JP6743872B2 - Method of expanding the width of the slab during continuous casting - Google Patents
Method of expanding the width of the slab during continuous casting Download PDFInfo
- Publication number
- JP6743872B2 JP6743872B2 JP2018226281A JP2018226281A JP6743872B2 JP 6743872 B2 JP6743872 B2 JP 6743872B2 JP 2018226281 A JP2018226281 A JP 2018226281A JP 2018226281 A JP2018226281 A JP 2018226281A JP 6743872 B2 JP6743872 B2 JP 6743872B2
- Authority
- JP
- Japan
- Prior art keywords
- mold
- short side
- moving speed
- slab
- width
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000009749 continuous casting Methods 0.000 title claims description 41
- 238000000034 method Methods 0.000 title claims description 20
- 229910000859 α-Fe Inorganic materials 0.000 claims description 26
- 229910000831 Steel Inorganic materials 0.000 claims description 22
- 239000010959 steel Substances 0.000 claims description 22
- 229910052802 copper Inorganic materials 0.000 claims description 18
- 239000010949 copper Substances 0.000 claims description 18
- 239000000203 mixture Substances 0.000 claims description 16
- 229910052799 carbon Inorganic materials 0.000 claims description 14
- 238000005266 casting Methods 0.000 claims description 14
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 12
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 12
- 229910052804 chromium Inorganic materials 0.000 claims description 9
- 239000011651 chromium Substances 0.000 claims description 9
- 229910052748 manganese Inorganic materials 0.000 claims description 9
- 239000011572 manganese Substances 0.000 claims description 9
- 229910052750 molybdenum Inorganic materials 0.000 claims description 9
- 229910052759 nickel Inorganic materials 0.000 claims description 9
- 229910052758 niobium Inorganic materials 0.000 claims description 9
- 239000010955 niobium Substances 0.000 claims description 9
- 229910052757 nitrogen Inorganic materials 0.000 claims description 9
- 229910052698 phosphorus Inorganic materials 0.000 claims description 9
- 229910052710 silicon Inorganic materials 0.000 claims description 9
- 229910052717 sulfur Inorganic materials 0.000 claims description 9
- 229910052720 vanadium Inorganic materials 0.000 claims description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 8
- 229910052782 aluminium Inorganic materials 0.000 claims description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- 230000014509 gene expression Effects 0.000 claims description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 3
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 239000011733 molybdenum Substances 0.000 claims description 3
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 3
- 239000011574 phosphorus Substances 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- 239000011593 sulfur Substances 0.000 claims description 3
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 3
- 238000007711 solidification Methods 0.000 description 16
- 230000008023 solidification Effects 0.000 description 16
- 238000005336 cracking Methods 0.000 description 4
- 238000004088 simulation Methods 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 3
- 239000000498 cooling water Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000007373 indentation Methods 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 241001032674 Canis lupus chanco Species 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000005499 meniscus Effects 0.000 description 1
- QMQXDJATSGGYDR-UHFFFAOYSA-N methylidyneiron Chemical compound [C].[Fe] QMQXDJATSGGYDR-UHFFFAOYSA-N 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Continuous Casting (AREA)
Description
本発明は、鋼の連続鋳造において、連続鋳造中に、鋳型短辺を移動させることによって鋳片の幅を拡大させる方法に関する。 The present invention relates to a method for expanding the width of a slab in continuous casting of steel by moving a short side of a mold during continuous casting.
鋼の連続鋳造では、連続鋳造機の生産性を向上させるために、連続鋳造中に鋳型の幅を変更(拡大または縮小)して複数チャージの連続連続鋳造(「連々鋳」という)を実施し、同一鋳造チャンスで鋳片幅が異なるスラブ鋳片を製造する技術が広く行われている。尚、鋳型内の鋳片は温度降下によって収縮し、鋳型内壁面と離れようとするが、これを防止するために、鋳型には、鋳型内部空間が鋳造方向下流側に向かって狭くなるように、テーパーが設けられている。 In the continuous casting of steel, in order to improve the productivity of the continuous casting machine, the width of the mold is changed (enlarged or reduced) during the continuous casting to carry out the continuous casting of multiple charges (referred to as "continuous casting"). A technique for manufacturing slab slabs having different slab widths at the same casting opportunity is widely used. In addition, the slab in the mold shrinks due to the temperature drop and tries to separate from the inner wall surface of the mold, but in order to prevent this, in the mold, the mold internal space becomes narrower toward the casting direction downstream side. , Taper is provided.
例えば、特許文献1〜3には、先ず、鋳型短辺の上端を鋳型短辺の下端よりも速い移動速度で鋳型反中心側へ移動させ(ステップ1)、次いで、鋳片収縮量と鋳型短辺テーパー量と鋳型短辺移動速度とが一致した状態で鋳型短辺の上端と下端とを同じ速度で鋳型反中心側へ平行移動させ(ステップ2)、その後、鋳型短辺の下端を鋳型短辺の上端よりも速い移動速度で鋳型反中心側へ移動させる(ステップ3)の3つのステップで鋳片幅を拡大する方法が提案されている。 For example, in Patent Documents 1 to 3, first, the upper end of the mold short side is moved to the mold anti-center side at a faster moving speed than the lower end of the mold short side (step 1), and then the slab shrinkage amount and the mold short length are set. With the side taper amount and the mold short side moving speed matching, the upper and lower ends of the mold short side are moved parallel to the mold anti-center side at the same speed (step 2), and then the lower end of the mold short side is moved to the mold short side. A method has been proposed in which the slab width is expanded in three steps of moving the mold toward the center side opposite to the mold at a moving speed faster than the upper end of the side (step 3).
ステップ1は、鋳型短辺のテーパーを増大させて、鋳型移動時の鋳型短辺と鋳片との間の空隙(以下、「エアーギャップ」と記す)の発生を抑制することを目的とし、ステップ3は、鋳型短辺のテーパーを元に戻すことを目的としている。ここで、鋳型短辺のテーパーを増大させるとは、鋳型短辺の上端を下端よりも鋳型反中心側に位置させることである。換言すれば、溶鋼と接触する側の鋳型短辺面が鉛直方向上側を向くように鋳型短辺を傾斜させることである。また、鋳型反中心側とは、浸漬ノズルが設置された鋳型中心位置の反対側である。 Step 1 is intended to increase the taper of the short side of the mold to suppress the generation of a gap (hereinafter referred to as “air gap”) between the short side of the mold and the slab when the mold is moved. The purpose of 3 is to restore the taper of the short side of the mold. Here, increasing the taper of the short side of the mold means that the upper end of the short side of the mold is located closer to the center of the mold than the lower end. In other words, the mold short side is inclined so that the mold short side surface on the side in contact with the molten steel faces the upper side in the vertical direction. Moreover, the mold anti-center side is the opposite side of the mold center position where the immersion nozzle is installed.
尚、連続鋳造中の鋳片幅の変更は、連続鋳造中に鋳型短辺を移動させることによって行われる。したがって、連続鋳造中に鋳片幅を変更するためには、相対する一対の鋳型長辺と、この鋳型長辺に挟持され、鋳型長辺内を移動可能な一対の鋳型短辺とを具備する連続鋳造用鋳型が必要になる。 The width of the ingot during the continuous casting is changed by moving the short side of the mold during the continuous casting. Therefore, in order to change the slab width during continuous casting, a pair of opposing mold long sides and a pair of mold short sides sandwiched between the mold long sides and movable in the mold long sides are provided. A continuous casting mold is required.
連続鋳造中に、上記のステップ1〜3の3つのステップで鋳片幅を拡大する際、ステップ2における鋳型短辺の移動速度が速いほど、幅変更の影響を受ける鋳片は少なくなる。但し、ステップ2における鋳型短辺の移動速度を速くするためには、鋳片短辺の凝固シェルと移動する鋳型短辺との間のエアーギャップの発生を防止するために、ステップ1で鋳型短辺のテーパーを増大する必要がある。
During the continuous casting, when the width of the slab is expanded in the three steps 1 to 3 described above, the faster the moving speed of the short side of the mold in the
鋳型短辺は、後述する図1に示すように、鋳型短辺背面の上下二箇所で原動機によって支持且つ駆動されており、この上下二箇所の支持位置は、鋳型短辺の上端及び下端よりも鋳型中央部寄りになる。そのため、ステップ1で鋳型短辺のテーパーを大きくすると、鋳型短辺の下端が下側の支持位置を回転軸として鋳型中心側に張り出してしまう。つまり、鋳型短辺のテーパーを大きくすると、鋳型中心側に張り出す鋳型短辺の下端によって鋳片短辺の凝固シェルが鋳型中心側に押し込まれ、ブレークアウトの発生する危険性がある。 As shown in FIG. 1 described later, the mold short side is supported and driven by a prime mover at two upper and lower positions on the back surface of the mold short side. Close to the center of the mold. Therefore, if the taper of the short side of the mold is increased in step 1, the lower end of the short side of the mold projects toward the center of the mold with the lower support position as the rotation axis. That is, when the taper of the short side of the mold is increased, the solidified shell of the short side of the slab is pushed toward the center side of the mold by the lower end of the short side of the mold protruding to the center side of the mold, and there is a risk of breakout.
また、鋼の成分に応じて凝固シェルの不均一度が変わり、凝固シェルの不均一度が高い鋼ほど、割れ感受性が高く、ブレークアウトの危険性が高くなる。尚、凝固シェルの不均一度は、鋼の成分のフェライトポテンシャルと相関する。 Further, the nonuniformity of the solidified shell changes depending on the composition of the steel, and the higher the nonuniformity of the solidified shell, the higher the susceptibility to cracking and the higher the risk of breakout. The nonuniformity of the solidified shell correlates with the ferrite potential of the steel composition.
鋳片幅拡大時の鋳型短辺の移動速度が速いほど、幅変更の影響を受けた鋳片は少なくなるが、鋳型短辺のテーパーを大きくするべく、ステップ1における鋳型短辺の移動速度を大きくし過ぎると、凝固シェルが鋳型中心側に押し込まれ、特に、凝固シェルの不均一度の低い鋼種ではブレークアウトの危険性が高くなる。即ち、ステップ1における鋳型短辺の移動速度の最大値を、鋼の成分のフェライトポテンシャルで決まる凝固シェルの不均一度に応じて設定することが安定操業にとって重要となる。 The faster the moving speed of the mold short side when expanding the width of the slab, the less the slab is affected by the width change. However, in order to increase the taper of the short side of the mold, the moving speed of the short side of the mold in step 1 should be changed. If it is made too large, the solidified shell is pushed toward the center of the mold, and the risk of breakout becomes high especially in the case of steel grades with low nonuniformity of the solidified shell. That is, it is important for stable operation to set the maximum value of the moving speed of the short side of the mold in step 1 according to the nonuniformity of the solidified shell determined by the ferrite potential of the steel component.
この観点から特許文献1〜3を検証すれば、特許文献1及び特許文献3は、鋼の成分に応じて鋳型短辺の移動速度を設定することは全く考慮していない。これに対して、特許文献2は、鋳型短辺の移動速度の増速率を凝固シェルの変形抵抗力をパラメータとして求めているが、凝固シェルの変形抵抗力は凝固シェルの不均一度と相関しておらず、凝固シェルの変形抵抗力は凝固シェルの不均一度と異なる。
From this viewpoint, when Patent Documents 1 to 3 are verified,
即ち、特許文献1〜3によって、鋳造中の鋳片幅拡大時におけるトラブルは軽減されたが、特許文献1〜3は、鋳型短辺の移動速度を凝固シェルの不均一度に応じて設定することは行っておらず、改善の余地がある。 That is, according to Patent Documents 1 to 3, the trouble at the time of expanding the slab width during casting was reduced, but Patent Documents 1 to 3 set the moving speed of the mold short side according to the nonuniformity of the solidified shell. Things have not been done and there is room for improvement.
本発明は上記事情に鑑みてなされたもので、その目的とするところは、連続鋳造中に鋳型短辺を移動させて鋳片幅を拡大するに際して、鋳片のフェライトポテンシャルで決まる凝固シェルの不均一度に応じて鋳型短辺の許容移動速度を設定し、凝固シェルが鋳型短辺の下端によって押し込まれることによるブレークアウトを発生させない鋳片幅の拡大方法を提供することである。 The present invention has been made in view of the above circumstances, and an object of the invention is to increase the width of a cast piece by moving the mold short side during continuous casting, and to eliminate the solidification shell determined by the ferrite potential of the cast piece. An object of the present invention is to provide a method for enlarging the width of a cast piece by setting the allowable moving speed of the short side of the mold according to the uniformity and preventing breakout due to the solidified shell being pushed by the lower end of the short side of the mold.
上記課題を解決するための本発明の要旨は以下のとおりである。
[1]鋼の連続鋳造中に、鋳型短辺の上端の移動速度と鋳型短辺の下端の移動速度とをそれぞれ独立して制御しながら、鋳型短辺を鋳型反中心側に移動させて鋳片の幅を拡大する、連続鋳造時の鋳片幅の拡大方法であって、
前記鋳型短辺の移動速度を、鋳片のフェライトポテンシャルで決まる、鋳片の凝固シェルの不均一度に応じて設定される最大許容移動速度以下の速度に設定することを特徴とする、連続鋳造時の鋳片幅の拡大方法。
[2]鋼の連続鋳造中に、鋳型短辺の上端の移動速度を鋳型短辺の下端の移動速度よりも速く、且つ、前記上端の移動速度と前記下端の移動速度との差を一定に維持して鋳型短辺を鋳型反中心側に移動させるステップ1と、鋳型短辺の上端の移動速度と鋳型短辺の下端の移動速度とを等しく維持して一定速度で鋳型短辺を鋳型反中心側に平行移動させるステップ2と、鋳型短辺の上端の移動速度を鋳型短辺の下端の移動速度よりも遅く、且つ、前記上端の移動速度と前記下端の移動速度との差を一定に維持して鋳型短辺を鋳型反中心側に移動させるステップ3と、の3つのステップで、鋳型短辺を鋳型反中心側に移動させて鋳片の幅を拡大する、連続鋳造時の鋳片幅の拡大方法であって、
前記ステップ1では、前記鋳型短辺の移動速度を、鋳片のフェライトポテンシャルで決まる、鋳片の凝固シェルの不均一度に応じて設定される最大許容移動速度以下の速度に設定することを特徴とする、連続鋳造時の鋳片幅の拡大方法。
[3]鋼の連続鋳造中に、鋳型短辺の上端の移動速度を鋳型短辺の下端の移動速度よりも速く、且つ、前記上端の移動速度と前記下端の移動速度との差を一定に維持して鋳型短辺を鋳型反中心側に移動させるステップ1と、鋳型短辺の上端の移動速度と鋳型短辺の下端の移動速度とを等しく維持して一定速度で鋳型短辺を鋳型反中心側に平行移動させるステップ2と、鋳型短辺の上端の移動速度を鋳型短辺の下端の移動速度よりも遅く、且つ、前記上端の移動速度と前記下端の移動速度との差を一定に維持して鋳型短辺を鋳型反中心側に移動させるステップ3と、の3つのステップで、鋳型短辺を鋳型反中心側に移動させて鋳片の幅を拡大する、連続鋳造時の鋳片幅の拡大方法であって、
前記ステップ1では、下記の(1)式で求められる鋳型短辺の最大移動速度Vmaxを、当該鋳片の組成により下記の(2)式で定義されるフェライトポテンシャルに基づいて定まる、下記の(4)式〜(6)式のうちのいずれかの式で算出される最大許容移動速度Vable以下として、鋳型短辺の上端の移動速度VU及び鋳型短辺の下端の移動速度VLを下記の(7)式及び下記の(8)式に基づいて設定し、
前記ステップ2では、鋳型短辺の上端の移動速度VU及び鋳型短辺の下端の移動速度VLを下記の(9)式に基づいて設定し、
前記ステップ3では、鋳型短辺の上端の移動速度VU及び鋳型短辺の下端の移動速度VLを下記の(10)式及び(11)式に基づいて設定することを特徴とする、連続鋳造時の鋳片幅の拡大方法。
(I)ステップ1(0≦t≦t1)
Vmax=(VC/Lm)×θB×t1………(1)
Fp=2.5×(0.5−Cp)………(2)
ここで、(2)式におけるCpは下記の(3)式で算出される。
Cp=[%C]-0.0022×[%Si]+0.019×[%Mn]-0.179×[%P]+2.258×[%S]+0.019×[%Cu]+0.025×[%Ni]-0.0022×[%Cr]-0.04×[%Mo]-0.058×[%V]-0.438×[%Nb]-0.1226×[%Al]+0.376×[%N]………(3)
Fp<0.90及び1.05<Fpのとき;Vable≦3.5×θB………(4)
0.90≦Fp<0.95のとき;Vable≦3.0×θB………(5)
0.95≦Fp≦1.05のとき:Vable≦2.0×θB………(6)
VU=(VC/Lm)×θB×t………(7)
VL=(VC/Lm)×θB×t−θB………(8)
(II)ステップ2(t1<t<t1+t2)
VU=VL=VP≦Vmax………(9)
(III)ステップ3(t1+t2≦t≦t1+t2+t3)
VU=(VC/Lm)×(θB×t1−θM×t)−θM………(10)
VL=(VC/Lm)×(θB×t1−θM×t)………(11)
ここで、Vmaxは最大移動速度(mm/min)、VCは鋳造速度(mm/min)、Lmは鋳型長(mm)、θBは下端変形速度許容量(mm/min)、Fpはフェライトポテンシャル、Vableは最大許容移動速度(mm/min)、VUは鋳型の上端の移動速度(mm/min)、VLは鋳型の下端の移動速度(mm/min)、VPはステップ2における平行移動速度(mm/min)、θMは上端変形速度許容量(mm/min)、tは幅変更開始からの経過時間(min)、t1はステップ1の所要時間(min)、t2はステップ2の所要時間(min)、t3はステップ3の所要時間(min)である。また、(3)式における[%C]は鋳片の炭素濃度(質量%)であり、同様に、[%Si]は珪素濃度(質量%)、[%Mn]はマンガン濃度(質量%)、[%P]は燐濃度(質量%)、[%S]は硫黄濃度(質量%)、[%Cu]は銅濃度(質量%)、[%Ni]はニッケル濃度(質量%)、[%Cr]はクロム濃度(質量%)、[%Mo]はモリブデン濃度(質量%)、[%V]はバナジウム濃度(質量%)、[%Nb]はニオブ濃度(質量%)、[%Al]はアルミニウム濃度(質量%)、[%N]は窒素濃度(質量%)である。
The gist of the present invention for solving the above problems is as follows.
[1] During continuous casting of steel, while controlling the moving speed of the upper end of the mold short side and the moving speed of the lower end of the mold short side independently of each other, casting is performed by moving the mold short side to the mold anti-center side. A method for expanding the width of a piece, which is a method for expanding the width of a slab during continuous casting,
The continuous casting, characterized in that the moving speed of the mold short side is set to a speed equal to or lower than the maximum allowable moving speed set according to the nonuniformity of the solidified shell of the slab, which is determined by the ferrite potential of the slab. How to increase the width of the slab.
[2] During continuous casting of steel, the moving speed of the upper end of the mold short side is higher than the moving speed of the lower end of the mold short side, and the difference between the moving speed of the upper end and the moving speed of the lower end is constant. While maintaining the step 1 of moving the short side of the mold to the center side of the mold opposite to the center of the mold, the moving speed of the upper end of the short side of the mold and the moving speed of the lower end of the short side of the mold are kept equal and the short side of the mold is moved at the constant speed.
In the step 1, the moving speed of the short side of the mold is set to a speed equal to or lower than the maximum allowable moving speed set according to the nonuniformity of the solidified shell of the slab, which is determined by the ferrite potential of the slab. The method of expanding the width of the slab during continuous casting.
[3] During continuous casting of steel, the moving speed of the upper end of the mold short side is higher than the moving speed of the lower end of the mold short side, and the difference between the moving speed of the upper end and the moving speed of the lower end is constant. While maintaining the step 1 of moving the short side of the mold to the center side of the mold opposite to the center of the mold, the moving speed of the upper end of the short side of the mold and the moving speed of the lower end of the short side of the mold are kept equal and the short side of the mold is moved at the constant speed.
In the step 1, the maximum moving speed V max of the mold short side determined by the following formula (1) is determined based on the ferrite potential defined by the following formula (2) according to the composition of the cast slab. The moving speed V U at the upper end of the mold short side and the moving speed V L at the lower end of the mold short side are set to be equal to or lower than the maximum allowable moving speed Vable calculated by any one of the expressions (4) to (6). Is set based on the following equation (7) and the following equation (8),
In the
In the
(I) Step 1 (0 ≦ t ≦ t 1 )
V max = (V C / L m) × θ B × t 1 ......... (1)
Fp=2.5×(0.5-Cp)... (2)
Here, Cp in the equation (2) is calculated by the following equation (3).
Cp=[%C]-0.0022×[%Si]+0.019×[%Mn]-0.179×[%P]+2.258×[%S]+0.019×[%Cu]+0.025×[%Ni]-0.0022 ×[%Cr]-0.04×[%Mo]-0.058×[%V]-0.438×[%Nb]-0.1226×[%Al]+0.376×[%N] ………(3)
When Fp<0.90 and 1.05<Fp; Vable ≦3.5×θ B ... (4)
When 0.90≦Fp<0.95; Vable ≦3.0×θ B ... (5)
When 0.95≦Fp≦1.05: Vable ≦2.0×θ B ... (6)
V U =(V C /L m )×θ B ×t... (7)
V L = (V C / L m) × θ B × t-θ B ......... (8)
(II) Step 2 (t 1 <t<t 1 +t 2 ).
V U =V L =V P ≦V max ....(9)
(III) Step 3 (t 1 +t 2 ≦t≦t 1 +t 2 +t 3 ).
V U = (V C / L m) × (θ B × t 1 -θ M × t) -θ M ......... (10)
V L = (V C / L m) × (θ B × t 1 -θ M × t) ......... (11)
Here, V max is the maximum moving speed (mm/min), V C is the casting speed (mm/min), L m is the mold length (mm), θ B is the lower end deformation speed allowable amount (mm/min), and Fp. maximum allowable moving speed (mm / min) is ferrite potential, V ABLE is, V U is the moving speed of the upper end of the mold (mm / min), V L is the moving speed of the lower end of the mold (mm / min), V P is The parallel movement speed (mm/min) in
本発明によれば、連続鋳造中に鋳片幅を拡大する際に、鋳片のフェライトポテンシャルで決まる凝固シェルの不均一度に応じて設定される最大許容移動速度以下の速度で鋳型短辺を移動するので、鋳型短辺のテーパーは過剰に大きくならず、鋳型短辺の下端による鋳片凝固シェルの押し込みが軽減され、凝固シェルにおける歪みの発生が抑制される。これにより、凝固シェルの不均一度の高い鋼であっても幅変更時のブレークアウトの発生を防止することが実現される。 According to the present invention, when expanding the slab width during continuous casting, the mold short side is set at a speed equal to or lower than the maximum allowable moving speed set according to the nonuniformity of the solidified shell determined by the ferrite potential of the slab. Since it moves, the taper of the short side of the mold does not become excessively large, the indentation of the solidified shell of the slab by the lower end of the short side of the mold is reduced, and the occurrence of strain in the solidified shell is suppressed. As a result, it is possible to prevent the occurrence of breakout when the width is changed, even if the solidified shell has high nonuniformity.
以下、本発明に係る連続鋳造時の鋳型幅の拡大方法を具体的に説明する。先ず、本発明で使用する、鋼の連続鋳造中に鋳片幅(鋳型幅)を変更可能な連続鋳造用鋳型(以下、「幅可変鋳型」と記す)について説明する。 The method for expanding the mold width during continuous casting according to the present invention will be specifically described below. First, a continuous casting mold (hereinafter, referred to as “variable width mold”) capable of changing a slab width (mold width) during continuous casting of steel used in the present invention will be described.
図1は、本発明で使用する幅可変鋳型の1例を示す斜視図である。図1に示すように、連続鋳造中に鋳片幅を変更することができる幅可変鋳型1は、相対する一対の鋳型長辺2と、相対する鋳型長辺2に挟持され、相対する鋳型長辺2の間を摺動可能な鋳型短辺5とから構成されている。鋳型長辺2は、長辺銅板3と長辺バックアップフレーム4とからなり、また、鋳型短辺5は、短辺銅板6と短辺バックアップフレーム7とからなる。長辺銅板3及び短辺銅板6には、冷却水を通すための溝(図示せず)または孔(図示せず)が設けられており、長辺バックアップフレーム4及び短辺バックアップフレーム7には、冷却水を供給するための水箱(図示せず)が設置されている。
FIG. 1 is a perspective view showing an example of a variable width mold used in the present invention. As shown in FIG. 1, a variable width mold 1 capable of changing a slab width during continuous casting is sandwiched between a pair of opposing mold
片側の鋳型長辺2にはクランプ力調整装置8が設置されており、このクランプ力調整装置8によって鋳型長辺2による鋳型短辺5の挟持力が制御されている。また、鋳型短辺5の背面には、上下二箇所に電動モーターや油圧モーターなどの原動機9が設置されており、この原動機9を作動させることで、鋳型短辺5は、相対する鋳型長辺2の間を長辺銅板3に接触した状態で横方向に摺動し、鋳型幅つまり鋳片幅を自在に変更できるように構成されている。上下二箇所の原動機9を独立して作動させることで、鋳型短辺5を上下で異なる種々の形態で移動させることが可能である。符号10は、短辺銅板6の長辺銅板3との接触面となる摺動面であり、11は、原動機9と鋳型短辺バックアップフレーム7とを連結するスピンドルである。
A clamp force adjusting device 8 is installed on the mold
クランプ力調整装置8による挟持力は、鋳造中、幅可変鋳型1の鋳型内部空間に注入された溶鋼の静圧によって、鋳型長辺2と鋳型短辺5との間に隙間が生じないように、鋳型長辺2に作用する溶鋼静圧力よりも大きくなるように制御されている。また、同様に、鋳造中の鋳片幅変更の際にも、鋳型長辺2と鋳型短辺5との間に隙間が生じないように制御されている。但し、鋳造中の鋳片幅変更の際には、鋳型短辺5の移動を容易にするために、クランプ力調整装置8による挟持力は、鋳片幅を変更しない場合に比較して弱くなるように制御されている。
The clamping force by the clamping force adjusting device 8 is such that no gap is created between the
図2に、本発明に基づく鋳片幅変更時の鋳型短辺5の上端及び下端の移動速度を示す。図2では、移動速度は鋳型反中心側への移動速度を+(正)、鋳型中心側への移動速度を−(負)として表示している。図2において、実線は鋳型短辺の上端の移動速度(VU)を示し、破線は鋳型短辺の下端の移動速度(VL)を示している。
FIG. 2 shows the moving speeds of the upper end and the lower end of the mold
図2に示すように、本発明では、鋳片の幅を拡大するにあたり、鋳型短辺5の上端の移動速度VUを鋳型短辺5の下端の移動速度VLよりも速く、且つ、前記上端の移動速度VUと前記下端の移動速度VLとの差(差=θB)を一定に維持して鋳型短辺5を鋳型反中心側に移動させるステップ1と、鋳型短辺5の上端の移動速度VUと鋳型短辺5の下端の移動速度VLとを等しく維持して一定速度(平行移動速度VP)で鋳型短辺5を鋳型反中心側に平行移動させるステップ2と、鋳型短辺5の上端の移動速度VUを鋳型短辺5の下端の移動速度VLよりも遅く、且つ、前記上端の移動速度VUと前記下端の移動速度VLとの差(差=θM)を一定に維持して鋳型短辺5を鋳型反中心側に移動させるステップ3と、の3つのステップで、鋳型短辺5を鋳型反中心側に移動させる。
As shown in FIG. 2, in the present invention, in expanding the width of the slab, the moving speed V U of the upper end of the mold
図3は、鋳片幅拡大時の鋳型短辺5の移動状況を示す模式図であり、実線で示す鋳型短辺が幅拡大開始前及び幅拡大終了後の鋳型短辺の位置を示し、破線で示す鋳型短辺が幅拡大時の鋳型短辺の移動を示している。以下、各ステップにおける移動速度を説明する。
FIG. 3 is a schematic view showing the movement state of the mold
ステップ1において、鋳型短辺5の上端の移動速度VUは時間の経過に伴って徐々に増速し、最大移動速度Vmaxに達するまでステップ1を継続する。移動速度VUが最大移動速度Vmaxに達したならステップ2に移行する。
In step 1, the moving speed V U of the upper end of the mold
本発明において、最大移動速度Vmaxは以下のようにして設定する。 In the present invention, the maximum moving speed V max is set as follows.
鋳片の成分に応じて鋳片の凝固シェルの不均一度が変わり、凝固シェルの不均一度が高い鋼ほど、割れ感受性が高く、ブレークアウトの危険性が高くなる。つまり、凝固シェルの不均一度が高い鋼の鋳片幅変更時には、鋳型短辺5の移動速度を抑える必要がある。この凝固シェルの不均一度は、鋳片の組成から求められるフェライトポテンシャルと相関する。
The non-uniformity of the solidified shell of the slab changes depending on the composition of the slab, and the higher the non-uniformity of the solidified shell, the higher the susceptibility to cracking and the higher the risk of breakout. That is, it is necessary to suppress the moving speed of the
刊行物1によれば、鋳片のフェライトポテンシャルは、鋳片の組成により、下記の(2)式で定義される(刊行物1;M.wolf, 1st European Conference on continuous casting, 1991, 2489-2499)。 According to publication 1, ferrite potential slab, the composition of the slab is defined by the following equation (2) (publication 1; M.wolf, 1 st European Conference on continuous casting, 1991, 2489 -2499).
Fp=2.5×(0.5−Cp)………(2)
ここで、Fpはフェライトポテンシャルであり、(2)式におけるCpは下記の(3)式で算出される。
Fp=2.5×(0.5-Cp)... (2)
Here, Fp is a ferrite potential, and Cp in the equation (2) is calculated by the following equation (3).
Cp=[%C]-0.0022×[%Si]+0.019×[%Mn]-0.179×[%P]+2.258×[%S]+0.019×[%Cu]+0.025×[%Ni]-0.0022×[%Cr]-0.04×[%Mo]-0.058×[%V]-0.438×[%Nb]-0.1226×[%Al]+0.376×[%N]………(3)
ここで、(3)式における[%C]は鋳片の炭素濃度(質量%)であり、同様に、[%Si]は珪素濃度(質量%)、[%Mn]はマンガン濃度(質量%)、[%P]は燐濃度(質量%)、[%S]は硫黄濃度(質量%)、[%Cu]は銅濃度(質量%)、[%Ni]はニッケル濃度(質量%)、[%Cr]はクロム濃度(質量%)、[%Mo]はモリブデン濃度(質量%)、[%V]はバナジウム濃度(質量%)、[%Nb]はニオブ濃度(質量%)、[%Al]はアルミニウム濃度(質量%)、[%N]は窒素濃度(質量%)である。
Cp=[%C]-0.0022×[%Si]+0.019×[%Mn]-0.179×[%P]+2.258×[%S]+0.019×[%Cu]+0.025×[%Ni]-0.0022 ×[%Cr]-0.04×[%Mo]-0.058×[%V]-0.438×[%Nb]-0.1226×[%Al]+0.376×[%N] ………(3)
Here, [%C] in the equation (3) is the carbon concentration (mass%) of the slab, similarly, [%Si] is the silicon concentration (mass%), and [%Mn] is the manganese concentration (mass%). ), [%P] is phosphorus concentration (mass %), [%S] is sulfur concentration (mass %), [%Cu] is copper concentration (mass %), [%Ni] is nickel concentration (mass %), [%Cr] is chromium concentration (mass %), [%Mo] is molybdenum concentration (mass %), [%V] is vanadium concentration (mass %), [%Nb] is niobium concentration (mass %), [% [Al] is the aluminum concentration (mass %), and [% N] is the nitrogen concentration (mass %).
フェライトポテンシャルFpの値に応じて鋼の凝固形態が変化する。即ち、フェライトポテンシャルFpが0.90未満及び1.05超えの場合には、亜包晶凝固が起こり難く、均一な凝固シェルが生成しやすい。つまり、凝固シェルの不均一度は低い。これに対して、フェライトポテンシャルFpが0.90以上1.05以下の範囲は亜包晶凝固が起こり、凝固シェルの不均一度が高い。特に、フェライトポテンシャルFpが0.95以上1.05以下の範囲は凝固シェルの不均一度が高い。ここで、亜包晶凝固とは、鉄−炭素系平衡状態図において、炭素濃度が0.17質量%(「0.18質量%」とする文献もある)の包晶点よりも炭素濃度が低い領域で起こる、残留する液相と初晶のδ鉄とが包晶温度で一気に凝固してγ鉄が生成する凝固形態である。平衡論的には、炭素濃度が0.09質量%以下になれば包晶温度以上の温度で凝固が完了し、亜包晶凝固は起こらず、一方、炭素濃度が0.17質量%を超えれば過包晶の領域となり、この場合も亜包晶凝固は起こらない。 The solidification form of steel changes according to the value of the ferrite potential Fp. That is, when the ferrite potential Fp is less than 0.90 and more than 1.05, hypoperitectic solidification hardly occurs, and a uniform solidified shell is likely to be generated. That is, the nonuniformity of the solidified shell is low. On the other hand, in the range where the ferrite potential Fp is 0.90 or more and 1.05 or less, hypoperitectic solidification occurs, and the nonuniformity of the solidified shell is high. Particularly, in the range where the ferrite potential Fp is 0.95 or more and 1.05 or less, the nonuniformity of the solidified shell is high. Here, sub-peritectic solidification means that in the iron-carbon system equilibrium diagram, the carbon concentration is lower than the peritectic point at which the carbon concentration is 0.17 mass% (there are also references to "0.18 mass%"). This is a solidification form in which the residual liquid phase and primary crystal δ-iron, which occur in the low region, are solidified at a peritectic temperature all at once and γ-iron is produced. Equilibriumly, if the carbon concentration is 0.09 mass% or less, solidification is completed at a temperature above the peritectic temperature and subperitectic solidification does not occur, while the carbon concentration exceeds 0.17 mass%. For example, it becomes a hyperperitectic region, and in this case, subperitectic solidification does not occur.
本発明では、鋳片の組成で決まるフェライトポテンシャルFpに応じて、鋳型短辺5の最大許容移動速度Vable(mm/min)を、下記の(4)式、(5)式及び(6)式で設定する。(4)式〜(6)式におけるθBは、鋳片の組成によって決まる下端変形速度許容量(mm/min)であり、θBは、実操業の鋳片表面を観察して、割れが発生していない鋳片の幅拡げ操業条件から算出された、「割れの発生しない」許容変形速度量(mm/min)であり、過去の鋳片調査結果の蓄積データから求められる値である。
In the present invention, the maximum allowable moving speed Vable (mm/min) of the mold
Fp<0.90及び1.05<Fpのとき;Vable≦3.5×θB………(4)
0.90≦Fp<0.95のとき;Vable≦3.0×θB………(5)
0.95≦Fp≦1.05のとき:Vable≦2.0×θB………(6)
(4)式〜(6)式で示すように、亜包晶凝固が起こらない組成範囲の鋳片では、最大許容移動速度Vableを大きくし、亜包晶凝固が起こる組成範囲の鋳片では、最大許容移動速度Vableを小さくする。亜包晶凝固が最も顕著に起こるフェライトポテンシャルFpが0.95以上1.05以下の組成範囲は、特に、最大許容移動速度Vableを小さくする。
When Fp<0.90 and 1.05<Fp; Vable ≦3.5×θ B ... (4)
When 0.90≦Fp<0.95; Vable ≦3.0×θ B ... (5)
When 0.95≦Fp≦1.05: Vable ≦2.0×θ B ... (6)
As shown in the formulas (4) to (6), the maximum permissible transfer speed Vable is increased in the slab in the composition range in which the hypoperitectic solidification does not occur, and the slab in the composition range in which the subperitectic solidification occurs is increased. , The maximum allowable movement speed Vable is reduced. In the composition range in which the ferrite potential Fp in which the hypoperitectic solidification most remarkably occurs is 0.95 or more and 1.05 or less, the maximum allowable moving speed Vable is reduced particularly.
ステップ1では幅変更開始からの経過時間tに比例して鋳型短辺5の上端の移動速度VUは増速し、鋳型短辺5の最大移動速度Vmax(mm/min)は、下記の(1)式で求められる。
In step 1, the moving speed V U of the upper end of the mold
Vmax=(VC/Lm)×θB×t1………(1)
ここで、VCは鋳造速度(mm/min)、Lmは鋳型長(mm)、t1はステップ1の所要時間(min)である。
V max = (V C / L m) × θ B × t 1 ......... (1)
Here, V C is the casting speed (mm/min), L m is the mold length (mm), and t 1 is the time required for step 1 (min).
本発明では、最大移動速度Vmaxを、鋳造中の鋳片の組成により上記の(2)式で定義されるフェライトポテンシャルFpに基づいて定まる、上記の(4)式〜(6)式のうちのいずれかの式で算出される最大許容移動速度Vable以下の範囲に制御する。更に、最大移動速度Vmaxを最大許容移動速度Vable以下の範囲に制御した上で、鋳型短辺5の上端の移動速度VU(mm/min)を下記の(7)式に基づいて設定し、且つ、鋳型短辺5の下端の移動速度VL(mm/min)を下記の(8)式に基づいて設定する。(7)式及び(8)式におけるtは、幅変更開始からの経過時間(min)である。
In the present invention, the maximum moving speed V max is determined based on the ferrite potential Fp defined by the above equation (2) according to the composition of the ingot during casting, among the above equations (4) to (6). Control is performed within a range that is equal to or lower than the maximum allowable moving speed V.sub.able calculated by any of the equations. Further, the maximum moving speed V max is controlled within a range equal to or lower than the maximum allowable moving speed Vable , and the moving speed V U (mm/min) of the upper end of the mold
VU=(VC/Lm)×θB×t………(7)
VL=(VC/Lm)×θB×t−θB………(8)
つまり、上端の移動速度VUが最大移動速度Vmaxになるまで、上記(7)式に則って鋳型短辺5の上端を鋳型反中心側に移動させる。したがって、最大移動速度Vmaxの大小によってステップ1の所要時間t1は変化する。具体的には、最大移動速度Vmaxが小さくなれば、ステップ1の所要時間t1は短くなり、且つ、鋳型短辺5のテーパーの増大量も小さくなる。換言すれば、凝固シェルの不均一度が高い鋼では、所要時間t1が短くなり、且つ、鋳型短辺5のテーパーの増大量も小さくなる。ステップ1において、鋳型短辺5の上端の移動速度VUと下端の移動速度VLとの差は、一定値(θB)になる。
V U =(V C /L m )×θ B ×t... (7)
V L = (V C / L m) × θ B × t-θ B ......... (8)
That is, the upper end of the mold
鋳型短辺5の移動速度VUが最大移動速度Vmaxになったなら、鋳型短辺5の上端の移動速度VUと鋳型短辺5の下端の移動速度VLとを等しく維持して一定速度で鋳型短辺5を鋳型反中心側に平行移動させるステップ2に移行する。
When the moving speed V U of the mold
この平行移動時の平行移動速度VP(mm/min)は、下記の(9)式を満足する範囲とする。 The parallel movement speed V P (mm/min) during the parallel movement is within a range that satisfies the following expression (9).
VU=VL=VP≦Vmax………(9)
つまり、ステップ2では、最大移動速度Vmax以下の任意の一定速度で、鋳型短辺5を鋳型反中心側に平行移動させる。但し、幅変更時間を短縮するために、平行移動速度VPを最大移動速度Vmaxと同一とすることが好ましい。
V U =V L =V P ≦V max ....(9)
That is, in
ステップ2の所要時間t2(min)は、目標幅変更量によって定められる。例えば、ステップ1における移動速度の加速度の絶対値とステップ3における移動速度の減速度の絶対値とを同一とすれば、ステップ1における所要時間t1(min)とステップ3における所要時間t3(min)とが同一になり、ステップ1における移動距離及びステップ3における移動距離も同一となる。これにより、ステップ2における移動距離が算出され、算出された移動距離をステップ2における平行移動速度VPで除算すれば、ステップ2の所要時間t2が算出される。ステップ1における移動速度の加速度の絶対値とステップ3における移動速度の減速度の絶対値とが同一でない場合も、同様の方法によって、ステップ2の所要時間t2を目標幅変更量によって求めることができる。
The required time t 2 (min) of
鋳型短辺5を、所要時間t2の期間、平行移動速度VPによって鋳型反中心側に平行移動させたなら、ステップ3に移行する。
When the
ステップ3では、鋳型短辺5の上端の移動速度VU(mm/min)を下記の(10)式に基づいて設定し、且つ、鋳型短辺5の下端の移動速度VL(mm/min)を下記の(11)式に基づいて設定する。(10)式及び(11)式において、θMは、鋳片の組成によって決まる上端変形速度許容量(mm/min)であり、tは、幅変更開始からの経過時間(min)である。θMは、前述したθBと同様に、実操業の鋳片表面を観察して、割れが発生していない鋳片の幅拡げ操業条件から算出された、「割れの発生しない」許容変形速度量(mm/min)であり、過去の鋳片調査結果の蓄積データから求められる値である。
In
VU=(VC/Lm)×(θB×t1−θM×t)−θM………(10)
VL=(VC/Lm)×(θB×t1−θM×t)………(11)
ステップ3において、上端の移動速度VUと下端の移動速度VLとの差は、一定値(θM)になる。また、ステップ3においても、鋳型短辺5の下端の移動速度VLを(1)式で求められる最大移動速度Vmax以下とすることが好ましい。
V U = (V C / L m) × (θ B × t 1 -θ M × t) -θ M ......... (10)
V L = (V C / L m) × (θ B × t 1 -θ M × t) ......... (11)
In
ステップ1、ステップ2、ステップ3の期間を幅変更開始からの経過時間tで表示すれば、ステップ1は「0≦t≦t1」の期間、ステップ2は「t1<t<t1+t2」の期間、ステップ3は、「t1+t2≦t≦t1+t2+t3」の期間となる。
If the periods of step 1,
以上説明したように、本発明に係る連続鋳造時の鋳片幅の拡大方法によれば、連続鋳造中に鋳片幅を拡大する際に、鋳片のフェライトポテンシャルで決まる凝固シェルの不均一度に応じて設定される最大許容移動速度以下の速度で鋳型短辺を移動するので、鋳型短辺のテーパーは過剰に大きくならず、鋳型短辺の下端による鋳片凝固シェルの押し込みが軽減され、凝固シェルにおける歪みの発生が抑制される。これにより、凝固シェルの不均一度の高い鋼であっても幅変更時のブレークアウトの発生を防止することが実現される。 As described above, according to the method for expanding the slab width during continuous casting according to the present invention, when expanding the slab width during continuous casting, the nonuniformity of the solidified shell determined by the ferrite potential of the slab Since the mold short side is moved at a speed equal to or lower than the maximum allowable movement speed set according to, the taper of the mold short side does not become excessively large, and the indentation of the slab solidified shell by the lower end of the mold short side is reduced, Generation of strain in the solidified shell is suppressed. As a result, it is possible to prevent the occurrence of breakout at the time of changing the width even in the case of steel having a high degree of nonuniformity in the solidified shell.
FEMシミュレーションにより、スラブ連続鋳造機における連続鋳造中の鋳片幅の変更条件別に、また、鋼の化学組成ごとに、凝固シェルに生じる応力を評価し、凝固シェルの変形量が所定の閾値を超えるかどうかで、ブレークアウトの危険度を評価した。 By FEM simulation, the stress generated in the solidified shell is evaluated for each condition of changing the width of the slab during continuous casting in the slab continuous casting machine and for each chemical composition of steel, and the amount of deformation of the solidified shell exceeds a predetermined threshold value. Whether or not the risk of breakout was evaluated.
炭素濃度が0.01〜0.20質量%の炭素鋼を対象とし、鋳型のメニスカスから鋳型出口までの長さが800mm、鋳片の厚みを250mm、幅広げ前の鋳片幅を1250mmとして、鋳型短辺を図2に示すパターンで移動させて、FEMシミュレーションを行った。 Targeting carbon steel having a carbon concentration of 0.01 to 0.20 mass%, the length from the meniscus of the mold to the mold outlet is 800 mm, the thickness of the cast piece is 250 mm, and the cast piece width before widening is 1250 mm, The short side of the mold was moved in the pattern shown in FIG. 2 to perform FEM simulation.
表1に、鋳片幅を拡大したときの鋳造条件、幅変更量、各鋼種のフェライトポテンシャル、下端変形速度許容量θB、フェライトポテンシャルから定まる最大許容移動速度Vable、鋳型短辺の最大移動速度Vmax、及び、シミュレーションで評価された凝固シェルのブレークアウト危険度を示す。表1では、備考欄に本発明の範囲内の条件で鋳片幅を変更した条件を「本発明例」、それ以外の条件を「比較例」と表示している。 Table 1 shows the casting conditions when expanding the width of the slab, the width change amount, the ferrite potential of each steel type, the lower limit deformation speed allowable amount θ B , the maximum allowable movement speed Vable determined from the ferrite potential, and the maximum movement of the short side of the mold. The velocity V max and the breakout risk of the solidified shell evaluated by the simulation are shown. In Table 1, in the remarks column, conditions under which the width of the slab is changed within the scope of the present invention are indicated as "invention examples", and other conditions are indicated as "comparative examples".
鋳片短辺の凝固シェルが幅拡大時に鋳型下端で押し込まれたときの応力及び歪みを、FEMシミュレーションによって解析し、凝固シェルのブレークアウト危険度を判定した。その際、鋳片短辺の厚み中央部が最も歪みが大きくなるので、この歪みの大きさでブレークアウト危険度の判定を行った。基準としては、実機でブレークアウトが発生したときの条件での解析結果を限界歪みとして、この限界歪みを閾値として、ブレークアウトの危険の有無を判定した。 The stress and strain when the solidified shell on the short side of the slab was pushed in at the lower end of the mold during width expansion were analyzed by FEM simulation to determine the breakout risk of the solidified shell. At that time, since the strain was greatest at the center of the thickness of the short side of the cast slab, the breakout risk was determined based on this strain. As a reference, the analysis result under the condition when the breakout occurred in the actual machine was used as the limit strain, and this limit strain was used as the threshold value to judge the risk of breakout.
連続鋳造中に鋳片幅を拡大する際、本発明に係る幅変更条件を採用した場合は、凝固シェルに生じる歪みは小さく、ブレークアウトの危険度は低下することがわかった。これに対して、本発明の範囲外で鋳片幅を拡大した場合には、凝固シェルに生じる歪みが大きくなり、ブレークアウトの危険度も増加することがわかった。 It was found that when the width change condition according to the present invention was adopted when expanding the width of the slab during continuous casting, the strain generated in the solidified shell was small and the risk of breakout was reduced. On the other hand, it has been found that when the width of the slab is increased outside the scope of the present invention, the strain generated in the solidified shell increases and the risk of breakout also increases.
具体的には、例えば、フェライトポテンシャルが同程度である条件1と条件11とで比較すると、鋳型短辺の最大移動速度maxが最大許容移動速度ableよりも大きい18.0mm/minである条件11では、鋳型短辺の移動に起因する凝固シェルの変形量が前述のブレークアウトの危険があるとする閾値を上回ったため、ブレークアウト危険度が「×」、つまり、「ブレークアウトの危険有り」となっている。
Specifically, for example, comparing the
これに対して、鋳型短辺の最大移動速度maxが12.0mm/minの条件1では、鋳型短辺の最大移動速度maxが最大許容移動速度ableよりも小さく、鋳型短辺の移動に起因する凝固シェルの変形量が前述のブレークアウトの危険があるとする閾値に達せず、ブレークアウト危険度が「○」、つまり、「ブレークアウトの危険無し」となっている。 On the other hand, under the condition 1 in which the maximum moving speed max of the mold short side is 12.0 mm/min, the maximum moving speed max of the mold short side is smaller than the maximum allowable moving speed able, which is caused by the movement of the mold short side. The amount of deformation of the solidified shell does not reach the above-mentioned threshold value indicating that there is a risk of breakout, and the breakout risk level is “◯”, that is, “no breakout risk”.
以上の実施例は、幅拡げの際、ステップ1で相対する2つの鋳型短辺5の上端側同士の間の間隔を広げた際に、原動機9と鋳型短辺バックアップフレーム7とを連結するスピンドル11の鋳型短辺側の連結部よりも下側の位置において、鋳型短辺5の下端側が凝固シェルを押し込むことになることから発生するブレークアウトを防止する方法について具体的に示したものである。
In the above embodiment, the spindle which connects the
一方、幅拡げの終了期であるステップ3においても、鋳型短辺5の下端側ではスピンドル11の連結部よりも下側の鋳型短辺間の間隔は、ステップ3の終了間際で広がることになるので、鋳型短辺と凝固シェルとの接触が場所によって不均一となり、凝固シェルの成長も不均一になる可能性があり、ブレークアウトが発生する危険性が高まる。このステップ3におけるブレークアウトに対しても、前述したステップ1におけるブレークアウトの防止方法と同様の考え方で、前述した(10)式及び(11)式で表されるステップ3の操業条件がブレークアウトの防止に有効である。
On the other hand, also in
以上、本発明を適用した実施例について説明したが、本実施例による本発明の開示の一部をなす記述及び図面によって本発明は限定されることはない。 Although the embodiments to which the present invention is applied have been described above, the present invention is not limited to the description and the drawings that form part of the disclosure of the present invention according to the present embodiments.
1 幅可変鋳型
2 鋳型長辺
3 長辺銅板
4 長辺バックアップフレーム
5 鋳型短辺
6 短辺銅板
7 短辺バックアップフレーム
8 クランプ力調整装置
9 原動機
10 摺動面
11 スピンドル
1 Width
Claims (3)
前記鋳型短辺の移動速度を、鋳片のフェライトポテンシャルで決まる、鋳片の凝固シェルの不均一度に応じて設定される最大許容移動速度以下の速度に設定することを特徴とする、連続鋳造時の鋳片幅の拡大方法。 During continuous casting of steel, while independently controlling the moving speed of the upper end of the mold short side and the moving speed of the lower end of the mold short side, the short side of the mold is moved to the mold anti-center side and the width of the slab. Is a method of expanding the width of a slab during continuous casting,
The continuous casting, characterized in that the moving speed of the mold short side is set to a speed equal to or lower than the maximum allowable moving speed set according to the nonuniformity of the solidified shell of the slab, which is determined by the ferrite potential of the slab. How to increase the width of the slab.
前記ステップ1では、前記鋳型短辺の移動速度を、鋳片のフェライトポテンシャルで決まる、鋳片の凝固シェルの不均一度に応じて設定される最大許容移動速度以下の速度に設定することを特徴とする、連続鋳造時の鋳片幅の拡大方法。 During continuous casting of steel, the moving speed of the upper end of the mold short side is faster than the moving speed of the lower end of the mold short side, and the difference between the moving speed of the upper end and the moving speed of the lower end is kept constant. Step 1 of moving the mold short side toward the mold anti-center side, and maintaining the moving speed of the upper end of the mold short side and the moving speed of the lower end of the mold short side equal to each other, keeping the mold short side toward the mold anti-center side at a constant speed. Step 2 of moving in parallel, the moving speed of the upper end of the mold short side is slower than the moving speed of the lower end of the mold short side, and maintaining a constant difference between the moving speed of the upper end and the moving speed of the lower end. Step 3 of moving the short side of the mold to the center side opposite to the mold, and expanding the width of the slab by moving the short side of the mold to the center side opposite to the mold, increasing the width of the slab during continuous casting. Method,
In the step 1, the moving speed of the short side of the mold is set to a speed equal to or lower than the maximum allowable moving speed set according to the nonuniformity of the solidified shell of the slab, which is determined by the ferrite potential of the slab. The method of expanding the width of the slab during continuous casting.
前記ステップ1では、下記の(1)式で求められる鋳型短辺の最大移動速度Vmaxを、当該鋳片の組成により下記の(2)式で定義されるフェライトポテンシャルに基づいて定まる、下記の(4)式〜(6)式のうちのいずれかの式で算出される最大許容移動速度Vable以下として、鋳型短辺の上端の移動速度VU及び鋳型短辺の下端の移動速度VLを下記の(7)式及び下記の(8)式に基づいて設定し、
前記ステップ2では、鋳型短辺の上端の移動速度VU及び鋳型短辺の下端の移動速度VLを下記の(9)式に基づいて設定し、
前記ステップ3では、鋳型短辺の上端の移動速度VU及び鋳型短辺の下端の移動速度VLを下記の(10)式及び(11)式に基づいて設定することを特徴とする、連続鋳造時の鋳片幅の拡大方法。
(I)ステップ1(0≦t≦t1)
Vmax=(VC/Lm)×θB×t1………(1)
Fp=2.5×(0.5−Cp)………(2)
ここで、(2)式におけるCpは下記の(3)式で算出される。
Cp=[%C]-0.0022×[%Si]+0.019×[%Mn]-0.179×[%P]+2.258×[%S]+0.019×[%Cu]+0.025×[%Ni]-0.0022×[%Cr]-0.04×[%Mo]-0.058×[%V]-0.438×[%Nb]-0.1226×[%Al]+0.376×[%N]………(3)
Fp<0.90及び1.05<Fpのとき;Vable≦3.5×θB………(4)
0.90≦Fp<0.95のとき;Vable≦3.0×θB………(5)
0.95≦Fp≦1.05のとき:Vable≦2.0×θB………(6)
VU=(VC/Lm)×θB×t………(7)
VL=(VC/Lm)×θB×t−θB………(8)
(II)ステップ2(t1<t<t1+t2)
VU=VL=VP≦Vmax………(9)
(III)ステップ3(t1+t2≦t≦t1+t2+t3)
VU=(VC/Lm)×(θB×t1−θM×t)−θM………(10)
VL=(VC/Lm)×(θB×t1−θM×t)………(11)
ここで、Vmaxは最大移動速度(mm/min)、VCは鋳造速度(mm/min)、Lmは鋳型長(mm)、θBは下端変形速度許容量(mm/min)、Fpはフェライトポテンシャル、Vableは最大許容移動速度(mm/min)、VUは鋳型の上端の移動速度(mm/min)、VLは鋳型の下端の移動速度(mm/min)、VPはステップ2における平行移動速度(mm/min)、θMは上端変形速度許容量(mm/min)、tは幅変更開始からの経過時間(min)、t1はステップ1の所要時間(min)、t2はステップ2の所要時間(min)、t3はステップ3の所要時間(min)である。
また、(3)式における[%C]は鋳片の炭素濃度(質量%)であり、同様に、[%Si]は珪素濃度(質量%)、[%Mn]はマンガン濃度(質量%)、[%P]は燐濃度(質量%)、[%S]は硫黄濃度(質量%)、[%Cu]は銅濃度(質量%)、[%Ni]はニッケル濃度(質量%)、[%Cr]はクロム濃度(質量%)、[%Mo]はモリブデン濃度(質量%)、[%V]はバナジウム濃度(質量%)、[%Nb]はニオブ濃度(質量%)、[%Al]はアルミニウム濃度(質量%)、[%N]は窒素濃度(質量%)である。 During continuous casting of steel, the moving speed of the upper end of the mold short side is faster than the moving speed of the lower end of the mold short side, and the difference between the moving speed of the upper end and the moving speed of the lower end is kept constant. Step 1 of moving the mold short side toward the mold anti-center side, and maintaining the moving speed of the upper end of the mold short side and the moving speed of the lower end of the mold short side equal to each other, keeping the mold short side toward the mold anti-center side at a constant speed. Step 2 of moving in parallel, the moving speed of the upper end of the mold short side is slower than the moving speed of the lower end of the mold short side, and maintaining a constant difference between the moving speed of the upper end and the moving speed of the lower end. Step 3 of moving the short side of the mold to the center side opposite to the mold, and expanding the width of the slab by moving the short side of the mold to the center side opposite to the mold, increasing the width of the slab during continuous casting. Method,
In the step 1, the maximum moving speed V max of the mold short side determined by the following formula (1) is determined based on the ferrite potential defined by the following formula (2) according to the composition of the cast slab. The moving speed V U at the upper end of the mold short side and the moving speed V L at the lower end of the mold short side are set to be equal to or lower than the maximum allowable moving speed Vable calculated by any one of the expressions (4) to (6). Is set based on the following equation (7) and the following equation (8),
In the step 2, the moving speed V U of the upper end of the mold short side and the moving speed V L of the lower end of the mold short side are set based on the following formula (9),
In the step 3, the moving speed V U of the upper end of the mold short side and the moving speed V L of the lower end of the mold short side are set based on the following formulas (10) and (11). How to increase the width of the slab during casting.
(I) Step 1 (0 ≦ t ≦ t 1 )
V max = (V C / L m) × θ B × t 1 ......... (1)
Fp=2.5×(0.5-Cp)... (2)
Here, Cp in the equation (2) is calculated by the following equation (3).
Cp=[%C]-0.0022×[%Si]+0.019×[%Mn]-0.179×[%P]+2.258×[%S]+0.019×[%Cu]+0.025×[%Ni]-0.0022 ×[%Cr]-0.04×[%Mo]-0.058×[%V]-0.438×[%Nb]-0.1226×[%Al]+0.376×[%N] ………(3)
When Fp<0.90 and 1.05<Fp; Vable ≦3.5×θ B ... (4)
When 0.90≦Fp<0.95; Vable ≦3.0×θ B ... (5)
When 0.95≦Fp≦1.05: Vable ≦2.0×θ B ... (6)
V U =(V C /L m )×θ B ×t... (7)
V L = (V C / L m) × θ B × t-θ B ......... (8)
(II) Step 2 (t 1 <t<t 1 +t 2 ).
V U =V L =V P ≦V max ....(9)
(III) Step 3 (t 1 +t 2 ≦t≦t 1 +t 2 +t 3 ).
V U = (V C / L m) × (θ B × t 1 -θ M × t) -θ M ......... (10)
V L = (V C / L m) × (θ B × t 1 -θ M × t) ......... (11)
Here, V max is the maximum moving speed (mm/min), V C is the casting speed (mm/min), L m is the mold length (mm), θ B is the lower end deformation speed allowable amount (mm/min), and Fp. maximum allowable moving speed (mm / min) is ferrite potential, V ABLE is, V U is the moving speed of the upper end of the mold (mm / min), V L is the moving speed of the lower end of the mold (mm / min), V P is The parallel movement speed (mm/min) in step 2, θ M is the upper limit deformation speed allowable amount (mm/min), t is the elapsed time from the start of the width change (min), and t 1 is the time required for step 1 (min) , T 2 is the time required for step 2 (min), and t 3 is the time required for step 3 (min).
Further, [%C] in the equation (3) is the carbon concentration (mass%) of the slab, similarly, [%Si] is the silicon concentration (mass%), and [%Mn] is the manganese concentration (mass%). , [%P] is phosphorus concentration (mass%), [%S] is sulfur concentration (mass%), [%Cu] is copper concentration (mass%), [%Ni] is nickel concentration (mass%), % Cr] is chromium concentration (mass %), [% Mo] is molybdenum concentration (mass %), [% V] is vanadium concentration (mass %), [% Nb] is niobium concentration (mass %), [% Al] ] Is the aluminum concentration (mass %), and [%N] is the nitrogen concentration (mass %).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017233879 | 2017-12-06 | ||
JP2017233879 | 2017-12-06 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019098403A JP2019098403A (en) | 2019-06-24 |
JP6743872B2 true JP6743872B2 (en) | 2020-08-19 |
Family
ID=66975126
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018226281A Active JP6743872B2 (en) | 2017-12-06 | 2018-12-03 | Method of expanding the width of the slab during continuous casting |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6743872B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116057195B (en) * | 2020-08-12 | 2024-07-02 | 杰富意钢铁株式会社 | Continuous casting method for steel and test solidification device for steel |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61144255A (en) * | 1984-12-17 | 1986-07-01 | Nippon Steel Corp | Continuous casting method of steel |
JP2770691B2 (en) * | 1992-12-01 | 1998-07-02 | 住友金属工業株式会社 | Steel continuous casting method |
IT1267243B1 (en) * | 1994-05-30 | 1997-01-28 | Danieli Off Mecc | CONTINUOUS CASTING PROCEDURE FOR PERITECTIC STEELS |
JP3420015B2 (en) * | 1997-04-07 | 2003-06-23 | 新日本製鐵株式会社 | How to change slab width |
JP4600436B2 (en) * | 2007-06-20 | 2010-12-15 | 住友金属工業株式会社 | Continuous casting method for slabs |
JP5428902B2 (en) * | 2009-03-31 | 2014-02-26 | 新日鐵住金株式会社 | Continuous casting method and continuous casting apparatus |
-
2018
- 2018-12-03 JP JP2018226281A patent/JP6743872B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2019098403A (en) | 2019-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6743872B2 (en) | Method of expanding the width of the slab during continuous casting | |
WO2016103293A1 (en) | Continuous casting method for steel | |
JP5047714B2 (en) | Continuous casting method and continuous casting mold | |
JP4608558B2 (en) | Continuous casting method and continuous casting mold | |
JP3427794B2 (en) | Continuous casting method | |
JP6044746B1 (en) | Steel continuous casting method | |
JP2005279691A (en) | Secondary cooling method for continuously cast slab | |
JP2019171435A (en) | Method of continuous casting | |
JP5018441B2 (en) | Method of drawing slab after completion of casting in continuous casting | |
JP6152824B2 (en) | Steel continuous casting method | |
JP6852798B2 (en) | Continuous steel casting method | |
JP2000015409A (en) | Continuous casting method | |
JP5915453B2 (en) | Steel continuous casting method | |
JP5423434B2 (en) | Continuous casting method and continuous casting apparatus | |
WO2016121355A1 (en) | Continuous casting method for steel | |
JP2016078083A (en) | Cast slab rolling reduction apparatus for continuous casting and continuous casting method | |
JP7273307B2 (en) | Steel continuous casting method | |
JP3633573B2 (en) | Continuous casting method | |
JP5910577B2 (en) | Steel continuous casting method | |
JP2018149602A (en) | Method for continuously casting steel | |
JP2011121063A (en) | Continuous casting method with soft reduction | |
JPH06297125A (en) | Method for continuous casting of slab | |
JP5652362B2 (en) | Steel continuous casting method | |
CN102355964B (en) | Continuous casting method, short edge mould plate and continuous casting mold | |
JP4417899B2 (en) | Continuous casting method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20190327 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190724 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200519 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200630 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200713 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6743872 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |