JP2009022971A - Continuous casting method and continuous casting mold - Google Patents

Continuous casting method and continuous casting mold Download PDF

Info

Publication number
JP2009022971A
JP2009022971A JP2007187079A JP2007187079A JP2009022971A JP 2009022971 A JP2009022971 A JP 2009022971A JP 2007187079 A JP2007187079 A JP 2007187079A JP 2007187079 A JP2007187079 A JP 2007187079A JP 2009022971 A JP2009022971 A JP 2009022971A
Authority
JP
Japan
Prior art keywords
taper
short side
mold
casting
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007187079A
Other languages
Japanese (ja)
Other versions
JP5047714B2 (en
Inventor
Norimasa Yamasaki
伯公 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007187079A priority Critical patent/JP5047714B2/en
Publication of JP2009022971A publication Critical patent/JP2009022971A/en
Application granted granted Critical
Publication of JP5047714B2 publication Critical patent/JP5047714B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for controlling a short-side mold so as to be most suitable for changing casting width in the continuous casting for cast slab having the plurality of cast slab widths by using multi-tapered short-side mold plates, and to provide a continuous casting method and a continuous casting mold, wherein the uniformity of solidification is good and the mold binding force is not increased when casting is performed with the narrow width or the wide width. <P>SOLUTION: The continuous casting method is used for casting the plurality of the cast slabs having the cast slab width by using the multi-tapered short-side mold plates having two or more short-side tapered ratios (unit: %/m) different in the casting direction, wherein the short-side tapered ratio at the uppermost position in the casting direction is defined as an upper tapered ratio, the short-side tapered ratio at the lowermost position is defined as a lower tapered ratio, and a value obtained by dividing the upper tapered ratio by the lower tapered ratio, is defined as an upper/lower tapered ratio, and in the case of any cast slab width during the casting, the upper/lower tapered ratio, is set to be lower than a value (R<SB>M</SB>) obtained by calculating with a prescribed formula. And the continuous casting mold is also provided. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、溶融金属を連続鋳造するための連続鋳造方法及び連続鋳造鋳型に関するものである。   The present invention relates to a continuous casting method and continuous casting mold for continuously casting molten metal.

鋼をはじめとする溶融金属の連続鋳造において、鋳型内に溶融金属を注入すると、鋳型に接する溶融金属部分が凝固して凝固シェルを形成し、鋳型の下方に引き抜かれ、鋳型下方の二次冷却帯で凝固が進行して最終的に連続鋳造鋳片が形成される。鋳型は、溶融金属に接する側が水冷銅板で形成される。スラブを鋳造する連続鋳造装置においては、2枚の長辺鋳型板と、2枚の短辺鋳型板を有し、短辺鋳型板はその幅が鋳造する鋳片の厚さにほぼ等しく、2枚の長辺鋳型板で2枚の短辺鋳型板を挟むように組み立て、連続鋳造鋳型が形成される。   In continuous casting of molten metal such as steel, when molten metal is injected into the mold, the molten metal part in contact with the mold is solidified to form a solidified shell, which is pulled out below the mold, and then cooled secondary below the mold. Solidification proceeds in the band, and a continuous cast slab is finally formed. The mold is formed of a water-cooled copper plate on the side in contact with the molten metal. In a continuous casting apparatus for casting a slab, it has two long-side mold plates and two short-side mold plates, and the width of the short-side mold plate is approximately equal to the thickness of a cast piece to be cast. A continuous casting mold is formed by assembling so that two short-side mold plates are sandwiched by two long-side mold plates.

鋳型内で凝固シェルの凝固が進行しつつ、その凝固シェルを下方に移動する過程において、凝固シェルは凝固が進行するとともに凝固収縮する。従って、鋳型内溶融金属のメニスカス位置で凝固を開始した凝固シェルは、鋳型の下端に到達したときには収縮しており、凝固中鋳片の幅や厚さがメニスカス位置に比較して小さくなっている。スラブ連続鋳造においては鋳片の厚さに比較して幅が広いので、鋳片幅方向の凝固収縮量が大きい。凝固シェルの凝固収縮に伴って鋳型と凝固シェルとの間に空隙が生じると、凝固シェルから鋳型への抜熱が阻害され、十分な鋳型冷却ができなくなるとともに、鋳型による支持を失った凝固シェルが外方に膨れるバルジングを起こすこととなる。   In the process of moving the solidified shell downward while solidification of the solidified shell proceeds in the mold, the solidified shell solidifies and contracts as solidification proceeds. Therefore, the solidified shell that has started solidification at the meniscus position of the molten metal in the mold contracts when it reaches the lower end of the mold, and the width and thickness of the slab during solidification are smaller than the meniscus position. . In slab continuous casting, since the width is wider than the thickness of the slab, the amount of solidification shrinkage in the slab width direction is large. If there is a gap between the mold and the solidified shell due to the solidification shrinkage of the solidified shell, heat removal from the solidified shell to the mold is hindered, making it impossible to cool the mold sufficiently, and the solidified shell that has lost its support by the mold Will cause bulging to bulge outward.

そこで、少なくとも鋳型短辺にテーパを設けることが行われている。テーパを設けるとは、対向する両短辺間の間隔について、鋳型上方のメニスカス位置における間隔に対し、鋳型下端の間隔を狭めることを意味する。   Therefore, a taper is provided at least on the short side of the mold. Providing the taper means that the distance between the lower ends of the mold is reduced with respect to the distance between the opposing short sides with respect to the distance at the meniscus position above the mold.

本発明において、図1(c)に示すように、鋳造方向任意の位置に上方位置と下方位置を定め、両短辺間の距離を、上方位置においてW1(m)、下方位置においてW2(m)、上方位置から下方位置までの距離をΔL(m)とおいたとき、テーパ率(%/m)を
テーパ率(%/m)={(W1−W2)/W0/ΔL}×100 (2)
(ここではW0(m)はメニスカス幅(WM)とした。W0は、ある幅に応じて、決まった長さなら、どこでも良い。鋳型上端幅、鋳型下端幅等。)
と定義し、このように呼ぶこととする。
In the present invention, as shown in FIG. 1C, an upper position and a lower position are defined at arbitrary positions in the casting direction, and the distance between both short sides is set to W 1 (m) at the upper position and W 2 at the lower position. (M) When the distance from the upper position to the lower position is ΔL (m), the taper ratio (% / m) is set to taper ratio (% / m) = {(W 1 −W 2 ) / W 0 / ΔL } × 100 (2)
(Here, W 0 (m) is the meniscus width (W M ). W 0 may be any length determined according to a certain width. Mold upper end width, mold lower end width, etc.)
And call it like this.

短辺テーパ率が小さすぎる場合には、凝固シェルと短辺鋳型板との接触が不均一になり、冷却のアンバランスが発生し、凝固シェル成長の不均一、溶融金属静圧による鋳片の割れが発生する。特に、短辺テーパ率が適正量よりも小さい場合、鋳型下端付近における凝固シェルの厚み分布において、図7に示すように、長辺側凝固シェルのコーナー近傍に凝固厚みが特に薄い部位が発生しやすくなり、この部位で凝固シェルが破断しやすく、ブレークアウトが発生する可能性がある。また短辺テーパ率が大きすぎる場合には、凝固シェルと短辺鋳型板との接触が強くなり、凝固シェルに過大な応力が加わり、凝固シェルの破断、およびシェル破断に伴うブレークアウトが発生する。あるいは凝固シェルと鋳型の摩擦力増大に伴う鋳型寿命低下を引き起こす場合がある。   If the short side taper ratio is too small, the contact between the solidified shell and the short side mold plate will be non-uniform, cooling imbalance will occur, the solidified shell growth will be non-uniform, Cracking occurs. In particular, when the short side taper ratio is smaller than an appropriate amount, in the thickness distribution of the solidified shell near the lower end of the mold, a portion with a particularly thin solidified thickness is generated near the corner of the long side solidified shell as shown in FIG. The solidified shell easily breaks at this portion, and breakout may occur. In addition, when the short side taper ratio is too large, the contact between the solidified shell and the short side mold plate becomes strong, excessive stress is applied to the solidified shell, and breakage of the solidified shell and breakout due to shell breakage occur. . Alternatively, the mold life may be reduced due to an increase in frictional force between the solidified shell and the mold.

適正な短辺テーパについて、例えば特許文献1においては、短辺テーパ率βnを0.7〜1.3%/mとして操業することが行われているとしている。   Regarding an appropriate short side taper, for example, in Patent Document 1, the short side taper rate βn is set to 0.7 to 1.3% / m.

従来の短辺鋳型板2の凝固シェルに面する面(以下「テーパ面6」ともいう。)は、図1(c)に示すように、上部から下部へ向かって平面で加工されている。しかし、凝固シェルの凝固収縮速度は、鋳型内の鋳造方向の各位置において一定ではなく、メニスカス近傍では凝固収縮速度が速く、鋳型下端に近づくにつれ凝固収縮速度が遅くなる。従って、短辺鋳型板と接する凝固シェルの面は平面ではなく、鋳型の下方に行くに従ってテーパ率が小さくなる曲面を形成していると考えられる。   The surface (hereinafter also referred to as “taper surface 6”) of the conventional short-side mold plate 2 facing the solidified shell is processed in a plane from the upper part to the lower part as shown in FIG. However, the solidification shrinkage rate of the solidification shell is not constant at each position in the casting direction in the mold, and the solidification shrinkage rate is fast near the meniscus, and the solidification shrinkage rate becomes slower as it approaches the lower end of the mold. Therefore, it is considered that the surface of the solidified shell in contact with the short-side mold plate is not a flat surface but a curved surface whose taper rate decreases as it goes below the mold.

特許文献2においては、鋳型短辺のテーパを湾曲面として制御するテーパ制御方法が開示されている。短辺鋳型を背面の少なくとも3地点で支持し、変形を加える。3点のうち少なくとも1箇所、例えば中央部に加圧装置を取り付け、短辺銅板表面と自由収縮プロフィールとを予めおよび操業中も一致させることにより一層均一な抜熱が可能になるとしている。中心荷重点に2〜5トンの力を加えることにより、最大タワミ量は0.33〜0.83mmにまでなり、これは溶鋼の凝固収縮量から考えれば十分な量であるとしている。   Patent Document 2 discloses a taper control method for controlling the taper of the mold short side as a curved surface. The short side mold is supported at at least three points on the back surface and deformed. A pressure device is attached to at least one of the three points, for example, the central portion, and the surface of the short side copper plate and the free contraction profile are matched in advance and during operation, so that more uniform heat removal is possible. By applying a force of 2 to 5 tons to the central load point, the maximum amount of deflection becomes 0.33 to 0.83 mm, which is considered to be a sufficient amount in view of the solidification shrinkage of the molten steel.

特許文献3においては、最適な短辺テーパを理論解析により求めており、最適短辺テーパはメニスカスからの鋳込み方向に沿う距離Zに依存し、各距離Zにおける最適テーパ率(%/m)がZ-1/2に比例するとしている。同文献の実施例1及び第2図によると、断面寸法20.8cm×105cmの鋳型の短辺を3段階のテーパを有する形状とし、テーパ率が上から2%/m、0.7%/m、0.4%/mとなっている。また実施例2及び第3図によると、断面寸法22cm×124cmの鋳型の短辺を3段階のテーパを有する形状とし、テーパ率が上から4%/m、1.3%/m、0.8%/mとなっている。このように、鋳造方向に2段階、あるいは3段階以上のテーパを有する鋳型を多段テーパ鋳型と呼び、このようなテーパを有する短辺鋳型板を多段テーパ短辺鋳型板と呼ぶことにする。 In Patent Document 3, the optimum short side taper is obtained by theoretical analysis. The optimum short side taper depends on the distance Z along the casting direction from the meniscus, and the optimum taper rate (% / m) at each distance Z is It is assumed to be proportional to Z -1/2 . According to Example 1 and FIG. 2 of the same document, the short side of the mold having a cross-sectional dimension of 20.8 cm × 105 cm is formed into a shape having a three-step taper, and the taper rate is 2% / m, 0.7% / m, 0.4% / m. Further, according to Example 2 and FIG. 3, the short side of the mold having a cross-sectional dimension of 22 cm × 124 cm is formed into a shape having a three-step taper, and the taper rate is 4% / m, 1.3% / m,. 8% / m. In this way, a mold having a taper of two stages or three or more stages in the casting direction is called a multistage taper mold, and a short side mold plate having such a taper is called a multistage taper short side mold plate.

スラブの連続鋳造においては、鋳造する鋳片が向け先ごとに種々の幅を有するので、連続鋳造を続けながら鋳造する鋳片幅を変更することが行われる。図6に示すように、短辺鋳型板2を長辺方向に移動するための短辺駆動装置4を有し、短辺鋳型板2を長辺鋳型板3で挟み込んだままで短辺鋳型板2の位置を変更することにより、鋳造中に鋳片幅を変更することができる。即ち、長辺鋳型板3と短辺鋳型板2をいずれも交換することなく、種々の幅を有する鋳片を同一の連続鋳造鋳型1を用いて鋳造することが可能である。   In continuous casting of slabs, cast slabs have various widths for each destination, so that the cast slab width is changed while continuous casting is continued. As shown in FIG. 6, the short-side mold plate 2 has a short-side drive device 4 for moving the short-side mold plate 2 in the long-side direction, and the short-side mold plate 2 is sandwiched between the long-side mold plates 3. By changing the position, the slab width can be changed during casting. That is, cast pieces having various widths can be cast using the same continuous casting mold 1 without exchanging both the long side mold plate 3 and the short side mold plate 2.

特許文献4、5には、鋳型内での鋳片の凝固挙動を計算により推定する方法が記載されている。鋳型の鋳造方向の傾き、あるいは鋳造速度を任意の値に設定した際に、鋳型四周各部位における凝固シェルの厚さが算出される。この結果に基づき、鋳型下端における凝固シェル厚の最大値と最小値の比、凝固シェルと鋳型間の拘束力、ギャップ量を求めることができる。   Patent Documents 4 and 5 describe methods for estimating the solidification behavior of a slab in a mold by calculation. When the inclination of the casting direction of the mold or the casting speed is set to an arbitrary value, the thickness of the solidified shell at each part around the mold is calculated. Based on this result, the ratio between the maximum value and the minimum value of the solidified shell thickness at the lower end of the mold, the binding force between the solidified shell and the mold, and the gap amount can be obtained.

特開2005−211936号公報Japanese Patent Laid-Open No. 2005-21936 特開平2−247059号公報JP-A-2-247059 特開昭56−53849号公報JP-A-56-53849 特開2006−346735号公報JP 2006-346735 A 特開2006−346736号公報JP 2006-346736 A

多段テーパ短辺鋳型板を用いて、種々の鋳片幅の鋳片を鋳造するスラブ連続鋳造を行うに際し、いずれの鋳造幅においても凝固均一度を良好に保持しつつ鋳型からの拘束力を低減することのできる連続鋳造を行う方法は従来知られていなかった。   When performing slab continuous casting using slabs of various slab widths using a multi-stage tapered short side mold plate, the cohesive force from the mold is reduced while maintaining good solidification uniformity at any casting width. A method for performing continuous casting that can be performed has not been known.

本発明は、多段テーパ短辺鋳型板を用い、複数の鋳片幅の鋳片を鋳造する連続鋳造において、鋳造幅を変更する際の最適な短辺鋳型の制御方法を提供するとともに、狭幅の鋳造時も広幅の鋳造時も凝固均一度が良好でかつ鋳型拘束力が増大することのない連続鋳造方法及び連続鋳造鋳型を提供することを目的とする。   The present invention provides an optimum method for controlling a short side mold when changing a casting width in continuous casting in which a slab having a plurality of slab widths is cast using a multistage tapered short side mold plate, and a narrow width. It is an object of the present invention to provide a continuous casting method and a continuous casting mold that have good solidification uniformity and no increase in mold restraining force during both casting and wide casting.

種々の鋳片幅の鋳片を鋳造するスラブ連続鋳造を行うに際し、幅を変更するに際して短辺テーパをどのように決定すべきかが不明であった。短辺テーパ率(%/m)を一定にしつつ幅変更を行ったところ、狭幅の鋳造において凝固シェルの凝固均一度が悪化することが判明した。凝固均一度を向上するためには多段テーパ短辺鋳型板を用いることが有用であると考え、種々の鋳片幅の鋳片を鋳造するスラブ連続鋳造を行うに際し、多段テーパ短辺鋳型板を導入することとした。   When performing slab continuous casting for casting slabs of various slab widths, it was unclear how the short side taper should be determined when changing the width. When the width was changed while keeping the short side taper rate (% / m) constant, it was found that the solidification uniformity of the solidified shell deteriorates in narrow casting. In order to improve the solidification uniformity, it is considered useful to use a multistage tapered short side mold plate, and when performing slab continuous casting to cast slabs of various slab widths, a multistage tapered short side mold plate is used. We decided to introduce it.

多段テーパ短辺鋳型板を用いる例として、図1(a)に示す2段テーパ短辺鋳型板を想定する。短辺テーパ率のうち、メニスカス側の上テーパ面6Uにおけるテーパ率を上テーパ率TU(%/m)、鋳型下端側の下テーパ面6Lにおけるテーパ率を下テーパ率TL(%/m)と名付ける。鋳造を行う上で最適なTUとTLが定まったとして、鋳造するいずれの幅においても同じTUとTLを採用できるか考える。 As an example of using a multistage tapered short side mold plate, a two-stage tapered short side mold plate shown in FIG. 1A is assumed. Of the short side taper ratio, the taper ratio at the upper taper surface 6 U on the meniscus is the upper taper ratio T U (% / m), and the taper ratio at the lower taper surface 6 L on the lower end side of the mold is the lower taper ratio T L (% / M). As the optimal T U and T L in conducting casting was determined, in any of the width of casting I think you can use the same T U and T L.

鋳片幅をW(m)、テーパ率をT(%/m)と置くと、短辺鋳型板の凝固シェルと面する面が垂直面となす角度θ(ラジアン)は(θは小さいので)
θ=TW/100/2 (3)
と書くことができる。上テーパ率TUに対応する角度をθU、下テーパ率TLに対応する角度をθLとし、上テーパ面と下テーパ面とがなす角度をΔθと置くと、
Δθ=θU−θL=(TU−TL)W/100/2 (4)
となる。上テーパ率TUと下テーパ率TLを一定、即ちTU−TLを一定に保持したままで鋳造幅Wを変化させようとすると、Δθが変動してしまうことになる。
When the slab width is W (m) and the taper rate is T (% / m), the angle θ (radian) between the surface facing the solidified shell of the short side mold plate and the vertical surface is (since θ is small)
θ = TW / 100/2 (3)
Can be written. When the angle corresponding to the upper taper rate T U is θ U , the angle corresponding to the lower taper rate T L is θ L, and the angle formed by the upper taper surface and the lower taper surface is Δθ,
Δθ = θ U −θ L = (T U −T L ) W / 100/2 (4)
It becomes. If the casting width W is changed while the upper taper rate T U and the lower taper rate T L are kept constant, that is, T U −T L is kept constant, Δθ will fluctuate.

一組の2段テーパ短辺鋳型板を製作し、鋳型に組み込んで使用する場合、Δθは各2段テーパ短辺鋳型板に固有であり、鋳造中にΔθを変更することはできない。従って、鋳造幅の変動に対応する連続鋳造鋳型においては、短辺鋳型板を交換しない限り、各鋳造幅におけるTUとTLをともに一定に保持することは原理的に不可能なのである。 When a set of two-step taper short side mold plates is manufactured and used by being incorporated in a mold, Δθ is unique to each two-step taper short side mold plate, and Δθ cannot be changed during casting. Accordingly, in a continuous casting mold which corresponds to the variation of the casting width, unless the exchange short side mold plate, it is the principle impossible to hold the both constant T U and T L in each casting width.

即ち、多段テーパ短辺鋳型板を適用した連続鋳造鋳型を用いて種々の鋳片幅を有する鋳片のスラブ連続鋳造を行う場合、鋳造幅を変更する際に、どのような条件で短辺鋳型のテーパを制御すべきか、好適な制御方法が不明であった。   That is, when slab continuous casting of slabs with various slab widths is performed using a continuous casting mold to which a multi-stage tapered short side mold plate is applied, the short side mold is changed under any conditions when changing the casting width. It was unclear whether a suitable taper should be controlled.

本発明者らは、多段テーパ短辺鋳型板を用いる場合において、図1(a)(b)に示すように、両短辺間の距離を、メニスカス位置においてWM(m)、鋳型下端においてWB(m)、メニスカス位置から鋳型下端までの距離をL(m)とおいたとき、トータルテーパ率(%/m)を
トータルテーパ率(%/m)={(WM−WB)/W0/L}×100 (5)
と定義する。W0(m)は、ある幅に応じて、決まった長さなら、どこでも良い。メニスカス幅(WM(m))、鋳型上端幅、鋳型下端幅等。
The present inventors have found that, in the case of using the multi-stage taper short side mold plate, as shown in FIG. 1 (a) (b), the distance between the short sides, W M (m) at the meniscus position in the casting mold bottom W B (m), and the distance from the meniscus position to mold the lower end placed between L (m), the total taper ratio (% / m) of total taper ratio (% / m) = {( W M -W B) / W 0 / L} × 100 (5)
It is defined as W 0 (m) may be anywhere as long as it has a fixed length according to a certain width. Meniscus width (W M (m)), mold upper end width, mold lower end width, etc.

多段テーパ短辺鋳型板を適用した連続鋳造鋳型を用いて種々の鋳片幅を有する鋳片のスラブ連続鋳造を行う場合、多段テーパ短辺鋳型板として、どのようなテーパ形状を選択すべきか、という点が問題となる。   When performing slab continuous casting of slabs having various slab widths using a continuous casting mold to which a multistage tapered short side mold plate is applied, what taper shape should be selected as the multistage tapered short side mold plate, This is a problem.

本発明者らは、鋳造方向最上位の短辺テーパ率を上テーパ率TU、最下位の短辺テーパ率を下テーパ率TLとし、上テーパ率TUを下テーパ率TLで除した値を上下テーパ比と定義すると、多段テーパ短辺鋳型板の最適形状は、この上下テーパ比の範囲として表せることを明らかにした。 The inventors of the present invention divide the upper taper rate T U by the upper taper rate T U , the lowest short side taper rate in the casting direction, the lower taper rate T L , and the upper taper rate T U by the lower taper rate T L. It was clarified that the optimum shape of the multi-step taper short side mold plate can be expressed as the range of the vertical taper ratio when the above value is defined as the vertical taper ratio.

即ち、本発明の要旨とするところは以下のとおりである。
(1)鋳造方向に異なった2以上の短辺テーパ率(単位:%/m)を有する多段テーパ短辺鋳型板を用い、複数の鋳片幅の鋳片を鋳造する連続鋳造方法であって、
鋳造方向最上位の短辺テーパ率を上テーパ率、最下位の短辺テーパ率を下テーパ率、短辺表面のメニスカス部と鋳型下端部を直線で結んだ短辺テーパ率をトータルテーパ率(TT)とし、上テーパ率を下テーパ率で除した値を上下テーパ比(R)と定義し、鋳造中いずれの鋳片幅(W)においても、上下テーパ比Rが下記式(1)で計算される値(RM)以下とすることを特徴とする連続鋳造方法。
M=−3.1×ln(W×TT 2)+29 (1)
(RM(−)、TT(%/m)、W(mm))
(2)鋳造する最小鋳片幅が500mmあるいはそれ以下であることを特徴とする上記(1)に記載の連続鋳造方法。
(3)鋳造する最大鋳片幅が2500mmあるいはそれ以上であることを特徴とする上記(1)又は(2)に記載の連続鋳造方法。
(4)短辺テーパ率が上テーパ率と下テーパ率の2つの値のみを有する2段テーパ鋳型を用いることを特徴とする上記(1)乃至(3)のいずれかに記載の連続鋳造方法。
(5)長辺鋳型板と、鋳造方向に異なった2以上の短辺テーパ率(単位:%/m)を有する多段テーパ短辺鋳型板と、鋳造する鋳片幅及び短辺の傾きを変更することのできる短辺駆動装置と、短辺駆動装置の制御装置とを有し、鋳造方向最上位の短辺テーパ率を上テーパ率、最下位の短辺テーパ率を下テーパ率、短辺表面のメニスカス部と鋳型下端部を直線で結んだ短辺テーパ率をトータルテーパ率(TT)とし、上テーパ率を下テーパ率で除した値を上下テーパ比(R)と定義し、前記短辺駆動装置の制御装置は、幅変更中を除き、鋳造中いずれの鋳片幅(W)においても、上下テーパ比Rが下記式(1)で計算される値(RM)以下とすることを特徴とする連続鋳造鋳型。
M=−3.1×ln(W×TT 2)+29 (1)
(RM(−)、TT(%/m)、W(mm))
(6)鋳造可能最小鋳片幅が500mmあるいはそれ以下、鋳造可能最大鋳片幅が2500mmあるいはそれ以上であることを特徴とする上記(5)に記載の連続鋳造鋳型。
That is, the gist of the present invention is as follows.
(1) A continuous casting method for casting a slab having a plurality of slab widths using a multistage tapered short side mold plate having two or more short side taper ratios (unit:% / m) different in the casting direction. ,
The upper taper rate is the uppermost short side taper rate in the casting direction, the lower taper rate is the lowermost taper rate, and the short side taper rate obtained by connecting the meniscus part on the short side surface and the lower end of the mold with a straight line is the total taper rate ( T T ), and the value obtained by dividing the upper taper rate by the lower taper rate is defined as the vertical taper ratio (R). The vertical taper ratio R is expressed by the following formula (1) at any slab width (W) during casting. A continuous casting method characterized in that the value is equal to or less than the value (R M ) calculated by
R M = −3.1 × ln (W × T T 2 ) +29 (1)
(R M (−), T T (% / m), W (mm))
(2) The continuous casting method according to (1) above, wherein the minimum slab width to be cast is 500 mm or less.
(3) The continuous casting method as described in (1) or (2) above, wherein the maximum slab width to be cast is 2500 mm or more.
(4) The continuous casting method according to any one of (1) to (3) above, wherein a two-step taper mold having a short side taper rate having only two values of an upper taper rate and a lower taper rate is used. .
(5) Change the long side mold plate, the multi-stage taper short side mold plate having two or more short side taper rates (unit:% / m) different in the casting direction, and the width of the cast slab and the inclination of the short side A short side drive device and a control device for the short side drive device, the upper side taper rate is the uppermost taper rate in the casting direction, the lower side taper rate is the lower taper rate, and the shorter side The short side taper ratio connecting the surface meniscus portion and the mold lower end portion with a straight line is defined as the total taper ratio (T T ), and the value obtained by dividing the upper taper ratio by the lower taper ratio is defined as the vertical taper ratio (R), The control device of the short side drive device sets the vertical taper ratio R to be equal to or less than the value (R M ) calculated by the following formula (1) at any slab width (W) during casting except during width change. A continuous casting mold characterized by that.
R M = −3.1 × ln (W × T T 2 ) +29 (1)
(R M (−), T T (% / m), W (mm))
(6) The continuous casting mold according to (5), wherein the minimum castable slab width is 500 mm or less and the maximum castable slab width is 2500 mm or more.

本発明は、多段テーパ短辺鋳型板を用い、複数の鋳片幅の鋳片を鋳造する連続鋳造方法において、いずれの鋳片幅においても上下テーパ比を一定の範囲とすることにより、いずれの鋳造幅においても、鋳型内における凝固シェルの凝固均一度を良好に保持し、かつ鋳型による凝固シェルの拘束を低減しつつ、良好な鋳造が可能になる。   The present invention provides a continuous casting method for casting a slab having a plurality of slab widths using a multistage tapered short side mold plate, and by adjusting the vertical taper ratio within a certain range at any slab width, Even in the casting width, the solidification uniformity of the solidified shell in the mold can be maintained satisfactorily, and good casting can be performed while reducing the restriction of the solidified shell by the mold.

本発明において、トータルテーパ率TT、上テーパ率TU、下テーパ率TL、上下テーパ比Rを以下のように定義する。 In the present invention, the total taper rate T T , the upper taper rate T U , the lower taper rate T L , and the vertical taper ratio R are defined as follows.

両短辺間の距離を、メニスカス位置においてWM(m)、鋳型下端においてWB(m)、メニスカス位置から鋳型下端までの距離をL(m)とおいたとき(図1(a)(b))、トータルテーパ率TT(%/m)を
T(%/m)={(WM−WB)/W0/L}×100 (5)
と定義する。W0は、ある幅に応じて、決まった長さなら、どこでも良い。メニスカス幅(WM)、鋳型上端幅、鋳型下端幅等。
When the distance between the short sides is W M (m) at the meniscus position, W B (m) at the lower end of the mold, and L (m) from the meniscus position to the lower end of the mold (FIGS. 1A and 1B) )), And the total taper rate T T (% / m) T T (% / m) = {(W M −W B ) / W 0 / L} × 100 (5)
It is defined as W 0 may be anywhere as long as it has a fixed length according to a certain width. Meniscus width (W M ), mold upper end width, mold lower end width, etc.

多段テーパ短辺鋳型板の鋳造方向最上部の上テーパ面6Uにおいて、上方位置と下方位置を任意に定め、両短辺間の距離を、上方位置においてW1(m)、下方位置においてW2(m)、上方位置から下方位置までの距離をΔL(m)とおいたとき(図1(a)(b))、上テーパ率TU(%/m)を
U(%/m)={(W1−W2)/W0/ΔL}×100 (6)
と定義する。
W in the tapered surface 6 U on the casting direction at the top of the multistage tapered short side mold plate, optionally define the upper and lower positions, the distance between the short sides, in W 1 (m), the lower position at the upper position 2 (m), when the distance from the upper position to the lower position is ΔL (m) (FIGS. 1A and 1B), the upper taper ratio T U (% / m) is set to T U (% / m) = {(W 1 −W 2 ) / W 0 / ΔL} × 100 (6)
It is defined as

多段テーパ短辺鋳型板の鋳造方向最下部の下テーパ面6Lにおいて、上方位置と下方位置を任意に定め、両短辺間の距離を、上方位置においてW3(m)、下方位置においてW4(m)、上方位置から下方位置までの距離をΔL(m)とおいたとき(図1(a)(b))、下テーパ率TL(%/m)を
L(%/m)={(W3−W4)/W0/ΔL}×100 (7)
と定義する。
On the lower taper surface 6 L at the bottom in the casting direction of the multi-stage tapered short side mold plate, an upper position and a lower position are arbitrarily determined, and the distance between both short sides is set to W 3 (m) at the upper position and W at the lower position. 4 (m), when the distance from the upper position to the lower position is ΔL (m) (FIGS. 1A and 1B), the lower taper rate T L (% / m) is set to T L (% / m) = {(W 3 −W 4 ) / W 0 / ΔL} × 100 (7)
It is defined as

上下テーパ比Rは、
上下テーパ比R=上テーパ率/下テーパ率=TU/TL (8)
と定義する。
The vertical taper ratio R is
Vertical taper ratio R = Upper taper ratio / Lower taper ratio = T U / T L (8)
It is defined as

特許文献4、5には、鋳型内での鋳片の凝固挙動を計算により推定する方法が記載されている。鋳型の鋳造方向の傾き、あるいは鋳造速度を任意の値に設定した際に、鋳型四周各部位における凝固シェルの厚さが図7のように算出される。この結果に基づき、鋳型下端における凝固シェル厚の最大値Aと最小値Bの比B/A、凝固シェルと鋳型間の拘束力、ギャップ量を求めることができる。   Patent Documents 4 and 5 describe methods for estimating the solidification behavior of a slab in a mold by calculation. When the inclination of the casting direction of the mold or the casting speed is set to an arbitrary value, the thickness of the solidified shell at each part around the mold is calculated as shown in FIG. Based on this result, the ratio B / A between the maximum value A and the minimum value B of the solidified shell thickness at the lower end of the mold, the binding force between the solidified shell and the mold, and the gap amount can be obtained.

上記特許文献4、5に記載の計算方法を用い、多段テーパ短辺鋳型板を使用する連続鋳造について、鋳型下端における凝固シェルの形状、凝固シェルと鋳型間の拘束力を求めた。鋳型下端における凝固シェルの形状は、計算によって図7のように導出される。鋳片コーナー近傍における凝固シェルの長辺側に、凝固シェル厚が薄い部位が形成されることがあり、この部位の凝固シェル厚をシェル厚の最小値Bと置くことができる。そして、凝固シェル厚の最大値Aと最小値Bの比B/Aを、ここでは「凝固均一度」と呼ぶ。凝固均一度が良好な鋳造を行った場合には、コーナー近傍の長辺側におけるシェル厚の薄い部位のシェル厚みが、その他の厚い部位のシェル厚に近づくこととなる。   Using the calculation methods described in Patent Documents 4 and 5 above, the shape of the solidified shell at the lower end of the mold and the binding force between the solidified shell and the mold were determined for continuous casting using a multistage tapered short side mold plate. The shape of the solidified shell at the lower end of the mold is derived as shown in FIG. 7 by calculation. A portion with a thin solidified shell thickness may be formed on the long side of the solidified shell in the vicinity of the slab corner, and the solidified shell thickness at this portion can be set to the minimum value B of the shell thickness. The ratio B / A between the maximum value A and the minimum value B of the solidified shell thickness is referred to herein as “solidification uniformity”. When casting with good solidification uniformity is performed, the shell thickness of the portion where the shell thickness is thin on the long side near the corner approaches the shell thickness of other thick portions.

実際に溶鋼の連続鋳造を行い、鋳造中に鋳型内溶鋼にSを添加し、凝固後鋳片のサルファープリントによって鋳型下端位置での凝固シェルの厚み分布を評価したところ、上記計算で求めた凝固均一度と、サルファープリントから求めた鋳型下端凝固シェル厚みの最大と最小の比とが、よく一致することがわかった。従って、計算で求めた凝固均一度を指標として、好適な連続鋳造方法を見出すことが可能である。   Actually casting the molten steel, adding S to the molten steel in the mold during casting, and evaluating the thickness distribution of the solidified shell at the lower end position of the mold by sulfur printing of the slab after solidification. It was found that the uniformity was in good agreement with the maximum and minimum ratios of the mold bottom solidified shell thickness obtained from sulfur printing. Therefore, it is possible to find a suitable continuous casting method using the solidification uniformity obtained by calculation as an index.

計算で求めた凝固均一度(B/A)の値が0.7以上であれば、実鋳造においても良好な凝固均一度を確保することができる。計算で求めた拘束力が2.0以下(各幅での基準値で正規化した値)であれば、実鋳造においても拘束の少ない良好な鋳造を行うことができる。   If the value of solidification uniformity (B / A) obtained by calculation is 0.7 or more, good solidification uniformity can be ensured even in actual casting. If the restraint force obtained by calculation is 2.0 or less (value normalized by the reference value at each width), good casting with less restraint can be performed even in actual casting.

図1に示すように、2段テーパ短辺鋳型板2の形状について検討する。短辺鋳型板2の凝固シェルに面するテーパ面6について、2段の変更点位置の鋳型上端からの距離をY、下段のテーパを鋳型上端まで延長した線と、上部テーパの鋳型上端での差をXとおくと、X,Yの値を定めれば、2段テーパ短辺鋳型板の表面形状を定めることができる。   As shown in FIG. 1, the shape of the two-step tapered short side mold plate 2 will be examined. For the taper surface 6 facing the solidified shell of the short side mold plate 2, the distance from the upper end of the mold at the two-stage change point position is Y, the line extending from the lower taper to the upper end of the mold, and the upper taper at the upper end of the mold If the difference is set to X, the surface shape of the two-step tapered short side mold plate can be determined by determining the values of X and Y.

2段テーパ短辺鋳型板2を想定し、前記図1のXの値を数種類変更し、トータルテーパ率を1.0〜2.0%/mの範囲、鋳造幅を800〜2200mmの範囲で幅を変更して、特許文献4、5に記載の計算手法によって凝固均一度と拘束力を計算した。鋳片厚みは240mmとした。図2には、鋳造幅(a)800mm、(b)1100mm、(c)1500mm、(d)2200mmのそれぞれについて、トータルテーパ率をそれぞれ1.0%/m(◆)、1.6%/m(●)の2種類とし、上下テーパ比を変化させたときの摩擦拘束力の計算結果を示している。摩擦拘束力は、計算された拘束力を各幅での基準値(1段テーパでテーパ率1.0%/mの場合の拘束力)で正規化した値としている。本発明者の別途調査により知見している摩擦拘束力の限界値は2.0である。図2より、各鋳造幅において、摩擦拘束力が限界の2.0となる上下テーパ比とトータルテーパ率との関係を求めることができる。そこで、摩擦拘束力の限界値が2.0になり、かつ、上下テーパ比が一定となる線を、横軸−幅、縦軸−トータルテーパ率のグラフにプロットしたのが、図3である。例えば図3において、幅が1000mm、トータルテーパ率が1.3%/mの場合を例にとると、上下テーパ比が約6.0以下であれば拘束力が2.0以下であるが、上下テーパ比が6.0を超えると、拘束力が2.0を超える結果となる。同じ幅1000mmでトータルテーパ率が1.52%/mになると、上下テーパ比が約5.0を超えると、拘束力が2.0を超える結果となる。   Assuming a two-step tapered short side mold plate 2, the X value in FIG. 1 is changed several times, the total taper ratio is in the range of 1.0 to 2.0% / m, and the casting width is in the range of 800 to 2200 mm. The width was changed, and the solidification uniformity and the binding force were calculated by the calculation methods described in Patent Documents 4 and 5. The slab thickness was 240 mm. FIG. 2 shows the total taper ratios of 1.0% / m (♦) and 1.6% / 1.6% for the casting width (a) 800 mm, (b) 1100 mm, (c) 1500 mm, and (d) 2200 mm, respectively. The calculation results of the frictional restraining force when the vertical taper ratio is changed with two types of m (●) are shown. The frictional constraint force is a value obtained by normalizing the calculated constraint force with a reference value for each width (restraint force when the taper rate is 1.0% / m with a one-step taper). The limit value of the frictional restraining force that has been found by the inventors' separate investigation is 2.0. From FIG. 2, it is possible to obtain the relationship between the vertical taper ratio and the total taper ratio at which the frictional restraining force reaches a limit of 2.0 at each casting width. Therefore, FIG. 3 shows a line in which the limit value of the frictional restraining force is 2.0 and the vertical taper ratio is constant, plotted on the horizontal axis-width, vertical axis-total taper ratio graph. . For example, in FIG. 3, taking a case where the width is 1000 mm and the total taper ratio is 1.3% / m as an example, if the vertical taper ratio is about 6.0 or less, the binding force is 2.0 or less. When the vertical taper ratio exceeds 6.0, the restraining force exceeds 2.0. If the total taper ratio is 1.52% / m with the same width of 1000 mm, the constraining force exceeds 2.0 when the vertical taper ratio exceeds about 5.0.

図3のグラフから、限界の上下テーパ比(RM)を幅Wとトータルテーパ率TTで定式化したのが次式(1)である。
M=−3.1×ln(W×TT 2)+29 (1)
(RM(−)、TT(%/m)、W(mm))
From the graph of FIG. 3, the following formula (1) is obtained by formulating the limit vertical taper ratio (R M ) by the width W and the total taper ratio T T.
R M = −3.1 × ln (W × T T 2 ) +29 (1)
(R M (−), T T (% / m), W (mm))

前記計算結果より下記の2点の相関関係を新たに見出した。   From the above calculation results, the following two points of correlation were newly found.

第1に、トータルテーパ率一定とした場合は、幅が大きくなるほど限界の上下テーパ比が小さくなる。即ち、テーパ量を下記のように定義すると、トータルテーパ率一定にすると、幅が大きい時のほうが幅が狭い場合よりもテーパ量が大きくなり、凝固シェルとの接触量の絶対値が大きくなり、上部の強テーパ化(上下テーパ比大)で拘束しやすくなるからだと考えられる。   First, when the total taper ratio is constant, the critical taper ratio becomes smaller as the width increases. That is, when the taper amount is defined as follows, if the total taper ratio is constant, the taper amount becomes larger when the width is larger than when the width is narrow, and the absolute value of the contact amount with the solidified shell becomes larger. This is thought to be because it becomes easier to restrain due to the strong taper of the upper part (upper and lower taper ratio).

第2に、幅一定の場合、トータルテーパ率が大きくなるほど、限界の上下テーパ比が小さくなる。即ち、トータルテーパ率が大きくなるほど、テーパ量が増加し、凝固シェルとの接触量の絶対値が大きくなるため、上記第1と同様の理由で拘束しやすくなるためと考えられる。   Second, when the width is constant, the upper and lower taper ratio becomes smaller as the total taper ratio becomes larger. That is, as the total taper ratio increases, the taper amount increases, and the absolute value of the contact amount with the solidified shell increases, so that it is likely to be restrained for the same reason as the first.

ちなみに、テーパ量は、
テーパ量(m)=TT(%/m)×W0(m)×L(m)
と定義する。
By the way, the taper amount is
Taper amount (m) = T T (% / m) × W 0 (m) × L (m)
It is defined as

図4に、一定のテーパ形状を有する2段テーパ短辺鋳型版を用い、例えばトータルテーパ率を1.2%/m一定として幅を変更した場合の上下テーパ比、摩擦拘束力、凝固均一度の状況を示す。図4に示すように、トータルテーパ率を一定にして幅を変更した場合、上下テーパ比は鋳造幅とともに変化し、鋳造幅が狭くなるほど上下テーパ比が大きくなる。そして、凝固均一度及び拘束力は、鋳造幅800〜2200mmの範囲内でいずれも良好な値で推移することがわかった。即ち、多段テーパ短辺鋳型板を用いて鋳造幅を変更しつつ連続鋳造を行うに際し、トータルテーパ率を一定に保持しつつ幅を変更する方法でも、前述の上下テーパ比を限界値以下にしておけば、凝固均一度と拘束力をともに良好に保持できることがわかった。   FIG. 4 shows a vertical taper ratio, frictional restraint force, solidification uniformity when the width is changed by using a two-step taper short side mold plate having a constant taper shape, for example, the total taper rate is fixed at 1.2% / m. Shows the situation. As shown in FIG. 4, when the width is changed while keeping the total taper rate constant, the vertical taper ratio changes with the casting width, and the vertical taper ratio increases as the casting width decreases. And it turned out that a solidification uniformity and a restraint force change with a favorable value in the range of casting width 800-2200mm. That is, when performing continuous casting while changing the casting width using a multi-stage tapered short side mold plate, the above-mentioned upper and lower taper ratio is set to a limit value or less even in the method of changing the width while keeping the total taper rate constant. It was found that both the solidification uniformity and the restraint force can be maintained well.

ちなみに、トータルテーパ率0.5〜2.0%/mでも、図4と同様の傾向を示すことも確認している。   Incidentally, it has also been confirmed that even when the total taper rate is 0.5 to 2.0% / m, the same tendency as in FIG. 4 is exhibited.

次に、幅1500mm、トータルテーパ率2.0%/mで上下テーパ比が2.0となる2段テーパ短辺鋳型板を用い、鋳造幅を1500mmで固定し、トータルテーパ率を変化させて凝固均一度と拘束力を計算で求めた。鋳片厚みは240mmとした。結果を図5に示す。図から明らかなように、トータルテーパ率を0.5以上とすれば凝固均一度を良好に保持することができる。またトータルテーパ率を2.0%/m以下とすれば拘束力が小さく、良好に保持することができる。   Next, using a two-step taper short side mold plate having a width of 1500 mm, a total taper ratio of 2.0% / m, and a vertical taper ratio of 2.0, the casting width is fixed at 1500 mm, and the total taper ratio is changed. Solidification uniformity and restraint force were calculated. The slab thickness was 240 mm. The results are shown in FIG. As is apparent from the figure, solidification uniformity can be maintained well if the total taper ratio is 0.5 or more. Further, if the total taper rate is 2.0% / m or less, the restraining force is small, and it can be held well.

なお、トータルテーパ率の下限値は大きいほど、凝固均一度を良好にできるため、1.0%/m以上が好ましく、1.3%/m超がより好ましい。さらに好ましくは1.35%/m以上である。   In addition, since the solidification uniformity can be improved as the lower limit value of the total taper ratio is larger, 1.0% / m or more is preferable, and more than 1.3% / m is more preferable. More preferably, it is 1.35% / m or more.

トータルテーパ率は、幅に応じて変更することも有効である。同一のトータルテーパ率では、幅が狭い時のほうが摩擦拘束力が小さい。また、凝固の均一度は同一トータルテーパ率なら、幅が狭い時のほうが小さいので、幅が狭い時ほどトータルテーパ率を大きくすることも有効である。   It is also effective to change the total taper rate according to the width. With the same total taper ratio, the frictional restraining force is smaller when the width is narrow. In addition, since the solidification uniformity is the same when the total taper ratio is the same, it is also effective to increase the total taper ratio as the width is narrow because the width is narrow.

本発明において、鋳造する鋳片厚みは、好ましくは220mm以上350mm以下である。また、より好ましくは230mm超350mm以下、さらにより好ましくは240mm以上350mm以下である。鋳片厚みが350mmを超える場合は、鋳造中に幅を変更する連続鋳造鋳型としては過大な設備を必要とし、実質的に実現困難である。また、鋳造厚みが220mm未満であると、タンディッシュから溶融金属を注入するための浸漬ノズルの直径を小さくしなければならなくなるか、大きなノズルを使う場合は鋳型との隙間が小さくなり、均一な溶融金属の注入がやや困難になる。鋳造厚みが230mm超になると均一な注入が行い易くなり、240mm以上になると均一な注入がより一層行い易くなる。   In the present invention, the cast slab thickness is preferably 220 mm or more and 350 mm or less. More preferably, it is more than 230 mm and 350 mm or less, and still more preferably 240 mm or more and 350 mm or less. When the slab thickness exceeds 350 mm, an excessive facility is required as a continuous casting mold for changing the width during casting, which is substantially difficult to realize. Also, if the casting thickness is less than 220 mm, the diameter of the immersion nozzle for injecting molten metal from the tundish must be reduced, or if a large nozzle is used, the gap with the mold becomes small and uniform. Injection of molten metal is somewhat difficult. When the casting thickness exceeds 230 mm, uniform injection becomes easy, and when the casting thickness exceeds 240 mm, uniform injection becomes even easier.

図6に基づいて、本発明の鋳造方法を実現するための連続鋳造鋳型について説明する。   A continuous casting mold for realizing the casting method of the present invention will be described with reference to FIG.

本発明の連続鋳造鋳型1は、長辺鋳型板3と、鋳造方向に異なった2以上の短辺テーパ率(単位:%/m)を有する多段テーパ短辺鋳型板2と、鋳造する鋳片幅及び短辺の傾きを変更することのできる短辺駆動装置4と、短辺駆動装置の制御装置5とを有する。鋳造方向最上位の短辺テーパ率を上テーパ率、最下位の短辺テーパ率を下テーパ率、短辺表面のメニスカス部と鋳型下端部を直線で結んだ短辺テーパ率をトータルテーパ率とし、上テーパ率を下テーパ率で除した値を上下テーパ比と定義する点は、上記本発明の連続鋳造方法と同様である。   The continuous casting mold 1 of the present invention includes a long side mold plate 3, a multistage tapered short side mold plate 2 having two or more short side taper ratios (unit:% / m) different in the casting direction, and a cast piece to be cast. It has a short side driving device 4 capable of changing the width and the inclination of the short side, and a control device 5 for the short side driving device. The upper taper rate is the uppermost short side taper rate in the casting direction, the lower taper rate is the lowermost taper rate, and the short side taper rate obtained by connecting the meniscus part of the short side surface and the mold bottom is a total taper rate. The value obtained by dividing the upper taper rate by the lower taper rate is defined as the upper and lower taper ratio, which is the same as in the continuous casting method of the present invention.

短辺駆動装置の制御装置5は、鋳造中いずれの鋳片幅においても上下テーパ比を所定値以下とするように短辺鋳型板を駆動制御することができる。これにより、いずれの鋳片幅においても上下テーパ比を所定値以下とする本発明の連続鋳造方法を実施することが可能となる。   The control device 5 of the short side drive device can drive and control the short side mold plate so that the vertical taper ratio is not more than a predetermined value at any slab width during casting. This makes it possible to carry out the continuous casting method of the present invention in which the vertical taper ratio is not more than a predetermined value at any slab width.

長辺鋳型板3及び短辺鋳型板2は、それぞれ2枚で1組を構成し、凝固シェルに面する側が水冷銅板、その反対面を鋼製のバックフレームとすると良い。短辺鋳型板2の幅が鋳造する鋳片の厚みにほぼ等しい。短辺鋳型板2を2枚の長辺鋳型板3で挟み込むことにより、矩形の鋳造空間を有する鋳型が形成される。   The long-side mold plate 3 and the short-side mold plate 2 are each composed of a pair, and the side facing the solidified shell is preferably a water-cooled copper plate, and the opposite surface is a steel back frame. The width of the short side mold plate 2 is substantially equal to the thickness of the cast piece to be cast. By sandwiching the short side mold plate 2 between the two long side mold plates 3, a mold having a rectangular casting space is formed.

短辺駆動装置4は、例えば上下2段の駆動アクチュエータ9を有し、短辺鋳型板2をバックフレーム側からアクチュエータ9によって保持する。上下のアクチュエータ9それぞれの運動によって短辺鋳型板の位置を定めることにより、各鋳造幅毎に、短辺鋳型板2のトータルテーパ率を所定の値に定めることができる。アクチュエータ9としては、電動シリンダ、油圧シリンダなどを用いることができる。あるいは、短辺駆動装置として短辺鋳型板の往復運動と首振り運動を行う駆動手段を有する装置としても良い。   The short-side drive device 4 has, for example, two upper and lower drive actuators 9 and holds the short-side mold plate 2 by the actuator 9 from the back frame side. By determining the position of the short-side mold plate by the movement of the upper and lower actuators 9, the total taper ratio of the short-side mold plate 2 can be set to a predetermined value for each casting width. As the actuator 9, an electric cylinder, a hydraulic cylinder, or the like can be used. Or it is good also as an apparatus which has a drive means which performs a reciprocating motion and a swing motion of a short side mold plate as a short side drive device.

なお、連続鋳造中に鋳造幅を変更するに際しては、正常な鋳造を行いつつ鋳造幅を連続的に変更することが要請される。このような幅変更を実施している最中には、トータルテーパ率を変更して円滑な幅変更を実施することが必要となり、上下テーパ比を所定値以下に保持することはできない。   In addition, when changing the casting width during continuous casting, it is required to continuously change the casting width while performing normal casting. During such a width change, it is necessary to change the total taper ratio to change the width smoothly, and the vertical taper ratio cannot be kept below a predetermined value.

上記本発明の連続鋳造鋳型は、鋳造可能最小鋳片幅が500mmあるいはそれ以下、鋳造可能最大鋳片幅が2500mmあるいはそれ以上であれば、広範囲の幅を有する鋳片を鋳造することができるので好ましい。   Since the continuous casting mold of the present invention has a minimum castable slab width of 500 mm or less and a maximum castable slab width of 2500 mm or more, a slab having a wide range can be cast. preferable.

短辺鋳型板のテーパ面を説明する図であり、(a)は2段テーパ短辺鋳型板、(b)は3段テーパ短辺鋳型板、(c)は1段テーパ短辺鋳型板を示す図である。It is a figure explaining the taper surface of a short side mold plate, (a) is a 2 step taper short side mold plate, (b) is a 3 step taper short side mold plate, (c) is a 1 step taper short side mold plate. FIG. トータルテーパ率と上下テーパ率を変化させたときの摩擦拘束力についてのグラフであり、鋳造幅が(a)は800mm、(b)は1100mmである。It is a graph about the frictional restraining force when changing a total taper rate and an up-and-down taper rate, (a) is 800 mm and (b) is 1100 mm. トータルテーパ率と上下テーパ率を変化させたときの摩擦拘束力についてのグラフであり、鋳造幅が(c)は1500mm、(d)は2200mmである。It is a graph about the friction restraint force when changing a total taper rate and an up-and-down taper rate, (c) is 1500 mm, (d) is 2200 mm. 幅、トータルテーパ率と限界上下テーパ比の関係を示す図である。It is a figure which shows the relationship between a width | variety, a total taper rate, and a limit vertical taper ratio. トータルテーパ率を一定とした時の幅ごとの上下テーパ比、凝固均一度、拘束力の変化を示す図である。It is a figure which shows the change of the up-and-down taper ratio for every width | variety when the total taper rate is made constant, a solidification uniformity, and a restraint force. トータルテーパ率と凝固均一度、拘束力の関係を示す図である。It is a figure which shows the relationship between a total taper rate, the solidification uniformity, and a restraint force. 本発明の連続鋳造鋳型を示す図であり、(a)は平面図、(b)は断面正面図である。It is a figure which shows the continuous casting mold of this invention, (a) is a top view, (b) is a cross-sectional front view. 計算で求めた鋳型下端における凝固シェル形状を示す図である。It is a figure which shows the solidification shell shape in the casting_mold | template lower end calculated | required.

符号の説明Explanation of symbols

1 連続鋳造鋳型
2 短辺鋳型板
3 長辺鋳型板
4 短辺駆動装置
5 制御装置
6 テーパ面
9 アクチュエータ
10 凝固シェル
11 メニスカス位置
DESCRIPTION OF SYMBOLS 1 Continuous casting mold 2 Short side mold plate 3 Long side mold plate 4 Short side drive device 5 Control device 6 Tapered surface 9 Actuator 10 Solidified shell 11 Meniscus position

Claims (6)

鋳造方向に異なった2以上の短辺テーパ率(単位:%/m)を有する多段テーパ短辺鋳型板を用い、複数の鋳片幅の鋳片を鋳造する連続鋳造方法であって、
鋳造方向最上位の短辺テーパ率を上テーパ率、最下位の短辺テーパ率を下テーパ率、短辺表面のメニスカス部と鋳型下端部を直線で結んだ短辺テーパ率をトータルテーパ率(TT)とし、上テーパ率を下テーパ率で除した値を上下テーパ比(R)と定義し、
鋳造中いずれの鋳片幅(W)においても、上下テーパ比Rが下記式(1)で計算される値(RM)以下とすることを特徴とする連続鋳造方法。
M=−3.1×ln(W×TT 2)+29 (1)
(RM(−)、TT(%/m)、W(mm))
A continuous casting method for casting a slab having a plurality of slab widths using a multi-stage tapered short side mold plate having two or more short side taper ratios different in the casting direction (unit:% / m),
The upper taper rate is the uppermost short side taper rate in the casting direction, the lower taper rate is the lowermost taper rate, and the short side taper rate obtained by connecting the meniscus part on the short side surface and the lower end of the mold with a straight line is the total taper rate ( T T ), and the value obtained by dividing the upper taper rate by the lower taper rate is defined as the vertical taper ratio (R),
A continuous casting method characterized in that the vertical taper ratio R is equal to or less than the value (R M ) calculated by the following formula (1) at any slab width (W) during casting.
R M = −3.1 × ln (W × T T 2 ) +29 (1)
(R M (−), T T (% / m), W (mm))
鋳造する最小鋳片幅が500mmあるいはそれ以下であることを特徴とする請求項1に記載の連続鋳造方法。   2. The continuous casting method according to claim 1, wherein a minimum slab width to be cast is 500 mm or less. 鋳造する最大鋳片幅が2500mmあるいはそれ以上であることを特徴とする請求項1又は2に記載の連続鋳造方法。   The continuous casting method according to claim 1 or 2, wherein the maximum slab width to be cast is 2500 mm or more. 短辺テーパ率が上テーパ率と下テーパ率の2つの値のみを有する2段テーパ鋳型を用いることを特徴とする請求項1乃至3のいずれかに記載の連続鋳造方法。   The continuous casting method according to any one of claims 1 to 3, wherein a two-step taper mold having a short side taper ratio having only two values of an upper taper ratio and a lower taper ratio is used. 長辺鋳型板と、鋳造方向に異なった2以上の短辺テーパ率(単位:%/m)を有する多段テーパ短辺鋳型板と、鋳造する鋳片幅及び短辺の傾きを変更することのできる短辺駆動装置と、短辺駆動装置の制御装置とを有し、
鋳造方向最上位の短辺テーパ率を上テーパ率、最下位の短辺テーパ率を下テーパ率、短辺表面のメニスカス部と鋳型下端部を直線で結んだ短辺テーパ率をトータルテーパ率(TT)とし、上テーパ率を下テーパ率で除した値を上下テーパ比(R)と定義し、
前記短辺駆動装置の制御装置は、幅変更中を除き、鋳造中いずれの鋳片幅(W)においても、上下テーパ比Rが下記式(1)で計算される値(RM)以下とすることを特徴とする連続鋳造鋳型。
M=−3.1×ln(W×TT 2)+29 (1)
(RM(−)、TT(%/m)、W(mm))
A long-side mold plate, a multi-stage tapered short-side mold plate having two or more short-side taper ratios different in the casting direction (unit:% / m), and changing the width of the cast slab and the inclination of the short side A short side drive device that can be used, and a control device for the short side drive device,
The upper taper rate is the uppermost short side taper rate in the casting direction, the lower taper rate is the lowermost taper rate, and the short side taper rate obtained by connecting the meniscus part on the short side surface and the lower end of the mold with a straight line is the total taper rate ( T T ), and the value obtained by dividing the upper taper rate by the lower taper rate is defined as the vertical taper ratio (R),
The control device of the short side drive device has a vertical taper ratio R equal to or less than a value (R M ) calculated by the following formula (1) at any slab width (W) during casting except during width change. A continuous casting mold characterized by:
R M = −3.1 × ln (W × T T 2 ) +29 (1)
(R M (−), T T (% / m), W (mm))
鋳造可能最小鋳片幅が500mmあるいはそれ以下、鋳造可能最大鋳片幅が2500mmあるいはそれ以上であることを特徴とする請求項5に記載の連続鋳造鋳型。   6. The continuous casting mold according to claim 5, wherein the minimum castable slab width is 500 mm or less, and the maximum castable slab width is 2500 mm or more.
JP2007187079A 2007-07-18 2007-07-18 Continuous casting method and continuous casting mold Active JP5047714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007187079A JP5047714B2 (en) 2007-07-18 2007-07-18 Continuous casting method and continuous casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007187079A JP5047714B2 (en) 2007-07-18 2007-07-18 Continuous casting method and continuous casting mold

Publications (2)

Publication Number Publication Date
JP2009022971A true JP2009022971A (en) 2009-02-05
JP5047714B2 JP5047714B2 (en) 2012-10-10

Family

ID=40395297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007187079A Active JP5047714B2 (en) 2007-07-18 2007-07-18 Continuous casting method and continuous casting mold

Country Status (1)

Country Link
JP (1) JP5047714B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009160645A (en) * 2008-01-10 2009-07-23 Nippon Steel Corp Continuous casting method and continuous casting mold
JP2010234443A (en) * 2009-03-11 2010-10-21 Nippon Steel Corp Continuous casting method and continuous casting device
JP2010253548A (en) * 2009-03-31 2010-11-11 Nippon Steel Corp Continuous casting method and continuous casting apparatus
CN102355964A (en) * 2009-03-19 2012-02-15 新日本制铁株式会社 Continuous casting method, and continuous casting mold
KR20160078819A (en) * 2014-12-24 2016-07-05 주식회사 포스코 Apparatus for Continuous Casting
CN106513613A (en) * 2016-12-27 2017-03-22 中冶赛迪工程技术股份有限公司 Online heat width modulation method for slab continuous casting crystallizer based on parabolic path
CN112743053A (en) * 2020-12-29 2021-05-04 马鞍山钢铁股份有限公司 Crystallizer for solving peritectic steel continuous casting slab surface cracks and control method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5653849A (en) * 1979-10-08 1981-05-13 Kawasaki Steel Corp Continuous casting method of steel slab of less surface defects
JPH03210953A (en) * 1990-01-11 1991-09-13 Sumitomo Heavy Ind Ltd Method for continuous casting and mold for continuous casting equipment
JP2001205405A (en) * 2000-01-28 2001-07-31 Sumitomo Metal Ind Ltd Initial solidification control method for steel
JP2006346735A (en) * 2005-06-20 2006-12-28 Nippon Steel Corp Method for designing continuous casting mold

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5653849A (en) * 1979-10-08 1981-05-13 Kawasaki Steel Corp Continuous casting method of steel slab of less surface defects
JPH03210953A (en) * 1990-01-11 1991-09-13 Sumitomo Heavy Ind Ltd Method for continuous casting and mold for continuous casting equipment
JP2001205405A (en) * 2000-01-28 2001-07-31 Sumitomo Metal Ind Ltd Initial solidification control method for steel
JP2006346735A (en) * 2005-06-20 2006-12-28 Nippon Steel Corp Method for designing continuous casting mold

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009160645A (en) * 2008-01-10 2009-07-23 Nippon Steel Corp Continuous casting method and continuous casting mold
JP4608558B2 (en) * 2008-01-10 2011-01-12 新日本製鐵株式会社 Continuous casting method and continuous casting mold
JP2010234443A (en) * 2009-03-11 2010-10-21 Nippon Steel Corp Continuous casting method and continuous casting device
CN102355964A (en) * 2009-03-19 2012-02-15 新日本制铁株式会社 Continuous casting method, and continuous casting mold
CN102355964B (en) * 2009-03-19 2014-02-19 新日铁住金株式会社 Continuous casting method, short edge mould plate and continuous casting mold
JP2010253548A (en) * 2009-03-31 2010-11-11 Nippon Steel Corp Continuous casting method and continuous casting apparatus
KR20160078819A (en) * 2014-12-24 2016-07-05 주식회사 포스코 Apparatus for Continuous Casting
KR101714850B1 (en) 2014-12-24 2017-03-10 주식회사 포스코 Apparatus for Continuous Casting
CN106513613A (en) * 2016-12-27 2017-03-22 中冶赛迪工程技术股份有限公司 Online heat width modulation method for slab continuous casting crystallizer based on parabolic path
CN106513613B (en) * 2016-12-27 2019-04-16 中冶赛迪工程技术股份有限公司 One kind being based on parabolic path continuous casting crystallizer for plate billet hot width adjusting method online
CN112743053A (en) * 2020-12-29 2021-05-04 马鞍山钢铁股份有限公司 Crystallizer for solving peritectic steel continuous casting slab surface cracks and control method

Also Published As

Publication number Publication date
JP5047714B2 (en) 2012-10-10

Similar Documents

Publication Publication Date Title
JP5047714B2 (en) Continuous casting method and continuous casting mold
JP5673149B2 (en) Mold for continuous casting of steel and method for continuous casting of steel
KR20130074898A (en) Mold in continuous casting
JP4608558B2 (en) Continuous casting method and continuous casting mold
KR101941506B1 (en) Continuous casting mold and method for continuous casting of steel
KR101752991B1 (en) Continuous casting facility
US8176970B2 (en) Twin-belt casting machine and method of continuous slab casting
JP5428902B2 (en) Continuous casting method and continuous casting apparatus
KR102245010B1 (en) Method for continuous casting of steel
JP2015051442A (en) Continuous casting mold and continuous casting method for steel
JP5825084B2 (en) Continuous casting method of high carbon steel slab
WO2010106696A1 (en) Continuous casting method, and continuous casting mold
JP6743872B2 (en) Method of expanding the width of the slab during continuous casting
WO2018056322A1 (en) Continuous steel casting method
JP5423434B2 (en) Continuous casting method and continuous casting apparatus
JP2009006348A (en) Continuous casting mold
RU2586378C2 (en) Continuous casting machine
JP2007125575A (en) Method for continuously producing cast slab
JP2018149602A (en) Method for continuously casting steel
KR101435034B1 (en) Method for rolling heavy plate
JP4417899B2 (en) Continuous casting method
JP2016168610A (en) Steel continuous casting method
JP2022065814A (en) Mold for continuous casting and continuous casting method for steel
JP2018047480A (en) Continuous steel casting method
JPH10249492A (en) Mold for continuously casting steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5047714

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350