JP5423434B2 - Continuous casting method and continuous casting apparatus - Google Patents

Continuous casting method and continuous casting apparatus Download PDF

Info

Publication number
JP5423434B2
JP5423434B2 JP2010017081A JP2010017081A JP5423434B2 JP 5423434 B2 JP5423434 B2 JP 5423434B2 JP 2010017081 A JP2010017081 A JP 2010017081A JP 2010017081 A JP2010017081 A JP 2010017081A JP 5423434 B2 JP5423434 B2 JP 5423434B2
Authority
JP
Japan
Prior art keywords
casting
short side
side mold
mold plate
taper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010017081A
Other languages
Japanese (ja)
Other versions
JP2010234443A (en
Inventor
伯公 山崎
淳 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2010017081A priority Critical patent/JP5423434B2/en
Publication of JP2010234443A publication Critical patent/JP2010234443A/en
Application granted granted Critical
Publication of JP5423434B2 publication Critical patent/JP5423434B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、操業条件に依存することなく、高品質の鋳片を安定的に鋳造するための連続鋳造方法及び連続鋳造装置に関する。   The present invention relates to a continuous casting method and a continuous casting apparatus for stably casting a high-quality slab without depending on operating conditions.

鋼をはじめとする溶融金属の連続鋳造において、鋳型内に溶融金属を注入すると、鋳型に接する溶融金属の外周部分が凝固して凝固シェルを形成し、鋳型の下方に引き抜かれ、鋳型下方の二次冷却帯で凝固が進行して最終的に連続鋳造鋳片が形成される。鋳型は、溶融金属に接する側が水冷銅板で形成される。スラブを鋳造する連続鋳造装置は、一対の長辺鋳型板で一対の短辺鋳型板を幅方向両側から挟むように組み立てた連続鋳造鋳型を備える。この連続鋳造鋳型では、短辺鋳型板はその幅が鋳造する鋳片の厚さにほぼ等しい。   In continuous casting of molten metal such as steel, when molten metal is injected into the mold, the outer peripheral portion of the molten metal in contact with the mold is solidified to form a solidified shell, which is pulled out below the mold. Solidification proceeds in the next cooling zone, and a continuous cast slab is finally formed. The mold is formed of a water-cooled copper plate on the side in contact with the molten metal. A continuous casting apparatus that casts a slab includes a continuous casting mold that is assembled by sandwiching a pair of short side mold plates from both sides in the width direction with a pair of long side mold plates. In this continuous casting mold, the width of the short side mold plate is approximately equal to the thickness of the cast piece to be cast.

該鋳型内で凝固シェルの凝固が進行しつつ、その凝固シェルを下方に移動する過程において、凝固シェルは凝固が進行するとともに凝固収縮する。従って、鋳型内溶融金属のメニスカス位置(湯面位置)で凝固を開始した凝固シェルは、鋳型の下端に到達したときには収縮しており、凝固中に鋳片の幅や厚さがメニスカス位置にあるときと比較して小さくなっていく。スラブ連続鋳造においては鋳片の厚さに比較して幅が広いので、鋳片幅方向の凝固収縮量が大きい。凝固シェルの凝固収縮に伴って鋳型の下方において鋳型と凝固シェルとの間に空隙が生じると、凝固シェルから鋳型への抜熱が阻害され、十分な鋳型冷却ができなくなるとともに、鋳型による支持を失った凝固シェルが外方に膨れるバルジングを起こすこととなる。   In the process of moving the solidified shell downward while solidification of the solidified shell proceeds in the mold, the solidified shell solidifies and contracts as the solidification progresses. Therefore, the solidified shell that has started to solidify at the meniscus position (molten metal surface position) of the molten metal in the mold contracts when it reaches the lower end of the mold, and the width and thickness of the slab are at the meniscus position during solidification. It becomes smaller than time. In slab continuous casting, since the width is wider than the thickness of the slab, the amount of solidification shrinkage in the slab width direction is large. If there is a gap between the mold and the solidified shell at the bottom of the mold due to the solidification shrinkage of the solidified shell, heat removal from the solidified shell to the mold will be hindered, and sufficient cooling of the mold will not be possible. The lost solidified shell will cause bulging to bulge outward.

そこで、少なくとも鋳型短辺にテーパを設けることが行われている。テーパを設けるとは、対向する両短辺間の間隔について、鋳型上方のメニスカス位置における間隔に対し、鋳型下端の間隔を狭めることを意味する。   Therefore, a taper is provided at least on the short side of the mold. Providing the taper means that the distance between the lower ends of the mold is reduced with respect to the distance between the opposing short sides with respect to the distance at the meniscus position above the mold.

図1(c)に示すように、鋳造方向任意の位置に上方位置と下方位置を定め、両短辺間の距離を、上方位置においてW、下方位置においてWとし、上方位置から下方位置までの距離をΔLとおいたとき、テーパ量(%)、テーパ率(%/m)を
テーパ量(%)={(W−W)/ΔL}×100 (3)
テーパ率(%/m)={(W−W)/W/ΔL}×100 (4)
と定義し、このように呼ぶこととする。ここでWは、ある幅に応じて、決まった長さなら、どこでも良く、例えば、鋳型上端幅、鋳型下端幅等とすることができる。ここではW(m)をメニスカス幅(W)とするものとする。
As shown in FIG. 1 (c), an upper position and a lower position are defined at arbitrary positions in the casting direction, and the distance between both short sides is W 1 at the upper position and W 2 at the lower position. Taper amount (%), taper rate (% / m) taper amount (%) = {(W 1 −W 2 ) / ΔL} × 100 (3)
Taper rate (% / m) = {(W 1 −W 2 ) / W 0 / ΔL} × 100 (4)
And call it like this. Here, W 0 may be anywhere as long as it has a fixed length according to a certain width, and can be, for example, a mold upper end width, a mold lower end width, or the like. Here, it is assumed that W 0 (m) is the meniscus width (W M ).

短辺テーパ量が小さすぎる場合には、凝固シェルと短辺鋳型板との接触が不均一になり、冷却のアンバランスが発生し、凝固シェル成長の不均一、溶融金属静圧による鋳片表面の割れが発生する。特に、短辺テーパ量が適正量よりも小さい場合、鋳型下端付近における凝固シェルの厚み分布において、図2に示すように、凝固シェル10の長辺側のコーナー近傍に凝固厚みが特に薄い部位12が発生しやすくなり、この部位12に対応する鋳片表面に縦割れが発生しやすい。また短辺テーパ量が大きすぎる場合には、凝固シェル10と短辺鋳型板との接触が強くなり、凝固シェルに過大な応力(摩擦拘束力)が加わり、凝固シェル10の破断、およびシェル破断に伴うブレークアウトが発生する。あるいは凝固シェル10と鋳型の摩擦拘束力の増大に伴う鋳型寿命の低下を引き起こす場合もある。   If the short side taper amount is too small, the contact between the solidified shell and the short side mold plate will be uneven, cooling imbalance will occur, the solidified shell growth will be uneven, the slab surface due to molten metal static pressure Cracking occurs. In particular, when the short side taper amount is smaller than an appropriate amount, in the thickness distribution of the solidified shell near the lower end of the mold, as shown in FIG. Are likely to occur, and vertical cracks are likely to occur on the slab surface corresponding to the portion 12. When the short side taper amount is too large, the contact between the solidified shell 10 and the short side mold plate becomes strong, and an excessive stress (friction restraining force) is applied to the solidified shell, and the solidified shell 10 breaks and the shell breaks. A breakout occurs. Alternatively, the mold life may be reduced due to an increase in the frictional restraining force between the solidified shell 10 and the mold.

適正な短辺テーパについて、例えば特許文献1においては、短辺テーパ率βnを0.7〜1.3%/mとして操業することが開示されている。   Regarding an appropriate short side taper, for example, Patent Document 1 discloses that the short side taper ratio βn is set to 0.7 to 1.3% / m.

図1(c)に示すように、従来の短辺鋳型板2’の凝固シェル10に対面する面(以下「テーパ面6」ともいう。)は、上部から下部まで全体が単一平面となるように加工されている。しかし、凝固シェル10の凝固収縮速度は、鋳型内の鋳造方向の各位置において一定ではなく、メニスカス近傍では凝固収縮速度が速く、鋳型下端に近づくにつれ凝固収縮速度が遅くなる。従って、短辺鋳型板2’と接する凝固シェル10の面は、平面ではなく、鋳型の下方に行くに従って凝固シェル10のテーパ量が小さくなる曲面を形成していると考えられる。   As shown in FIG. 1C, the surface facing the solidified shell 10 of the conventional short-side mold plate 2 ′ (hereinafter also referred to as “tapered surface 6”) is a single flat surface from the top to the bottom. It is processed as follows. However, the solidification shrinkage rate of the solidification shell 10 is not constant at each position in the casting direction in the mold, and the solidification shrinkage rate is fast near the meniscus, and the solidification shrinkage rate becomes slower as it approaches the lower end of the mold. Therefore, it is considered that the surface of the solidified shell 10 in contact with the short side mold plate 2 ′ is not a flat surface but forms a curved surface in which the taper amount of the solidified shell 10 decreases as it goes below the mold.

特許文献2においては、鋳型短辺のテーパを湾曲面として制御するテーパ制御方法が開示されている。短辺鋳型を背面の少なくとも3地点で支持し、変形を加える。3点のうち少なくとも1箇所、例えば中央部に加圧装置を取り付け、短辺銅板表面と自由収縮プロフィールとを予めおよび操業中も一致させることにより、一層均一な抜熱が可能になるとしている。中心荷重点に2〜5トンの力を加えることにより、最大タワミ量は0.33〜0.83mmにまでなり、これは溶鋼の凝固収縮量から考えれば十分な量であるとしている。   Patent Document 2 discloses a taper control method for controlling the taper of the mold short side as a curved surface. The short side mold is supported at at least three points on the back surface and deformed. A pressure device is attached to at least one of the three points, for example, the central portion, and the surface of the short side copper plate and the free contraction profile are matched in advance and during operation, so that more uniform heat removal is possible. By applying a force of 2 to 5 tons to the central load point, the maximum amount of deflection becomes 0.33 to 0.83 mm, which is considered to be a sufficient amount in view of the solidification shrinkage of the molten steel.

特許文献3においては、最適な短辺テーパを理論解析により求めており、最適短辺テーパはメニスカスからの鋳込み方向に沿う距離Z及び鋳造速度Vに依存し、各距離Zにおける最適テーパ率(%/m)がZ−1/2に比例するとともに、(4−V)(m/min)に比例するとしている。同文献の実施例1及び第2図によると、断面寸法20.8cm×105cmの鋳型の短辺を3段階のテーパを有する形状とし、テーパ率が上から2%/m、0.7%/m、0.4%/mとなっている。また実施例2及び第3図によると、断面寸法22cm×124cmの鋳型の短辺を3段階のテーパを有する形状とし、テーパ率が上から4%/m、1.3%/m、0.8%/mとなっている。このように、鋳造方向に2段階、あるいは3段階以上のテーパを有する鋳型を「多段テーパ鋳型」と呼び、このようなテーパを有する短辺鋳型板を「多段テーパ短辺鋳型板」と呼ぶことにする(図1(a)及び図1(b)参照。)。例えば、図1(a)に示す2段テーパ短辺鋳型板2では、テーパ変化点Pにてテーパ面6と6のテーパ率が変化している。 In Patent Document 3, the optimum short side taper is obtained by theoretical analysis. The optimum short side taper depends on the distance Z along the casting direction from the meniscus and the casting speed V, and the optimum taper rate (% / M ) is proportional to Z −1/2 and proportional to (4-V) (m / min). According to Example 1 and FIG. 2 of the same document, the short side of the mold having a cross-sectional dimension of 20.8 cm × 105 cm is formed into a shape having a three-step taper, and the taper rate is 2% / m, 0.7% / m, 0.4% / m. Further, according to Example 2 and FIG. 3, the short side of the mold having a cross-sectional dimension of 22 cm × 124 cm is formed into a shape having a three-step taper, and the taper rate is 4% / m, 1.3% / m,. 8% / m. In this way, a mold having two or three or more tapers in the casting direction is called a “multi-stage taper mold”, and a short-side mold plate having such a taper is called a “multi-stage taper short-side mold plate”. (See FIG. 1 (a) and FIG. 1 (b)). For example, the two-stage tapered short sides mold plate 2 shown in FIG. 1 (a), the taper ratio of the tapered surface 6 U and 6 L is changed in a tapered changing point P.

ところで、連続鋳造においては、鋳造速度が速いほど、鋳片の生産性を向上することができる。スラブの連続鋳造においても、鋳造速度が2.0m/min前後から、最近は3.0m/min程度まで鋳造速度が上昇している。多段テーパ短辺鋳型板2を用いた連続鋳造において、鋳造速度が速くなるに従って多段テーパ短辺鋳型板2の最適形状が変化し、また多段テーパ短辺鋳型板2を用いた鋳造方法も変化する。特許文献4には、鋳造速度が速くなると、多段テーパ短辺鋳型板の湾曲の程度を緩めるとともに全体の傾斜を小さくすることが開示されている。   By the way, in continuous casting, the productivity of slab can be improved, so that casting speed is high. Also in continuous casting of slabs, the casting speed has increased from around 2.0 m / min to about 3.0 m / min recently. In continuous casting using the multistage tapered short side mold plate 2, the optimum shape of the multistage tapered short side mold plate 2 changes as the casting speed increases, and the casting method using the multistage tapered short side mold plate 2 also changes. . Patent Document 4 discloses that when the casting speed is increased, the degree of bending of the multi-stage tapered short side mold plate is relaxed and the overall inclination is reduced.

スラブの連続鋳造においては、鋳造する鋳片が向け先ごとに種々の幅を有するので、連続鋳造を続けながら鋳造する鋳片幅を変更することが行われる。例えば図3に示すように、連続鋳造鋳型1において、多段テーパ短辺鋳型板2(以下、「短辺鋳型板2」ともいう。)を長辺方向に水平移動するための短辺駆動機構4を設け、短辺鋳型板2を長辺鋳型板3で挟み込んだままで短辺鋳型板2の位置を変更することにより、鋳造中に鋳片幅を変更することができる。即ち、長辺鋳型板3と短辺鋳型板2をいずれも交換することなく、種々の幅を有する鋳片を同一の連続鋳造鋳型1を用いて鋳造することが可能である。   In continuous casting of slabs, cast slabs have various widths for each destination, so that the cast slab width is changed while continuous casting is continued. For example, as shown in FIG. 3, in the continuous casting mold 1, a short-side drive mechanism 4 for horizontally moving a multi-stage tapered short-side mold plate 2 (hereinafter also referred to as “short-side mold plate 2”) in the long-side direction. The slab width can be changed during casting by changing the position of the short side mold plate 2 while the short side mold plate 2 is sandwiched between the long side mold plates 3. That is, cast pieces having various widths can be cast using the same continuous casting mold 1 without exchanging both the long side mold plate 3 and the short side mold plate 2.

また、特許文献5、6には、鋳型内での鋳片の凝固挙動を計算により推定する方法が記載されている。鋳型の鋳造方向の傾き、あるいは鋳造速度を任意の値に設定した際に、鋳型四周各部位における凝固シェルの厚さが算出される。この結果に基づき、鋳型下端における凝固シェル厚の最大値と最小値の比、凝固シェルと鋳型間の拘束力、ギャップ量を求めることができる。さらに、特許文献7には、鋳型の短辺鋳型面を、鋳片の短辺コーナー部の凝固収縮量プロフィールに沿った曲面勾配又は多段勾配状に形成することが記載されている。   Patent Documents 5 and 6 describe methods for estimating the solidification behavior of a slab in a mold by calculation. When the inclination of the casting direction of the mold or the casting speed is set to an arbitrary value, the thickness of the solidified shell at each part around the mold is calculated. Based on this result, the ratio between the maximum value and the minimum value of the solidified shell thickness at the lower end of the mold, the binding force between the solidified shell and the mold, and the gap amount can be obtained. Further, Patent Document 7 describes that the short side mold surface of the mold is formed in a curved surface gradient or a multistage gradient shape along the solidification shrinkage amount profile of the short side corner portion of the slab.

また、特許文献8には、溶鋼のメニスカス位置を上下に変位させることにより、初期凝固シェルの収縮外形と近似的に等しい内周長の鋳型部分を常に使用し、鋳型と凝固シェルとの接触状態を最適に保つようにすることが開示されている。さらに、当該特許文献8には、鋳型銅板と凝固シェルの接触状態を示す物理量として、鋳型内引き抜き抵抗値、銅板温度、鋳型冷却水の給水側と排水側の温度差の組み合わせを用い、当該物理量に基づきメニスカス位置を上下に変位させることが開示されている。   Further, Patent Document 8 always uses a mold part having an inner peripheral length that is approximately equal to the contraction outline of the initial solidified shell by displacing the meniscus position of the molten steel up and down, and the contact state between the mold and the solidified shell. Is disclosed in order to keep it optimal. Further, in Patent Document 8, as a physical quantity indicating a contact state between the mold copper plate and the solidified shell, a combination of a pull-out resistance value in the mold, a copper plate temperature, and a temperature difference between the water supply side and the water discharge side of the mold cooling water is used. Based on the above, it is disclosed that the meniscus position is displaced up and down.

さらには、特許文献9には、パウダー流入促進を目的として、鋳型の長辺側テーパを2段テーパとし、そのテーパ変化点をメニスカス位置から80〜300mmとした鋳型が開示されている。   Furthermore, Patent Document 9 discloses a mold in which the long side taper of the mold is a two-stage taper and the taper change point is 80 to 300 mm from the meniscus position for the purpose of promoting powder inflow.

特開2005−211936号公報Japanese Patent Laid-Open No. 2005-21936 特開平2−247059号公報JP-A-2-247059 特開昭56−53849号公報JP-A-56-53849 特開平3−210953号公報Japanese Patent Laid-Open No. 3-210953 特開2006−346735号公報JP 2006-346735 A 特開2006−346736号公報JP 2006-346736 A 特開昭57−79047号公報JP-A-57-79047 特開平6−297101号公報JP-A-6-297101 特開2003−305540号公報JP 2003-305540 A

ところで、多段テーパ鋳型を用いて連続鋳造を行う際に、表面割れ及び内部割れのない高品質の鋳片を安定して鋳造するためには、多段テーパ鋳型内における凝固シェルの凝固均一度を極力高くし、かつ、凝固シェルと多段テーパ短辺鋳型板との摩擦拘束力を極力低くすることが求められる。   By the way, when performing continuous casting using a multistage taper mold, in order to stably cast high quality slabs without surface cracks and internal cracks, the solidification uniformity of the solidified shell in the multistage taper mold is as much as possible. It is required to increase the frictional restraining force between the solidified shell and the multistage tapered short side mold plate as much as possible.

一方、連続鋳造の操業においては上述した鋳片幅以外にも、生産性向上等の観点から鋳造速度などの他の操業条件を変更したい場合も多々存在する。かかる操業条件の中には、凝固シェルの凝固均一度と摩擦拘束力の双方に影響を及ぼすものがある。例えば、鋳造速度を上昇させると、凝固均一度は増加するので望ましいが、摩擦拘束力も増加してしまうので望ましくない。一方、鋳造速度を低下させると、摩擦拘束力は低下するので望ましいが、凝固均一度も低下してしまうので望ましくない。このように鋳造速度などの操業条件を変更すると、凝固均一度と摩擦拘束力とが、高品質の鋳片を鋳造する上で相反する関係になるため、操業中に操業条件を安易に変更することはできない。   On the other hand, in the continuous casting operation, in addition to the above-described slab width, there are many cases where it is desired to change other operating conditions such as casting speed from the viewpoint of improving productivity. Some of these operating conditions affect both the solidification uniformity and frictional restraint force of the solidified shell. For example, increasing the casting speed is desirable because the solidification uniformity increases, but it is not desirable because the frictional restraint force also increases. On the other hand, lowering the casting speed is desirable because the frictional restraining force is decreased, but it is not desirable because the solidification uniformity is also decreased. If the operating conditions such as the casting speed are changed in this way, the solidification uniformity and the frictional restraining force have a conflicting relationship in casting a high-quality slab, so the operating conditions are easily changed during operation. It is not possible.

また、上記のように鋳造速度等の操業条件によって多段テーパ短辺鋳型板の最適形状が変化するが、操業条件の変更に対応するために、各々の操業条件ごとに複数種類の鋳型を用意して交換使用することは、コスト面及び生産効率の観点から現実的ではない。   In addition, as described above, the optimum shape of the multi-stage tapered short side mold plate changes depending on the operating conditions such as the casting speed, but in order to cope with changes in the operating conditions, multiple types of molds are prepared for each operating condition. Therefore, it is not practical from the viewpoint of cost and production efficiency.

さらには、上記特許文献7のように、鋳型の短辺鋳型面を、鋳片の短辺コーナー部の凝固収縮量プロフィールに沿った形状に形成しようとしても、多段テーパの変化点位置の具体的値を適切に設定することは非常に困難である。   Furthermore, as described in Patent Document 7, even if an attempt is made to form the short side mold surface of the mold into a shape along the solidification shrinkage profile of the short side corner portion of the slab, the specific position of the change point of the multistage taper It is very difficult to set the value appropriately.

また、特許文献8のように鋳型内におけるメニスカス位置を変更する手法では、その変更作業の作業性が悪く、また、メニスカス位置を上昇させると、鋳型から溶融金属が溢れ出すなどといった操業トラブルが起こる可能性が増大する。このため、連続鋳造の操業中は、鋳型内におけるメニスカス位置を一定に保つことが好ましいので、特許文献8にお手法は採用しにくい。   Further, in the method of changing the meniscus position in the mold as in Patent Document 8, the workability of the change work is poor, and when the meniscus position is raised, operation troubles such as molten metal overflowing from the mold occur. The potential increases. For this reason, during the continuous casting operation, it is preferable to keep the meniscus position in the mold constant.

また、特許文献9の技術は、長辺テーパの変化点位置をパウダー流入との関係で規定したものであり、上記鋳造速度等の操業条件に対する、短辺鋳型板テーパの変化点位置の依存性については何ら開示されていない。   The technique of Patent Document 9 defines the change point position of the long side taper in relation to the powder inflow, and the dependency of the change point position of the short side mold plate taper on the operating conditions such as the casting speed. There is no disclosure about.

以上述べたように、従来では、多段テーパ鋳型を用いた連続鋳造において、複数種類の鋳型を交換使用することなく、上記相反関係にある凝固均一度と摩擦拘束力の双方の制約を満足させつつ、鋳造速度等の操業条件の変更に対応可能な技術が存在しなかった。従って、かかる技術が強く希求されていた。   As described above, conventionally, in continuous casting using a multi-stage taper mold, while satisfying the constraints of both the solidification uniformity and the frictional constraint force, which are in the above-mentioned conflicting relationship, without using multiple types of molds for replacement. There was no technology that could cope with changes in operating conditions such as casting speed. Therefore, such a technique has been strongly demanded.

そこで、本発明は、上記事情に鑑みてなされたものであり、本発明の目的とするところは、相反関係にある凝固均一度と摩擦拘束力の双方の制約を満足させつつ、連続鋳造の操業条件の変更に対応することが可能な、新規かつ改良された連続鋳造方法及び連続鋳造装置を提供することにある。   Therefore, the present invention has been made in view of the above circumstances, and the object of the present invention is to operate a continuous casting while satisfying both the restrictions of solidification uniformity and frictional restraining force which are in a contradictory relationship. It is an object of the present invention to provide a new and improved continuous casting method and continuous casting apparatus that can cope with changes in conditions.

上記課題を解決するために、本発明のある観点によれば、鋳造方向に相異なる2以上のテーパを有する一対の多段テーパ短辺鋳型板と、前記多段テーパ短辺鋳型板を幅方向両側から挟む一対の長辺鋳型板とからなる鋳型を用いた連続鋳造方法において、鋳造中に前記多段テーパ短辺鋳型板を鋳造方向に移動させることにより、前記鋳型内における溶融金属の凝固シェルの凝固均一度、及び前記凝固シェルと前記多段テーパ短辺鋳型板との間の摩擦拘束力の双方をほぼ一定に維持するように、前記多段テーパ短辺鋳型板のテーパ変化点の位置を前記鋳型内における溶融金属のメニスカス位置に対して鋳造方向に相対移動させることを特徴とする、連続鋳造方法が提供される。
In order to solve the above problems, according to one aspect of the present invention, a pair of multi-stage tapered short side mold plates having two or more tapers different from each other in the casting direction, and the multi-stage tapered short side mold plates from both sides in the width direction are provided. In a continuous casting method using a mold composed of a pair of long-side mold plates sandwiched, the solidification average of a solidified shell of molten metal in the mold is obtained by moving the multi-stage tapered short-side mold plate in the casting direction during casting. The position of the taper change point of the multistage tapered short side mold plate is set in the mold so that both the frictional restraining force between the solidified shell and the multistage tapered short side mold plate is maintained substantially constant once . There is provided a continuous casting method characterized by moving relative to a meniscus position of a molten metal in a casting direction.

また、上記課題を解決するために、本発明の別の観点によれば、鋳造方向に相異なる2以上のテーパを有する一対の多段テーパ短辺鋳型板と、前記多段テーパ短辺鋳型板を幅方向両側から挟む一対の長辺鋳型板とからなる鋳型と、鋳造中に前記多段テーパ短辺鋳型板を鋳造方向に移動させることにより、前記鋳型内における溶融金属の凝固シェルの凝固均一度、及び前記凝固シェルと前記多段テーパ短辺鋳型板との間の摩擦拘束力の双方をほぼ一定に維持するように、前記多段テーパ短辺鋳型板のテーパ変化点の位置を前記鋳型内における溶融金属のメニスカス位置に対して鋳造方向に相対移動させる短辺駆動機構と、を備えることを特徴とする、連続鋳造装置が提供される。
In order to solve the above problem, according to another aspect of the present invention, a pair of multi-stage tapered short side mold plates having two or more different tapers in the casting direction, and the multi-stage tapered short side mold plate having a width A mold composed of a pair of long side mold plates sandwiched from both sides in the direction, and by moving the multi-stage tapered short side mold plate in the casting direction during casting , the solidification uniformity of the solidified shell of the molten metal in the mold, and The position of the taper change point of the multi-stage tapered short side mold plate is set so that both the frictional restraining force between the solidified shell and the multi-stage tapered short side mold plate are maintained substantially constant . There is provided a continuous casting apparatus comprising: a short side drive mechanism that moves relative to a meniscus position in a casting direction.

また、連続鋳造の操業条件に応じて鋳造中に前記多段テーパ短辺鋳型板を鋳造方向に移動させるようにしてもよい。   Further, the multi-stage tapered short side mold plate may be moved in the casting direction during casting according to the operating conditions of continuous casting.

さらに、前記連続鋳造の操業条件は、前記溶融金属が凝固した凝固シェルの凝固均一度、及び、前記凝固シェルと前記多段テーパ短辺鋳型板との間の摩擦拘束力の双方に影響を及ぼす操業条件であるようにしてもよい。   Furthermore, the operation conditions of the continuous casting may affect both the solidification uniformity of the solidified shell solidified by the molten metal and the frictional restraining force between the solidified shell and the multi-stage tapered short side mold plate. You may make it the conditions.

また、前記連続鋳造の操業条件は、鋳造速度を含み、前記鋳造速度に応じて鋳造中に前記多段テーパ短辺鋳型板を鋳造方向に移動させるようにしてもよい。   The continuous casting operation condition may include a casting speed, and the multi-stage tapered short side mold plate may be moved in the casting direction during casting according to the casting speed.

さらに、前記鋳造速度の増加に応じて鋳造中に前記多段テーパ短辺鋳型板を鋳造方向上方に移動させ、前記鋳造速度の減少に応じて鋳造中に前記多段テーパ短辺鋳型板を鋳造方向下方に移動させるようにしてもよい。   Further, the multi-stage tapered short side mold plate is moved upward in the casting direction during casting according to the increase in the casting speed, and the multi-stage tapered short side mold plate is moved downward in the casting direction during casting according to the decrease in the casting speed. You may make it move to.

また、前記連続鋳造の操業条件は、前記溶融金属の炭素濃度を含み、
前記溶融金属の炭素濃度に応じて鋳造中に前記多段テーパ短辺鋳型板を鋳造方向に移動させるようにしてもよい。
Further, the continuous casting operation condition includes a carbon concentration of the molten metal,
The multi-stage tapered short side mold plate may be moved in the casting direction during casting according to the carbon concentration of the molten metal.

また、前記連続鋳造の操業条件は、前記多段テーパ短辺鋳型板の面平均抜熱流束を含み、前記面平均抜熱流束に応じて鋳造中に前記多段テーパ短辺鋳型板を鋳造方向に移動させるようにしてもよい。   The operation conditions of the continuous casting include the surface average heat removal flux of the multistage tapered short side mold plate, and the multistage taper short side mold plate is moved in the casting direction during casting according to the surface average heat removal flux. You may make it make it.

さらに、前記面平均抜熱流束の増加に応じて鋳造中に前記多段テーパ短辺鋳型板を鋳造方向上方に移動させ、前記面平均抜熱流束の減少に応じて鋳造中に前記多段テーパ短辺鋳型板を鋳造方向下方に移動させるようにしてもよい。
また、上記課題を解決するために、本発明の別の観点によれば、鋳造方向に相異なる2以上のテーパを有する一対の多段テーパ短辺鋳型板と、前記多段テーパ短辺鋳型板を幅方向両側から挟む一対の長辺鋳型板とからなる鋳型を用いた連続鋳造方法において、鋳造速度に応じて鋳造中に前記多段テーパ短辺鋳型板を鋳造方向に移動させることにより、前記多段テーパ短辺鋳型板のテーパ変化点の位置を前記鋳型内における溶融金属のメニスカス位置に対して鋳造方向に相対移動させ、前記メニスカス位置から前記多段テーパ短辺鋳型板のテーパ変化点までの距離をx(mm)とし、前記鋳造速度をV(m/min)としたときに、鋳造速度V 、変化点位置x で連続鋳造している状態から、前記鋳造速度をV からVに減少させる場合は下記(1)式を満たし、前記鋳造速度をV からVに増加させる場合は下記(2)式を満たすように、鋳造中に前記多段テーパ短辺鋳型板を鋳造方向に移動させることを特徴とする、連続鋳造方法が提供される。
<x≦−200(V−V )+x :V<V (1)
>x≧−200(V−V )+x :V>V (2)
また、上記課題を解決するために、本発明の別の観点によれば、鋳造方向に相異なる2以上のテーパを有する一対の多段テーパ短辺鋳型板と、前記多段テーパ短辺鋳型板を幅方向両側から挟む一対の長辺鋳型板とからなる鋳型と、鋳造速度に応じて鋳造中に前記多段テーパ短辺鋳型板を鋳造方向に移動させることにより、前記多段テーパ短辺鋳型板のテーパ変化点の位置を前記鋳型内における溶融金属のメニスカス位置に対して鋳造方向に相対移動させる短辺駆動機構と、を備え、前記メニスカス位置から前記多段テーパ短辺鋳型板のテーパ変化点までの距離をx(mm)とし、前記鋳造速度をV(m/min)としたときに、鋳造速度V 、変化点位置x で連続鋳造している状態から、前記鋳造速度をV からVに減少させる場合は下記(1)式を満たし、前記鋳造速度をV からVに増加させる場合は下記(2)式を満たすように、鋳造中に前記多段テーパ短辺鋳型板を鋳造方向に移動させることを特徴とする、連続鋳造装置が提供される。
<x≦−200(V−V )+x :V<V (1)
>x≧−200(V−V )+x :V>V (2)
また、上記課題を解決するために、本発明の別の観点によれば、鋳造方向に相異なる2以上のテーパを有する一対の多段テーパ短辺鋳型板と、前記多段テーパ短辺鋳型板を幅方向両側から挟む一対の長辺鋳型板とからなる鋳型を用いた連続鋳造方法において、溶融金属の炭素濃度に応じて鋳造中に前記多段テーパ短辺鋳型板を鋳造方向に移動させることにより、前記多段テーパ短辺鋳型板のテーパ変化点の位置を前記鋳型内における溶融金属のメニスカス位置に対して鋳造方向に相対移動させ、前記溶融金属の炭素濃度C(質量%)が0.05<C<0.2であるときは、C≦0.05又はC≧0.2であるときよりも、鋳造中に前記多段テーパ短辺鋳型板を鋳造方向下方に移動させることを特徴とする、連続鋳造方法が提供される。
また、上記課題を解決するために、本発明の別の観点によれば、鋳造方向に相異なる2以上のテーパを有する一対の多段テーパ短辺鋳型板と、前記多段テーパ短辺鋳型板を幅方向両側から挟む一対の長辺鋳型板とからなる鋳型と、溶融金属の炭素濃度に応じて鋳造中に前記多段テーパ短辺鋳型板を鋳造方向に移動させることにより、前記多段テーパ短辺鋳型板のテーパ変化点の位置を前記鋳型内における溶融金属のメニスカス位置に対して鋳造方向に相対移動させる短辺駆動機構と、を備え、前記溶融金属の炭素濃度C(質量%)が0.05<C<0.2であるときは、C≦0.05又はC≧0.2であるときよりも、鋳造中に前記多段テーパ短辺鋳型板を鋳造方向下方に移動させることを特徴とする、連続鋳造装置が提供される。
Further, the multi-stage taper short side mold plate is moved upward in the casting direction during casting according to the increase in the surface average heat extraction flux, and the multi-stage taper short side during casting according to the decrease in the surface average heat extraction flux. The mold plate may be moved downward in the casting direction.
In order to solve the above problem, according to another aspect of the present invention, a pair of multi-stage tapered short side mold plates having two or more different tapers in the casting direction, and the multi-stage tapered short side mold plate having a width In a continuous casting method using a mold composed of a pair of long side mold plates sandwiched from both sides in the direction, the multi-stage taper short side plate is moved in the casting direction during casting according to the casting speed, thereby The position of the taper change point of the side mold plate is moved relative to the meniscus position of the molten metal in the mold in the casting direction, and the distance from the meniscus position to the taper change point of the multistage taper short side mold plate is represented by x ( mm), and when the casting speed is V (m / min), the casting speed is decreased from V 0 to V from the state of continuous casting at the casting speed V 0 and the change point position x 0. Is When the following formula (1) is satisfied and the casting speed is increased from V 0 to V, the multi-stage tapered short side mold plate is moved in the casting direction during casting so as to satisfy the following formula (2). A continuous casting method is provided.
x 0 <x ≦ −200 (V−V 0 ) + x 0 : V <V 0 (1)
x 0 > x ≧ −200 (V−V 0 ) + x 0 : V> V 0 (2)
In order to solve the above problem, according to another aspect of the present invention, a pair of multi-stage tapered short side mold plates having two or more different tapers in the casting direction, and the multi-stage tapered short side mold plate having a width A taper change of the multi-stage tapered short side mold plate by moving the multi-stage tapered short side mold plate in the casting direction during casting according to the casting speed, and a mold composed of a pair of long side mold plates sandwiched from both sides in the direction. A short-side drive mechanism for moving the position of the point relative to the meniscus position of the molten metal in the mold in the casting direction, and the distance from the meniscus position to the taper change point of the multistage tapered short-side mold plate x (mm) and when the casting speed is V (m / min), the casting speed is decreased from V 0 to V from the state of continuous casting at the casting speed V 0 and the change point position x 0. If you want to When the above formula (1) is satisfied and the casting speed is increased from V 0 to V, the multi-stage tapered short side mold plate is moved in the casting direction during casting so as to satisfy the following formula (2). A continuous casting apparatus is provided.
x 0 <x ≦ −200 (V−V 0 ) + x 0 : V <V 0 (1)
x 0 > x ≧ −200 (V−V 0 ) + x 0 : V> V 0 (2)
In order to solve the above problem, according to another aspect of the present invention, a pair of multi-stage tapered short side mold plates having two or more different tapers in the casting direction, and the multi-stage tapered short side mold plate having a width In a continuous casting method using a mold composed of a pair of long side mold plates sandwiched from both sides in the direction, by moving the multistage tapered short side mold plate in the casting direction during casting according to the carbon concentration of the molten metal, The position of the taper change point of the multi-stage taper short side mold plate is moved relative to the meniscus position of the molten metal in the mold in the casting direction, and the carbon concentration C (mass%) of the molten metal is 0.05 <C <. The continuous casting is characterized in that when 0.2, the multi-stage tapered short side mold plate is moved downward in the casting direction during casting than when C ≦ 0.05 or C ≧ 0.2. A method is provided.
In order to solve the above problem, according to another aspect of the present invention, a pair of multi-stage tapered short side mold plates having two or more different tapers in the casting direction, and the multi-stage tapered short side mold plate having a width A mold composed of a pair of long-side mold plates sandwiched from both sides in the direction, and the multi-stage tapered short-side mold plate by moving the multi-stage tapered short-side mold plate in the casting direction during casting according to the carbon concentration of the molten metal. A short-side drive mechanism for moving the position of the taper change point relative to the meniscus position of the molten metal in the mold in the casting direction, and the carbon concentration C (mass%) of the molten metal is 0.05 < When C <0.2, the multi-stage taper short side mold plate is moved downward in the casting direction during casting than when C ≦ 0.05 or C ≧ 0.2. A continuous casting apparatus is provided.

上記構成において、鋳造中に多段テーパ短辺鋳型板を鋳造方向に移動させることにより、多段テーパ短辺鋳型板のテーパ変化点の位置を、鋳型内における溶融金属のメニスカス位置に対して相対移動させる。これにより、鋳型内のメニスカス位置を固定位置としたままで、多段テーパ短辺鋳型板のテーパ変化点の位置を上下方向に移動させて、メニスカス位置に近づけたり遠ざけたりできる。従って、鋳造速度等の操業条件の変更に応じて、鋳造中に多段テーパ短辺鋳型板のテーパ変化点の位置を調整することで、該操業条件の変更前後で、相反関係にある凝固均一度及び摩擦拘束力の双方がほぼ一定値となるように制御できる。よって、相反関係にある凝固均一度と摩擦拘束力の双方の制約を満足させつつ、鋳造速度等の操業条件の変更に対応することができる。   In the above configuration, the position of the taper change point of the multistage tapered short side mold plate is moved relative to the meniscus position of the molten metal in the mold by moving the multistage tapered short side mold plate in the casting direction during casting. . Thereby, the position of the taper change point of the multi-stage tapered short side mold plate can be moved in the vertical direction while keeping the meniscus position in the mold as the fixed position, and can be moved closer to or away from the meniscus position. Therefore, by adjusting the position of the taper change point of the multi-stage taper short side mold plate during casting according to changes in operating conditions such as casting speed, solidification uniformity in a reciprocal relationship before and after the change of operating conditions And the frictional restraining force can be controlled to be substantially constant. Therefore, it is possible to cope with a change in operating conditions such as casting speed while satisfying both the solidification uniformity and the frictional restraining force, which are in a reciprocal relationship.

以上説明したように本発明によれば、相反関係にある凝固均一度と摩擦拘束力の双方の制約を満足させつつ、連続鋳造の操業条件の変更に対応することができる。よって、鋳造速度等の操業条件が変更されても、表面割れ及び内部割れのない高品質の鋳片を安定して鋳造することができる。   As described above, according to the present invention, it is possible to cope with a change in operating conditions of continuous casting while satisfying both the solidification uniformity and the frictional restraining force which are in a contradictory relationship. Therefore, even if operating conditions such as casting speed are changed, a high quality slab having no surface cracks and internal cracks can be stably cast.

一般的な多段テーパ短辺鋳型板のテーパ面を説明する図であり、(a)は2段テーパ短辺鋳型板、(b)は3段テーパ短辺鋳型板、(c)は1段テーパ短辺鋳型板を示す図である。It is a figure explaining the taper surface of a general multistage taper short side mold plate, (a) is a 2 step taper short side mold plate, (b) is a 3 step taper short side mold plate, (c) is a 1 step taper. It is a figure which shows a short side mold plate. 本発明の一実施形態に係る計算手法により求めた鋳型下端における凝固シェルの形状を示す横断面図である。It is a cross-sectional view which shows the shape of the solidification shell in the casting_mold | template lower end calculated | required with the calculation method which concerns on one Embodiment of this invention. 同実施形態に係る連続鋳造鋳型の基本構成を示す図であり、(a)は平面図、(b)は一部断面正面図である。It is a figure which shows the basic composition of the continuous casting mold which concerns on the embodiment, (a) is a top view, (b) is a partial cross section front view. 鋳片幅1100mmにおいて、上下テーパ比率と鋳造速度を変更したときの凝固均一度、摩擦拘束力の変化を示す図である。It is a figure which shows the change of the solidification uniformity and frictional restraint force when changing the up-and-down taper ratio and the casting speed in the slab width of 1100 mm. 鋳片幅2200mmにおいて、上下テーパ比率と鋳造速度を変更したときの凝固均一度、摩擦拘束力の変化を示す図である。It is a figure which shows the change of the solidification uniformity and frictional restraint force when changing the up-and-down taper ratio and the casting speed in the slab width of 2200 mm. 鋳片幅1100mmにおいて、変化点位置xと鋳造速度を変更したときの凝固均一度、摩擦拘束力の変化を示す図である。It is a figure which shows the change of the solidification uniformity and the frictional restraint force when changing the change point position x and the casting speed in the slab width of 1100 mm. 鋳片幅2200mmにおいて、変化点位置xと鋳造速度を変更したときの凝固均一度、摩擦拘束力の変化を示す図である。It is a figure which shows the change of the solidification uniformity and friction restraint force when changing the change point position x and casting speed in slab width 2200mm. トータルテーパ率を変更したときの凝固均一度、摩擦拘束力の変化を示す図である。It is a figure which shows the change of the coagulation | solidification uniformity when changing a total taper rate, and a frictional restraint force. 鋳片幅1100mm、上下テーパ比率4.0、トータルテーパ率1.6%/mにおいて、変化点位置xと鋳造速度Vを変更したときの凝固均一度、摩擦拘束力の変化を示す図である。It is a figure which shows the change of the solidification uniformity and the frictional restraint force when changing the change point position x and the casting speed V at a slab width of 1100 mm, a vertical taper ratio of 4.0, and a total taper ratio of 1.6% / m. . 同実施形態に係る連続鋳造方法において、鋳造速度Vを1.5m/minから変化させたときの変化点位置xの好適な範囲を示す図である。In the continuous casting method which concerns on the embodiment, it is a figure which shows the suitable range of the change point position x when changing the casting speed V from 1.5 m / min. 鋳片幅1100mm、上下テーパ比率4.0、トータルテーパ率1.6%/mにおいて、変化点位置xと、溶融金属の炭素濃度Cを変更したときの凝固均一度、摩擦拘束力の変化を示す図である。Changes in solidification uniformity and frictional restraint force when changing the change point position x and carbon concentration C of the molten metal at a slab width of 1100 mm, a vertical taper ratio of 4.0, and a total taper ratio of 1.6% / m. FIG. 変化点位置xを200mmとしたときの凝固均一度と炭素濃度Cの関係を示す図である。It is a figure which shows the relationship between the solidification uniformity and carbon concentration C when change point position x is 200 mm. 鋳片幅1100mm、上下テーパ比率4.0、トータルテーパ率1.6%/m、鋳造速度V=1.5m/minにおいて、変化点位置xと面平均抜熱流束qを変更したときの凝固均一度、摩擦拘束力の変化を示す図である。Solidification when changing the change point position x and the surface average heat removal flux q at a slab width of 1100 mm, a vertical taper ratio of 4.0, a total taper ratio of 1.6% / m, and a casting speed V = 1.5 m / min. It is a figure which shows the change of a uniformity and a frictional restraint force. 同実施形態に係る連続鋳造装置の構成を示す図である。It is a figure which shows the structure of the continuous casting apparatus which concerns on the same embodiment. 同実施形態に係る連続鋳造装置の制御装置の構成を示す図である。It is a figure which shows the structure of the control apparatus of the continuous casting apparatus which concerns on the same embodiment. 同実施形態の変更例に係る連続鋳造装置の構成を示す図である。It is a figure which shows the structure of the continuous casting apparatus which concerns on the example of a change of the embodiment.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。   Exemplary embodiments of the present invention will be described below in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.

以下に、本発明の一実施形態に係る連続鋳造方法及び連続鋳造装置について詳細に説明する。なお、説明は以下の順で行うものとする。
1.用語の定義
2.連続鋳造方法の概要
3.鋳造速度と変化点位置との関係
4.鋳造速度に応じた連続鋳造方法
5.溶融金属の炭素濃度に応じた連続鋳造方法
6.連続鋳造装置の構成
7.効果
Below, the continuous casting method and continuous casting apparatus which concern on one Embodiment of this invention are demonstrated in detail. The description will be made in the following order.
1. Definition of terms 2. Outline of continuous casting method 3. Relationship between casting speed and change point position 4. Continuous casting method according to casting speed 5. Continuous casting method according to the carbon concentration of the molten metal 6. Configuration of continuous casting machine effect

[1.用語の定義]
まず、本明細書で使用する用語を定義する。
[1. Definition of terms]
First, terms used in this specification are defined.

メニスカス位置とは、鋳型内における溶融金属(例えば溶鋼)のメニスカス(湯面)の高さ位置である。
鋳造方向とは、鋳型から鋳片を引き抜く方向であり、例えば鉛直方向(上下方向)である。
多段テーパ短辺鋳型板とは、鋳造方向に相異なる2以上のテーパを有する短辺鋳型板である。2段テーパ短辺鋳型板とは、鋳造方向に相異なる2つのテーパを有する短辺鋳型板であり(図1(a)参照)、3段テーパ短辺鋳型板とは、鋳造方向に相異なる3つのテーパを有する短辺鋳型板である(図1(a)参照)。
テーパ変化点Pとは、多段テーパ短辺鋳型板においてテーパが変化する箇所である。図1(a)に示す2段テーパ短辺鋳型板2であれば、テーパ変化点Pは1点であり、図1(b)に示す3段以上のテーパ短辺鋳型板であれば、テーパ変化点P、Pは2点以上である。
変化点位置x(mm)とは、メニスカス位置から、多段テーパ短辺鋳型板の最初のテーパ変化点Pまでの距離(即ち、メニスカス位置とテーパ変化点の相対高さ)である。図1(a)に示す2段テーパ短辺鋳型板では、変化点位置xはメニスカス位置11からテーパ変化点Pまでの距離であり、図1(b)に示す3段テーパ短辺鋳型板では、変化点位置xはメニスカス位置11から上部テーパ変化点Pまでの距離である。また、連続鋳造における最高鋳造速度をV(m/min)とし、鋳造速度をV(m/min)とする。
The meniscus position is the height position of the meniscus (molten metal surface) of molten metal (for example, molten steel) in the mold.
The casting direction is a direction in which the slab is pulled out from the mold, and is, for example, a vertical direction (up and down direction).
The multi-stage tapered short side mold plate is a short side mold plate having two or more tapers different in the casting direction. The two-step tapered short side mold plate is a short side mold plate having two tapers different in the casting direction (see FIG. 1A), and the three-step tapered short side mold plate is different in the casting direction. It is a short side mold plate having three tapers (see FIG. 1A).
The taper changing point P is a portion where the taper changes in the multi-stage tapered short side mold plate. In the case of the two-step taper short side mold plate 2 shown in FIG. 1A, the taper change point P is one point, and in the case of the three-step or more taper short side mold plate shown in FIG. The change points P U and P L are two or more points.
The change point position x (mm) is the distance from the meniscus position to the first taper change point P of the multistage tapered short side mold plate (that is, the relative height between the meniscus position and the taper change point). In the two-step taper short side mold plate shown in FIG. 1A, the change point position x is the distance from the meniscus position 11 to the taper change point P. In the three-step taper short side mold plate shown in FIG. , change point position x is the distance from the meniscus position 11 to the upper tapered changing point P U. The maximum casting speed in continuous casting is V M (m / min), and the casting speed is V (m / min).

凝固均一度とは、鋳型1内で溶融金属が凝固して形成される凝固シェルの凝固状態の均一度を表すパラメータである。例えば、図2に示すように、凝固シェル10の長辺側における厚さの最大値Aと最小値Bの比B/Aを、凝固均一度(無次元量)とすることができる。
摩擦拘束力とは、連続鋳造時に鋳型と凝固シェルとの間の摩擦により生じる拘束力の大きさを表すパラメータである。例えば、後述する計算により求めた鋳型の各幅における摩擦拘束力を、各幅での基準値(1段テーパでテーパ率1.0%/mの場合の摩擦拘束力)で正規化した値を、摩擦拘束力(無次元量)として使用できる。
溶鋼金属の炭素濃度は、溶融金属(例えば溶鋼)中に占める炭素の濃度(質量%)である。
「鋳造中」とは、連続鋳造装置において鋳型が設置されて、溶融金属を当該鋳型に注入可能となっている状態を意味する。例えば、一対の短辺鋳型板と一対の長辺鋳型板を組み立てることによって鋳型が設置された時点から、当該短辺鋳型板と長辺鋳型板を分解する時点までの期間は、「鋳造中」に含まれる。従って、「鋳造中」は、鋳型内に溶融金属が注入されて鋳片が鋳造されている実際の鋳造期間のみならず、当該実際の鋳造期間前に鋳型内に溶融金属を注入していない期間や、当該実際の鋳造期間後に鋳型内に溶融金属を注入していない期間も含む。一方、連続鋳造装置において鋳型を分解した後、短辺鋳型板と長辺鋳型板を再度組み立てて鋳型を再設置するまでの期間は、鋳型内に溶融金属を注入できないので、「鋳造中」に含まれない。
The solidification uniformity is a parameter representing the uniformity of the solidified state of the solidified shell formed by solidification of the molten metal in the mold 1. For example, as shown in FIG. 2, the ratio B / A between the maximum value A and the minimum value B on the long side of the solidified shell 10 can be defined as the solidification uniformity (dimensionalless amount).
The frictional restraining force is a parameter representing the magnitude of the restraining force generated by the friction between the mold and the solidified shell during continuous casting. For example, a value obtained by normalizing the frictional restraint force at each width of the mold obtained by calculation described later with a reference value at each width (frictional restraint force when the taper rate is 1.0% / m with a one-step taper) It can be used as a frictional restraint force (dimensionalless amount).
The carbon concentration of the molten steel metal is the concentration (% by mass) of carbon in the molten metal (for example, molten steel).
“Casting” means a state in which a mold is installed in a continuous casting apparatus and molten metal can be injected into the mold. For example, the period from when the mold is installed by assembling the pair of short side mold plates and the pair of long side mold plates to when the short side mold plate and the long side mold plate are disassembled is `` under casting '' include. Therefore, “during casting” means not only the actual casting period in which the molten metal is injected into the mold and the slab is cast, but also the period in which the molten metal is not injected into the mold before the actual casting period. In addition, a period in which molten metal is not injected into the mold after the actual casting period is included. On the other hand, after disassembling the mold in the continuous casting device, the period from when the short side mold plate and the long side mold plate are reassembled and the mold is reinstalled cannot be poured into the mold. Not included.

また、トータルテーパ率T、上テーパ率T、下テーパ率T、上下テーパ比率を以下のように定義する。 Further, the total taper rate T T , the upper taper rate T U , the lower taper rate T L , and the vertical taper ratio are defined as follows.

図1(a)及び(b)に示すように、両短辺間の距離を、メニスカス位置においてW(m)、鋳型下端においてW(m)、メニスカス位置から鋳型下端までの距離をL(m)とおいたとき、トータルテーパ率T(%/m)を
(%/m)={(W−W)/W/L}×100 (5)
と定義する。
As shown in FIGS. 1 (a) and 1 (b), the distance between both short sides is W M (m) at the meniscus position, W B (m) at the lower end of the mold, and the distance from the meniscus position to the lower end of the mold is L. When (m) is set, the total taper rate T T (% / m) is set to T T (% / m) = {(W M −W B ) / W M / L} × 100 (5)
It is defined as

多段テーパ短辺鋳型板2の鋳造方向最上部の上テーパ面6において、上方位置と下方位置を任意に定め、両短辺間の距離を、上方位置においてW(m)、下方位置においてW(m)、上方位置から下方位置までの距離をΔL(m)とおいたとき(図1(a)(b))、上テーパ率T(%/m)を
(%/m)={(W−W)/W/ΔL}×100 (6)
と定義する。
In the taper surface 6 U on the casting direction at the top of the multistage tapered short side mold plate 2, optionally define the upper and lower positions, the distance between both short sides, W 1 (m) at the upper position, the lower position When W 2 (m) and the distance from the upper position to the lower position are set to ΔL (m) (FIGS. 1A and 1B), the upper taper ratio T U (% / m) is set to T U (% / m). ) = {(W 1 −W 2 ) / W M / ΔL} × 100 (6)
It is defined as

図1(a)及び(b)に示すように、多段テーパ短辺鋳型板2の鋳造方向最下部の下テーパ面6において、上方位置と下方位置を任意に定め、両短辺間の距離を、上方位置においてW(m)、下方位置においてW(m)、上方位置から下方位置までの距離をΔL(m)とおいたとき、下テーパ率T(%/m)を
(%/m)={(W−W)/W/ΔL}×100 (7)
と定義する。
As shown in FIG. 1 (a) and (b), the lower tapered surface 6 L of the casting direction lowermost multistage tapered short side mold plate 2, optionally define the upper and lower positions, the distance between both short sides the, W 3 (m) at the upper position, W 4 (m) in the lower position, and the distance from the upper position to the lower position spaced a [Delta] L (m), the lower tapered rate T L a (% / m) T L (% / M ) = {(W 3 −W 4 ) / W M / ΔL} × 100 (7)
It is defined as

上下テーパ比率は、
上下テーパ比率=上テーパ率/下テーパ率=T/T (8)
と定義する。
Vertical taper ratio is
Vertical taper ratio = upper taper rate / lower tapered index = T U / T L (8 )
It is defined as

[2.連続鋳造方法の概要]
本実施形態に係る連続鋳造方法は、図3と同様に、鋳造方向に相異なる2以上のテーパを有する一対の多段テーパ短辺鋳型板2と、多段テーパ短辺鋳型板2を幅方向両側から挟む一対の長辺鋳型板3とからなる連続鋳造鋳型1を用いた連続鋳造方法である。そして、本実施形態に係る連続鋳造方法では、連続鋳造の操業条件に応じて鋳造中に多段テーパ短辺鋳型板2を鋳造方向に上下動させることにより、鋳型1内における溶融金属のメニスカス位置11に対して、多段テーパ短辺鋳型板2のテーパ変化点Pの位置(変化点位置x)を鋳造方向に相対移動させることを特徴としている。
[2. Outline of continuous casting method]
In the continuous casting method according to the present embodiment, as in FIG. 3, a pair of multi-stage tapered short side mold plates 2 having two or more different tapers in the casting direction, and the multi-stage tapered short side mold plate 2 from both sides in the width direction. This is a continuous casting method using a continuous casting mold 1 composed of a pair of long side mold plates 3 sandwiched therebetween. In the continuous casting method according to the present embodiment, the meniscus position 11 of the molten metal in the mold 1 is moved by moving the multi-taper short side mold plate 2 up and down in the casting direction during casting according to the operating conditions of continuous casting. On the other hand, the taper change point P (change point position x) of the multistage tapered short side mold plate 2 is relatively moved in the casting direction.

この操業条件は、鋳型1内で溶融金属が凝固して形成された凝固シェルの凝固均一度、及び、凝固シェルと短辺鋳型板2との間の摩擦拘束力の双方に影響を及ぼす操業条件であり、例えば、鋳造速度や、溶融金属の種類(例えば鋼種)、短辺鋳型板2の面平均抜熱流束などである。溶融金属の種類は、例えば、溶融金属の炭素濃度Cなどである。   This operating condition affects both the solidification uniformity of the solidified shell formed by solidification of the molten metal in the mold 1 and the frictional restraining force between the solidified shell and the short side mold plate 2. For example, the casting speed, the type of molten metal (for example, steel type), the surface average heat removal flux of the short side mold plate 2 and the like. The kind of molten metal is, for example, the carbon concentration C of the molten metal.

かかる操業条件に応じて、鋳造中に多段テーパ短辺鋳型板2を鋳造方向に上下動させることにより、メニスカス位置11に対して多段テーパ短辺鋳型板2のテーパ変化点Pを鋳造方向に相対移動させて、変化点位置xを操業条件に適した位置に調整することができる。例えば、鋳造速度の増加に応じて鋳造中に、短辺鋳型板2を鋳造方向上方に移動させることで、テーパ変化点Pをメニスカス位置11に近づけて、変化点位置xを小さくする。一方、鋳造速度の減少に応じて、鋳造中に短辺鋳型板2を鋳造方向下方に移動させることで、テーパ変化点Pをメニスカス位置11から遠ざけて、変化点位置xを大きくする。   In accordance with such operating conditions, the taper change point P of the multi-stage tapered short side mold plate 2 relative to the meniscus position 11 is moved relative to the casting direction by moving the multi-stage tapered short side mold plate 2 up and down in the casting direction during casting. By moving, the change point position x can be adjusted to a position suitable for the operating conditions. For example, the taper changing point P is brought closer to the meniscus position 11 and the changing point position x is reduced by moving the short side mold plate 2 upward in the casting direction during casting according to an increase in casting speed. On the other hand, the taper changing point P is moved away from the meniscus position 11 and the changing point position x is increased by moving the short side mold plate 2 downward in the casting direction during casting in accordance with the decrease in casting speed.

これにより、多段テーパ短辺鋳型板2の変化点位置xを、操業条件に応じて鋳造中に適切な位置に制御できるので、操業条件の変更前後で、相反関係にある凝固均一度と摩擦拘束力をほぼ一定値に維持することができる。従って、凝固均一度と摩擦拘束力の双方の制約を満足させつつ、連続鋳造の操業条件の変更に対応することができる。よって、鋳造速度等の操業条件が変更されても、表面割れ及び内部割れのない高品質の鋳片を安定して鋳造することができるようになる。   As a result, the changing point position x of the multi-stage tapered short side mold plate 2 can be controlled to an appropriate position during casting according to the operating conditions, so that the solidification uniformity and frictional constraints that are in a reciprocal relationship before and after the operating conditions are changed. The force can be maintained at a substantially constant value. Therefore, it is possible to cope with a change in operating conditions for continuous casting while satisfying both the solidification uniformity and the frictional restraint. Therefore, even if the operating conditions such as the casting speed are changed, a high-quality slab having no surface cracks and internal cracks can be stably cast.

このように本実施形態に係る連続鋳造方法では、操業条件に応じて鋳造中に多段テーパ短辺鋳型板2を鋳造方向に上下動させて、メニスカス位置11に対して変化点位置xを変化させることを特徴としている。   As described above, in the continuous casting method according to the present embodiment, the multi-step tapered short side mold plate 2 is moved up and down in the casting direction during casting according to the operating conditions, and the changing point position x is changed with respect to the meniscus position 11. It is characterized by that.

[3.鋳造速度と変化点位置との関係]
ここでは、本実施形態に係る連続鋳造方法の詳細説明に先立ち、まず、該連続鋳造方法の基礎となる鋳造速度と変化点位置xとの関係について詳述する。
[3. Relationship between casting speed and change point position]
Here, prior to detailed description of the continuous casting method according to the present embodiment, first, the relationship between the casting speed and the change point position x, which is the basis of the continuous casting method, will be described in detail.

特許文献5、6には、鋳型内での鋳片の凝固挙動を計算により推定する方法が記載されている。鋳型の鋳造方向の傾き、あるいは鋳造速度を任意の値に設定した際に、鋳型四周各部位における凝固シェル10の厚さが図2のように算出される。この結果に基づき、鋳型下端における凝固シェル厚の最大値Aと最小値Bの比B/A、凝固シェルと鋳型間の摩擦拘束力、ギャップ量を求めることができる。   Patent Documents 5 and 6 describe a method for estimating the solidification behavior of a slab in a mold by calculation. When the inclination of the casting direction of the mold or the casting speed is set to an arbitrary value, the thickness of the solidified shell 10 at each part around the four sides of the mold is calculated as shown in FIG. Based on this result, the ratio B / A between the maximum value A and the minimum value B of the solidified shell thickness at the lower end of the mold, the frictional restraint force between the solidified shell and the mold, and the gap amount can be obtained.

上記特許文献5、6に記載の計算方法を用い、多段テーパ短辺鋳型板を使用する連続鋳造について、鋳型下端における凝固シェル10の形状、凝固シェル10と鋳型間の摩擦拘束力を求めた。鋳型下端における凝固シェル10の形状は、計算によって図2のように導出される。鋳片コーナー近傍における凝固シェル10の長辺側に、凝固シェル厚が薄い部位が形成されることがあり、この部位の凝固シェル厚をシェル厚の最小値Bとする。そして、本実施形態では、凝固シェル厚の最大値Aと最小値Bの比B/Aを、「凝固均一度」と称する。凝固均一度が良好な鋳造を行った場合には、コーナー近傍の長辺側におけるシェル厚の薄い部位のシェル厚みBが、その他の厚い部位のシェル厚Aに近づくこととなる。   Using the calculation methods described in Patent Documents 5 and 6, the shape of the solidified shell 10 at the lower end of the mold and the frictional restraining force between the solidified shell 10 and the mold were determined for continuous casting using a multistage tapered short side mold plate. The shape of the solidified shell 10 at the lower end of the mold is derived as shown in FIG. 2 by calculation. A portion with a thin solidified shell thickness may be formed on the long side of the solidified shell 10 in the vicinity of the slab corner, and the solidified shell thickness at this portion is defined as the minimum value B of the shell thickness. In this embodiment, the ratio B / A between the maximum value A and the minimum value B of the solidified shell thickness is referred to as “solidification uniformity”. When casting with good solidification uniformity is performed, the shell thickness B of the portion with the small shell thickness on the long side near the corner approaches the shell thickness A of the other thick portion.

実際に溶鋼の連続鋳造を行い、鋳造中に鋳型内溶鋼にSを添加し、凝固後鋳片のサルファープリントによって鋳型下端位置での凝固シェルの厚み分布を評価したところ、上記計算で求めた凝固均一度と、サルファープリントから求めた鋳型下端凝固シェル厚みの最大と最小の比とが、よく一致することがわかった。従って、計算で求めた凝固均一度を指標として、好適な連続鋳造方法を見出すことが可能である。   Actually casting the molten steel, adding S to the molten steel in the mold during casting, and evaluating the thickness distribution of the solidified shell at the lower end position of the mold by sulfur printing of the slab after solidification. It was found that the uniformity was in good agreement with the maximum and minimum ratios of the mold bottom solidified shell thickness obtained from sulfur printing. Therefore, it is possible to find a suitable continuous casting method using the solidification uniformity obtained by calculation as an index.

計算で求めた凝固均一度(B/A)の値が0.7以上であれば、実鋳造においても良好な凝固均一度を確保することができる。凝固均一度(B/A)の値が0.7未満となると、凝固シェルが破断してブレークアウトする恐れがある。また、計算で求めた摩擦拘束力(各幅での基準値(1段テーパでテーパ率1.0%/mの場合の摩擦拘束力で正規化した値))が2.0以下であれば、実鋳造においても拘束の少ない良好な鋳造を行うことができる。また、凝固均一度(B/A)及び摩擦拘束力を上記好ましい範囲とすることにより、連続鋳造を行ったときにブレークアウトが起こらないことを、実際の連続鋳造の結果によって確認している。   If the value of solidification uniformity (B / A) obtained by calculation is 0.7 or more, good solidification uniformity can be ensured even in actual casting. If the solidification uniformity (B / A) value is less than 0.7, the solidified shell may break and break out. Further, if the frictional restraint force obtained by calculation (reference value at each width (value normalized by the frictional restraint force when the taper rate is 1.0% / m with a one-step taper)) is 2.0 or less Even in actual casting, good casting with less restraint can be performed. Further, by setting the solidification uniformity (B / A) and the frictional restraining force within the above preferred ranges, it has been confirmed from the results of actual continuous casting that breakout does not occur when continuous casting is performed.

以下、上述の特許文献5、6に基づく計算方法(以下「本実施形態に係る計算方法」ともいう。)により、凝固均一度と摩擦拘束力を計算し、多段テーパ短辺鋳型板の最適な形状を検討することとする。   Hereinafter, the solidification uniformity and the frictional restraint force are calculated by a calculation method based on the above-mentioned Patent Documents 5 and 6 (hereinafter also referred to as “calculation method according to the present embodiment”), and the optimum of the multistage tapered short side mold plate is calculated. We will consider the shape.

従来の多段テーパ短辺鋳型板、特に2段テーパ短辺鋳型板において、メニスカス位置から鋳型下端までの距離Lは概ね900mm程度であり、変化点位置xは300mm程度であった。そして、最高鋳造速度Vが2.5m/min程度までの鋳造速度を採用する場合、上下テーパ比率として4.0程度のテーパを採用し、凝固均一度及び摩擦拘束力の両方とも良好な鋳造を実現することができた。この点については、上記本実施形態に係る計算方法によって確認することができる。 In a conventional multi-stage tapered short side mold plate, particularly a two-step tapered short side mold plate, the distance L from the meniscus position to the lower end of the mold is about 900 mm, and the change point position x is about 300 mm. When the maximum casting speed V M to adopt casting speed of up to about 2.5 m / min, adopts 4.0 degree taper as a vertical taper ratio, good castability both coagulation uniformity and frictional binding Was able to be realized. This point can be confirmed by the calculation method according to the present embodiment.

鋳片幅Wを1100mm(狭幅)、トータルテーパ率を1.6%/m、2段テーパ短辺鋳型板の変化点位置xを300mm一定とし、鋳造速度を1.0〜3.0m/minで変化させ、2段テーパ短辺鋳型板の上下テーパ比率を変化させることによって短辺鋳型板の湾曲状況を変化させ、本実施形態に係る計算方法によって凝固均一度と摩擦拘束力を計算した。   The slab width W is 1100 mm (narrow width), the total taper rate is 1.6% / m, the changing point position x of the two-step taper short side mold plate is constant 300 mm, and the casting speed is 1.0 to 3.0 m / m. The bending state of the short side mold plate was changed by changing the min and changing the upper and lower taper ratio of the two-step taper short side mold plate, and the solidification uniformity and frictional restraint force were calculated by the calculation method according to this embodiment. .

図4に示すように、同じ上下テーパ比率であれば鋳造速度が速くなるに従って凝固均一度が改善するものの摩擦拘束力も増大する。凝固均一度と摩擦拘束力をともに良好範囲に保つためには、鋳造速度が速くなるに従って、上下テーパ比率を低くすることが好ましいことがわかる。凝固均一度と摩擦拘束力をともに良好に保持できる上下テーパ比率範囲を鋳造速度ごとに調べてみると、鋳造速度が2.0m/minでは上下テーパ比率の好適範囲が5.0以下、鋳造速度が2.5m/minでは上下テーパ比率の好適範囲が4.0以下、鋳造速度が3.0m/minでは上下テーパ比率の好適範囲が3.0以下という結果となった。   As shown in FIG. 4, the same vertical taper ratio improves the solidification uniformity as the casting speed increases, but also increases the frictional restraint force. It can be seen that in order to keep both the solidification uniformity and the frictional restraining force within a good range, it is preferable to lower the vertical taper ratio as the casting speed increases. When the upper and lower taper ratio range in which both the solidification uniformity and the frictional restraining force can be satisfactorily maintained are examined for each casting speed, the preferable range of the upper and lower taper ratio is 5.0 or less at a casting speed of 2.0 m / min. However, at 2.5 m / min, the preferred range of the vertical taper ratio was 4.0 or less, and at the casting speed of 3.0 m / min, the preferred range of the vertical taper ratio was 3.0 or less.

次に、鋳片幅W=1100mmで凝固均一度と摩擦拘束力が良好であった短辺鋳型板形状(鋳造速度が3.0m/minの範囲までで最適化した上下テーパ比率3.0の鋳型形状)を用い、鋳片幅Wを2200mmと広幅にした。鋳片幅Wを変更するに際し、トータルテーパ率を1.6%/mのまま保持したところ、鋳片幅W=2200mmで上下テーパ比率は1.7となった。   Next, the shape of the short side mold plate having a good slab width W = 1100 mm and good solidification uniformity and frictional restraint force (with an up / down taper ratio of 3.0 optimized for a casting speed of 3.0 m / min) The slab width W was as wide as 2200 mm. When the slab width W was changed, the total taper rate was maintained at 1.6% / m. As a result, the slab width W = 2200 mm and the vertical taper ratio was 1.7.

図5に示すように、鋳片幅W=2200mm(広幅)について本実施形態に係る計算方法によって凝固均一度と摩擦拘束力を計算したところ、トータルテーパ率を一定で保持したまま、鋳片幅Wを広げた場合は、鋳造速度が3.0m/minでは上下テーパ比率の好適範囲が低下して、1.7未満となり、凝固均一度も低下することがわかった。即ち、鋳片幅W=1100mmにおいて鋳造速度3.0m/minまでの高速鋳造について最適化した鋳型において、鋳片幅Wを2200mmの広幅とすると、最適範囲から外れることがわかった。   As shown in FIG. 5, when the solidification uniformity and the frictional restraint force are calculated by the calculation method according to the present embodiment for the slab width W = 2200 mm (wide), the slab width is maintained while keeping the total taper rate constant. When W was widened, it was found that when the casting speed was 3.0 m / min, the preferred range of the upper and lower taper ratio decreased to less than 1.7, and the solidification uniformity also decreased. That is, it was found that, in a mold optimized for high speed casting up to a casting speed of 3.0 m / min at a slab width W = 1100 mm, if the slab width W is 2200 mm wide, it is out of the optimum range.

そこで、鋳片幅Wが1100mmにおいて鋳造速度ごとに多段テーパの最適化を図るに際し、変化点位置xを固定して上下テーパ比率を変化させるのではなく、上下テーパ比率を4.0一定に保持した上で変化点位置xを変更してみた。トータルテーパ率を1.6%/mとし、変化点位置xを変化させて本実施形態に係る計算方法で凝固均一度と摩擦拘束力を計算した。その結果を図6に示す。摩擦拘束力の上限閾値2.0を基準とすると、鋳造速度が2.5m/min以下では変化点位置xの好適範囲が300mm以下、鋳造速度が3.0m/minでは変化点位置xの好適範囲が200mm以下となった。   Therefore, when the slab width W is 1100 mm, when optimizing the multi-step taper for each casting speed, the vertical taper ratio is kept constant at 4.0 instead of fixing the change point position x and changing the vertical taper ratio. Then, the change point position x was changed. The total taper rate was set to 1.6% / m, the change point position x was changed, and the solidification uniformity and the frictional restraint force were calculated by the calculation method according to this embodiment. The result is shown in FIG. Based on the upper limit threshold 2.0 of the frictional restraint force, the preferred range of the change point position x is 300 mm or less at a casting speed of 2.5 m / min or less, and the preferred change point position x at a casting speed of 3.0 m / min. The range became 200 mm or less.

次に、鋳片幅W=1100mmで好適であった変化点位置xを有する短辺鋳型板(鋳造速度が3.0m/minの範囲までで最適化した変化点位置が200mmの鋳型形状)を用い、鋳片幅W=2200mmの鋳造での計算を行った。トータルテーパ率は1.6%/mで保持し、トータルテーパ率一定で鋳片幅Wを広げた場合、鋳片幅W=2200mmにおいて上下テーパ比率は2.5になった。そこで、鋳片幅W=2200mmにおいて、トータルテーパ率を1.6%/mとし、前記と同様に上下テーパ比率を2.5一定に保持した上で、変化点位置xを変化させて本実施形態に係る計算方法で凝固均一度と摩擦拘束力を計算した結果を図7に示す。図7から明らかなように、変化点位置xが200mm以下であれば、鋳片幅W=2200mmであっても、鋳造速度3.0m/min以下において良好範囲を確保できることがわかった。従って、最高鋳造速度が3.0m/minの鋳造を行うとき、変位点位置が200mm以下であれば、良好に連続鋳造を行うことができる。   Next, a short side mold plate having a change point position x suitable for a slab width W = 1100 mm (a mold shape having a change point position of 200 mm optimized up to a casting speed of 3.0 m / min) is used. The calculation was performed for casting with a slab width W = 2200 mm. When the total taper rate was maintained at 1.6% / m and the slab width W was increased while the total taper rate was constant, the vertical taper ratio was 2.5 at the slab width W = 2200 mm. Therefore, in the case of the slab width W = 2200 mm, the total taper rate is 1.6% / m, the vertical taper ratio is kept constant at 2.5 as described above, and the change point position x is changed. FIG. 7 shows the result of calculating the solidification uniformity and the frictional restraint force by the calculation method according to the embodiment. As is apparent from FIG. 7, it was found that if the change point position x is 200 mm or less, a good range can be secured at a casting speed of 3.0 m / min or less even if the slab width W = 2200 mm. Accordingly, when casting at a maximum casting speed of 3.0 m / min, continuous casting can be performed satisfactorily if the displacement point position is 200 mm or less.

同様に、鋳造速度3.75m/minにおいては、変化点位置xが50mm以下であれば、鋳片幅Wが1200mm(図6)、2200mm(図7)のいずれにおいても、良好な鋳造を行うことができる。従って、最高鋳造速度が3.75m/minの鋳造を行うとき、変位点位置が50mm以下であれば、良好に連続鋳造を行うことができる。   Similarly, at a casting speed of 3.75 m / min, if the change point position x is 50 mm or less, good casting is performed regardless of whether the slab width W is 1200 mm (FIG. 6) or 2200 mm (FIG. 7). be able to. Therefore, when casting at a maximum casting speed of 3.75 m / min, if the displacement point position is 50 mm or less, continuous casting can be performed satisfactorily.

以上の通り、狭幅時の上下テーパ比率を鋳造速度ごとに変化させて最適化した鋳型を用いて広幅時に適用した場合の好適な上限テーパ比率と比較すると、変化点位置xを変化させて最適化した鋳型を用いて広幅時に適用した場合の方が、好適な上下テーパ比率を上げることができ、また変化点位置xを変化させると、狭幅時よりも広幅時の方が好適な上下テーパ比率が低下するものの、凝固均一度は逆に上昇することがわかった。   As described above, it is optimal to change the change point position x when compared with a suitable upper limit taper ratio when applied to a wide width using a mold optimized by changing the vertical taper ratio at the time of narrow width for each casting speed. When a wide mold is used, the preferred vertical taper ratio can be increased, and when the change point position x is changed, the vertical taper is more suitable at the wide width than at the narrow width. Although the ratio decreased, it was found that the solidification uniformity increased conversely.

即ち、鋳造速度が高速になったときに多段テーパ短辺鋳型板の最適テーパ形状を決定するに際し、図6および図7に示すように、鋳造速度が速くなるほど変化点位置xを上方に上げることにより、上下テーパ比率を変化させる場合よりも、鋳片幅Wが広幅のときにも良好な凝固均一度と摩擦拘束力を維持することが可能であることがわかった。   That is, when determining the optimum taper shape of the multi-stage tapered short side mold plate when the casting speed becomes high, as shown in FIGS. 6 and 7, the change point position x is raised upward as the casting speed becomes higher. Thus, it was found that better solidification uniformity and frictional restraint force can be maintained even when the slab width W is wider than when the vertical taper ratio is changed.

ちなみに、図6および図7の関係は、工業的な観点で想定される鋳片幅Wである600mm〜2500mmの範囲で、同様の関係を示すことも、計算および実機試験により、確認している。   By the way, the relationship between FIG. 6 and FIG. 7 is confirmed by calculation and actual machine tests to show the same relationship in the range of 600 mm to 2500 mm, which is a slab width W assumed from an industrial viewpoint. .

図6および図7の関係から、前記の凝固均一度が0.7以上、摩擦拘束力が2.0以下とする好適範囲になる条件を最高鋳造速度Vの変数として式に表すと、下記(9)及び(10)式のように導出される。
50≦x≦300 :V≦2.5 (9)
50≦x≦300−200(V−2.5) :2.5<V≦3.75 (10)
From the relationship of FIG. 6 and FIG. 7, the solidification uniformity is 0.7 or more, expressed in equation conditions frictional restraining force is preferably a range of 2.0 or less as a variable of maximum casting speed V M, the following It is derived as shown in equations (9) and (10).
50 ≦ x ≦ 300: V M ≦ 2.5 (9)
50 ≦ x ≦ 300−200 (V M −2.5): 2.5 <V M ≦ 3.75 (10)

xの下限を50mmとしているのは、これ以上変化点位置xが鋳型の上方にあると、多段テーパの効果が十分得られず、通常の1段テーパとほとんどかわらなくなるからである。上記(10)式から、Vが3.75m/minを超えると解がなくなる。即ち、本実施形態においてVの上限は3.75m/minである。また、xの上限を300mmとしているのは、上下テーパ比率をある一定値以上確保しようとした場合に、上部強テーパ領域が長くなると下部テーパ部のテーパ率が小さくなり、トータルテーパ率一定で鋳片幅Wを変更して狭幅鋳造した場合に、下テーパ率が極端に小さくなり逆テーパ(テーパが下にいくほど広がる)になりやすく、鋳型下部で鋳片がバルジングするトラブルが発生しやすくなるためである。 The reason why the lower limit of x is set to 50 mm is that if the change point position x is above the mold, the effect of the multi-step taper cannot be obtained sufficiently, and the normal one-step taper is hardly affected. From equation (10), V M is a solution eliminates exceeds 3.75 m / min. That is, the upper limit of V M in the present embodiment is 3.75 m / min. In addition, the upper limit of x is set to 300 mm because when the upper and lower taper ratio is to be secured above a certain value, if the upper strong taper region becomes longer, the taper rate of the lower taper portion becomes smaller and the total taper rate is constant. When casting with a narrow width by changing the half width W, the lower taper rate becomes extremely small and tends to become reverse taper (wider as the taper goes down), and the slab bulges easily under the mold. Because it becomes.

上記のような本実施形態に係る変化点位置xの制御は、最高鋳造速度Vが高くなるほどその効果が顕著である。最高鋳造速度Vが2.5m/min超の高速鋳造において特に顕著な効果を発揮することができる。 Control of the change point position x according to the present embodiment as described above, the effect is remarkable as the maximum casting speed V M is increased. Maximum casting speed V M can exhibit particularly remarkable effects in the high-speed casting of 2.5 m / min greater.

次に、上記と同じ2段テーパ短辺鋳型板(変化点位置が200mmの鋳型)を用い、鋳造速度を1.5m/min、鋳片幅Wを1100mmで固定し、トータルテーパ率を変化させて凝固均一度と摩擦拘束力を計算で求めた。鋳片厚みは240mmとした。結果を図8に示す。図8から明らかなように、トータルテーパ率を0.5%/m以上とすれば、凝固均一度を良好な値(0.7以上)に保持することができる。またトータルテーパ率を2.0%/m以下とすれば、摩擦拘束力が小さく(2.0以下)、良好に保持することができる。   Next, using the same two-step tapered short side mold plate as above (mold having a change point of 200 mm), the casting speed is fixed at 1.5 m / min and the slab width W is fixed at 1100 mm, and the total taper ratio is changed. Solidification uniformity and frictional restraint force were calculated. The slab thickness was 240 mm. The results are shown in FIG. As is apparent from FIG. 8, when the total taper rate is 0.5% / m or more, the solidification uniformity can be maintained at a good value (0.7 or more). Further, if the total taper rate is 2.0% / m or less, the frictional restraining force is small (2.0 or less) and can be held well.

本実施形態に係る多段テーパ短辺鋳型板としては、3段以上のテーパを有する鋳型板を用いてもよいが、変化点位置xを上方に設定した結果として、2段テーパ短辺鋳型板で十分にその効果を発揮することができる。   As the multi-stage tapered short side mold plate according to the present embodiment, a mold plate having a taper of three or more stages may be used, but as a result of setting the change point position x upward, The effect can be fully exhibited.

本実施形態において、鋳造する鋳片厚みは、好ましくは220mm〜300mm、より好ましくは240mm〜300mmである。鋳片厚みが300mmを超える場合は、鋳造中に鋳片幅Wを変更する連続鋳造鋳型としては過大な設備を必要とし、実質的に実現困難である。また、鋳造厚みが240mm未満であると、タンディッシュから溶融金属を注入するための浸漬ノズルの直径を小さくしなければならなくなるので、均一な溶融金属の注入が困難になる。鋳造厚みが220mm未満になるとより均一な注入が一層困難になる。   In the present embodiment, the cast slab thickness is preferably 220 mm to 300 mm, more preferably 240 mm to 300 mm. When the slab thickness exceeds 300 mm, excessive equipment is required as a continuous casting mold for changing the slab width W during casting, which is substantially difficult to realize. If the casting thickness is less than 240 mm, the diameter of the immersion nozzle for injecting the molten metal from the tundish must be reduced, so that uniform injection of the molten metal becomes difficult. When the casting thickness is less than 220 mm, more uniform injection becomes more difficult.

以上の説明によれば、鋳造速度に応じて短辺鋳型板2の最適なテーパ形状が変化するために、鋳造速度等の操業条件の変更に対応するためには、操業条件に応じて、短辺鋳型板2のテーパ変化点Pの位置(変化点位置x)を鋳造方向の最適な高さ位置に位置づければよいことが分かる。ところが、従来では、短辺鋳型板2を上下動させることにより、メニスカス位置11に対して変化点位置xを鋳造方向に移動させる短辺駆動機構を備えた連続鋳造装置は知られていない。   According to the above description, since the optimum taper shape of the short side mold plate 2 changes according to the casting speed, in order to cope with the change in the operating conditions such as the casting speed, It can be seen that the position (change point position x) of the taper change point P of the side mold plate 2 may be positioned at the optimum height position in the casting direction. However, conventionally, there is no known continuous casting apparatus provided with a short side drive mechanism that moves the changing point position x in the casting direction with respect to the meniscus position 11 by moving the short side mold plate 2 up and down.

そこで、以下に詳述するように、本実施形態に係る連続鋳造方法は、新規な短辺駆動機構を用いて、操業条件の変動に応じて鋳造中に短辺鋳型板2を鋳造方向に上下動させることにより、メニスカス位置11に対して短辺鋳型板2の変化点位置xを、変更後の操業条件に適した最適な高さ位置に位置づけて、高品質の鋳片を安定的に鋳造しようとするものである。   Therefore, as will be described in detail below, the continuous casting method according to this embodiment uses a novel short-side drive mechanism to move the short-side mold plate 2 up and down in the casting direction during casting according to changes in operating conditions. By moving, the changing point position x of the short side mold plate 2 with respect to the meniscus position 11 is positioned at the optimum height position suitable for the changed operating conditions, and high quality slabs are stably cast. It is something to try.

[4.鋳造速度に応じた連続鋳造方法]
次に、図9を参照して、本実施形態に係る鋳造速度に応じて鋳造中に短辺鋳型板2を上下動させる連続鋳造方法について詳細に説明する。図9は、鋳片幅W=1100mm、上下テーパ比率4.0、トータルテーパ率1.6%/mにおいて、変化点位置xと鋳造速度Vを変更したときの凝固均一度、摩擦拘束力の変化を示す図である。なお、この図9のデータは、上記図6のデータに対応している。
[4. Continuous casting method according to casting speed]
Next, with reference to FIG. 9, the continuous casting method of moving the short side mold plate 2 up and down during casting according to the casting speed according to the present embodiment will be described in detail. FIG. 9 shows solidification uniformity and frictional restraint force when changing the change point position x and the casting speed V at a slab width W = 1100 mm, a vertical taper ratio of 4.0, and a total taper ratio of 1.6% / m. It is a figure which shows a change. The data in FIG. 9 corresponds to the data in FIG.

図9に示すように、鋳造速度Vに応じて、摩擦拘束力及び凝固均一度は変化する。従って、鋳造速度Vは、連続鋳造における凝固シェル10(図2参照。)の摩擦拘束力及び凝固均一度の双方に影響を及ぼす操業条件であることが分かる。しかも、この鋳造速度Vは、高品質の鋳片を安定鋳造する観点からは、摩擦拘束力と凝固均一度とに相反する影響を及ぼす操業条件である。   As shown in FIG. 9, the frictional restraint force and the solidification uniformity change according to the casting speed V. Therefore, it can be seen that the casting speed V is an operating condition that affects both the frictional restraining force and the solidification uniformity of the solidified shell 10 (see FIG. 2) in continuous casting. Moreover, the casting speed V is an operating condition that has an adverse effect on the frictional restraining force and the solidification uniformity from the viewpoint of stably casting a high-quality slab.

即ち、例えば、図9の波線楕円で示すように、変化点位置xを例えば200mmに固定した鋳型で操業したときに、鋳造速度Vを増加させると、凝固均一度は増加するが、摩擦拘束力も増加してしまうので、高品質の鋳片を安定鋳造する観点からは、望ましくない。一方、同様な条件で、鋳造速度Vを低下させると、摩擦拘束力は低下するが、凝固均一度も低下してしまうので、高品質の鋳片を安定鋳造する観点からは、望ましくない。このように鋳造速度Vを変更すると、凝固均一度と摩擦拘束力とが、高品質の鋳片を安定鋳造する上で相反する関係になるため、操業中に鋳造速度Vを安易に変更することはできない。   That is, for example, as shown by the wavy ellipse in FIG. 9, when the casting speed V is increased when operating at a changing point position x fixed at, for example, 200 mm, the solidification uniformity increases, but the frictional restraining force also increases. Since it increases, it is not desirable from the viewpoint of stably casting a high-quality slab. On the other hand, if the casting speed V is reduced under the same conditions, the frictional restraining force is lowered, but the solidification uniformity is also lowered, which is not desirable from the viewpoint of stably casting a high-quality slab. When the casting speed V is changed in this way, the solidification uniformity and the frictional restraining force are in a contradictory relationship in stably casting a high quality slab, so the casting speed V can be easily changed during operation. I can't.

そこで、本件発明者が鋭意研究したところ、上記鋳造速度Vの増減にかかわらず、上記相反する関係にある摩擦拘束力及び凝固均一度を、極力一定になるように制御することができれば、過度に優れた摩擦拘束力又は凝固均一度は得られないものの、摩擦拘束力及び凝固均一度のいずれもが悪い値にならないため、凝固シェル10の割れやブレークアウト等を防止でき、高品質の鋳片を安定鋳造できることを見出した。そのためには、鋳造速度Vに応じて鋳造中に、短辺鋳型板2を鋳造方向に昇降させることで、メニスカス位置11に対してテーパ変化点Pを上下させて、変化点位置xを適切な位置に位置づければ、十分に高品質の鋳片を鋳造できることが判明した。   Therefore, when the present inventors diligently studied, if the conflicting frictional force and the solidification uniformity, which are in the opposite relations, can be controlled to be as constant as possible regardless of the increase or decrease in the casting speed V, excessively, Although excellent frictional restraint force or solidification uniformity cannot be obtained, neither frictional restraint force nor solidification uniformity becomes a bad value, so that cracking or breakout of the solidified shell 10 can be prevented, and a high quality slab. Has been found to be stable casting. For that purpose, the taper changing point P is moved up and down with respect to the meniscus position 11 by raising and lowering the short side mold plate 2 in the casting direction during casting according to the casting speed V, and the changing point position x is set appropriately. It has been found that if it is positioned, a sufficiently high quality slab can be cast.

例えば、図9に示すように、変化点位置x=200(mm)、鋳造速度V=1.5(m/min)の条件で連続鋳造を操業しているときは、摩擦拘束力は1.7、凝固均一度は0.9025である。かかる操業中に、鋳造速度Vを1.5から2.0(m/min)に増加させたときには、図9の実線楕円で示すように、変化点位置xを200から100(mm)に変更すれば、摩擦拘束力は1.7のままで低レベルを維持できるとともに、凝固均一度は、0.9025から0.905に微増して高レベルを維持できる。また、これとは逆に、上記条件での操業中に、鋳造速度Vを1.5から1.0(m/min)に減少させたときには、図9の実線楕円で示すように、変化点位置xを200から300mmに変更すれば、摩擦拘束力は1.7のままで低レベルを維持できるとともに、凝固均一度は、0.9025から0.90に微減する程度であり、依然として高レベルを維持できる。 For example, as shown in FIG. 9, when the continuous casting is operated under the conditions of the change point position x 0 = 200 (mm) and the casting speed V 0 = 1.5 (m / min), the frictional restraint force is 1.7, solidification uniformity is 0.9025. During the operation, when the casting speed V is increased from 1.5 to 2.0 (m / min), the change point position x is changed from 200 to 100 (mm) as shown by the solid line ellipse in FIG. Then, the frictional restraint force can be maintained at a low level of 1.7, and the solidification uniformity can be slightly increased from 0.9025 to 0.905 to maintain a high level. On the contrary, when the casting speed V is decreased from 1.5 to 1.0 (m / min) during operation under the above conditions, as shown by the solid oval in FIG. If the position x is changed from 200 to 300 mm, the frictional restraint force can be maintained at a low level of 1.7, and the solidification uniformity is only slightly reduced from 0.9025 to 0.90, which is still a high level. Can be maintained.

このように、鋳造速度Vを変更した場合であっても、その鋳造速度Vに応じて鋳造中に変化点位置xを増減させることで、摩擦拘束力及び凝固均一度をほぼ一定に維持できることが分かる。そこで、本実施形態に係る連続鋳造方法では、鋳造速度Vが増加したときには、鋳造中に短辺鋳型板2を鋳造方向上方に移動させて、短辺鋳型板2のテーパ変化点Pの位置を上昇させて、メニスカス位置11に近づける(つまり、変化点位置xを小さくする)。これによって、摩擦拘束力の増加を抑えつつ、凝固均一度を上げるか或いは同程度に維持することができる。一方、鋳造速度Vが減少したときには、鋳造中に短辺鋳型板2を鋳造方向下方に移動させて、短辺鋳型板2のテーパ変化点Pの位置を下降させて、メニスカス位置11から遠ざける(つまり、変化点位置xを大きくする)。これによって、摩擦拘束力を下げるか或いは同程度に維持しつつ、凝固均一度の低下を抑えることができる。   Thus, even when the casting speed V is changed, the frictional restraining force and the solidification uniformity can be maintained substantially constant by increasing or decreasing the change point position x during casting according to the casting speed V. I understand. Therefore, in the continuous casting method according to the present embodiment, when the casting speed V increases, the short side mold plate 2 is moved upward in the casting direction during casting, and the position of the taper change point P of the short side mold plate 2 is set. Raised to approach the meniscus position 11 (that is, the change point position x is reduced). As a result, the solidification uniformity can be increased or maintained at the same level while suppressing an increase in the frictional restraining force. On the other hand, when the casting speed V decreases, the short side mold plate 2 is moved downward in the casting direction during casting, and the position of the taper change point P of the short side mold plate 2 is lowered to move away from the meniscus position 11 ( That is, the change point position x is increased). Accordingly, it is possible to suppress a decrease in solidification uniformity while reducing or maintaining the frictional restraining force.

ここで、鋳造速度Vの変動に応じて鋳造中に、短辺鋳型板2のテーパ変化点Pの位置を好適な高さ位置に制御するときのxの制御量について説明する。図9の結果から分かるように、鋳造速度Vが0.5(m/min)増減に対して、変化点位置を最大で100mm減増させればよく、このときの鋳造速度Vの単位変化当たりの変化点位置xの変化量は、x/V=100/0.5=200(mm・min/m)以下となる。つまり、鋳造速度V、変化点位置xで連続鋳造している状態から、鋳造速度Vを減少させる場合は下記(1)式を満たし、鋳造速度Vを増加させる場合は下記(2)式を満たすように、短辺鋳型板2を鋳造中に鋳造方向に上下動させればよい。 Here, the control amount of x when the position of the taper change point P of the short side mold plate 2 is controlled to a suitable height position during casting according to the variation of the casting speed V will be described. As can be seen from the results shown in FIG. 9, the change point position may be increased by a maximum of 100 mm with respect to the increase or decrease of the casting speed V of 0.5 (m / min). The change amount of the change point position x is x / V = 100 / 0.5 = 200 (mm · min / m) or less. That is, when the casting speed V is decreased from the state of continuous casting at the casting speed V 0 and the change point position x 0 , the following expression (1) is satisfied, and when the casting speed V is increased, the following expression (2) is satisfied. The short side mold plate 2 may be moved up and down in the casting direction during casting so as to satisfy the above.

<x≦−200(V−V)+x :V<V (1)
>x≧−200(V−V)+x :V>V (2)
x 0 <x ≦ −200 (V−V 0 ) + x 0 : V <V 0 (1)
x 0 > x ≧ −200 (V−V 0 ) + x 0 : V> V 0 (2)

さらに、設備面を考慮した短辺鋳型板2の現実的な上下移動量としては、例えば、鋳造速度Vの0.5(m/min)増減に対して、移動量±20mmが妥当である。このときの鋳造速度Vの単位変化当たりの変化点位置xの変化量は、x/V=20/0.5=40(mm・min/m)となる。従って、鋳造速度V、変化点位置xで連続鋳造している状態から、鋳造速度Vを増加又は減少させる場合は、下記(11)式を満たすように短辺鋳型板2を鋳造中に鋳造方向に上下動させればよい。
x=−40(V−V)+x (11)
Further, as a realistic vertical movement amount of the short side mold plate 2 in consideration of equipment, for example, a movement amount ± 20 mm is appropriate for an increase / decrease of the casting speed V of 0.5 (m / min). At this time, the change amount of the change point position x per unit change of the casting speed V is x / V = 20 / 0.5 = 40 (mm · min / m). Therefore, when the casting speed V is increased or decreased from the state of continuous casting at the casting speed V 0 and the change point position x 0 , the short side mold plate 2 is being cast so as to satisfy the following expression (11). It may be moved up and down in the casting direction.
x = −40 (V−V 0 ) + x 0 (11)

例えば、図9に示したように、変化点位置x=200(mm)、鋳造速度V=1.5(m/min)で連続鋳造している状態から、鋳造速度をVからVに増加又は減少させる場合は、上記(1)及び(2)式にx=200、V=1.5を代入すると、それぞれ以下の(12)及び(13)式が得られる。ただし、上述した理由から、以下の(14)式のように、変化点位置xの最大値は300mm、最小値50mmとすることが好ましい。 For example, as shown in FIG. 9, the casting speed is changed from V 0 to V from the state of continuous casting at the change point position x 0 = 200 (mm) and the casting speed V 0 = 1.5 (m / min). In the case of increasing or decreasing, substituting x 0 = 200 and V 0 = 1.5 into the above equations (1) and (2), the following equations (12) and (13) are obtained, respectively. However, for the reason described above, it is preferable that the maximum value of the change point position x is 300 mm and the minimum value is 50 mm as in the following equation (14).

200<x≦500−200V :V<1.5 (12)
200>x≧500−200V :V>1.5 (13)
50≦x≦300 (14)
200 <x ≦ 500-200V: V <1.5 (12)
200> x ≧ 500−200 V: V> 1.5 (13)
50 ≦ x ≦ 300 (14)

図10は、上記(12)、(13)及び(14)式に従った変化点位置xと鋳造速度Vの関係を示す図である。図10に示すように、変化点位置x=200(mm)、鋳造速度V=1.5(m/min)で連続鋳造している状態から、鋳造速度Vを増加又は減少させる場合には、図10の斜線範囲内に含まれるように変化点位置xを減少又は増加させる。これにより、変化点位置xを変化させない場合よりも、摩擦拘束力、凝固均一度の変動幅を抑えることができる。特に、変更後の鋳造速度Vに応じて鋳造中に、変化点位置xを、図10の直線(x=500−200V)上若しくはその近傍の値に変更することで、鋳造速度V変更前と比べてほぼ一定の摩擦拘束力、凝固均一度を得ることが可能になる。なお、図10においても、変化点位置xの最大値及び最小値に関し、上述した理由から、(14)式に従い、V<1.0の範囲では、変化点位置xの最大値を300mmとし、V>2.25の範囲では変化点位置xの最小値を50mmとしている。 FIG. 10 is a diagram showing the relationship between the change point position x and the casting speed V according to the above equations (12), (13) and (14). As shown in FIG. 10, when the casting speed V is increased or decreased from the state of continuous casting at the change point position x 0 = 200 (mm) and the casting speed V 0 = 1.5 (m / min). Decreases or increases the change point position x so as to fall within the hatched area in FIG. As a result, the fluctuation range of the frictional restraining force and the solidification uniformity can be suppressed as compared with the case where the change point position x is not changed. In particular, during the casting according to the changed casting speed V, the changing point position x is changed to a value on or near the straight line (x = 500-200 V) in FIG. In comparison, it is possible to obtain a substantially constant frictional restraint force and solidification uniformity. Also in FIG. 10, regarding the maximum value and the minimum value of the change point position x, according to the equation (14), the maximum value of the change point position x is set to 300 mm in the range of V <1.0 according to the equation (14). In the range of V> 2.25, the minimum value of the change point position x is 50 mm.

また、図10には、上記(11)式にx=200、V=1.5を代入して得られた下記(15)式の直線も示してある。この(15)式の表す直線に従って、鋳造速度Vに応じて鋳造中に変化点位置xを上下させることで、設備的にも無理することなく、鋳造速度V変更の前後で摩擦拘束力及び凝固均一度を好適な範囲内に維持できる。
x=260−40V (15)
FIG. 10 also shows a straight line of the following formula (15) obtained by substituting x 0 = 200 and V 0 = 1.5 into the formula (11). By changing the position x of the change point during casting according to the casting speed V in accordance with the straight line represented by the equation (15), the frictional restraining force and the solidification before and after the casting speed V is changed without overdoing the equipment. Uniformity can be maintained within a suitable range.
x = 260-40V (15)

また、上記のように鋳造速度Vに応じて短辺鋳型板2を鋳造方向に移動(即ち、上下移動)させるタイミングは、次の通りである。本実施形態では、鋳造速度Vに応じた短辺鋳型板2の上下移動は、鋳型1内への溶鋼の注入中断中でも、再注入後に鋳造速度Vが定常速度になったときでも実行可能である。   In addition, the timing for moving the short-side mold plate 2 in the casting direction (that is, moving up and down) according to the casting speed V as described above is as follows. In the present embodiment, the vertical movement of the short side mold plate 2 according to the casting speed V can be executed even when the injection of the molten steel into the mold 1 is interrupted or when the casting speed V becomes a steady speed after reinjection. .

例えば、まず、短辺鋳型板2と長辺鋳型板3を組み立てて鋳型1を設置した後、当該鋳型1内に溶鋼を注入開始する前に、該当チャージで予定されている平均鋳造速度に適した最適位置に短辺鋳型板2を上下移動させる。次いで、鋳型1内への溶鋼の注入開始後に、鋳型1を用いて実際に鋳片を鋳造する鋳造期間において、鋳型1を用いた実際の鋳造速度Vに応じて、短辺鋳型板2を上下移動させて、テーパ変化点Pの高さ位置(変化点位置x)を微調整する。これにより、鋳造速度Vが定常速度になってから、鋳造速度Vの変動に追従して、変化点位置xをリアルタイムで適正値に変更できる。従って、鋳造速度Vの変動に柔軟に対応できるので、実際の鋳造期間において、意図した或いは不測の鋳造速度Vの変動が生じても、変化点位置xを最適化して、高品質の鋳片を鋳造できる。   For example, first, after assembling the short side mold plate 2 and the long side mold plate 3 and installing the mold 1, before starting to inject molten steel into the mold 1, it is suitable for the average casting speed scheduled for the corresponding charge. The short-side mold plate 2 is moved up and down to the optimum position. Next, after injecting molten steel into the mold 1, the short-side mold plate 2 is moved up and down according to the actual casting speed V using the mold 1 during the casting period in which the slab is actually cast using the mold 1. It is moved to finely adjust the height position (change point position x) of the taper change point P. Thereby, after the casting speed V becomes a steady speed, the change point position x can be changed to an appropriate value in real time following the fluctuation of the casting speed V. Therefore, since the casting speed V can be flexibly dealt with, even if an intended or unexpected fluctuation in the casting speed V occurs in the actual casting period, the change point position x is optimized to produce a high quality slab. Can be cast.

以上のように、鋳造速度Vを変更した場合であっても、その鋳造速度Vに応じて鋳造中に変化点位置xを増減させることで、摩擦拘束力及び凝固均一度をほぼ一定に維持することができる。従って、鋳造速度Vの変動にかかわらず、摩擦拘束力及び凝固均一度の双方を適正範囲内に維持することができるので、鋳造中に凝固シェル100の割れやブレークアウトを発生させることなく、高品質の鋳片を安定して鋳造できる。   As described above, even when the casting speed V is changed, the frictional restraining force and the solidification uniformity are maintained substantially constant by increasing or decreasing the change point position x during casting according to the casting speed V. be able to. Accordingly, both the frictional restraining force and the solidification uniformity can be maintained within an appropriate range regardless of the fluctuation of the casting speed V, so that the solidification shell 100 is not cracked or broken out during casting. High quality slabs can be cast stably.

なお、上記図9及び図10を用いた説明では、鋳片幅W1100mm、上下テーパ比率4.0、トータルテーパ率1.6%/mの例を挙げて説明したが、変化点位置xと摩擦拘束力や凝固均一度との関係は、他の条件(例えば、鋳片幅2200mm、上下テーパ比率2.5で例示可能)でもほぼ同一である。   In the above description using FIG. 9 and FIG. 10, the example of the slab width W 1100 mm, the vertical taper ratio 4.0, and the total taper ratio 1.6% / m has been described. The relationship between the restraining force and the solidification uniformity is almost the same even under other conditions (for example, the slab width is 2200 mm and the vertical taper ratio is 2.5).

[5.溶融金属の炭素濃度に応じた連続鋳造方法]
次に、図11を参照して、本実施形態に係る溶融金属の炭素濃度に応じて鋳造中に短辺鋳型板2を上下動させる連続鋳造方法について詳細に説明する。図11は、鋳片幅W1100mm、上下テーパ比率4.0、トータルテーパ率1.6%/mにおいて、変化点位置xと、溶融金属の炭素濃度Cを変更したときの凝固均一度、摩擦拘束力の変化を示す図である。
[5. Continuous casting method according to carbon concentration of molten metal]
Next, a continuous casting method in which the short side mold plate 2 is moved up and down during casting according to the carbon concentration of the molten metal according to the present embodiment will be described in detail with reference to FIG. FIG. 11 shows the solidification uniformity and frictional constraint when the change point position x and the carbon concentration C of the molten metal are changed at a slab width W of 1100 mm, a vertical taper ratio of 4.0, and a total taper ratio of 1.6% / m. It is a figure which shows the change of force.

図11に示すように、鋳造される溶鋼の種別、例えば、溶鋼中の炭素濃度Cに応じて、摩擦拘束力及び凝固均一度は変化する。従って、炭素濃度Cは、連続鋳造における凝固シェル10(図2参照)の摩擦拘束力及び凝固均一度の双方に影響を及ぼす操業条件であることが分かる。しかも、上記鋳造速度Vと同様に、この炭素濃度Cは、高品質の鋳片を安定鋳造する観点からは、摩擦拘束力と凝固均一度に相反する影響を及ぼす操業条件である。   As shown in FIG. 11, the frictional restraint force and the solidification uniformity vary depending on the type of molten steel to be cast, for example, the carbon concentration C in the molten steel. Therefore, it can be seen that the carbon concentration C is an operating condition that affects both the frictional restraining force and the solidification uniformity of the solidified shell 10 (see FIG. 2) in continuous casting. Moreover, like the casting speed V, the carbon concentration C is an operating condition that has an adverse effect on the frictional restraining force and the solidification uniformity from the viewpoint of stably casting a high-quality slab.

即ち、例えば、図11の波線楕円で示すように、変化点位置xを例えば200mmに固定した鋳型で操業したときに、炭素濃度Cが0.12(質量%)であるときには、摩擦拘束力及び凝固均一度は最低値となり、炭素濃度Cが0.05及び0.2で摩擦拘束力及び凝固均一度が最大値となる。   That is, for example, as shown by a wavy ellipse in FIG. 11, when the carbon concentration C is 0.12 (mass%) when operating with a mold in which the change point position x is fixed to 200 mm, for example, the frictional restraint force and The solidification uniformity is the lowest, and the frictional restraining force and the solidification uniformity are the maximum when the carbon concentration C is 0.05 and 0.2.

図12に、変化点位置xを200mmとしたときの凝固均一度と炭素濃度Cの関係を示す。図12に示すように、炭素濃度Cが0.12(質量%)近傍で、凝固均一度が最小値(例えば0.8925)となる。これは、炭素濃度Cが0.12のときに、溶鋼のδ→γ変態による収縮量が最も多いからと考えられる。また、炭素濃度Cが0.12から離れるにつれて凝固均一度は徐々に増加し、炭素濃度Cが0.05以下又は0.2以上となると、摩擦拘束力及び凝固均一度が最大値(例えば0.9025)でほぼ一定となる。   FIG. 12 shows the relationship between the solidification uniformity and the carbon concentration C when the change point position x is 200 mm. As shown in FIG. 12, when the carbon concentration C is near 0.12 (mass%), the solidification uniformity becomes the minimum value (for example, 0.8925). This is presumably because when the carbon concentration C is 0.12, the amount of shrinkage due to the δ → γ transformation of the molten steel is the largest. Further, the solidification uniformity gradually increases as the carbon concentration C moves away from 0.12, and when the carbon concentration C becomes 0.05 or less or 0.2 or more, the frictional restraining force and the solidification uniformity are maximum values (for example, 0). .9025), it becomes almost constant.

以上のように、溶鋼中の炭素濃度Cに応じて、摩擦拘束力及び凝固均一度はともに増減する。このため炭素濃度Cを変更すると、凝固均一度と摩擦拘束力とが、高品質の鋳片を安定鋳造する上で相反する関係になるため、操業中に炭素濃度Cを安易に変更することはできない。   As described above, both the frictional restraining force and the solidification uniformity increase or decrease according to the carbon concentration C in the molten steel. For this reason, if the carbon concentration C is changed, the solidification uniformity and the frictional restraining force are in a contradictory relationship in stably casting a high-quality slab, so it is easy to change the carbon concentration C during operation. Can not.

そこで、本実施形態では、上記鋳造速度Vと同様に、鋳造される溶鋼の炭素濃度Cに応じて鋳造中に、短辺鋳型板2を鋳造方向に上下動させることで、メニスカス位置11に対してテーパ変化点Pを上下させて、変化点位置xを適切な位置に位置づける。これにより、上記相反する関係にある摩擦拘束力及び凝固均一度の双方を、極力一定になるように制御することができるので、十分に高品質の鋳片を鋳造できることが判明した。   Therefore, in this embodiment, similarly to the casting speed V, the short-side mold plate 2 is moved up and down in the casting direction during casting according to the carbon concentration C of the molten steel to be cast, so that the meniscus position 11 is moved. The taper change point P is moved up and down to position the change point position x at an appropriate position. As a result, it has been found that both the frictional restraining force and the solidification uniformity, which are in the opposite relations, can be controlled to be as constant as possible, so that a sufficiently high quality slab can be cast.

例えば、図11に示すように、変化点位置x=200(mm)で、炭素濃度C=0.05(質量%)の溶鋼を連続鋳造中に、供給される溶鋼の炭素濃度Cが0.05から0.12に増加する場合、図11の実線楕円で示すように、変化点位置xを200から300(mm)に変更すれば、変更前後で摩擦拘束力及び凝固均一度をほぼ同一レベルに維持することができる。また、これとは逆に、変化点位置x=300(mm)で、炭素濃度C=0.12(質量%)の溶鋼を連続鋳造中に、供給される溶鋼の炭素濃度Cが0.12から0.05に減少する場合、又は、Cが0.12から0.2に増加する場合、図11の実線楕円で示すように、変化点位置xを300から200(mm)に変更すれば、変更前後で摩擦拘束力及び凝固均一度をほぼ同一レベルに維持することができる。 For example, as shown in FIG. 11, the carbon concentration C of the molten steel supplied during continuous casting of molten steel having a carbon concentration C 0 = 0.05 (mass%) at the change point position x 0 = 200 (mm). When increasing from 0.05 to 0.12, if the change point position x is changed from 200 to 300 (mm) as shown by a solid ellipse in FIG. 11, the frictional restraint force and the solidification uniformity are almost the same before and after the change. Can be maintained at the same level. On the other hand, the carbon concentration C of the supplied molten steel is 0 during continuous casting of molten steel with a carbon concentration C 0 = 0.12 (mass%) at the change point position x 0 = 300 (mm). When the value decreases from .12 to 0.05 or when C increases from 0.12 to 0.2, the change point position x is changed from 300 to 200 (mm) as shown by the solid line ellipse in FIG. By doing so, the frictional restraining force and the solidification uniformity can be maintained at substantially the same level before and after the change.

このように、炭素濃度Cを変更した場合であっても、その炭素濃度Cに応じて鋳造中に変化点位置xを増減させることで、摩擦拘束力及び凝固均一度をほぼ一定に維持することができる。このために、本実施形態に係る連続鋳造方法では、炭素濃度Cの増減に応じて鋳造中に、短辺鋳型板2を鋳造方向に上下動させることで、短辺鋳型板2のテーパ変化点Pを上昇又は下降させて、メニスカス位置11に近づける又は遠ざける(つまり、変化点位置xを小さく又は大きくする)。   As described above, even when the carbon concentration C is changed, the frictional restraint force and the solidification uniformity are maintained substantially constant by increasing or decreasing the change point position x during casting according to the carbon concentration C. Can do. For this reason, in the continuous casting method according to the present embodiment, the taper changing point of the short side mold plate 2 is moved by moving the short side mold plate 2 up and down in the casting direction during casting according to the increase or decrease of the carbon concentration C. P is raised or lowered to approach or move away from the meniscus position 11 (that is, the change point position x is decreased or increased).

具体的には、例えば、炭素濃度Cが0.05質量%超〜0.2質量%未満の範囲内であるときに、C=0.12をピークとして、鋳造中に短辺鋳型板2を鋳造方向下方に移動させることで、短辺鋳型板2のテーパ変化点Pを下方に移動させて、変化点位置xを低い位置に位置づける。このとき、炭素濃度Cが0.12質量%の時に、短辺鋳型板2のテーパ変化点Pを最大で100mm下方に移動させる(x=300mm)。また、炭素濃度Cが0.09、0.15質量%の時に、短辺鋳型板2のテーパ変化点Pを例えば50mm程度下方に移動させる(x=250mm)。一方、炭素濃度Cが0.05質量%以下、又は、0.2質量%以上であるときには、短辺鋳型板2のテーパ変化点Pを下方に移動させず、高い位置に維持する(x=200mm)。   Specifically, for example, when the carbon concentration C is in the range of more than 0.05% by mass to less than 0.2% by mass, the short side template plate 2 is formed during casting with C = 0.12 as a peak. By moving downward in the casting direction, the taper change point P of the short side mold plate 2 is moved downward, and the change point position x is positioned at a low position. At this time, when the carbon concentration C is 0.12 mass%, the taper changing point P of the short side mold plate 2 is moved downward by 100 mm at the maximum (x = 300 mm). Further, when the carbon concentration C is 0.09 and 0.15 mass%, the taper changing point P of the short side mold plate 2 is moved downward by, for example, about 50 mm (x = 250 mm). On the other hand, when the carbon concentration C is 0.05% by mass or less, or 0.2% by mass or more, the taper change point P of the short side mold plate 2 is not moved downward and is maintained at a high position (x = 200 mm).

また、上記のように鋼種(例えば溶鋼の炭素濃度C)に応じて短辺鋳型板2を鋳造方向に移動(即ち、上下移動)させるタイミングは、次の通りである。一般に、鋳型1内へ溶鋼を注入しながら当該鋳型1を用いて実際に鋳片を鋳造する鋳造期間に、注入される鋼種が突然変更されることはない。そこで本実施形態では、鋼種に応じた短辺鋳型板2の上下移動は、鋳型1内への溶鋼の注入開始前、又は、注入中断中に実行される。   In addition, as described above, the timing for moving the short-side mold plate 2 in the casting direction (that is, moving up and down) according to the steel type (for example, the carbon concentration C of the molten steel) is as follows. In general, the steel type to be injected is not suddenly changed during the casting period in which molten steel is injected into the mold 1 and the slab is actually cast using the mold 1. Therefore, in this embodiment, the vertical movement of the short side mold plate 2 according to the steel type is executed before the start of pouring of molten steel into the mold 1 or during the interruption of the pouring.

例えば、まず、短辺鋳型板2と長辺鋳型板3を組み立てて鋳型1を設置した後、当該鋳型1内に溶鋼を注入開始する前に、該当チャージの鋼種に適した最適位置に短辺鋳型板2を上下移動させる。次いで、短辺鋳型板2を当該最適位置に固定した状態で、該当チャージを連続鋳造する。その後、次のチャージを連続鋳造するに際し、当該次のチャージの鋼種が前回の鋼種から変更される場合、一旦、鋳型1内への溶鋼の注入を中断し、成分の異なる溶鋼が混合しないようにするための処置を実施する。この注入中断時に、次のチャージの鋼種に適した最適位置に短辺鋳型板2を上下移動させる。その後、変更後の鋼種の溶鋼を鋳型1に再注入開始して、当該次のチャージを連続鋳造する。   For example, first, after assembling the short-side mold plate 2 and the long-side mold plate 3 and installing the mold 1, before injecting molten steel into the mold 1, the short-side is positioned at the optimum position suitable for the steel type of the charge. The mold plate 2 is moved up and down. Next, the corresponding charge is continuously cast in a state where the short side mold plate 2 is fixed at the optimum position. After that, when continuously casting the next charge, when the steel type of the next charge is changed from the previous steel type, the injection of the molten steel into the mold 1 is temporarily interrupted so that molten steels having different components are not mixed. To take action. When this injection is interrupted, the short side mold plate 2 is moved up and down to the optimum position suitable for the steel type of the next charge. Thereafter, the molten steel of the changed steel type is started to be reinjected into the mold 1, and the next charge is continuously cast.

このように鋼種に応じた短辺鋳型板2の上下移動は、上記「鋳造中」のうち溶鋼を鋳型1内に注入しない期間(即ち、実際の鋳造期間以外の期間)に実行される。なお、以上のように溶鋼の鋼種を変更する場合、溶鋼の注入中断中であっても、再注入後に鋳造速度Vが定常速度になった後でも、上述した鋳造速度Vに応じた短辺鋳型板2の上下移動を実行することは可能である。   Thus, the vertical movement of the short side mold plate 2 according to the steel type is executed during a period during which the molten steel is not poured into the mold 1 during the “casting” period (that is, a period other than the actual casting period). When the steel type of the molten steel is changed as described above, the short side mold corresponding to the above-described casting speed V even when the molten steel injection is interrupted or after the casting speed V becomes a steady speed after the reinjection. It is possible to carry out a vertical movement of the plate 2.

以上のように、溶鋼の炭素濃度Cが変化する場合であっても、その炭素濃度Cに応じて鋳造中に、短辺鋳型板2のテーパ変化点Pを上下動、即ち、変化点位置xを増減させることで、摩擦拘束力及び凝固均一度をほぼ一定に維持することができる。従って、炭素濃度Cの変動にかかわらず、摩擦拘束力及び凝固均一度の双方を適正範囲内に維持することができるので、鋳造中に凝固シェル100の割れやブレークアウトを発生させることなく、高品質の鋳片を安定して鋳造できる。   As described above, even when the carbon concentration C of the molten steel changes, the taper change point P of the short side mold plate 2 moves up and down during casting according to the carbon concentration C, that is, the change point position x. By increasing / decreasing the frictional force, the frictional restraining force and the solidification uniformity can be maintained substantially constant. Accordingly, both the frictional restraining force and the solidification uniformity can be maintained within an appropriate range regardless of the variation in the carbon concentration C, so that the cracks and breakout of the solidified shell 100 are not generated during casting. High quality slabs can be cast stably.

[6.短辺鋳型板の面平均抜熱流束に応じた連続鋳造方法]
次に、図13を参照して、本実施形態に係る短辺鋳型板2の面平均抜熱流束に応じて鋳造中に短辺鋳型板2を上下動させる連続鋳造方法について詳細に説明する。図13は、鋳片幅W=1100mm、上下テーパ比率4.0、トータルテーパ率1.6%/m、鋳造速度V=1.5m/minにおいて、変化点位置xと面平均抜熱流束qを変更したときの凝固均一度、摩擦拘束力の変化を示す図である。
[6. Continuous casting method according to the average surface heat removal flux of the short side mold plate]
Next, with reference to FIG. 13, the continuous casting method of moving the short side mold plate 2 up and down during casting according to the surface average heat extraction flux of the short side mold plate 2 according to this embodiment will be described in detail. FIG. 13 shows the change point position x and the surface average heat flux q at the slab width W = 1100 mm, the vertical taper ratio 4.0, the total taper rate 1.6% / m, and the casting speed V = 1.5 m / min. It is a figure which shows the change of coagulation | solidification uniformity and frictional restraint force when changing.

なお、短辺鋳型板2の面平均抜熱流束qは、連続鋳造中に鋳型1内の溶融金属及び凝固シェル10から、短辺鋳型板2を通じて、鋳型1を冷却する冷却水に抜熱される熱量を、短辺鋳型板2のメニスカス位置から鋳型1下端までの面積Aで除した値を意味する。当該面平均抜熱流束qは、冷却水が鋳型1に入る時の温度Tinと出る時の温度Toutの差と、該冷却水の流量Qwから、下記の式(16)で計算することができる。
q=ρ×(Tout−Tin)×Qw×Cp/A (16)
q:短辺鋳型板の面平均抜熱流束(W/m
ρ:冷却水の密度(kg/m
Tin:冷却水の入側温度(K)
Tout:冷却水の出側温度(K)
Qw:冷却水流量(鋳型短辺)(m/s)
Cp:冷却水の比熱(J/kg/K)
A:短辺鋳型板のメニスカス位置から鋳型下端までの面積(m
A=鋳片厚みD(m)×メニスカス位置から鋳型下端までの距離L(m)
なお、鋳片厚みDは短辺鋳型板2の幅に相当する。
The surface average heat removal flux q of the short side mold plate 2 is extracted from the molten metal in the mold 1 and the solidified shell 10 to the cooling water for cooling the mold 1 through the short side mold plate 2 during continuous casting. It means a value obtained by dividing the amount of heat by the area A from the meniscus position of the short side mold plate 2 to the lower end of the mold 1. The surface average heat removal flux q can be calculated by the following equation (16) from the difference between the temperature Tin when the cooling water enters the mold 1 and the temperature Tout when it exits and the flow rate Qw of the cooling water. .
q = ρ × (Tout−Tin) × Qw × Cp / A (16)
q: Surface average heat extraction flux of short side mold plate (W / m 2 )
ρ: density of cooling water (kg / m 3 )
Tin: Cooling water inlet temperature (K)
Tout: Cooling water outlet temperature (K)
Qw: Cooling water flow rate (short side of mold) (m 3 / s)
Cp: Specific heat of cooling water (J / kg / K)
A: Area from the meniscus position of the short side mold plate to the lower end of the mold (m 2 )
A = slab thickness D (m) × distance L (m) from the meniscus position to the lower end of the mold
The slab thickness D corresponds to the width of the short side mold plate 2.

図13に示すように、短辺鋳型板2の面平均抜熱流束qに応じて、摩擦拘束力及び凝固均一度は変化する。従って、面平均抜熱流束qは、連続鋳造における凝固シェル10(図2参照。)の摩擦拘束力及び凝固均一度の双方に影響を及ぼす操業条件であることが分かる。しかも、この面平均抜熱流束qは、高品質の鋳片を安定鋳造する観点からは、摩擦拘束力と凝固均一度とに相反する影響を及ぼす操業条件である。   As shown in FIG. 13, the frictional restraining force and the solidification uniformity change according to the surface average heat removal flux q of the short side mold plate 2. Therefore, it can be seen that the surface average heat removal flux q is an operating condition that affects both the frictional restraining force and the solidification uniformity of the solidified shell 10 (see FIG. 2) in continuous casting. Moreover, the surface average heat extraction flux q is an operating condition that has an adverse effect on the frictional restraining force and the solidification uniformity from the viewpoint of stably casting a high-quality slab.

即ち、例えば、図13の波線楕円で示すように、変化点位置xを例えば200mmに固定した鋳型で操業したときに、面平均抜熱流束qが増加すると、凝固均一度は増加するが、摩擦拘束力も増加してしまうので、高品質の鋳片を安定鋳造する観点からは、望ましくない。一方、同様な条件で、面平均抜熱流束qが低下すると、摩擦拘束力は低下するが、凝固均一度も低下してしまうので、高品質の鋳片を安定鋳造する観点からは、望ましくない。このように面平均抜熱流束qが変化すると、凝固均一度と摩擦拘束力とが、高品質の鋳片を安定鋳造する上で相反する関係になるため、操業中に面平均抜熱流束qの変化に応じて対策を講じることが好ましい。   That is, for example, as shown by the wavy ellipse in FIG. 13, when the surface average heat removal flux q increases when operating with a mold in which the change point position x is fixed at, for example, 200 mm, the solidification uniformity increases, but the friction Since the binding force also increases, it is not desirable from the viewpoint of stably casting a high-quality slab. On the other hand, if the surface average heat removal flux q decreases under the same conditions, the frictional restraining force decreases, but the solidification uniformity also decreases, which is not desirable from the viewpoint of stably casting a high-quality slab. . When the surface average heat extraction flux q changes in this way, the solidification uniformity and the frictional restraining force are in a contradictory relationship in stably casting a high-quality slab, so the surface average heat extraction flux q during operation. It is preferable to take measures according to changes in

そこで、本件発明者が鋭意研究したところ、上記面平均抜熱流束qの増減にかかわらず、上記相反する関係にある摩擦拘束力及び凝固均一度を、極力一定になるように制御することができれば、過度に優れた摩擦拘束力又は凝固均一度は得られないものの、摩擦拘束力及び凝固均一度のいずれもが悪い値にならないため、凝固シェル10の割れやブレークアウト等を防止でき、高品質の鋳片を安定鋳造できることを見出した。そのためには、面平均抜熱流束qに応じて鋳造中に、短辺鋳型板2を鋳造方向に昇降させることで、メニスカス位置11に対してテーパ変化点Pを上下させて、変化点位置xを適切な位置に位置づければ、十分に高品質の鋳片を鋳造できることが判明した。   Therefore, when the present inventors diligently studied, it is possible to control the frictional restraining force and the solidification uniformity, which are in the opposite relations, to be as constant as possible regardless of the increase or decrease of the surface average heat removal flux q. Although the frictional restraining force or solidification uniformity that is excessively excellent cannot be obtained, neither the frictional restraining force nor the solidification uniformity is a bad value, so that the solidified shell 10 can be prevented from cracking, breakout, etc. It was found that the slab can be stably cast. For this purpose, the taper changing point P is moved up and down with respect to the meniscus position 11 by raising and lowering the short side mold plate 2 in the casting direction during casting according to the surface average heat removal flux q, and the changing point position x It has been found that a sufficiently high quality slab can be cast if is positioned at an appropriate position.

例えば、図13に示すように、変化点位置x=200(mm)、面平均抜熱流束qが基準値q(例えば、q=1.2×10(W/m))の条件で連続鋳造を操業しているときは、摩擦拘束力は1.7、凝固均一度は0.9025である。ここで、メニスカス位置から鋳型1下端までの距離L=0.8m、鋳造速度V=1.5m/minのときは、面平均抜熱流束qの基準値qは、下記(17)式により、概略次の値になる。
=1.0×10×(0.8/1.5)−0.344=1.2×10(W/m
For example, as shown in FIG. 13, the change point position x 0 = 200 (mm), and the surface average heat removal flux q is the reference value q 0 (for example, q 0 = 1.2 × 10 6 (W / m 2 )). When the continuous casting is operated under these conditions, the frictional restraining force is 1.7 and the solidification uniformity is 0.9025. Here, when the distance L from the meniscus position to the lower end of the mold 1 is 0.8 m and the casting speed V is 1.5 m / min, the reference value q 0 of the surface average heat removal flux q is expressed by the following equation (17). The approximate value is as follows.
q 0 = 1.0 × 10 6 × (0.8 / 1.5) −0.344 = 1.2 × 10 6 (W / m 2 )

かかる操業中に、面平均抜熱流束qがqからqに増加したときには(例えば、q=1.3×10(W/m)、q/q=1.1)、図13の実線楕円で示すように、変化点位置xを200から100(mm)に変更すれば、摩擦拘束力は1.7のままで低レベルを維持できるとともに、凝固均一度は、0.9025から0.905に微増して高レベルを維持できる。また、これとは逆に、上記条件での操業中に、面平均抜熱流束qがqからqに減少したときには(例えば、q=1.0×10(W/m)、q/q=0.87)、図13の実線楕円で示すように、変化点位置xを200から300mmに変更すれば、摩擦拘束力は1.7のままで低レベルを維持できるとともに、凝固均一度は、0.9025から0.90に微減する程度であり、依然として高レベルを維持できる。 During the operation, when the surface average heat removal flux q increases from q 0 to q 1 (for example, q 1 = 1.3 × 10 6 (W / m 2 ), q 1 / q 0 = 1.1). As shown by the solid ellipse in FIG. 13, if the change point position x is changed from 200 to 100 (mm), the frictional restraint force can be maintained at a low level of 1.7, and the solidification uniformity is 0. Slightly increased from 9025 to 0.905 to maintain a high level. Conversely, when the surface average heat removal flux q decreases from q 0 to q 2 during operation under the above conditions (for example, q 2 = 1.0 × 10 6 (W / m 2 )). , Q 2 / q 0 = 0.87), and as shown by the solid line ellipse in FIG. 13, if the change point position x is changed from 200 to 300 mm, the frictional restraint force remains 1.7 and can be maintained at a low level. At the same time, the solidification uniformity is only slightly reduced from 0.9025 to 0.90, and can still be maintained at a high level.

このように、短辺鋳型板2の面平均抜熱流束qが変化した場合であっても、その面平均抜熱流束qに応じて鋳造中に変化点位置xを増減させることで、摩擦拘束力及び凝固均一度をほぼ一定に維持できることが分かる。そこで、本実施形態に係る連続鋳造方法では、面平均抜熱流束qが増加したときには、鋳造中に短辺鋳型板2を鋳造方向上方に移動させて、短辺鋳型板2のテーパ変化点Pの位置を上昇させ、メニスカス位置11に近づける(つまり、変化点位置xを小さくする)。これによって、摩擦拘束力の増加を抑えつつ、凝固均一度を上げるか或いは同程度に維持することができる。一方、面平均抜熱流束qが減少したときには、鋳造中に短辺鋳型板2を鋳造方向下方に移動させて、短辺鋳型板2のテーパ変化点Pの位置を下降させ、メニスカス位置11から遠ざける(つまり、変化点位置xを大きくする)。これによって、摩擦拘束力を下げるか或いは同程度に維持しつつ、凝固均一度の低下を抑えることができる。   Thus, even when the surface average heat removal flux q of the short side mold plate 2 changes, the frictional restraint can be achieved by increasing or decreasing the change point position x during casting according to the surface average heat removal flux q. It can be seen that the force and solidification uniformity can be maintained almost constant. Therefore, in the continuous casting method according to the present embodiment, when the surface average heat removal flux q increases, the short side mold plate 2 is moved upward in the casting direction during casting, and the taper change point P of the short side mold plate 2 is reached. Is raised and brought closer to the meniscus position 11 (that is, the change point position x is made smaller). As a result, the solidification uniformity can be increased or maintained at the same level while suppressing an increase in the frictional restraining force. On the other hand, when the surface average heat removal flux q decreases, the short side mold plate 2 is moved downward in the casting direction during casting, and the position of the taper change point P of the short side mold plate 2 is lowered to move from the meniscus position 11. Move away (that is, increase the change point position x). Accordingly, it is possible to suppress a decrease in solidification uniformity while reducing or maintaining the frictional restraining force.

ここで、短辺鋳型板2の面平均抜熱流束qの変動に応じて、鋳造中に短辺鋳型板2のテーパ変化点Pの位置を好適な高さ位置に制御するときのxの制御量について説明する。図13の結果から分かるように、例えば、面平均抜熱流束qが基準値qに対して10%増減に対して、変化点位置を最大で100mm減増させればよい。ただし、上述した理由から、変化点位置xの最大値は300mm、最小値50mmとすることが好ましい。 Here, the control of x when the position of the taper change point P of the short side mold plate 2 is controlled to a suitable height position during casting according to the fluctuation of the surface average heat removal flux q of the short side mold plate 2. The amount will be described. As can be seen from the results of FIG. 13, for example, when the surface average heat removal flux q is increased or decreased by 10% with respect to the reference value q 0 , the change point position may be decreased by 100 mm at the maximum. However, for the reasons described above, it is preferable that the maximum value of the change point position x is 300 mm and the minimum value is 50 mm.

また、短辺鋳型板2を通じた面平均抜熱流束q(W/m)は、短辺鋳型板2を冷却するための冷却水の入側と出側の温度差、又は、短辺鋳型板2に設けられた温度差センサ(例えば熱電対)の検出値から計算することができる。また、面平均抜熱流束q(W/m)は、鋼種や鋳造条件によっても異なるが、例えば、鋳造速度V(m/min)と、メニスカス位置から鋳型下端までの距離L(m)をパラメータとして以下の式(17)で求められる。
q=1.0*10*(L/V)−0.344 (17)
In addition, the surface average heat extraction flux q (W / m 2 ) through the short side mold plate 2 is the temperature difference between the inlet side and the outlet side of the cooling water for cooling the short side mold plate 2 or the short side mold. It can be calculated from the detected value of a temperature difference sensor (for example, a thermocouple) provided on the plate 2. Further, the surface average heat removal flux q (W / m 2 ) varies depending on the steel type and casting conditions. For example, the casting speed V (m / min) and the distance L (m) from the meniscus position to the lower end of the mold are determined. It is calculated | required by the following formula | equation (17) as a parameter.
q = 1.0 * 10 6 * (L / V) −0.344 (17)

さらに、面平均抜熱流束qは鋳造速度Vに応じて増減し、例えば、鋳造速度Vが減少すれば、面平均抜熱流束qは減少する。しかし、鋳造速度Vが一定である定常状態においても、面平均抜熱流束qが変化するときがある。例えば、鋳型1と凝固シェル10(鋳片)との間の潤滑のために投入されるパウダーの流入状態が変わると、パウダーの厚みによって面平均抜熱流束qが変動する。また、鋳型1の短辺鋳型板2と凝固シェル10(鋳片)との間の接触状態によっても、面平均抜熱流束qが変動する。このように、非定常的な要因によって、鋳造速度Vが一定であっても、面平均抜熱流束qが変動することがある。かかる場合に、上述したように面平均抜熱流束qの増減に応じて鋳造中に変化点位置xを制御すれば、摩擦拘束力を増加させることなく、凝固均一度を維持できる。   Furthermore, the surface average heat removal flux q increases or decreases according to the casting speed V. For example, if the casting speed V decreases, the surface average heat extraction flux q decreases. However, even in a steady state where the casting speed V is constant, the surface average heat removal flux q sometimes changes. For example, when the inflow state of powder input for lubrication between the mold 1 and the solidified shell 10 (slab) changes, the surface average heat removal flux q varies depending on the thickness of the powder. The surface average heat removal flux q also varies depending on the contact state between the short side mold plate 2 of the mold 1 and the solidified shell 10 (slab). Thus, even if the casting speed V is constant, the surface average heat extraction flux q may fluctuate due to unsteady factors. In this case, if the change point position x is controlled during casting in accordance with the increase or decrease of the surface average heat removal flux q as described above, the solidification uniformity can be maintained without increasing the frictional restraining force.

また、上記のように面平均抜熱流束qに応じて短辺鋳型板2を鋳造方向に移動(即ち、上下移動)させるタイミングは、次の通りである。本実施形態では、面平均抜熱流束qに応じた変化点位置xの変更は、鋳型1内への溶鋼の注入中断中でも、再注入後に面平均抜熱流束qが定常状態になったときでも実行可能である。   Further, as described above, the timing for moving the short-side mold plate 2 in the casting direction (that is, moving up and down) according to the surface average heat extraction flux q is as follows. In this embodiment, the change of the change point position x in accordance with the surface average heat extraction flux q can be performed even when the molten steel injection into the mold 1 is interrupted or when the surface average heat extraction flux q is in a steady state after reinjection. It is feasible.

まず、連続鋳造装置において、それぞれの鋼種、鋳造条件ごとに、鋳造中の冷却水の温度差、熱電対の検出値等を測定して、短辺鋳型板2の面平均抜熱流束qの基準値qを予め設定しておく。次いで、短辺鋳型板2と長辺鋳型板3を組み立てて鋳型1を設置した後、当該鋳型1内に溶鋼を注入開始する前に、該当チャージで予定されている鋼種や鋳造条件に応じて、最適な面平均抜熱流束qを求め、当該面平均抜熱流束qに適した高さとなるように短辺鋳型板2を配置する。次いで、鋳型1内への溶鋼の注入開始後、鋳型1を用いて実際に鋳片を鋳造する鋳造期間において、実際に短辺鋳型板2の面平均抜熱流束qを測定しながら、該測定された面平均抜熱流束qに応じて、短辺鋳型板2を上下移動させて、テーパ変化点Pの高さ位置(変化点位置x)を微調整する。これにより、鋳造速度Vが定常速度になってから、面平均抜熱流束qの変動に追従して、変化点位置xをリアルタイムで適正値に変更できる。従って、面平均抜熱流束qの変動に柔軟に対応できるので、実際の鋳造期間において、上記非定常要因による面平均抜熱流束qの変動が生じても、変化点位置xを最適化して、高品質の鋳片を鋳造できる。 First, in the continuous casting apparatus, for each steel type and casting condition, the temperature difference of the cooling water during casting, the detection value of the thermocouple, etc. are measured, and the standard of the surface average heat removal flux q of the short side mold plate 2 is measured. setting the value q 0 in advance. Next, after assembling the short side mold plate 2 and the long side mold plate 3 and installing the mold 1, before starting to inject molten steel into the mold 1, depending on the steel type and casting conditions scheduled for the corresponding charge Then, the optimum surface average heat extraction flux q is obtained, and the short side mold plate 2 is arranged so as to have a height suitable for the surface average heat extraction flux q. Next, after the start of pouring of molten steel into the mold 1, the measurement is performed while actually measuring the surface average heat removal flux q of the short-side mold plate 2 during the casting period in which the slab is actually cast using the mold 1. The short side mold plate 2 is moved up and down according to the surface average heat removal flux q, and the height position (change point position x) of the taper change point P is finely adjusted. Thereby, after the casting speed V becomes a steady speed, the change point position x can be changed to an appropriate value in real time following the fluctuation of the surface average heat removal flux q. Therefore, since it is possible to flexibly cope with the fluctuation of the surface average heat removal flux q, even if the fluctuation of the surface average heat removal flux q due to the unsteady factor occurs in the actual casting period, the change point position x is optimized, High quality slabs can be cast.

以上のように、面平均抜熱流束qが変動した場合であっても、その面平均抜熱流束qに応じて鋳造中に変化点位置xを増減させることで、摩擦拘束力及び凝固均一度をほぼ一定に維持することができる。従って、面平均抜熱流束qの変動にかかわらず、摩擦拘束力及び凝固均一度の双方を適正範囲内に維持することができるので、鋳造中に凝固シェル100の割れやブレークアウトを発生させることなく、高品質の鋳片を安定して鋳造できる。   As described above, even when the surface average heat removal flux q varies, the frictional restraint force and the solidification uniformity can be increased by increasing or decreasing the change point position x during casting according to the surface average heat removal flux q. Can be maintained substantially constant. Accordingly, both the frictional restraining force and the solidification uniformity can be maintained within an appropriate range regardless of the fluctuation of the surface average heat removal flux q, so that the solidified shell 100 is cracked or broken out during casting. High quality slabs can be cast stably.

なお、上記図13を用いた説明では、鋳片幅W1100mm、上下テーパ比率4.0、トータルテーパ率1.6%/m、鋳造速度V=1.5m/minの例を挙げて説明したが、変化点位置xと摩擦拘束力や凝固均一度との関係は、他の条件(例えば、鋳片幅2200mm、上下テーパ比率2.5で例示可能)でもほぼ同一である。   In the description with reference to FIG. 13 described above, an example in which the slab width W1100 mm, the vertical taper ratio 4.0, the total taper rate 1.6% / m, and the casting speed V = 1.5 m / min has been described. The relationship between the change point position x, the frictional restraint force, and the solidification uniformity is substantially the same even under other conditions (for example, a slab width of 2200 mm and an upper and lower taper ratio of 2.5 can be exemplified).

[7.連続鋳造装置の構成]
次に、上述した本実施形態に係る連続鋳造方法を実行する連続鋳造装置について説明する。図14は、本実施形態に係る連続鋳造装置の構成を示す図である。なお、図14では、説明の便宜上、連続鋳造装置の一側の短辺鋳型板2周辺の構成のみを示しているが、他側にも対称な構成を具備しているものとする。
[7. Configuration of continuous casting equipment]
Next, the continuous casting apparatus which performs the continuous casting method which concerns on this embodiment mentioned above is demonstrated. FIG. 14 is a diagram illustrating a configuration of a continuous casting apparatus according to the present embodiment. In FIG. 14, for convenience of explanation, only the configuration around the short side mold plate 2 on one side of the continuous casting apparatus is shown, but it is assumed that the other side also has a symmetric configuration.

図14に示すように、本実施形態に係る連続鋳造装置は、連続鋳造鋳型1(以下「鋳型1」ともいう。)と、短辺駆動機構4とを備える。鋳型1は、鋳造方向に相異なる2以上の短辺テーパ率(単位:%/m)を有する一対の多段テーパ短辺鋳型板2と、当該一対の短辺鋳型板2をその幅方向両側から挟み込む一対の長辺鋳型板3(図14では図示せず。図3参照。)とからなる。長辺鋳型板3及び短辺鋳型板2は、それぞれ2枚で1組を構成し、凝固シェル10に面する側が水冷銅板2a、その反対面を鋼製のバックフレーム2bとすると良い。短辺鋳型板2の幅が鋳造する鋳片の厚みにほぼ等しく、一対の短辺鋳型板2の下端部の間隔が鋳造する鋳片の幅(鋳片幅)にほぼ等しい。短辺鋳型板2のテーパ面6は、テーパ率が大きい上テーパ面6と、テーパ率が小さい下テーパ面6とからなり(上テーパ率T>下テーパ率T)、上テーパ面6と下テーパ面6の境界がテーパ変化点Pとなる。かかる一対の短辺鋳型板2を対向配置して一対の長辺鋳型板3で挟み込むことにより、矩形の鋳造空間を有する鋳型1が形成される。 As shown in FIG. 14, the continuous casting apparatus according to the present embodiment includes a continuous casting mold 1 (hereinafter also referred to as “mold 1”) and a short-side drive mechanism 4. The mold 1 includes a pair of multi-step tapered short side mold plates 2 having two or more short side taper ratios (unit:% / m) different in the casting direction, and the pair of short side mold plates 2 from both sides in the width direction. It consists of a pair of long-side mold plates 3 (not shown in FIG. 14; see FIG. 3). The long-side mold plate 3 and the short-side mold plate 2 are each configured as a pair, and the side facing the solidified shell 10 is preferably a water-cooled copper plate 2a, and the opposite surface is a steel back frame 2b. The width of the short side mold plate 2 is substantially equal to the thickness of the cast slab to be cast, and the distance between the lower ends of the pair of short side mold plates 2 is substantially equal to the width of the cast slab (slab width). Tapered surface 6 of the short side mold plate 2, and the upper tapered surface 6 U taper ratio is large, consists of a lower tapered surface 6 taper ratio is small L (upper taper ratio T U> lower tapered index T L), the upper tapered The boundary between the surface 6 U and the lower taper surface 6 L is a taper change point P. The pair of short side mold plates 2 are arranged to face each other and sandwiched between the pair of long side mold plates 3, thereby forming the mold 1 having a rectangular casting space.

短辺駆動機構4は、例えば、短辺鋳型板2を水平移動又は傾動させるための2つのアクチュエータ7、8と、短辺鋳型板2を鋳造方向に移動(即ち、上下方向に昇降)させるための1つのアクチュエータ9と、これらアクチュエータ7、8、9を制御する制御装置5と、を備える。アクチュエータ7、8、9は、例えば図示のように、電動シリンダ、油圧シリンダなどを用いることができるが、かかる例に限定されず、短辺駆動機構は電動モータ等の任意の駆動装置を用いてもよい。   The short side drive mechanism 4 is, for example, for moving the short side mold plate 2 horizontally or tilting, and for moving the short side mold plate 2 in the casting direction (that is, moving up and down in the vertical direction). And the control device 5 for controlling the actuators 7, 8, 9. For example, as shown in the drawing, an electric cylinder, a hydraulic cylinder, or the like can be used as the actuators 7, 8, and 9. Also good.

水平移動及び傾動用の2つのアクチュエータ7、8はそれぞれ、可動基台20の上面、下面にほぼ水平姿勢で設置される。該アクチュエータ7、8の先端はそれぞれ、短辺鋳型板2のバックフレーム2bの上部側、下部側に対して、ヒンジ部21、22により回動可能に連結される。かかる上下二段のアクチュエータ7、8は、短辺鋳型板2をバックフレーム2b側から支持する。可動基台20は、これらのアクチュエータ7、8を支持し、該可動基台20の後端には連結部材23が固定されている。連結部材23は、水平部23aと垂直部23bとからなり、L字形の断面形状を有する。   The two actuators 7 and 8 for horizontal movement and tilting are respectively installed on the upper and lower surfaces of the movable base 20 in a substantially horizontal posture. The tips of the actuators 7 and 8 are connected to the upper side and the lower side of the back frame 2b of the short side mold plate 2 by hinges 21 and 22, respectively. The upper and lower two-stage actuators 7 and 8 support the short-side mold plate 2 from the back frame 2b side. The movable base 20 supports these actuators 7 and 8, and a connecting member 23 is fixed to the rear end of the movable base 20. The connecting member 23 includes a horizontal portion 23a and a vertical portion 23b, and has an L-shaped cross-sectional shape.

アクチュエータ9は、この連結部材23と固定基台24との間に、ほぼ垂直姿勢で配設される。アクチュエータ9の上端は連結部材23の水平部23a下面側に対して、ヒンジ部25により回動可能に連結され、アクチュエータ9の下端は固定基台24の上面に対して、ヒンジ部26により回動可能に連結される。このアクチュエータ9の上端と下端のヒンジ連結は、機構学的には必要条件ではなく、例えば、連結部材23やガイド板27、昇降ガイド部28に十分な剛性があれば、図示のようなヒンジ連結を用いずに、アクチュエータ9の上端、下端を連結部材23、固定基台24に固定連結してもよい。   The actuator 9 is disposed in a substantially vertical posture between the connecting member 23 and the fixed base 24. The upper end of the actuator 9 is rotatably connected to the lower surface side of the horizontal portion 23 a of the connecting member 23 by a hinge portion 25, and the lower end of the actuator 9 is rotated to the upper surface of the fixed base 24 by a hinge portion 26. Connected as possible. The hinge connection between the upper end and the lower end of the actuator 9 is not a mechanical requirement. For example, if the connection member 23, the guide plate 27, and the elevating guide portion 28 have sufficient rigidity, the hinge connection as shown in the drawing is used. The upper end and the lower end of the actuator 9 may be fixedly connected to the connecting member 23 and the fixed base 24 without using the above.

また、固定基台24の前面側には、ガイド板27が起立配置されている。ガイド板27は、上記連結部材23の垂直部23bの垂直方向の移動をガイドする機能を有する。かかるガイド板27と、連結部材23は、短辺鋳型板2の昇降をガイドするための昇降ガイド部28として機能する。   A guide plate 27 is erected on the front side of the fixed base 24. The guide plate 27 has a function of guiding the vertical movement of the vertical portion 23 b of the connecting member 23. The guide plate 27 and the connecting member 23 function as an elevating guide portion 28 for guiding the elevating of the short side mold plate 2.

制御装置5は、図15に示すように、入力部31と、最適値演算部32と、駆動制御部33とを備える。入力部31は、オペレータが操作するコンピュータ装置などで構成され、オペレータや各種のセンサから、連続鋳造に関する各種の操業条件の設定値が入力される。入力部31は、上記入力された操業条件の設定値を最適値演算部32に送る。最適値演算部32は、入力部31からの操業条件の設定値に基づいて、上記操業条件に応じた短辺鋳型板2の配置に関する最適値(例えば、2つの短辺鋳型板2間の幅、短辺鋳型板2の高さ位置、傾斜量など)を計算する。最適値演算部32は、計算した最適値を駆動制御部33に送る。駆動制御部33は、最適値演算部32からの最適値に基づいて、アクチュエータ7、8、9を駆動させるための制御量を計算し、その制御量をアクチュエータ7、8、9に出力する。アクチュエータ7、8、9は、制御装置5からの制御量に基づいて駆動する。   As shown in FIG. 15, the control device 5 includes an input unit 31, an optimum value calculation unit 32, and a drive control unit 33. The input unit 31 is configured by a computer device or the like operated by an operator, and inputs set values of various operating conditions related to continuous casting from the operator and various sensors. The input unit 31 sends the set value of the input operation condition to the optimum value calculation unit 32. Based on the setting value of the operation condition from the input unit 31, the optimum value calculation unit 32 is configured to determine the optimum value related to the arrangement of the short side mold plate 2 according to the operation condition (for example, the width between the two short side mold plates 2). , The height position of the short side mold plate 2, the amount of inclination, etc.) are calculated. The optimum value calculation unit 32 sends the calculated optimum value to the drive control unit 33. The drive control unit 33 calculates a control amount for driving the actuators 7, 8, 9 based on the optimum value from the optimum value calculation unit 32, and outputs the control amount to the actuators 7, 8, 9. The actuators 7, 8, and 9 are driven based on a control amount from the control device 5.

次に、上記構成の短辺駆動機構4の動作について説明する。短辺駆動機構4の制御装置5は、上記入力された操業条件に基づいて短辺鋳型板2が適切な配置(短辺間の幅、高さ、傾き)となるように、アクチュエータ7、8、9を駆動させる。   Next, the operation of the short side drive mechanism 4 configured as described above will be described. The control device 5 of the short-side drive mechanism 4 uses the actuators 7 and 8 so that the short-side mold plate 2 is appropriately arranged (width, height, inclination between short sides) based on the input operating conditions. , 9 are driven.

例えば、制御装置5は、アクチュエータ7、8を適切な量だけ駆動させることで、短辺鋳型板2を水平方向に移動させて、2つの短辺鋳型板2間の幅を制御したり、短辺鋳型板2を傾動させて、短辺鋳型板2の傾き(トータルテーパ率)を制御したりできる。上下2段のアクチュエータ7、8それぞれの運動によって短辺鋳型板2の位置を定めることにより、設定された鋳片幅W毎に、短辺鋳型板2のトータルテーパ率を所定の値に定めることができる。本実施形態では、現実的な操業形態の観点からは、鋳造中いずれの鋳片幅Wにおいても同一のトータルテーパ率とし、いずれの鋳片幅Wにおいても上下テーパ比率は、4以下となるように、短辺鋳型板2の水平位置及び傾きを制御することが好ましい。   For example, the control device 5 drives the actuators 7 and 8 by an appropriate amount to move the short-side mold plate 2 in the horizontal direction to control the width between the two short-side mold plates 2 or The side mold plate 2 can be tilted to control the inclination (total taper ratio) of the short side mold plate 2. By determining the position of the short-side mold plate 2 by the movement of the upper and lower two-stage actuators 7 and 8, the total taper rate of the short-side mold plate 2 is set to a predetermined value for each set slab width W. Can do. In the present embodiment, from the viewpoint of a practical operation mode, the same total taper ratio is set in any slab width W during casting, and the vertical taper ratio is 4 or less in any slab width W. Moreover, it is preferable to control the horizontal position and inclination of the short side mold plate 2.

また、本実施形態に係る短辺駆動機構4は、上記のように短辺鋳型板2の水平駆動機構、傾斜駆動機構のみならず、短辺鋳型板2の昇降機構を備えていることを特徴としいている。即ち、短辺駆動機構4の制御装置5は、アクチュエータ9を操業条件に応じた適切な量だけ駆動させることで、短辺鋳型板2を鋳造方向に移動(つまり、上下方向に昇降)させて、短辺鋳型板2のテーパ変化点Pの高さ、即ち、変化点位置xを制御することができる。   Further, the short side drive mechanism 4 according to the present embodiment includes not only the horizontal drive mechanism and the tilt drive mechanism of the short side mold plate 2 as described above, but also a lifting mechanism for the short side mold plate 2. It is correct. That is, the control device 5 of the short side drive mechanism 4 moves the short side mold plate 2 in the casting direction (that is, moves up and down) by driving the actuator 9 by an appropriate amount according to the operating conditions. The height of the taper changing point P of the short side mold plate 2, that is, the changing point position x can be controlled.

詳細には、短辺駆動機構4の制御装置5は、上述した鋳造速度Vや溶鋼の種類(例えば炭素濃度C)、短辺鋳型板2の面平均抜熱流束q等の操業条件に応じて、メニスカス位置に対する変化点位置xの適正値を計算し、変化点位置xが当該適正値となるような短辺鋳型板2の高さ位置を求め、さらに、短辺鋳型板2が当該高さ位置となるように、アクチュエータ9を駆動制御する。この結果、アクチュエータ9の駆動により、可動基台23がガイド板27によりガイドされながら上下動し、該可動基台23にアクチュエータ7、8を介して連結された短辺鋳型板2が昇降して、上記高さ位置に位置づけられる。   Specifically, the control device 5 of the short side drive mechanism 4 is in accordance with the operating conditions such as the casting speed V, the type of molten steel (for example, carbon concentration C), the surface average heat removal flux q of the short side mold plate 2 and the like. Then, an appropriate value of the change point position x with respect to the meniscus position is calculated, a height position of the short side mold plate 2 such that the change point position x becomes the appropriate value is obtained, and further, the short side mold plate 2 has the height. The actuator 9 is driven and controlled so as to be in the position. As a result, when the actuator 9 is driven, the movable base 23 moves up and down while being guided by the guide plate 27, and the short side mold plate 2 connected to the movable base 23 via the actuators 7 and 8 moves up and down. , Positioned at the height position.

このようにして、短辺駆動機構4は、鋳造速度Vや溶鋼の種類、短辺鋳型板2の面平均抜熱流束qなどといった連続鋳造の操業条件に応じて鋳造中に短辺鋳型板2を鋳造方向の好適な位置に移動させることができる。よって、上述した本実施形態に係る連続鋳造方法を好適に実現できる。   In this way, the short-side drive mechanism 4 is configured so that the short-side mold plate 2 is cast during casting according to the continuous casting operation conditions such as the casting speed V, the type of molten steel, and the surface average heat removal flux q of the short-side mold plate 2. Can be moved to a suitable position in the casting direction. Therefore, the continuous casting method according to the present embodiment described above can be suitably realized.

次に、図16を参照して、上記連続鋳造装置の変更例について説明する。図16は、本実施形態の変更例に係る連続鋳造装置の構成を示す図である。なお、図16では、説明の便宜上、連続鋳造装置の一側の短辺鋳型板2周辺の構成のみを示しているが、他側にも対称な構成を具備しているものとする。   Next, a modified example of the continuous casting apparatus will be described with reference to FIG. FIG. 16 is a diagram illustrating a configuration of a continuous casting apparatus according to a modified example of the present embodiment. In FIG. 16, for convenience of explanation, only the configuration around the short side mold plate 2 on one side of the continuous casting apparatus is shown, but it is assumed that the other side also has a symmetric configuration.

図16に示すように、本実施形態の変更例に係る連続鋳造装置も、図14と同様に、一対の短辺鋳型板2と一対の長辺鋳型板3とからなる鋳型1と、短辺駆動機構40とを具備する。短辺駆動機構40は、例えば、短辺鋳型板2を水平移動又は傾動させるための2つのアクチュエータ47、48と、短辺鋳型板2を鋳造方向に移動(即ち、上下方向に昇降)させるための1つのアクチュエータ49と、これらアクチュエータ47、48、49を制御する制御装置5と、を備える。アクチュエータ47、48、49は、例えば図示のように、電動シリンダ、油圧シリンダなどを用いることができるが、かかる例に限定されず、短辺駆動機構は電動モータ等の任意の駆動装置を用いてもよい。また、制御装置5の構成は図15に示したものと同様である。   As shown in FIG. 16, the continuous casting apparatus according to the modified example of the present embodiment also has a mold 1 composed of a pair of short side mold plates 2 and a pair of long side mold plates 3, and a short side, as in FIG. 14. And a drive mechanism 40. The short side drive mechanism 40 is, for example, for moving the short side mold plate 2 horizontally or tilting, and for moving the short side mold plate 2 in the casting direction (that is, moving up and down in the vertical direction). And the control device 5 for controlling these actuators 47, 48, 49. The actuators 47, 48, and 49 can be electric cylinders, hydraulic cylinders, etc. as shown in the figure, but are not limited to such examples, and the short-side drive mechanism uses any drive device such as an electric motor. Also good. The configuration of the control device 5 is the same as that shown in FIG.

水平移動及び傾動用の2つのアクチュエータ47、48はそれぞれ、固定基台50上に支持フレーム51により支持される。可動基台52は、背面部52aと底部52bと前面部52cからなり、略コの字形の断面形状を有する。上記アクチュエータ47、48の先端はそれぞれ、可動基台52の背面部52aの上部側、下部側に対して、ヒンジ部53、54により回動可能に連結される。一方、短辺鋳型板2の背面側には、連結部55が取り付けられている。連結部材55は、水平部55aと垂直部55bとからなり、L字形の断面形状を有する。   The two actuators 47 and 48 for horizontal movement and tilting are each supported by the support frame 51 on the fixed base 50. The movable base 52 includes a back surface portion 52a, a bottom portion 52b, and a front surface portion 52c, and has a substantially U-shaped cross-sectional shape. The tips of the actuators 47 and 48 are connected to the upper side and the lower side of the back surface 52a of the movable base 52 by hinges 53 and 54, respectively. On the other hand, a connecting portion 55 is attached to the back side of the short side mold plate 2. The connecting member 55 includes a horizontal portion 55a and a vertical portion 55b, and has an L-shaped cross-sectional shape.

アクチュエータ49は、連結部材55と可動基台52との間に、ほぼ垂直姿勢で配設される。アクチュエータ49の上端は連結部材55の水平部55a下面側に対して、ヒンジ部56により回動可能に連結され、アクチュエータ49の下端は可動基台52の底面部52bの上面に対して、ヒンジ部57により回動可能に連結される。なお、このアクチュエータ49の上端及び下端のヒンジ連結についても、上述した図14のアクチュエータ9と同様に、固定連結することも可能である。また、可動基台52の前面側に起立配置された前面部52cは、上記連結部材55の垂直部55bの垂直方向の移動をガイドするガイド板として機能する。かかる可動基台52と、連結部材23は、短辺鋳型板2の昇降をガイドするための昇降ガイド部58として機能する。   The actuator 49 is disposed in a substantially vertical posture between the connecting member 55 and the movable base 52. The upper end of the actuator 49 is rotatably connected to the lower surface side of the horizontal portion 55 a of the connecting member 55 by a hinge portion 56, and the lower end of the actuator 49 is a hinge portion to the upper surface of the bottom surface portion 52 b of the movable base 52. 57 is rotatably connected. It should be noted that the upper and lower hinges of the actuator 49 can be fixedly connected in the same manner as the actuator 9 shown in FIG. In addition, the front surface portion 52 c erected on the front surface side of the movable base 52 functions as a guide plate that guides the vertical movement of the vertical portion 55 b of the connecting member 55. The movable base 52 and the connecting member 23 function as an elevating guide part 58 for guiding the elevating of the short side mold plate 2.

次に、上記構成の短辺駆動機構40の動作について説明する。短辺駆動機構40の制御装置5は、上記入力された操業条件に基づいて短辺鋳型板2が適切な配置(短辺間の幅、高さ、傾き)となるように、アクチュエータ47、48、49を駆動させる。   Next, the operation of the short side drive mechanism 40 having the above configuration will be described. The control device 5 of the short side drive mechanism 40 uses the actuators 47 and 48 so that the short side mold plate 2 is appropriately arranged (width, height, inclination between short sides) based on the input operating conditions. , 49 are driven.

例えば、制御装置5は、アクチュエータ47、48を適切な量だけ駆動させることで、短辺鋳型板2を水平方向に移動させて、2つの短辺鋳型板2間の幅を制御したり、短辺鋳型板2を傾動させて、短辺鋳型板2の傾き(トータルテーパ率)を制御したりできる。また、図16に示す短辺駆動機構40も、図14に示した短辺駆動機構4と同様、上記短辺鋳型板2の水平駆動機構、傾斜駆動機構のみならず、短辺鋳型板2の昇降機構を備えていることを特徴としいている。即ち、短辺駆動機構40の制御装置5は、アクチュエータ49を適切な量だけ駆動させることで、短辺鋳型板2を鋳造方向に移動(つまり、上下方向に昇降)させて、短辺鋳型板2のテーパ変化点Pの高さ、即ち、変化点位置xを制御することができる。   For example, the control device 5 drives the actuators 47 and 48 by an appropriate amount to move the short side mold plate 2 in the horizontal direction to control the width between the two short side mold plates 2 or The side mold plate 2 can be tilted to control the inclination (total taper ratio) of the short side mold plate 2. Further, the short side drive mechanism 40 shown in FIG. 16 is not limited to the horizontal drive mechanism and the tilt drive mechanism of the short side mold plate 2 as in the short side drive mechanism 4 shown in FIG. It is characterized by having an elevating mechanism. That is, the control device 5 of the short-side drive mechanism 40 drives the actuator 49 by an appropriate amount to move the short-side mold plate 2 in the casting direction (that is, move up and down in the up-and-down direction). The height of the second taper change point P, that is, the change point position x can be controlled.

詳細には、短辺駆動機構40の制御装置5は、上述した鋳造速度Vや溶鋼の種類(例えば炭素濃度C)、短辺鋳型板2の面平均抜熱流束q等の操業条件に応じて、メニスカス位置に対する変化点位置xの適正値を計算し、変化点位置xが当該適正値となるような短辺鋳型板2の高さ位置を求め、さらに、短辺鋳型板2が当該高さ位置となるように、アクチュエータ49を駆動制御する。この結果、アクチュエータ49の駆動により、連結部材55が固定基台52の前面部52bによりガイドされながら上下動し、該連結部材55に連結された短辺鋳型板2が昇降して、上記高さ位置に位置づけられる。   Specifically, the control device 5 of the short side drive mechanism 40 depends on operating conditions such as the casting speed V, the type of molten steel (for example, carbon concentration C), the surface average heat removal flux q of the short side mold plate 2 and the like. Then, an appropriate value of the change point position x with respect to the meniscus position is calculated, a height position of the short side mold plate 2 such that the change point position x becomes the appropriate value is obtained, and further, the short side mold plate 2 has the height. The actuator 49 is driven and controlled so that the position is reached. As a result, the driving of the actuator 49 causes the connecting member 55 to move up and down while being guided by the front surface portion 52b of the fixed base 52, and the short-side mold plate 2 connected to the connecting member 55 moves up and down to raise the height. Positioned to position.

以上のようにして、図16に示す短辺駆動機構40も、図14に示した短辺駆動機構40と同様に、鋳造速度Vや溶鋼の種類、短辺鋳型板2の面平均抜熱流束qなどといった連続鋳造の操業条件に応じて鋳造中に短辺鋳型板2を鋳造方向の好適な位置に移動させることができる。よって、上述した本実施形態に係る連続鋳造方法を好適に実現できる。   As described above, the short-side drive mechanism 40 shown in FIG. 16 is similar to the short-side drive mechanism 40 shown in FIG. 14 in terms of the casting speed V, the type of molten steel, and the surface average heat removal flux of the short-side mold plate 2. The short side mold plate 2 can be moved to a suitable position in the casting direction during casting according to the continuous casting operating conditions such as q. Therefore, the continuous casting method according to the present embodiment described above can be suitably realized.

なお、連続鋳造中に鋳片幅Wを変更するに際しては、正常な鋳造を行いつつ鋳片幅Wを連続的に変更することが要請される。このような幅変更を実施している最中には、トータルテーパ率を変更して円滑な幅変更を実施することが必要となり、トータルテーパ率を一定に保持することはできない。   When changing the slab width W during continuous casting, it is required to continuously change the slab width W while performing normal casting. During such a width change, it is necessary to change the total taper rate to perform a smooth width change, and the total taper rate cannot be kept constant.

上記本実施形態に係る連続鋳造装置は、鋳造可能最小鋳片幅が1100mm以下から、鋳造可能最大鋳片幅が2200mm以上まで、広範囲の幅を有する鋳片を鋳造することができる。例えば、鋳造可能最小鋳片幅が800mmあるいはそれ以下であると好ましく、例えば600mmが現実的である。鋳造可能最大鋳片幅は例えば2500mmが現実的である。   The continuous casting apparatus according to the present embodiment can cast a slab having a wide range from a minimum castable slab width of 1100 mm or less to a maximum castable slab width of 2200 mm or more. For example, the minimum castable slab width is preferably 800 mm or less, and, for example, 600 mm is practical. The maximum castable slab width is realistic, for example, 2500 mm.

[8.効果]
以上、本実施形態に係る連続鋳造方法とそれを実現する連続鋳造装置について説明した。本実施形態によれば、鋳造速度V又は溶融金属の種類(例えば炭素濃度C)、短辺鋳型板2の面平均抜熱流束q等の操業条件に応じて、鋳造中に短辺鋳型板2を鋳造方向に移動(上下方向に昇降)させることにより、メニスカス位置11に対して短辺鋳型板2のテーパ変化点Pの位置を上下動させ、変化点位置xを増減させる。これにより、鋳型1内のメニスカス位置11を固定位置としたままで、短辺鋳型板2のテーパ変化点Pの位置を上下動させて、鋳造速度V等の操業条件の変動に対応した適切な変化点位置xに位置づけることができる。
[8. effect]
In the above, the continuous casting method which concerns on this embodiment, and the continuous casting apparatus which implement | achieves it were demonstrated. According to this embodiment, the short-side mold plate 2 during casting depends on the operating conditions such as the casting speed V or the type of molten metal (for example, carbon concentration C), the surface average heat removal flux q of the short-side mold plate 2 and the like. Is moved in the casting direction (up and down in the vertical direction), the position of the taper change point P of the short side mold plate 2 is moved up and down with respect to the meniscus position 11, and the change point position x is increased or decreased. As a result, the position of the taper change point P of the short side mold plate 2 is moved up and down while the meniscus position 11 in the mold 1 is kept at a fixed position, so that it is appropriate to cope with fluctuations in operating conditions such as the casting speed V. It can be positioned at the change point position x.

従って、当該操業条件の変更前後で、相反関係にある凝固均一度及び摩擦拘束力の双方がほぼ一定値となるように制御できるので、上述した相反関係にある凝固均一度と摩擦拘束力の双方の制約を満足させつつ、鋳造速度等の操業条件の変更に対応することができる。よって、鋳造速度V等の鋳造条件にかかわらず、鋳片の凝固不均一を解消して、凝固シェル厚をブレークアウトの限界厚み以上に確保しつつ、表面割れ、内部割れのない高品質の鋳片を安定して鋳造することができる。   Therefore, before and after the change of the operating conditions, both the solidification uniformity and the frictional restraining force that are in a reciprocal relationship can be controlled to be substantially constant values. It is possible to cope with changes in operating conditions such as casting speed while satisfying the above restrictions. Therefore, regardless of the casting conditions such as casting speed V, high quality casting without surface cracks and internal cracks while eliminating the solidification unevenness of the slab and ensuring the solidified shell thickness is more than the limit thickness of the breakout. The piece can be cast stably.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。   The preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.

例えば、上記実施形態では、多段テーパ短辺鋳型板として、2段テーパ短辺鋳型板の例を挙げて説明したが、3段テーパ以上の短辺鋳型板にも適用できる。   For example, in the above-described embodiment, an example of a two-step taper short-side mold plate has been described as the multi-step taper short-side mold plate.

また、上記実施形態では、凝固シェル10の凝固均一度及び摩擦拘束力の双方に影響を及ぼす操業条件として、鋳造速度Vと溶鋼金属の炭素濃度C、短辺鋳型板2の面平均抜熱流束qの例を挙げ、鋳造速度V、炭素濃度C又は面平均抜熱流束qに応じて鋳造中に、短辺鋳型板2のテーパ変化点Pを上下させる例について説明したが、本発明は、かかる例に限定されない。例えば、当該操業条件として、スーパーヒート(溶鋼の加熱温度)、鋳片幅Wなどに応じて鋳造中に、短辺鋳型板のテーパ変化点を上下させてもよい。スーパーヒートが高いと、連続鋳造時の凝固シェルのシェル厚が薄くなる。そこで、スーパーヒートに応じて鋳造中に短辺鋳型板のテーパ変化点を上下させることで、鋳造限界の溶融金属の温度を上昇させることも可能となる。   In the above embodiment, the operating conditions affecting both the solidification uniformity and the frictional restraining force of the solidified shell 10 include the casting speed V, the carbon concentration C of the molten steel metal, and the surface average heat removal flux of the short side mold plate 2. An example of q is described, and an example in which the taper change point P of the short side mold plate 2 is raised and lowered during casting according to the casting speed V, the carbon concentration C or the surface average heat removal flux q has been described. It is not limited to such an example. For example, the taper change point of the short side mold plate may be raised or lowered during casting according to superheat (heating temperature of molten steel), slab width W, or the like as the operation condition. When the super heat is high, the shell thickness of the solidified shell during continuous casting becomes thin. Therefore, it is possible to raise the temperature of the molten metal at the casting limit by raising and lowering the taper change point of the short side mold plate during casting according to superheat.

1 連続鋳造鋳型
2 多段テーパ短辺鋳型板
3 長辺鋳型板
4、40 短辺駆動機構
5 制御装置
6 テーパ面
上テーパ面
下テーパ面
7、8、9、47、48、49 アクチュエータ
10 凝固シェル
11 メニスカス位置
P テーパ変化点
DESCRIPTION OF SYMBOLS 1 Continuous casting mold 2 Multistage taper short side mold plate 3 Long side mold plate 4, 40 Short side drive mechanism 5 Controller 6 Tapered surface 6 U upper taper surface 6 L lower taper surface 7, 8, 9, 47, 48, 49 Actuator 10 Solidified shell 11 Meniscus position P Taper change point

Claims (20)

鋳造方向に相異なる2以上のテーパを有する一対の多段テーパ短辺鋳型板と、前記多段テーパ短辺鋳型板を幅方向両側から挟む一対の長辺鋳型板とからなる鋳型を用いた連続鋳造方法において、
鋳造中に前記多段テーパ短辺鋳型板を鋳造方向に移動させることにより、前記鋳型内における溶融金属の凝固シェルの凝固均一度、及び前記凝固シェルと前記多段テーパ短辺鋳型板との間の摩擦拘束力の双方をほぼ一定に維持するように、前記多段テーパ短辺鋳型板のテーパ変化点の位置を前記鋳型内における溶融金属のメニスカス位置に対して鋳造方向に相対移動させることを特徴とする、連続鋳造方法。
Continuous casting method using a mold comprising a pair of multi-step taper short side mold plates having two or more tapers different in casting direction and a pair of long side mold plates sandwiching the multi-step taper short side mold plate from both sides in the width direction In
By moving the multistage tapered short side mold plate in the casting direction during casting, the solidification uniformity of the solidified shell of the molten metal in the mold and the friction between the solidified shell and the multistage tapered short side mold plate The position of the taper change point of the multi-stage tapered short side mold plate is moved relative to the meniscus position of the molten metal in the mold in the casting direction so as to maintain both of the restraining forces substantially constant. , Continuous casting method.
連続鋳造の操業条件に応じて鋳造中に前記多段テーパ短辺鋳型板を鋳造方向に移動させることを特徴とする、請求項1に記載の連続鋳造方法。   2. The continuous casting method according to claim 1, wherein the multistage tapered short side mold plate is moved in a casting direction during casting in accordance with operating conditions of continuous casting. 前記連続鋳造の操業条件は、前記溶融金属が凝固した凝固シェルの凝固均一度、及び、前記凝固シェルと前記多段テーパ短辺鋳型板との間の摩擦拘束力の双方に影響を及ぼす操業条件であることを特徴とする、請求項2に記載の連続鋳造方法。   The continuous casting operation condition is an operation condition that affects both the solidification uniformity of the solidified shell solidified by the molten metal and the frictional restraint force between the solidified shell and the multi-stage tapered short side mold plate. The continuous casting method according to claim 2, wherein the method is a continuous casting method. 前記連続鋳造の操業条件は、鋳造速度を含み、
前記鋳造速度に応じて鋳造中に前記多段テーパ短辺鋳型板を鋳造方向に移動させることを特徴とする、請求項2又は3に記載の連続鋳造方法。
The continuous casting operating conditions include casting speed,
4. The continuous casting method according to claim 2, wherein the multi-stage tapered short side mold plate is moved in a casting direction during casting according to the casting speed.
前記鋳造速度の増加に応じて鋳造中に前記多段テーパ短辺鋳型板を鋳造方向上方に移動させ、前記鋳造速度の減少に応じて鋳造中に前記多段テーパ短辺鋳型板を鋳造方向下方に移動させることを特徴とする、請求項4に記載の連続鋳造方法。   The multi-stage tapered short side mold plate is moved upward in the casting direction during casting according to the increase in the casting speed, and the multi-stage tapered short side mold plate is moved downward in the casting direction during casting according to the decrease in the casting speed. The continuous casting method according to claim 4, wherein: 前記連続鋳造の操業条件は、前記溶融金属の炭素濃度を含み、
前記溶融金属の炭素濃度に応じて鋳造中に前記多段テーパ短辺鋳型板を鋳造方向に移動させることを特徴とする、請求項2〜のいずれか一項に記載の連続鋳造方法。
The continuous casting operating conditions include the carbon concentration of the molten metal,
The continuous casting method according to any one of claims 2 to 5 , wherein the multistage tapered short side mold plate is moved in a casting direction during casting according to a carbon concentration of the molten metal.
前記連続鋳造の操業条件は、前記多段テーパ短辺鋳型板の面平均抜熱流束を含み、
前記面平均抜熱流束に応じて鋳造中に前記多段テーパ短辺鋳型板を鋳造方向に移動させることを特徴とする、請求項2〜のいずれか一項に記載の連続鋳造方法。
The operating conditions of the continuous casting include the surface average heat removal flux of the multi-stage tapered short side mold plate,
The continuous casting method according to any one of claims 2 to 6 , wherein the multistage tapered short side mold plate is moved in a casting direction during casting according to the surface average heat removal flux.
前記面平均抜熱流束の増加に応じて鋳造中に前記多段テーパ短辺鋳型板を鋳造方向上方に移動させ、前記面平均抜熱流束の減少に応じて鋳造中に前記多段テーパ短辺鋳型板を鋳造方向下方に移動させることを特徴とする、請求項に記載の連続鋳造方法。 The multi-stage tapered short side mold plate is moved upward in the casting direction during casting according to the increase in the surface average heat extraction flux, and the multi-stage taper short side mold plate during casting according to the decrease in the surface average heat extraction flux. The continuous casting method according to claim 7 , wherein the casting is moved downward in the casting direction. 鋳造方向に相異なる2以上のテーパを有する一対の多段テーパ短辺鋳型板と、前記多段テーパ短辺鋳型板を幅方向両側から挟む一対の長辺鋳型板とからなる鋳型と、
鋳造中に前記多段テーパ短辺鋳型板を鋳造方向に移動させることにより、前記鋳型内における溶融金属の凝固シェルの凝固均一度、及び前記凝固シェルと前記多段テーパ短辺鋳型板との間の摩擦拘束力の双方をほぼ一定に維持するように、前記多段テーパ短辺鋳型板のテーパ変化点の位置を前記鋳型内における溶融金属のメニスカス位置に対して鋳造方向に相対移動させる短辺駆動機構と、
を備えることを特徴とする、連続鋳造装置。
A mold comprising a pair of multi-stage taper short side mold plates having two or more tapers different from each other in the casting direction, and a pair of long side mold plates sandwiching the multi-stage taper short side mold plate from both sides in the width direction;
By moving the multistage tapered short side mold plate in the casting direction during casting, the solidification uniformity of the solidified shell of the molten metal in the mold and the friction between the solidified shell and the multistage tapered short side mold plate A short-side drive mechanism that moves the position of the taper change point of the multi-stage tapered short-side mold plate relative to the meniscus position of the molten metal in the mold in the casting direction so as to maintain both of the restraining forces substantially constant ; ,
A continuous casting apparatus comprising:
前記短辺駆動機構は、連続鋳造の操業条件に応じて鋳造中に前記多段テーパ短辺鋳型板を鋳造方向に移動させることを特徴とする、請求項に記載の連続鋳造装置。 The continuous casting apparatus according to claim 9 , wherein the short side drive mechanism moves the multi-stage tapered short side mold plate in a casting direction during casting according to an operation condition of continuous casting. 前記連続鋳造の操業条件は、前記溶融金属が凝固した凝固シェルの凝固均一度、及び、前記凝固シェルと前記多段テーパ短辺鋳型板との間の摩擦拘束力の双方に影響を及ぼす操業条件であることを特徴とする、請求項10に記載の連続鋳造装置。 The continuous casting operation condition is an operation condition that affects both the solidification uniformity of the solidified shell solidified by the molten metal and the frictional restraint force between the solidified shell and the multi-stage tapered short side mold plate. The continuous casting apparatus according to claim 10 , wherein the apparatus is a continuous casting apparatus. 前記連続鋳造の操業条件は、鋳造速度を含み、
前記短辺駆動機構は、前記鋳造速度に応じて鋳造中に前記多段テーパ短辺鋳型板を鋳造方向に移動させることを特徴とする、請求項10又は11に記載の連続鋳造装置。
The continuous casting operating conditions include casting speed,
The continuous casting apparatus according to claim 10 or 11 , wherein the short side drive mechanism moves the multi-stage tapered short side mold plate in a casting direction during casting according to the casting speed.
前記短辺駆動機構は、前記鋳造速度の増加に応じて鋳造中に前記多段テーパ短辺鋳型板を鋳造方向上方に移動させ、前記鋳造速度の減少に応じて鋳造中に前記多段テーパ短辺鋳型板を鋳造方向下方に移動させることを特徴とする、請求項12に記載の連続鋳造装置。 The short side drive mechanism moves the multi-stage tapered short side mold plate upward in the casting direction during casting according to an increase in the casting speed, and the multi-stage tapered short side mold during casting according to a decrease in the casting speed. The continuous casting apparatus according to claim 12 , wherein the plate is moved downward in the casting direction. 前記連続鋳造の操業条件は、前記溶融金属の炭素濃度を含み、
前記短辺駆動機構は、前記溶融金属の炭素濃度に応じて鋳造中に前記多段テーパ短辺鋳型板を鋳造方向に移動させることを特徴とする、請求項1013のいずれか一項に記載の連続鋳造装置。
The continuous casting operating conditions include the carbon concentration of the molten metal,
The short side drive mechanism moves the multi-stage tapered short side mold plate in the casting direction during casting according to the carbon concentration of the molten metal, according to any one of claims 10 to 13. Continuous casting equipment.
前記連続鋳造の操業条件は、前記多段テーパ短辺鋳型板の面平均抜熱流束を含み、
前記短辺駆動機構は、前記面平均抜熱流束に応じて鋳造中に前記多段テーパ短辺鋳型板を鋳造方向に移動させることを特徴とする、請求項1014のいずれか一項に記載の連続鋳造装置。
The operating conditions of the continuous casting include the surface average heat removal flux of the multi-stage tapered short side mold plate,
The short-side drive mechanism moves the multi-stage tapered short-side mold plate in a casting direction during casting according to the surface average heat removal flux, according to any one of claims 10 to 14. Continuous casting equipment.
前記短辺駆動機構は、前記面平均抜熱流束の増加に応じて鋳造中に前記多段テーパ短辺鋳型板を鋳造方向上方に移動させ、前記面平均抜熱流束の減少に応じて鋳造中に前記多段テーパ短辺鋳型板を鋳造方向下方に移動させることを特徴とする、請求項15に記載の連続鋳造装置。 The short side drive mechanism moves the multi-stage tapered short side mold plate upward in the casting direction during casting according to an increase in the surface average heat extraction flux, and during casting according to a decrease in the surface average heat extraction flux. The continuous casting apparatus according to claim 15 , wherein the multi-stage tapered short side mold plate is moved downward in the casting direction. 鋳造方向に相異なる2以上のテーパを有する一対の多段テーパ短辺鋳型板と、前記多段テーパ短辺鋳型板を幅方向両側から挟む一対の長辺鋳型板とからなる鋳型を用いた連続鋳造方法において、  Continuous casting method using a mold comprising a pair of multi-step taper short side mold plates having two or more tapers different in casting direction and a pair of long side mold plates sandwiching the multi-step taper short side mold plate from both sides in the width direction In
鋳造速度に応じて鋳造中に前記多段テーパ短辺鋳型板を鋳造方向に移動させることにより、前記多段テーパ短辺鋳型板のテーパ変化点の位置を前記鋳型内における溶融金属のメニスカス位置に対して鋳造方向に相対移動させ、  The position of the taper change point of the multistage tapered short side mold plate is moved with respect to the meniscus position of the molten metal in the mold by moving the multistage tapered short side mold plate in the casting direction during casting according to the casting speed. Move relative to the casting direction,
前記メニスカス位置から前記多段テーパ短辺鋳型板のテーパ変化点までの距離をx(mm)とし、前記鋳造速度をV(m/min)としたときに、  When the distance from the meniscus position to the taper changing point of the multistage tapered short side mold plate is x (mm) and the casting speed is V (m / min),
鋳造速度V  Casting speed V 0 、変化点位置x, Change point position x 0 で連続鋳造している状態から、前記鋳造速度をVFrom the state of continuous casting at 0 からVに減少させる場合は下記(1)式を満たし、前記鋳造速度をVIn the case of decreasing from V to V, the following formula (1) is satisfied, and the casting speed is set to V 0 からVに増加させる場合は下記(2)式を満たすように、鋳造中に前記多段テーパ短辺鋳型板を鋳造方向に移動させることを特徴とする、連続鋳造方法。In the case of increasing from V to V, the continuous casting method is characterized in that the multi-stage tapered short side mold plate is moved in the casting direction during casting so as to satisfy the following expression (2).
    x 0 <x≦−200(V−V<X ≦ −200 (V−V 0 )+x) + X 0 :V<V  : V <V 0 (1)  (1)
    x 0 >x≧−200(V−V> X ≧ −200 (V−V 0 )+x) + X 0 :V>V  : V> V 0 (2)  (2)
鋳造方向に相異なる2以上のテーパを有する一対の多段テーパ短辺鋳型板と、前記多段テーパ短辺鋳型板を幅方向両側から挟む一対の長辺鋳型板とからなる鋳型と、  A mold comprising a pair of multi-stage taper short side mold plates having two or more tapers different from each other in the casting direction, and a pair of long side mold plates sandwiching the multi-stage taper short side mold plate from both sides in the width direction;
鋳造速度に応じて鋳造中に前記多段テーパ短辺鋳型板を鋳造方向に移動させることにより、前記多段テーパ短辺鋳型板のテーパ変化点の位置を前記鋳型内における溶融金属のメニスカス位置に対して鋳造方向に相対移動させる短辺駆動機構と、  The position of the taper change point of the multistage tapered short side mold plate is moved with respect to the meniscus position of the molten metal in the mold by moving the multistage tapered short side mold plate in the casting direction during casting according to the casting speed. A short-side drive mechanism for relative movement in the casting direction;
を備え、With
前記メニスカス位置から前記多段テーパ短辺鋳型板のテーパ変化点までの距離をx(mm)とし、前記鋳造速度をV(m/min)としたときに、  When the distance from the meniscus position to the taper changing point of the multistage tapered short side mold plate is x (mm) and the casting speed is V (m / min),
鋳造速度V  Casting speed V 0 、変化点位置x, Change point position x 0 で連続鋳造している状態から、前記鋳造速度をVFrom the state of continuous casting at 0 からVに減少させる場合は下記(1)式を満たし、前記鋳造速度をVIn the case of decreasing from V to V, the following formula (1) is satisfied, and the casting speed is set to V 0 からVに増加させる場合は下記(2)式を満たすように、鋳造中に前記多段テーパ短辺鋳型板を鋳造方向に移動させることを特徴とする、連続鋳造装置。When increasing from V to V, the continuous casting apparatus is characterized in that the multi-stage tapered short side mold plate is moved in the casting direction during casting so as to satisfy the following expression (2).
    x 0 <x≦−200(V−V<X ≦ −200 (V−V 0 )+x) + X 0 :V<V  : V <V 0 (1)  (1)
    x 0 >x≧−200(V−V> X ≧ −200 (V−V 0 )+x) + X 0 :V>V  : V> V 0 (2)  (2)
鋳造方向に相異なる2以上のテーパを有する一対の多段テーパ短辺鋳型板と、前記多段テーパ短辺鋳型板を幅方向両側から挟む一対の長辺鋳型板とからなる鋳型を用いた連続鋳造方法において、  Continuous casting method using a mold comprising a pair of multi-step taper short side mold plates having two or more tapers different in casting direction and a pair of long side mold plates sandwiching the multi-step taper short side mold plate from both sides in the width direction In
溶融金属の炭素濃度に応じて鋳造中に前記多段テーパ短辺鋳型板を鋳造方向に移動させることにより、前記多段テーパ短辺鋳型板のテーパ変化点の位置を前記鋳型内における溶融金属のメニスカス位置に対して鋳造方向に相対移動させ、  The position of the taper change point of the multi-stage tapered short side mold plate is moved in the casting direction during casting according to the carbon concentration of the molten metal, so that the meniscus position of the molten metal in the mold Relative to the casting direction
前記溶融金属の炭素濃度C(質量%)が0.05<C<0.2であるときは、C≦0.05又はC≧0.2であるときよりも、鋳造中に前記多段テーパ短辺鋳型板を鋳造方向下方に移動させることを特徴とする、連続鋳造方法。  When the carbon concentration C (mass%) of the molten metal is 0.05 <C <0.2, the multistage taper is shorter during casting than when C ≦ 0.05 or C ≧ 0.2. A continuous casting method, wherein the side mold plate is moved downward in the casting direction.
鋳造方向に相異なる2以上のテーパを有する一対の多段テーパ短辺鋳型板と、前記多段テーパ短辺鋳型板を幅方向両側から挟む一対の長辺鋳型板とからなる鋳型と、  A mold comprising a pair of multi-stage taper short side mold plates having two or more tapers different from each other in the casting direction, and a pair of long side mold plates sandwiching the multi-stage taper short side mold plate from both sides in the width direction;
溶融金属の炭素濃度に応じて鋳造中に前記多段テーパ短辺鋳型板を鋳造方向に移動させることにより、前記多段テーパ短辺鋳型板のテーパ変化点の位置を前記鋳型内における溶融金属のメニスカス位置に対して鋳造方向に相対移動させる短辺駆動機構と、  The position of the taper change point of the multi-stage tapered short side mold plate is moved in the casting direction during casting according to the carbon concentration of the molten metal, so that the meniscus position of the molten metal in the mold A short side drive mechanism that moves relative to the casting direction with respect to,
を備え、With
前記溶融金属の炭素濃度C(質量%)が0.05<C<0.2であるときは、C≦0.05又はC≧0.2であるときよりも、鋳造中に前記多段テーパ短辺鋳型板を鋳造方向下方に移動させることを特徴とする、連続鋳造装置。  When the carbon concentration C (mass%) of the molten metal is 0.05 <C <0.2, the multistage taper is shorter during casting than when C ≦ 0.05 or C ≧ 0.2. A continuous casting apparatus, wherein the side mold plate is moved downward in the casting direction.
JP2010017081A 2009-03-11 2010-01-28 Continuous casting method and continuous casting apparatus Active JP5423434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010017081A JP5423434B2 (en) 2009-03-11 2010-01-28 Continuous casting method and continuous casting apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009058248 2009-03-11
JP2009058248 2009-03-11
JP2010017081A JP5423434B2 (en) 2009-03-11 2010-01-28 Continuous casting method and continuous casting apparatus

Publications (2)

Publication Number Publication Date
JP2010234443A JP2010234443A (en) 2010-10-21
JP5423434B2 true JP5423434B2 (en) 2014-02-19

Family

ID=43089292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010017081A Active JP5423434B2 (en) 2009-03-11 2010-01-28 Continuous casting method and continuous casting apparatus

Country Status (1)

Country Link
JP (1) JP5423434B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT519154A1 (en) * 2016-09-26 2018-04-15 Primetals Technologies Austria GmbH Regulation of the narrow-side conicity of a continuous casting mold

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5653849A (en) * 1979-10-08 1981-05-13 Kawasaki Steel Corp Continuous casting method of steel slab of less surface defects
JPS5779047A (en) * 1980-11-05 1982-05-18 Nippon Kokan Kk <Nkk> Mold for continuous casting
JPH02247059A (en) * 1989-03-20 1990-10-02 Sumitomo Metal Ind Ltd Method and device for controlling curved short wall side in mold for continuous casting
JPH084893B2 (en) * 1990-01-11 1996-01-24 住友重機械工業株式会社 Continuous casting method and mold for continuous casting equipment
JPH0565451U (en) * 1992-02-05 1993-08-31 住友金属工業株式会社 Mold for continuous casting
JPH0631418A (en) * 1992-07-17 1994-02-08 Sumitomo Metal Ind Ltd Continuous casting method
JP2972051B2 (en) * 1993-04-15 1999-11-08 住友重機械工業株式会社 Steel continuous casting mold and continuous casting method
JPH09122835A (en) * 1995-10-31 1997-05-13 Kawasaki Steel Corp Method for changing thickness of mold for continuous casting and mold thereof
JPH1094856A (en) * 1996-09-25 1998-04-14 Nippon Steel Corp Structure of mold variable in size of cast slab
JP2003305540A (en) * 2002-04-09 2003-10-28 Nippon Steel Corp Mold for continuous casting and continuous casting method using the same
JP4337565B2 (en) * 2004-01-29 2009-09-30 Jfeスチール株式会社 Steel slab continuous casting method
JP4478074B2 (en) * 2005-06-20 2010-06-09 新日本製鐵株式会社 Method for continuous casting of molten metal
JP4478073B2 (en) * 2005-06-20 2010-06-09 新日本製鐵株式会社 Continuous casting mold design method
JP4749997B2 (en) * 2005-11-30 2011-08-17 株式会社神戸製鋼所 Continuous casting method
JP5047714B2 (en) * 2007-07-18 2012-10-10 新日本製鐵株式会社 Continuous casting method and continuous casting mold
JP4608558B2 (en) * 2008-01-10 2011-01-12 新日本製鐵株式会社 Continuous casting method and continuous casting mold

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT519154A1 (en) * 2016-09-26 2018-04-15 Primetals Technologies Austria GmbH Regulation of the narrow-side conicity of a continuous casting mold
AT519154B1 (en) * 2016-09-26 2019-12-15 Primetals Technologies Austria GmbH Regulation of the narrow side taper of a continuous casting mold

Also Published As

Publication number Publication date
JP2010234443A (en) 2010-10-21

Similar Documents

Publication Publication Date Title
JP5047714B2 (en) Continuous casting method and continuous casting mold
JP5428902B2 (en) Continuous casting method and continuous casting apparatus
JP5423434B2 (en) Continuous casting method and continuous casting apparatus
JP4608558B2 (en) Continuous casting method and continuous casting mold
KR20120044429A (en) Device for controlling cooling of slab and method therefor
JP5825084B2 (en) Continuous casting method of high carbon steel slab
WO2009119824A1 (en) Method of controlling sliding nozzle device and plate used therefor
JPH058004A (en) Method for controlling light rolling reduction in continuous casting equipment
JP4893068B2 (en) Method and apparatus for controlling solidification completion position of continuous cast slab and manufacturing method of continuous cast slab
JP5042785B2 (en) Short side taper control method for continuous casting mold.
CZ213994A3 (en) Metal, particularly steel continuous casting process in billet and block sections
KR20110103474A (en) Continuous casting method, and continuous casting mold
CN112180997B (en) Thin strip continuous casting molten pool liquid level control method and device based on CCD liquid level detection
JP6331757B2 (en) Equipment for continuous casting of steel
EP2769782A1 (en) Continuous casting machine mold hot water surface control method and device, and continuous casting machine comprising device
JP5018441B2 (en) Method of drawing slab after completion of casting in continuous casting
JPH01205861A (en) Method for controlling clamping force of cast slab in continuous casting equipment
JP2007125575A (en) Method for continuously producing cast slab
JP5476959B2 (en) Continuous casting method under light pressure
JP2019098403A (en) Expansion method of cast slab width in continuous casting
JP5652362B2 (en) Steel continuous casting method
RU2286863C2 (en) Method to control secondary cooling of slab in continuous-casting machines at stationary and transient casting conditions
JPH04333355A (en) Method for continuously casting steel with tundish stopper
KR101435034B1 (en) Method for rolling heavy plate
JP2020104139A (en) Twin drum type continuous casting apparatus and twin drum type continuous casting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130813

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131111

R151 Written notification of patent or utility model registration

Ref document number: 5423434

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350