat plate.
  3.  前記スクレイパーの刃先部が、負のすくい角を有するすくい面を備えていることを特徴とする請求項1又は2に記載のスクレイパー式バリ取り装置。 The scraper deburring apparatus according to claim 1 or 2, wherein the edge of the scraper is provided with a rake face having a negative rake angle.
  4.  前記スクレイパーの刃先部が、曲面部の面取りを行うときの当該曲面部からの逃げ角を有する逃げ面を備えていることを特徴とする請求項1乃至3のいずれか一項に記載のスクレイパー式バリ取り装置。 The scraper type according to any one of claims 1 to 3, characterized in that the blade edge portion of the scraper has a flank surface having a relief angle from the curved surface portion when the curved surface portion is chamfered. Deburring device.
  5.  前記逃げ面が、スクレイパーの板厚よりも小さい半径の曲面部の面取りを行うときに機能することを特徴とする請求項4に記載のスクレイパー式バリ取り装置。 The scraper deburring apparatus according to claim 4, wherein the flank surface functions when chamfering a curved portion having a radius smaller than the thickness of the scraper.
  6.  前記樹脂成形品が外周部及び内周部を有する枠状ワークであり、前記スクレイパーが幅広の平板で形成され、一側縁に外周部の面取り用の刃先部が形成され、他側縁に内周部の面取り用の刃先部が形成されていることを特徴とする請求項1乃至5のいずれか一項に記載のスクレイパー式バリ取り装置。 The resin molded product is a frame-like work having an outer peripheral portion and an inner peripheral portion, the scraper is formed of a wide flat plate, a cutting edge portion for chamfering the outer peripheral portion is formed on one side edge, and an inner side is formed on the other side edge The scraper-type deburring apparatus according to any one of claims 1 to 5, wherein a cutting edge portion for chamfering the peripheral portion is formed.
  7.  前記スクレイパーの刃先部にR面取り用の湾曲部を備えたことを特徴とする請求項1乃至6のいずれか一項に記載のスクレイパー式バリ取り装置。 The scraper-type deburring apparatus according to any one of claims 1 to 6, wherein a curved portion for rounding is provided at a cutting edge portion of the scraper.
PCT/JP2010/004999 2010-08-09 2010-08-09 Scraper-type burr removing device WO2012020446A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2010/004999 WO2012020446A1 (en) 2010-08-09 2010-08-09 Scraper-type burr removing device
CN201080067750.0A CN103038039B (en) 2010-08-09 2010-08-09 Scraper-type burr removing device
JP2010533781A JP4685976B1 (en) 2010-08-09 2010-08-09 Scraper type deburring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/004999 WO2012020446A1 (en) 2010-08-09 2010-08-09 Scraper-type burr removing device

Publications (1)

Publication Number Publication Date
WO2012020446A1 true WO2012020446A1 (en) 2012-02-16

Family

ID=44193880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004999 WO2012020446A1 (en) 2010-08-09 2010-08-09 Scraper-type burr removing device

Country Status (3)

Country Link
JP (1) JP4685976B1 (en)
CN (1) CN103038039B (en)
WO (1) WO2012020446A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5579332B6 (en) * 2013-10-11 2018-06-27 日本省力機械株式会社 Cutter blade, processing equipment
CN104339508B (en) * 2014-10-27 2016-08-17 济南德佳机器有限公司 A kind of clear angle apparatus that floats
JP7200158B2 (en) * 2020-03-06 2023-01-06 日本碍子株式会社 Bonding material scraping device and segment bonded body manufacturing method
CN113858501A (en) * 2020-06-30 2021-12-31 玉环市鑫庄电子股份有限公司 Use automatic auxiliary device in condenser plug production line
CN115971580B (en) * 2023-03-20 2023-06-06 山东南山铝业股份有限公司 Building aluminum profile groove cutting device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61125717A (en) * 1984-11-26 1986-06-13 Ube Nitto Kasei Kk Burr removing device of synthetic resin molding
JPS63288602A (en) * 1987-05-22 1988-11-25 Nippon Plast Co Ltd Burr remover for molded product
WO2000030794A1 (en) * 1998-11-24 2000-06-02 Nkk Corporation Method and device for deburring
JP2000288817A (en) * 1999-03-31 2000-10-17 Nippon Shoryoku Kikai Kk Automatic deburring device
JP2002239824A (en) * 2001-02-09 2002-08-28 Nippon Shoryoku Kikai Kk Automatic deburring device and tool holding device used for it
JP2003001641A (en) * 2001-06-20 2003-01-08 Nippon Plast Co Ltd Device for removing burr of molding
JP2004330353A (en) * 2003-05-07 2004-11-25 Star Seiki Co Ltd Deburring machine, its deburring method and deburring cutter
JP2006123273A (en) * 2004-10-27 2006-05-18 Nippon Shoryoku Kikai Kk Method and apparatus for deburring
JP2006159488A (en) * 2004-12-03 2006-06-22 Daiichi Seiko Kk Film pasting apparatus and film pasting method
JP2009172692A (en) * 2008-01-22 2009-08-06 Yaskawa Electric Corp Robot with deburring tool
JP2009202239A (en) * 2008-02-26 2009-09-10 Kyocera Corp Rotary tool

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001138123A (en) * 1999-11-09 2001-05-22 Nkk Corp Cutting device and cutting method
US20030021861A1 (en) * 2001-06-20 2003-01-30 Nihon Plast Co., Ltd. Deflashing apparatus
JP5132235B2 (en) * 2007-09-26 2013-01-30 東芝機械株式会社 Cutting method and cutting apparatus

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61125717A (en) * 1984-11-26 1986-06-13 Ube Nitto Kasei Kk Burr removing device of synthetic resin molding
JPS63288602A (en) * 1987-05-22 1988-11-25 Nippon Plast Co Ltd Burr remover for molded product
WO2000030794A1 (en) * 1998-11-24 2000-06-02 Nkk Corporation Method and device for deburring
JP2000288817A (en) * 1999-03-31 2000-10-17 Nippon Shoryoku Kikai Kk Automatic deburring device
JP2002239824A (en) * 2001-02-09 2002-08-28 Nippon Shoryoku Kikai Kk Automatic deburring device and tool holding device used for it
JP2003001641A (en) * 2001-06-20 2003-01-08 Nippon Plast Co Ltd Device for removing burr of molding
JP2004330353A (en) * 2003-05-07 2004-11-25 Star Seiki Co Ltd Deburring machine, its deburring method and deburring cutter
JP2006123273A (en) * 2004-10-27 2006-05-18 Nippon Shoryoku Kikai Kk Method and apparatus for deburring
JP2006159488A (en) * 2004-12-03 2006-06-22 Daiichi Seiko Kk Film pasting apparatus and film pasting method
JP2009172692A (en) * 2008-01-22 2009-08-06 Yaskawa Electric Corp Robot with deburring tool
JP2009202239A (en) * 2008-02-26 2009-09-10 Kyocera Corp Rotary tool

Also Published As

Publication number Publication date
JPWO2012020446A1 (en) 2013-10-28
CN103038039A (en) 2013-04-10
CN103038039B (en) 2015-01-21
JP4685976B1 (en) 2011-05-18

Similar Documents

Publication Publication Date Title
US8806999B2 (en) Deburring system, deburring apparatus and cutter blade
WO2012020446A1 (en) Scraper-type burr removing device
JP6903004B2 (en) How to machine teeth, tools for machining and machine tools
JP7061371B2 (en) Machine parts and their applications in cutting
JP3170695U (en) Thin plate end face processing tool unit
CN103921068A (en) Single-curvature cover machining method
JP2003220512A (en) Mirror finishing method, chamfering method and mirror finishing apparatus, and method for finishing rim of laminated film
JP2010017769A (en) Method of machining sheet-like workpiece
CN104741950A (en) Burr-free cutting clamp based on support
JP2013202750A (en) Method for machining angular part/corner part, method for manufacturing die using the method for machining, die manufactured by the method for manufacturing and molded product molded using the die
CN204075839U (en) A kind of double-deck multiple-cutting-edge wire rod quality equipment for cutter positioning
KR20170009060A (en) Apparatus for changing a workpiece of a turning center
JP6604438B2 (en) Cutting tool support device and machine tool
JP2008183715A (en) Specular working method for end surface of workpiece and specular working device
JP7289563B2 (en) Machining method, machining equipment and machining program
Latos et al. Surface shaping with industrial robot
WO2006068083A1 (en) Working device
TWI530379B (en) Burr-removing apparatus
JP4393477B2 (en) Double-sided lathe
CN204504801U (en) A kind of few impulse-free robustness clamp for cutting based on supporter
US11628528B2 (en) Machining unit for machining workpieces
CN112108662B (en) Multifunctional cutter and numerical control machining method adopting multifunctional cutter
JP6959117B2 (en) Machining tools, machining equipment and machining methods
CN210649676U (en) A milling machine that is used for terminal surface processing's of a plurality of axis bodies tool and has this tool
TWM538844U (en) Cutting tool structure for lathe machining

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080067750.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010533781

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10855848

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10855848

Country of ref document: EP

Kind code of ref document: A1