JP2009019188A - Monolith-shaped organic porous body, its manufacturing method, monolith-shaped organic porous ion exchanger and chemical filter - Google Patents

Monolith-shaped organic porous body, its manufacturing method, monolith-shaped organic porous ion exchanger and chemical filter Download PDF

Info

Publication number
JP2009019188A
JP2009019188A JP2008081613A JP2008081613A JP2009019188A JP 2009019188 A JP2009019188 A JP 2009019188A JP 2008081613 A JP2008081613 A JP 2008081613A JP 2008081613 A JP2008081613 A JP 2008081613A JP 2009019188 A JP2009019188 A JP 2009019188A
Authority
JP
Japan
Prior art keywords
organic porous
monolithic
porous material
porous body
monolithic organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008081613A
Other languages
Japanese (ja)
Other versions
JP5208550B2 (en
Inventor
Akira Nakamura
彰 中村
Hiroshi Inoue
洋 井上
Koji Yamanaka
弘次 山中
Hiroyuki Nishimura
寛之 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2008081613A priority Critical patent/JP5208550B2/en
Publication of JP2009019188A publication Critical patent/JP2009019188A/en
Application granted granted Critical
Publication of JP5208550B2 publication Critical patent/JP5208550B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a monolith-shaped organic porous body of a new structure having a continuous macro-void structure of a uniform and large structure, low in a pressure loss when permeating fluid such as water and gas, and useful as an adsorbent and an ion exchanger; its manufacturing method; a monolith-shaped organic porous ion exchanger; and a chemical filter. <P>SOLUTION: In an organic porous body of a continuous macro-void structure, a connected part of mutually connected macro-void and macro-void becomes an opening of a radius of 0.1-25 mm. In the monolith-shaped organic porous body, a skeleton part of the organic porous body is a particle-coagulated pore structure having a three-dimensionally continuous pore by coagulating an organic polymer particle. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、吸着装置、脱イオン水製造装置あるいはガス状汚染物質除去装置等に用いられる吸着剤またはイオン交換体として有用な連続マクロボイド構造を有するモノリス状有機多孔質体、その製造方法、モノリス状有機多孔質イオン交換体及びケミカルフィルターに関するものである。   The present invention relates to a monolithic organic porous material having a continuous macrovoid structure useful as an adsorbent or an ion exchanger used in an adsorption device, a deionized water production device, a gaseous pollutant removal device, or the like, a production method thereof, and a monolith The present invention relates to an organic porous ion exchanger and a chemical filter.

互いにつながっているマクロポアとマクロポアの壁内に共通の開口を有する粒子凝集型空孔構造を有するモノリス状多孔質体としては、シリカ等で構成された無機多孔質体が知られている(米国特許第5624875号)。そして、該無機多孔質体はクロマトグラフィー用充填剤として活発な用途開発がなされている。   An inorganic porous body made of silica or the like is known as a monolithic porous body having a particle aggregation type pore structure having a common opening in a macropore and a macropore wall connected to each other (US Patent) No. 5624875). The inorganic porous material has been actively developed as a chromatographic filler.

しかし、この無機多孔質体は親水性であるため、吸着剤として用いるためには、表面の疎水処理等の煩雑且つコストアップを伴う操作が必要であった。また、この無機多孔質体はアルカリに弱いため、イオン交換樹脂において通常行われる、アルカリを用いた再生操作が実施できないばかりでなく、単に中性の水中に長時間保持した場合でも、シリカの加水分解によって生じるシリケートイオンが水中に溶出するため、純水や超純水を製造するためのイオン交換体として用いることは不可能であった。さらに、上記無機多孔質体はその製法上、連続した空孔である共通の開口が最大でも20μm以下であるため流体を透過させる際の圧力損失が高く、低圧力損失下で大流量の水を処理する必要のある脱イオン水製造装置に充填し、イオン交換体として用いることは困難であった。   However, since this inorganic porous body is hydrophilic, in order to use it as an adsorbent, a complicated operation such as a hydrophobic treatment on the surface, etc., is necessary. In addition, since this inorganic porous material is vulnerable to alkali, not only the regeneration operation using alkali usually performed in an ion exchange resin cannot be carried out, but also when it is simply kept in neutral water for a long time, Since silicate ions generated by decomposition are eluted in water, it was impossible to use as an ion exchanger for producing pure water or ultrapure water. Furthermore, the above-mentioned inorganic porous body has a common opening, which is a continuous pore, having a maximum opening of 20 μm or less because of its manufacturing method. It was difficult to fill a deionized water production apparatus that needs to be treated and use it as an ion exchanger.

また、同様の構造を有するモノリス状有機多孔質体や該多孔質体にイオン交換基を導入したモノリス状有機多孔質イオン交換体が特開2002−306976号に開示されている。該有機多孔質体や有機多孔質イオン交換体は、上記無機多孔質体の欠点を克服し、吸着剤、クロマトグラフィー用充填剤および脱イオン水製造装置等に用いられるイオン交換体として有用である。しかし、該有機多孔質イオン交換体はその構造上の制約から、実用的に要求される低い圧力損失を達成しようとすると、部分的に大きなボイドが形成されることで構造が不均一になる、製造上の再現性が著しく劣る、混合物が不安定になり、ついには構造が崩壊してしまうといった欠点を有していた。   JP-A-2002-306976 discloses a monolithic organic porous body having a similar structure and a monolithic organic porous ion exchanger having an ion exchange group introduced into the porous body. The organic porous material or organic porous ion exchanger overcomes the disadvantages of the inorganic porous material, and is useful as an ion exchanger used in adsorbents, chromatographic fillers, deionized water production apparatuses, and the like. . However, the organic porous ion exchanger, due to its structural limitations, when trying to achieve a low pressure loss that is practically required, the structure becomes uneven due to the formation of large voids partially. The reproducibility in production was extremely inferior, the mixture became unstable, and eventually the structure collapsed.

一方、上記粒子凝集型空孔構造以外の構造を有するモノリス状有機多孔質体としては、粒子凝集型構造を有する多孔質体が特表平7−501140号等に開示されている。この粒子凝集型モノリス状有機多孔質体は、約200nm未満の小さな孔と、直径が約600nm以上から約3000nmに及ぶ大きな孔が形成されており、クロマトグラフィーカラムに好適なプラグである。   On the other hand, as a monolithic organic porous body having a structure other than the above-mentioned particle aggregation type pore structure, a porous body having a particle aggregation type structure is disclosed in JP 7-501140 A. This particle-aggregated monolithic organic porous material has small pores of less than about 200 nm and large pores having a diameter ranging from about 600 nm to about 3000 nm, and is a plug suitable for a chromatography column.

なお、特開2004−321930号公報には、連続気泡構造のモノリス状有機多孔質イオン交換体を吸着層として用いるケミカルフィルターが開示されている。このケミカルフィルターによれば、気体透過速度が速くてもガス状汚染物質の吸着除去能力を保持でき、ガス状汚染物質が超微量であっても除去可能なものである。しかしながら、上記モノリスを吸着層として用いるケミカルフィルターは通気時の圧力損失が非常に高く、通気するための送風機が非常に容量の大きなものが必要であったため、通気時の圧力損失が低く、小型の送風機でも通気でき、かつ、ガス状汚染物質の吸着除去能力の高いケミカルフィルターの開発が望まれていた。
米国特許第5624875号(請求項1) 特開2002−306976号(請求項1) 特表平7−501140号(第4頁左下欄第3行〜第8行) 特開2004−321930号公報(請求項1)
JP 2004-321930 A discloses a chemical filter using a monolithic organic porous ion exchanger having an open cell structure as an adsorption layer. According to this chemical filter, the ability to adsorb and remove gaseous pollutants can be maintained even if the gas permeation rate is high, and even if the amount of gaseous pollutants is extremely small, it can be removed. However, the chemical filter using the above monolith as the adsorption layer has a very high pressure loss during ventilation, and a blower for ventilation requires a very large capacity. It has been desired to develop a chemical filter that can be ventilated by a blower and has a high ability to adsorb and remove gaseous pollutants.
US Pat. No. 5,624,875 (Claim 1) JP 2002-306976 (Claim 1) Special table hei 7-501140 (page 4, lower left column, lines 3 to 8) JP 2004-321930 A (Claim 1)

しかしながら、特表平7−501140号に記載の方法で得られた多孔質体は、前記の如く、連続した空孔径が最大でも約3μmと小さく、低圧で大流量の処理を行うことが要求される工業規模の脱イオン水製造装置等に用いることはできないという問題があった。   However, the porous body obtained by the method described in JP-A-7-501140 has a continuous pore diameter as small as about 3 μm at the maximum, and is required to perform a large flow rate treatment at a low pressure. There is a problem that it cannot be used for an industrial scale deionized water production apparatus.

このため、水や気体等の流体を透過させた際の圧力損失が格段に低く、構造が均一で大きい連続空孔を有したモノリス状有機多孔質イオン交換体の開発及び、該モノリス状有機多孔質イオン交換体を製造できる製造方法の開発が望まれていた。また、従来にも増してガス状汚染物質の吸着除去能力の高いケミカルフィルターの開発が望まれていた。   Therefore, the development of a monolithic organic porous ion exchanger having a remarkably low pressure loss when a fluid such as water or gas is permeated, a uniform structure and large pores, and the monolithic organic porous Development of a production method capable of producing a porous ion exchanger has been desired. In addition, it has been desired to develop a chemical filter having a higher ability to adsorb and remove gaseous pollutants than ever before.

従って、本発明の目的は、上記従来の技術の問題点を解決したものであって、構造が均一で大きい連続マクロボイド構造を有し、水や気体等の流体を透過させた際の圧力損失が低い、吸着剤やイオン交換体として有用な新規構造のモノリス状有機多孔質体、その製造方法及びモノリス状有機多孔質イオン交換体を提供することにある。また、本発明の目的は、通気時の圧力損失が非常に低く、高いガス状汚染物質除去能力を有するケミカルフィルターを提供することにある。   Accordingly, an object of the present invention is to solve the above-mentioned problems of the prior art, and has a large continuous macrovoid structure with a uniform structure and pressure loss when a fluid such as water or gas is permeated. It is an object of the present invention to provide a monolithic organic porous material having a novel structure useful as an adsorbent or ion exchanger, a production method thereof, and a monolithic organic porous ion exchanger. Another object of the present invention is to provide a chemical filter having a very low pressure loss during ventilation and a high ability to remove gaseous pollutants.

かかる実情において、本発明者らは鋭意検討を行った結果、互いに繋がっているマクロボイドとマクロボイドの該繋がり部分が半径0.1〜25mmの開口となる連続マクロボイド構造の有機多孔質体であって、該有機多孔質体の骨格部が、有機ポリマー粒子が凝集して三次元的に連続した空孔を有する粒子凝集型空孔構造のモノリス状有機多孔質体であれば、水や気体等の流体を透過させた際の圧力損失が低く、吸着剤、イオン交換体あるいはケミカルフィルターとして有用であることなどを見出し、本発明を完成するに至った。   In such a situation, the present inventors have conducted an intensive study, and as a result, the macrovoids that are connected to each other are organic porous bodies having a continuous macrovoid structure in which the connected portions of the macrovoids have an opening with a radius of 0.1 to 25 mm. If the skeleton of the organic porous body is a monolithic organic porous body having a particle aggregation type pore structure in which organic polymer particles are aggregated and have three-dimensionally continuous pores, water or gas As a result, the present inventors have found that the pressure loss when a fluid such as a liquid is permeated is low and that it is useful as an adsorbent, an ion exchanger, or a chemical filter.

すなわち、本発明は、互いに繋がっているマクロボイドとマクロボイドの該繋がり部分が半径0.1〜25mmの開口となる連続マクロボイド構造の有機多孔質体であって、該有機多孔質体の骨格部が、有機ポリマー粒子が凝集して三次元的に連続した空孔を有する粒子凝集型空孔構造であることを特徴とするモノリス状有機多孔質体を提供するものである。   That is, the present invention relates to an organic porous body having a continuous macrovoid structure in which the connected portions of macrovoids connected to each other are openings having a radius of 0.1 to 25 mm, and the skeleton of the organic porous body The present invention provides a monolithic organic porous body characterized in that the part has a particle aggregation type pore structure in which organic polymer particles are aggregated to have three-dimensionally continuous pores.

また、本発明は、ビニルモノマー、一分子中に少なくとも2個のビニル基を有する架橋剤、ビニルモノマーや架橋剤は溶解するがビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる液状混合物を調製する工程と、容器内の該液状混合物中に多数の粒子状テンプレートを存在させ静置下重合する工程と、該重合体から該粒子状テンプレートを除去する工程とを有することを特徴とするモノリス状有機多孔質体の製造方法を提供するものである。   The present invention also includes a vinyl monomer, a crosslinking agent having at least two vinyl groups in one molecule, an organic solvent that dissolves the vinyl monomer and the crosslinking agent but does not dissolve the polymer formed by polymerization of the vinyl monomer, and polymerization initiation. A step of preparing a liquid mixture made of an agent, a step of polymerizing under standing in the presence of a number of particulate templates in the liquid mixture in a container, and a step of removing the particulate template from the polymer The present invention provides a method for producing a monolithic organic porous material.

また、本発明は、前記モノリス状有機多孔質体の骨格表面及び骨格内部にイオン交換基が導入されたものであって、水湿潤状態での体積当りのイオン交換容量が0.01mg当量/ml以上であることを特徴とするモノリス状有機多孔質イオン交換体を提供するものである。   In the present invention, an ion exchange group is introduced on the skeleton surface and inside the skeleton of the monolithic organic porous material, and the ion exchange capacity per volume in a water wet state is 0.01 mg equivalent / ml. The present invention provides a monolithic organic porous ion exchanger characterized by the above.

また、本発明は、前記モノリス状有機多孔質体を吸着層として用いることを特徴とするケミカルフィルターを提供するものである。   The present invention also provides a chemical filter using the monolithic organic porous material as an adsorption layer.

また、本発明は、前記モノリス状有機多孔質イオン交換体を吸着層として用いることを特徴とするケミカルフィルターを提供するものである。   The present invention also provides a chemical filter characterized in that the monolithic organic porous ion exchanger is used as an adsorption layer.

本発明のモノリス状有機多孔質体は、連続マクロボイド構造が従来の粒子凝集型空孔構造や連続気泡構造を有するモノリス状有機多孔質体のそれに比べて格段に大きいため、低圧、大流量の処理が可能で、従来用いられてきた合成吸着剤を代替可能であるばかりでなく、その優れた流体透過特性を生かして、合成吸着剤では対応できなかった高粘性成分の吸着除去、ガス状汚染物質除去等新しい用途分野への応用が可能となる。また、本発明のモノリス状有機多孔質体の製造方法によれば、前記モノリス状有機多孔質体を簡易に且つ確実に製造することができる。また、本発明のモノリス状有機多孔質イオン交換体は、連続マクロボイド構造が従来の粒子凝集型空孔構造や連続気泡構造を有するモノリス状有機多孔質イオン交換体のそれに比べて格段に大きいため、低圧、大流量の水処理が可能で、従来用いられてきたイオン交換樹脂を代替可能であるばかりでなく、その優れた流体透過特性を生かして、イオン交換樹脂では対応できなかった高粘性成分中のイオン除去、ケミカルフィルター等のガス状汚染物質除去装置に充填して好適に用いることができる。   The monolithic organic porous body of the present invention has a continuous macrovoid structure that is significantly larger than that of the conventional monolithic organic porous body having a particle-aggregated pore structure or an open-cell structure, and therefore has a low pressure and a large flow rate. In addition to being able to replace conventional synthetic adsorbents that can be processed, it is possible to take advantage of its excellent fluid permeability and adsorb and remove high-viscosity components that could not be handled by synthetic adsorbents. Application to new application fields such as substance removal becomes possible. Moreover, according to the method for producing a monolithic organic porous body of the present invention, the monolithic organic porous body can be produced easily and reliably. In addition, the monolithic organic porous ion exchanger of the present invention has a continuous macrovoid structure that is much larger than that of the conventional monolithic organic porous ion exchanger having a particle aggregation type pore structure or an open cell structure. High-viscosity components that cannot be used with ion-exchange resins due to their excellent fluid permeation characteristics as well as being able to replace conventional ion-exchange resins. It can be suitably used by filling in a gaseous pollutant removing device such as ion removal inside and chemical filter.

本発明のモノリス状有機多孔質体及びモノリス状有機多孔質イオン交換体(以下、両者を説明する際、単に「モノリス状多孔質体等」とも言う。)基本構造は、図1の模式図に示すように、マクロボイドとマクロボイドが繋がった特定構造の連続マクロボイド構造を呈する有機多孔質体の骨格部が、有機ポリマー粒子が凝集して三次元的に連続した空孔を有する粒子凝集型空孔構造となるものである。本発明のモノリス状多孔質体等中、連続マクロボイド構造Yにおいて、液体や気体が低い圧力損失で流れる大きな流路を形成し、粒子凝集型空孔構造Xにおいて、液体や気体が浸透する該連続マクロボイドよりも小さな流路を形成する。   The basic structure of the monolithic organic porous body and the monolithic organic porous ion exchanger of the present invention (hereinafter also referred to as “monolithic porous body etc.” when both are described) is shown in the schematic diagram of FIG. As shown in the figure, the skeleton part of the organic porous body exhibiting a continuous macrovoid structure with a specific structure in which macrovoids are connected to each other has a particle aggregation type in which organic polymer particles are aggregated to have three-dimensionally continuous pores It becomes a pore structure. In the monolithic porous body or the like of the present invention, in the continuous macrovoid structure Y, a large flow path through which liquid or gas flows with low pressure loss is formed, and in the particle aggregation type pore structure X, the liquid or gas penetrates. A channel smaller than a continuous macrovoid is formed.

モノリス状多孔質体等の骨格部は、有機ポリマー粒子が凝集して三次元的に連続した空孔を有する粒子凝集型空孔構造であり、その一例としては、図1の模式図に示すように、架橋構造単位を有する半径が0.5〜25μm、好ましくは0.5〜15μmの有機ポリマー粒子が凝集して三次元的に連続した骨格部分3を形成し、その骨格間に空孔半径が10〜50μm、好ましくは10〜45μmの三次元的に連続した空孔4を有する粒子凝集型空孔構造Xである。   The skeleton portion of the monolithic porous body or the like has a particle aggregation type pore structure in which organic polymer particles are aggregated and have three-dimensionally continuous pores. As an example, as shown in the schematic diagram of FIG. In addition, organic polymer particles having a radius of 0.5 to 25 μm, preferably 0.5 to 15 μm, having a crosslinked structural unit aggregate to form a three-dimensionally continuous skeleton part 3, and a pore radius between the skeletons Is a particle aggregation type pore structure X having three-dimensionally continuous pores 4 of 10 to 50 μm, preferably 10 to 45 μm.

粒子凝集型空孔構造Xにおいて、有機ポリマー粒子の半径が小さ過ぎると、骨格間の連続した空孔半径が小さくなり過ぎてしまうため好ましくなく、大き過ぎると、液体または気体とモノリス状多孔質体等との接触が不十分となり、その結果、吸着特性やイオン交換特性が低下してしまうため好ましくない。また、骨格間に存在する三次元的に連続した空孔半径の大きさが小さ過ぎると、水や気体等の流体を透過させた際の圧力損失が大きくなってしまうため好ましくなく、一方、大き過ぎると、液体または気体と有機多孔質体や有機多孔質イオン交換体との接触が不十分となり、吸着特性やイオン交換特性が低下してしまうため好ましくない。上記有機ポリマー粒子の大きさは、SEMを用いることで簡便に測定できる。また、骨格間に存在する三次元的に連続した空孔径の大きさは、SEM写真から求めることができ、また、凝集空孔構造部分に対する水銀圧入法により得られた細孔分布曲線の極大値として求めることもできる。   In the particle aggregation type pore structure X, if the radius of the organic polymer particles is too small, the continuous pore radius between the skeletons becomes too small, which is not preferable. If too large, the liquid or gas and the monolithic porous body As a result, the contact with the resin becomes insufficient, and as a result, the adsorption characteristics and the ion exchange characteristics are deteriorated. Also, if the size of the three-dimensional continuous pore radius existing between the skeletons is too small, it is not preferable because the pressure loss when a fluid such as water or gas is permeated increases. If it is too high, contact between the liquid or gas and the organic porous body or organic porous ion exchanger becomes insufficient, and the adsorption characteristics and ion exchange characteristics deteriorate, which is not preferable. The size of the organic polymer particles can be easily measured by using SEM. In addition, the size of the three-dimensionally continuous pore diameter existing between the skeletons can be obtained from SEM photographs, and the maximum value of the pore distribution curve obtained by the mercury intrusion method for the aggregated pore structure portion. Can also be sought.

また、粒子凝集型空孔構造は、1〜5ml/gの全細孔容積を有するものが好ましい。全細孔容積が小さ過ぎると、流体透過時の圧力損失が大きくなってしまうため好ましくなく、更に、単位断面積当りの透過液体または気体量が小さくなり、処理能力が低下してしまうため好ましくない。一方、全細孔容積が大き過ぎると、体積当りの吸着量や体積当りのイオン交換容量が低下してしまうため好ましくない。   The particle aggregation type pore structure preferably has a total pore volume of 1 to 5 ml / g. If the total pore volume is too small, the pressure loss at the time of fluid permeation increases, which is not preferable. Furthermore, the amount of permeate liquid or gas per unit cross-sectional area decreases, and the processing capacity decreases, which is not preferable. . On the other hand, if the total pore volume is too large, the amount of adsorption per volume and the ion exchange capacity per volume decrease, which is not preferable.

有機ポリマー粒子が凝集して三次元的に連続した骨格部分の材料は、架橋構造単位を有する有機ポリマー材料である。すなわち、該有機ポリマー材料は、ビニルモノマーからなる構成単位と、分子中に2個以上のビニル基を有する架橋剤構造単位とを有するものであり、該ポリマー材料はポリマー材料を構成する全構成単位に対して、好ましくは1〜5モル%、特に好ましくは1〜4モル%の架橋構造単位を含んでいる。架橋構造単位が小さ過ぎると、機械的強度が不足するため好ましくなく、一方、大き過ぎると、上記骨格間に三次元的に連続して存在する空孔径が小さくなってしまい、圧力損失が大きくなってしまうため好ましくない。   The material of the skeleton part in which the organic polymer particles are aggregated to be three-dimensionally continuous is an organic polymer material having a crosslinked structural unit. That is, the organic polymer material has a constitutional unit composed of a vinyl monomer and a crosslinker structural unit having two or more vinyl groups in the molecule, and the polymer material comprises all constitutional units constituting the polymer material. On the other hand, it preferably contains 1 to 5 mol%, particularly preferably 1 to 4 mol% of crosslinked structural units. If the cross-linking structural unit is too small, it is not preferable because the mechanical strength is insufficient. On the other hand, if the cross-linking structural unit is too large, the pore diameter that exists three-dimensionally continuously between the skeletons becomes small, and the pressure loss increases. This is not preferable.

連続マクロボイド構造Yは、モノリス状多孔質体等中に形成されている。連続マクロボイド構造Yは、互いにつながっているマクロボイド1とマクロボイド1の繋がり部分が半径0.1〜25mm、好ましくは0.5〜15mm、特に好ましくは、0.5〜10mmの開口2となる構造である。すなわち、連続マクロボイド構造Yは、通常、半径0.5〜50mmのマクロボイド1とマクロボイド1が重なり合い、この重なる部分が開口2となる構造を有するもので、その部分がオープンポア構造のものである。オープンポア構造は、液体や気体を流せば該マクロボイドと該開口で形成される空孔構造内が流路となる。すなわち、モノリス状多孔質体等においては、粒子凝集型空孔構造の三次元的に連続した空孔と連続マクロボイド構造のオープンポアが混在し且つ互いに繋がって流路を形成している。   The continuous macrovoid structure Y is formed in a monolithic porous body or the like. In the continuous macrovoid structure Y, the connecting portions of the macrovoid 1 and the macrovoid 1 connected to each other have an opening 2 having a radius of 0.1 to 25 mm, preferably 0.5 to 15 mm, particularly preferably 0.5 to 10 mm. It is the structure which becomes. That is, the continuous macrovoid structure Y usually has a structure in which a macrovoid 1 and a macrovoid 1 having a radius of 0.5 to 50 mm overlap each other, and this overlapping portion becomes an opening 2, and this portion has an open pore structure. It is. In the open pore structure, if a liquid or a gas is flowed, the pore structure formed by the macro void and the opening becomes a flow path. That is, in a monolithic porous body or the like, three-dimensionally continuous pores of a particle aggregation type pore structure and open pores of a continuous macrovoid structure are mixed and connected to each other to form a flow path.

マクロボイドとマクロボイドの重なりは、1個のマクロボイドで1〜2個、多くのものは3〜10個である。開口の半径が0.1mm未満であると、液体または気体透過時の圧力損失が大きく、圧力損失を低減させるという十分な効果が得られにくいため好ましくない。一方、開口の半径が25mmを越えると、液体または気体とモノリス状多孔質体等との接触が不十分になり、その結果、吸着特性やイオン交換特性が低下してしまうため好ましくない。マクロボイドは、連続マクロボイド構造中、概ね均一に分散されている。開口の半径が25mm近傍のものは、体積が大きな吸着剤やイオン交換体を製造する場合に適用される。   The number of macrovoids overlapped with one macrovoid is 1-2, and many are 3-10. If the radius of the opening is less than 0.1 mm, the pressure loss during liquid or gas permeation is large, and it is difficult to obtain a sufficient effect of reducing the pressure loss. On the other hand, if the radius of the opening exceeds 25 mm, the contact between the liquid or gas and the monolithic porous body becomes insufficient, and as a result, the adsorption characteristics and the ion exchange characteristics are deteriorated. Macrovoids are generally uniformly distributed in the continuous macrovoid structure. Those having an opening radius in the vicinity of 25 mm are applied when producing an adsorbent or ion exchanger having a large volume.

本発明のモノリス状多孔質体等において、マクロボイドと粒子凝集型空孔構造の空孔半径は、それぞれSEM写真等において明確に認識できる。   In the monolithic porous body or the like of the present invention, the pore radius of the macrovoid and the particle aggregation type pore structure can be clearly recognized in the SEM photograph or the like.

マクロボイドの形状は特に制限はなく、例えば、立方体、直方体、楕円球状、真球状あるいは不定形状等が挙げられるが、この中、該マクロボイドが、静置下重合の後、粒子状テンプレートが除去されて形成されることから、均一充填の簡易性、該テンプレート除去後のモノリス状多孔質体等の開口構造の均一性の観点より、真球状が好ましい。   The shape of the macro void is not particularly limited, and examples thereof include a cube, a rectangular parallelepiped, an elliptic sphere, a true sphere, or an indefinite shape. Among these, the macro void is removed from the particulate template after standing polymerization. From the viewpoint of easy uniform filling and uniformity of the opening structure of the monolithic porous body after removing the template, a true spherical shape is preferable.

本発明において、連続マクロボイド構造部分の空隙率はモノリス状多孔質体等中、好適には75%前後であり、本発明のモノリス状多孔質体等の空隙率は好適には60%前後である。なお、本発明のモノリス状多孔質体等は、粒子凝集型空孔構造と連続マクロボイド構造が均一に存在しているため、粒子凝集型空孔構造をマトリックスとして、該マトリックス中に連続マクロボイド構造が形成されている構造であり、また連続マクロボイド構造をマトリックスとして、該マトリックス中に粒子凝集型空孔構造が形成されている構造でもある。   In the present invention, the porosity of the continuous macrovoid structure portion is preferably about 75% in the monolithic porous body or the like, and the porosity of the monolithic porous body or the like of the present invention is preferably about 60%. is there. Note that the monolithic porous body of the present invention has a particle agglomerated pore structure and a continuous macrovoid structure uniformly, so that the particle agglomerated pore structure is used as a matrix and the continuous macrovoids are contained in the matrix. The structure is a structure in which a continuous macrovoid structure is used as a matrix, and a particle aggregation type pore structure is formed in the matrix.

本発明のモノリス状有機多孔質体を構成する材料の種類に特に制限はなく、例えば、ポリスチレン、ポリ(α-メチルスチレン)、ポリビニルベンジルクロライド等のスチレン系ポリマー;ポリエチレン、ポリプロピレン等のポリオレフィン;ポリ塩化ビニル、ポリテトラフルオロエチレン等のポリ(ハロゲン化ポリオレフィン);ポリアクリロニトリル等のニトリル系ポリマー;ポリメタクリル酸メチル、ポリメタクリル酸グリシジル、ポリアクリル酸エチル等の(メタ)アクリル系ポリマー;スチレン−ジビニルベンゼン共重合体、ビニルベンジルクロライド−ジビニルベンゼン共重合体等が挙げられる。上記ポリマーは、単独のモノマーと架橋剤を共重合させて得られるポリマーでも、複数のモノマーと架橋剤を重合させて得られるポリマーであってもよく、また、二種類以上のポリマーがブレンドされたものであってもよい。これら有機ポリマー材料の中で、粒子凝集構造の形成の容易さ、イオン交換基導入の容易性と機械的強度の高さ、および酸・アルカリに対する安定性の高さから、スチレン−ジビニルベンゼン共重合体やビニルベンジルクロライド−ジビニルベンゼン共重合体が好ましい材料として挙げられる。特表平7−501140号の実施例に記載されているグリシジルメタクリレート−エチレングリコールジメタクリレート共重合体は、酸・アルカリに対する安定性が低く、加水分解を受けやすいため、酸・アルカリによる再生操作を頻繁に繰り返す脱イオン水製造装置に充填されるイオン交換体としてはあまり適当ではない。   There is no restriction | limiting in particular in the kind of material which comprises the monolithic organic porous body of this invention, For example, Styrenic polymers, such as a polystyrene, poly ((alpha) -methylstyrene), polyvinyl benzyl chloride; Polyolefins, such as polyethylene and a polypropylene; Poly Poly (halogenated polyolefins) such as vinyl chloride and polytetrafluoroethylene; Nitrile polymers such as polyacrylonitrile; (Meth) acrylic polymers such as polymethyl methacrylate, polyglycidyl methacrylate, and polyethyl acrylate; Styrene-divinyl Examples thereof include a benzene copolymer and a vinylbenzyl chloride-divinylbenzene copolymer. The polymer may be a polymer obtained by copolymerizing a single monomer and a crosslinking agent, or may be a polymer obtained by polymerizing a plurality of monomers and a crosslinking agent, and two or more kinds of polymers are blended. It may be a thing. Among these organic polymer materials, styrene-divinylbenzene copolymer is used because it is easy to form a particle aggregate structure, easy to introduce ion exchange groups, high mechanical strength, and high stability against acids and alkalis. Preferred materials include a polymer and a vinylbenzyl chloride-divinylbenzene copolymer. The glycidyl methacrylate-ethylene glycol dimethacrylate copolymer described in the examples of JP-T-7-501140 is low in acid / alkali stability and is susceptible to hydrolysis. It is not very suitable as an ion exchanger filled in a deionized water production apparatus that is frequently repeated.

本発明のモノリス状有機多孔質体を吸着剤として使用する場合、例えば、円筒型カラムや角型カラムに、有機多孔質体を当該カラムに挿入できる形状に切り出したものを吸着剤として充填し、これにベンゼン、トルエン、フェノール、パラフィン等の疎水性物質を含有する被処理水を通水させれば、該吸着剤に前記疎水性物質が効率よく吸着される。   When using the monolithic organic porous material of the present invention as an adsorbent, for example, a cylindrical column or a square column is filled with an organic porous material cut into a shape that can be inserted into the column as an adsorbent, If the water to be treated containing a hydrophobic substance such as benzene, toluene, phenol, paraffin or the like is allowed to flow through this, the hydrophobic substance is efficiently adsorbed on the adsorbent.

本発明のモノリス状有機多孔質イオン交換体は、前記モノリス状有機多孔質体の骨格表面及び骨格内部に更にイオン交換基を均一に導入したものであり、そのイオン交換容量としては、特に制限されないが、水湿潤状態での体積当りのイオン交換容量が好ましくは0.01mg当量/ml以上、特に好ましくは0.05〜5.0mg当量/mlのイオン交換容量を有しているものである。水湿潤状態での体積当りのイオン交換容量が0.01mg当量/ml未満であると、破過までに処理できるイオンを含んだ水の量、即ち脱イオン水の製造能力が低下してしまうため好ましくない。   The monolithic organic porous ion exchanger of the present invention is a monolithic organic porous body in which ion exchange groups are further uniformly introduced into the skeleton surface and inside the skeleton, and the ion exchange capacity is not particularly limited. However, the ion exchange capacity per volume in a wet state of water is preferably 0.01 mg equivalent / ml or more, particularly preferably 0.05 to 5.0 mg equivalent / ml. If the ion exchange capacity per volume in a water-wet state is less than 0.01 mg equivalent / ml, the amount of water containing ions that can be processed before breakthrough, that is, the ability to produce deionized water will decrease. It is not preferable.

導入されたイオン交換基は、多孔質体の表面のみならず、多孔質体の骨格内部にまで均一に分布している。ここで言う「イオン交換基が均一に分布している」とは、イオン交換基の分布が少なくともμmオーダーで表面および骨格内部に均一に分布していることを指す。イオン交換基の分布状況は、EPMAやSIMS等を用いることで、比較的簡単に確認することができる。また、イオン交換基が、多孔質体の表面のみならず、多孔質体の骨格内部にまで均一に分布していると、表面と内部の物理的性質及び化学的性質を均一にできるため、膨潤及び収縮に対する耐久性が向上する。   The introduced ion exchange groups are uniformly distributed not only on the surface of the porous body but also within the skeleton of the porous body. Here, “ion exchange groups are uniformly distributed” means that the distribution of ion exchange groups is uniformly distributed on the surface and inside the skeleton in the order of at least μm. The distribution of ion exchange groups can be confirmed relatively easily by using EPMA, SIMS, or the like. In addition, if the ion exchange groups are uniformly distributed not only on the surface of the porous body but also within the skeleton of the porous body, the physical and chemical properties of the surface and the interior can be made uniform, so that the swelling And durability against shrinkage is improved.

有機多孔質体に導入するイオン交換基としては、スルホン酸基、カルボン酸基、イミノ二酢酸基、リン酸基、リン酸エステル基等のカチオン交換基;四級アンモニウム基、三級アミノ基、二級アミノ基、一級アミノ基、ポリエチレンイミン基、第三スルホニウム基、ホスホニウム基等のアニオン交換基;アミノリン酸基、スルホベタイン等の両性イオン交換基が挙げられる。   Examples of ion exchange groups to be introduced into the organic porous material include cation exchange groups such as sulfonic acid groups, carboxylic acid groups, iminodiacetic acid groups, phosphoric acid groups, and phosphoric acid ester groups; quaternary ammonium groups, tertiary amino groups, Examples include anion exchange groups such as secondary amino group, primary amino group, polyethyleneimine group, tertiary sulfonium group, and phosphonium group; amphoteric ion exchange groups such as aminophosphate group and sulfobetaine.

次に、本発明のモノリス状有機多孔質体の製造方法について説明する。すなわち、当該製造方法は、ビニルモノマー、一分子中に少なくとも2個のビニル基を有する架橋剤、ビニルモノマーや架橋剤は溶解するがビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を調製する工程と、容器内の該混合物中に多数の粒子状テンプレートを存在させ静置下重合する工程と、該重合体から該粒子状テンプレートを除去する工程とを有する。   Next, the manufacturing method of the monolithic organic porous body of this invention is demonstrated. That is, the production method includes a vinyl monomer, a cross-linking agent having at least two vinyl groups in one molecule, an organic solvent in which a vinyl monomer or a cross-linking agent is dissolved but a polymer formed by polymerization of the vinyl monomer is not dissolved, and polymerization There are a step of preparing a mixture of initiators, a step of polymerizing under standing in the presence of a number of particulate templates in the mixture in a container, and a step of removing the particulate templates from the polymer.

I工程で用いられるビニルモノマーとしては、分子中に重合可能なビニル基を含有し、有機溶媒に対する溶解性が高い親油性のモノマーであれば、特に制限はない。これらビニルモノマーの具体例としては、スチレン、α-メチルスチレン、ビニルトルエン、ビニルベンジルクロライド等のスチレン系モノマー;エチレン、プロピレン、1-ブテン、イソブテン等のα-オレフィン;ブタジエン、イソプレン、クロロプレン等のジエン系モノマー;塩化ビニル、臭化ビニル、塩化ビニリデン、テトラフルオロエチレン等のハロゲン化オレフィン;アクリロニトリル、メタクリロニトリル等のニトリル系モノマー;酢酸ビニル、プロピオン酸ビニル等のビニルエステル;アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル、メタクリル酸グリシジル等の(メタ)アクリル系モノマーが挙げられる。これらモノマーは、1種単独又は2種以上を組み合わせて使用することができる。本発明で好適に用いられるビニルモノマーは、スチレン、ビニルベンジルクロライド等のスチレン系モノマーである。   The vinyl monomer used in Step I is not particularly limited as long as it is a lipophilic monomer that contains a polymerizable vinyl group in the molecule and has high solubility in an organic solvent. Specific examples of these vinyl monomers include styrene monomers such as styrene, α-methylstyrene, vinyl toluene and vinyl benzyl chloride; α-olefins such as ethylene, propylene, 1-butene and isobutene; butadiene, isoprene and chloroprene. Diene monomers; Halogenated olefins such as vinyl chloride, vinyl bromide, vinylidene chloride and tetrafluoroethylene; Nitrile monomers such as acrylonitrile and methacrylonitrile; Vinyl esters such as vinyl acetate and vinyl propionate; Methyl acrylate and Acrylic Ethyl acetate, butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate, cyclohexyl methacrylate , Benzyl methacrylate, and (meth) acrylic monomer of glycidyl methacrylate. These monomers can be used alone or in combination of two or more. The vinyl monomer suitably used in the present invention is a styrene monomer such as styrene or vinyl benzyl chloride.

I工程で用いられる架橋剤は、分子中に少なくとも2個の重合可能なビニル基を含有し、有機溶媒への溶解性が高いものが好適に用いられる。架橋剤の具体例としては、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル、エチレングリコールジメタクリレート、トリメチロールプロパントリアクリレート、ブタンジオールジアクリレート等が挙げられる。これら架橋剤は、1種単独又は2種以上を組み合わせて使用することができる。好ましい架橋剤は、機械的強度の高さと加水分解に対する安定性から、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル等の芳香族ポリビニル化合物である。架橋剤は、ビニルモノマーと架橋剤の合計量に対して1〜5モル%、好ましくは1〜4モル%の割合で用いる。架橋剤の使用量は得られる粒子凝集型空孔構造に大きな影響を与え、架橋剤を5モル%を超えて用いると、骨格間に形成される連続空孔の大きさが小さくなってしまうため好ましくない。一方、架橋剤使用量が1モル%未満であると、多孔質体の機械的強度が不足し、通水時に大きく変形したり、多孔質体の破壊を招いたりするため好ましくない。   As the crosslinking agent used in the step I, a crosslinking agent containing at least two polymerizable vinyl groups in the molecule and having high solubility in an organic solvent is preferably used. Specific examples of the crosslinking agent include divinylbenzene, divinylnaphthalene, divinylbiphenyl, ethylene glycol dimethacrylate, trimethylolpropane triacrylate, butanediol diacrylate, and the like. These crosslinking agents can be used singly or in combination of two or more. Preferred cross-linking agents are aromatic polyvinyl compounds such as divinylbenzene, divinylnaphthalene and divinylbiphenyl because of their high mechanical strength and stability to hydrolysis. The crosslinking agent is used in a proportion of 1 to 5 mol%, preferably 1 to 4 mol%, based on the total amount of the vinyl monomer and the crosslinking agent. The amount of the crosslinking agent used greatly affects the resulting particle aggregation type pore structure, and if the crosslinking agent is used in excess of 5 mol%, the size of the continuous pores formed between the skeletons becomes small. It is not preferable. On the other hand, when the amount of the crosslinking agent used is less than 1 mol%, the mechanical strength of the porous body is insufficient, and it is not preferable because it deforms greatly during water passage or causes the porous body to break.

I工程で用いられる有機溶媒は、ビニルモノマーや架橋剤は溶解するがビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒、言い換えると、ビニルモノマーが重合して生成するポリマーに対する貧溶媒である。該有機溶媒は、ビニルモノマーの種類によって大きく異なるため一般的な具体例を列挙することは困難であるが、例えば、ビニルモノマーがスチレンの場合、有機溶媒としては、メタノール、エタノール、プロパノール、ブタノール、ヘキサノール、シクロヘキサノール、オクタノール、2-エチルヘキサノール、デカノール、ドデカノール、エチレングリコール、テトラメチレングリコール、グリセリン等のアルコール類;ジエチルエーテル、エチレングリコールジメチルエーテル等の鎖状エーテル類;ヘキサン、オクタン、デカン、ドデカン等の鎖状飽和炭化水素類等が挙げられる。これらのうち、アルコール類を有機溶媒として用いると、静置重合により粒子凝集構造が形成されやすくなると共に、三次元的に連続した空孔が大きくなるため好ましい。また、ベンゼンやトルエンのようにポリスチレンの良溶媒であっても、上記貧溶媒と共に用いられ、その使用量が少ない場合には、有機溶媒として使用することができる。   The organic solvent used in step I is an organic solvent that dissolves the vinyl monomer and the crosslinking agent but does not dissolve the polymer formed by polymerization of the vinyl monomer, in other words, a poor solvent for the polymer formed by polymerization of the vinyl monomer. . Since the organic solvent varies greatly depending on the type of vinyl monomer, it is difficult to list general specific examples. For example, when the vinyl monomer is styrene, the organic solvent includes methanol, ethanol, propanol, butanol, Hexanol, cyclohexanol, octanol, 2-ethylhexanol, decanol, dodecanol, alcohols such as ethylene glycol, tetramethylene glycol, and glycerine; chain ethers such as diethyl ether and ethylene glycol dimethyl ether; hexane, octane, decane, dodecane, etc. And the like. Among these, it is preferable to use alcohols as the organic solvent because a particle aggregation structure is easily formed by static polymerization and pores continuous in three dimensions are increased. Moreover, even if it is a good solvent of polystyrene like benzene and toluene, when it is used with the said poor solvent and the usage-amount is small, it can be used as an organic solvent.

I工程で用いられる重合開始剤としては、熱及び光照射によりラジカルを発生する化合物が好適に用いられる。重合開始剤は油溶性であるほうが好ましい。本発明で用いられる重合開始剤の具体例としては、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビスイソ酪酸ジメチル、4,4’-アゾビス(4-シアノ吉草酸)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、過酸化ベンゾイル、過酸化ラウロイル、過硫酸カリウム、過硫酸アンモニウム、テトラメチルチウラムジスルフィド等が挙げられる。重合開始剤の使用量は、モノマーの種類や重合温度等によって大きく変動するが、ビニルモノマーと架橋剤の合計量に対して、約0.01〜5%の範囲で使用することができる。   As the polymerization initiator used in step I, a compound that generates radicals by heat and light irradiation is preferably used. The polymerization initiator is preferably oil-soluble. Specific examples of the polymerization initiator used in the present invention include 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis ( 2-methylbutyronitrile), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), dimethyl 2,2′-azobisisobutyrate, 4,4′-azobis (4-cyanovaleric acid) 1,1′-azobis (cyclohexane-1-carbonitrile), benzoyl peroxide, lauroyl peroxide, potassium persulfate, ammonium persulfate, tetramethylthiuram disulfide and the like. The amount of the polymerization initiator used varies greatly depending on the type of monomer, polymerization temperature, etc., but can be used in a range of about 0.01 to 5% with respect to the total amount of vinyl monomer and crosslinking agent.

II工程は、容器内のビニルモノマー、架橋剤、有機溶媒及び重合開始剤を含む液状混合物中に多数の粒子状テンプレートを存在させ静置下重合する工程である。容器内への原料の導入方法としては、容器内に液状混合物を導入し、その後、多数の粒子状テンプレートを入れてもよく(第1の方法)、容器内に多数の粒子状テンプレートを入れ、その後、液状混合物を導入してもよい(第2の方法)。第1の方法では、多数の粒子状テンプレートを入れた後は、落し蓋等の方法で若干、粒子状テンプレートを押圧することが、最密充填あるいはそれに近い充填ができる点で好ましい。また、第2の方法では、液状混合物を導入する際、脱気しながら行なうことが、多数の粒子状テンプレート間の隙間に液状混合物を十分に行き渡らせることができ、粒子凝集型空孔構造と連続マクロボイド構造をそれぞれ均一に形成できる点で好ましい。   Step II is a step in which a large number of particulate templates are present in a liquid mixture containing a vinyl monomer, a crosslinking agent, an organic solvent, and a polymerization initiator in the container, and polymerization is performed under standing. As a method of introducing the raw material into the container, a liquid mixture may be introduced into the container, and then a large number of particulate templates may be placed (first method), and a large number of particulate templates are placed in the container, Thereafter, a liquid mixture may be introduced (second method). In the first method, after a large number of particulate templates are put, it is preferable that the particulate templates are slightly pressed by a method such as a drop lid in that close-packing or close filling is possible. In addition, in the second method, when introducing the liquid mixture, degassing can be performed so that the liquid mixture can be sufficiently distributed in the gaps between a large number of particulate templates. It is preferable at the point which can form a continuous macrovoid structure uniformly.

II工程で用いる粒子状テンプレートは、静置時及び重合時にその形状を保持してエマルジョンやポリマー中に存在し、重合後は除去手段により除去されるものである。粒子状テンプレートとしては、多糖類ハイドロゲルが、油中水滴型エマルジョンに対する安定性、マクロボイド形成の容易性、充填及び除去の容易性の観点から好ましい。多糖類ハイドロゲルの具体例としては、例えば、寒天、アルギン酸カルシウム、ゼラチン、カラギナン、ペクチン、グルコマンナン等のハイドロゲルが挙げられる。これらは1種単独又は2種以上をブレンドして用いてもよい。これら粒子状テンプレートの中で、寒天、アルギン酸カルシウムのハイドロゲルが、粒子状テンプレートの入手の容易性、静置下重合した後のテンプレート除去工程の容易性から好ましい。   The particulate template used in step II is present in the emulsion or polymer while retaining its shape during standing and during polymerization, and is removed by the removing means after polymerization. As the particulate template, polysaccharide hydrogel is preferred from the viewpoints of stability to water-in-oil emulsion, ease of macrovoid formation, and ease of filling and removal. Specific examples of the polysaccharide hydrogel include hydrogels such as agar, calcium alginate, gelatin, carrageenan, pectin, and glucomannan. These may be used alone or in combination of two or more. Among these particulate templates, agar and calcium alginate hydrogel are preferred because of the availability of the particulate template and the ease of the template removal step after polymerization under standing.

また、その粒子状テンプレートの形状は特に制限はなく、例えば、立方体、直方体、楕円球状、真球状等が挙げられる。この中、真球状とすることが、マクロボイドが、静置下重合の後、該テンプレートが除去されることで形成されることから、均一充填の簡易性、該テンプレート除去後のモノリス状多孔質体等の開口構造の均一性などの観点より好ましい。   The shape of the particulate template is not particularly limited, and examples thereof include a cube, a rectangular parallelepiped, an elliptic sphere, and a true sphere. Among these, since the macrovoid is formed by removing the template after polymerization under standing, the monolithic porous after the removal of the template This is preferable from the viewpoint of the uniformity of the opening structure of the body.

粒子状テンプレートの粒子径は、真球状換算にして、半径が0.5〜50mm、好ましくは0.5〜25mm、特に好ましくは、0.5〜10mmである。すなわち、粒子状テンプレート除去後、半径0.5〜50mmのマクロボイドとマクロボイドが重なり合い、この重なる部分が開口となる構造を形成し、その部分がオープンポア構造となることから、液体や気体を流した場合、該マクロボイドと該開口で形成される空孔構造内が流路となる。該テンプレート半径が0.5mm未満であると、液体または気体透過時の圧力損失が大きく、圧力損失を低減させる十分な効果が得られにくいため好ましくない。一方、該テンプレート半径が50mmを越えると、液体または気体とモノリス状多孔質体等との接触が不十分になり、その結果、吸着特性やイオン交換特性が低下してしまうため好ましくない。なお、粒子状テンプレートの形状が立方体や直方体の場合、混合物中に導入する際、特段の操作を行なわずとも、静置状態において、それぞれのテンプレートがランダム方向において互いが接触するため、好適な連続マクロボイド構造を形成することができる。   The particle size of the particulate template is 0.5 to 50 mm, preferably 0.5 to 25 mm, and particularly preferably 0.5 to 10 mm in terms of a true sphere. That is, after removing the particulate template, a macro void with a radius of 0.5 to 50 mm and a macro void are overlapped, and the overlapping portion forms an opening structure, and the portion becomes an open pore structure. When flowing, the inside of the pore structure formed by the macro void and the opening becomes a flow path. If the template radius is less than 0.5 mm, the pressure loss during liquid or gas permeation is large, and it is difficult to obtain a sufficient effect of reducing the pressure loss, which is not preferable. On the other hand, when the template radius exceeds 50 mm, the contact between the liquid or gas and the monolithic porous body becomes insufficient, and as a result, the adsorption characteristics and the ion exchange characteristics deteriorate, which is not preferable. In addition, when the shape of the particulate template is a cube or a rectangular parallelepiped, each template is brought into contact with each other in a random direction in a stationary state without any special operation when introduced into the mixture. Macrovoid structures can be formed.

II工程において、容器の混合物中への多数の粒子状テンプレートの充填は、適当な開口を形成させるため、それぞれの粒子状テンプレートが相互に接触するような充填、特に最密充填あるいは最密充填に近い充填をすることが好ましい。粒子状テンプレートは互いの接触が点接触のような充填であっても、重合の際、ポリマー材料部が収縮するため、適度な開口を形成することができる。なお、開口において、半径が0.1mmに近い開口を形成するには、粒子径が小さく且つ揃ったものを選択することで得ることができ、また、半径が25mmに近い開口を形成するには、粒子径が大きく且つ最密充填することで得ることができる。   In step II, filling the mixture of containers into a large number of particulate templates can be done in such a way that the respective particulate templates are in contact with each other, in particular close-packing or close-packing, in order to form suitable openings. Close filling is preferred. Even if the particulate template is filled such that the contact with each other is a point contact, the polymer material portion contracts during the polymerization, so that an appropriate opening can be formed. In order to form an opening having a radius close to 0.1 mm, it is possible to obtain an opening having a small and uniform particle diameter, and to form an opening having a radius close to 25 mm. The particle diameter is large and can be obtained by close packing.

II工程において、重合条件は、モノマーの種類、重合開始剤の種類により様々な条件が選択できる。例えば、重合開始剤として2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、過酸化ベンゾイル、過酸化ラウロイル、過硫酸カリウム等を用いたときには、不活性雰囲気下の密封容器内において、30〜100℃で1〜48時間加熱重合させればよい。   In step II, various polymerization conditions can be selected depending on the type of monomer and the type of polymerization initiator. For example, 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), benzoyl peroxide, lauroyl peroxide, potassium persulfate and the like were used as polymerization initiators. Sometimes, heat polymerization may be performed at 30 to 100 ° C. for 1 to 48 hours in a sealed container under an inert atmosphere.

II工程の重合条件において、有機溶媒に溶解したビニルモノマーの重合が早く進む条件で行なえば、半径0.5μmに近い有機ポリマー粒子が沈降し凝集して三次元的に連続した骨格部分を形成させることができる。ビニルモノマーの重合が早く進む条件とは、ビニルモノマー、架橋剤、重合開始剤及び重合温度などにより異なり一概には決定できないものの、架橋剤を増やす、モノマー濃度を高くする、温度を高くするなどである。このような重合条件を加味して、半径0.5〜25μmの有機ポリマー粒子を凝集させる重合条件を適宜決定すればよい。また、その骨格間に空孔半径が10〜50μmの三次元的に連続した空孔を形成するには、架橋剤をビニルモノマーと架橋剤の合計量に対して1〜5モル%とすればよい。また、多孔質体の全細孔容積を1〜5ml/gとするには、ビニルモノマー、架橋剤、重合開始剤及び重合温度などにより異なり一概には決定できないものの、概ね有機溶媒、モノマー、架橋剤の合計使用量に対する有機溶媒使用量が、30〜80%、好適には40〜70%のような条件で重合すればよい。   If the polymerization conditions in step II are such that the polymerization of the vinyl monomer dissolved in the organic solvent proceeds faster, organic polymer particles with a radius of 0.5 μm settle and aggregate to form a three-dimensional continuous skeleton. be able to. The conditions under which the polymerization of the vinyl monomer proceeds rapidly vary depending on the vinyl monomer, the crosslinking agent, the polymerization initiator, the polymerization temperature, etc., but cannot be determined unconditionally, but increase the crosslinking agent, increase the monomer concentration, increase the temperature, etc. is there. In consideration of such polymerization conditions, the polymerization conditions for aggregating organic polymer particles having a radius of 0.5 to 25 μm may be appropriately determined. In order to form three-dimensionally continuous pores having a pore radius of 10 to 50 μm between the skeletons, the crosslinking agent is 1 to 5 mol% with respect to the total amount of the vinyl monomer and the crosslinking agent. Good. Moreover, in order to make the total pore volume of the porous body 1 to 5 ml / g, it varies depending on the vinyl monomer, the crosslinking agent, the polymerization initiator, the polymerization temperature, etc., but cannot be determined unconditionally. What is necessary is just to superpose | polymerize on the conditions that the usage-amount of the organic solvent with respect to the total usage-amount of an agent is 30-80%, Preferably it is 40-70%.

III工程は、重合体から粒子状テンプレートを除去する工程である。すなわち、重合終了後、容器から内容物を取り出し、粒子状テンプレートを除去した後、未反応ビニルモノマーと有機溶媒の除去を目的に、アセトン等の溶剤で抽出してモノリス状有機多孔質体を得る。   Step III is a step of removing the particulate template from the polymer. That is, after the polymerization is completed, the contents are taken out from the container, and the particulate template is removed. Then, for the purpose of removing unreacted vinyl monomer and organic solvent, a monolithic organic porous body is obtained by extraction with a solvent such as acetone. .

粒子状テンプレートの除去方法としては、特に制限はなく、例えば、熱溶解、加水分解、酵素分解、酸化分解、エチレンジアミン四酢酸やヘキサメタりん酸ナトリウム等、キレート剤によるイオン交換処理等が挙げられる。これら粒子状テンプレート除去方法の中、熱溶解又はエチレンジアミン四酢酸やヘキサメタりん酸ナトリウム等のキレート剤によるイオン交換処理が、実験操作上の簡易性、該テンプレート除去の容易性の点で好ましい。   The method for removing the particulate template is not particularly limited, and examples thereof include heat dissolution, hydrolysis, enzymatic decomposition, oxidative decomposition, ion exchange treatment with a chelating agent such as ethylenediaminetetraacetic acid and sodium hexametaphosphate. Among these particulate template removal methods, heat dissolution or ion exchange treatment with a chelating agent such as ethylenediaminetetraacetic acid or sodium hexametaphosphate is preferable in terms of simplicity in experimental operation and ease of template removal.

次に、本発明のモノリス状有機多孔質イオン交換体の製造方法について説明する。該モノリス状有機多孔質イオン交換体は、上記の方法により得られたモノリス状有機多孔質体を製造した後、モノリス状有機多孔質体の骨格表面及び骨格内部にイオン交換基を均一に導入したものであって、水湿潤状態での体積当りのイオン交換容量が0.01mg当量/ml以上、好ましくは0.05〜5.0mg当量/mlである。このように、予めモノリス状有機多孔質体を製造し、その後、イオン交換基を導入する方法が、モノリス状有機多孔質イオン交換体の多孔構造を厳密にコントロールできる点で好ましい。   Next, the manufacturing method of the monolithic organic porous ion exchanger of this invention is demonstrated. In the monolithic organic porous ion exchanger, after the monolithic organic porous body obtained by the above method was produced, ion exchange groups were uniformly introduced into the skeleton surface and inside the skeleton of the monolithic organic porous body. The ion exchange capacity per volume in a water-wet state is 0.01 mg equivalent / ml or more, preferably 0.05 to 5.0 mg equivalent / ml. Thus, the method of manufacturing a monolithic organic porous body in advance and then introducing an ion exchange group is preferable in that the porous structure of the monolithic organic porous ion exchanger can be strictly controlled.

上記のモノリス状有機多孔質体にイオン交換基を導入する方法としては、特に制限はなく、高分子反応やグラフト重合等の公知の方法を用いることができる。例えば、スルホン酸基を導入する方法としては、モノリス状有機多孔質体がスチレン-ジビニルベンゼン共重合体等であればクロロ硫酸や濃硫酸、発煙硫酸を用いてスルホン化する方法;有機多孔質体の骨格表面及び骨格内部にラジカル開始基や連鎖移動基を導入し、スチレンスルホン酸ナトリウムやアクリルアミド−2−メチルプロパンスルホン酸をグラフト重合する方法;同様にグリシジルメタクリレートをグラフト重合した後、官能基変換によりスルホン酸基を導入する方法等が挙げられる。また、四級アンモニウム基を導入する方法としては、モノリス状有機多孔質体がスチレン-ジビニルベンゼン共重合体等であればクロロメチルメチルエーテル等によりクロロメチル基を導入した後、三級アミンと反応させる方法;モノリス状有機多孔質体をクロロメチルスチレンとジビニルベンゼンの共重合により製造し、三級アミンと反応させる方法;モノリス状有機多孔質体の骨格表面及び骨格内部にラジカル開始基や連鎖移動基を導入し、N,N,N−トリメチルアンモニウムエチルアクリレートやN,N,N−トリメチルアンモニウムプロピルアクリルアミドをグラフト重合する方法;同様にグリシジルメタクリレートをグラフト重合した後、官能基変換により四級アンモニウム基を導入する方法等が挙げられる。また、ベタインを導入する方法としては、上記の方法によりモノリス状有機多孔質体に三級アミンを導入した後、モノヨード酢酸を反応させ導入する方法等が挙げられる。これらの方法のうち、スルホン酸基を導入する方法については、クロロ硫酸を用いてスチレン-ジビニルベンゼン共重合体にスルホン酸基を導入する方法が、四級アンモニウム基を導入する方法としては、スチレン-ジビニルベンゼン共重合体にクロロメチルメチルエーテル等によりクロロメチル基を導入した後、三級アミンと反応させる方法やクロロメチルスチレンとジビニルベンゼンの共重合によりモノリス状有機多孔質体を製造し、三級アミンと反応させる方法が、イオン交換基を均一かつ定量的に導入できる点で好ましい。なお、導入するイオン交換基としては、カルボン酸基、イミノ二酢酸基、スルホン酸基、リン酸基、リン酸エステル基等のカチオン交換基;四級アンモニウム基、三級アミノ基、二級アミノ基、一級アミノ基、ポリエチレンイミン基、第三スルホニウム基、ホスホニウム基等のアニオン交換基;アミノリン酸基、ベタイン、スルホベタイン等の両性イオン交換基が挙げられる。   There is no restriction | limiting in particular as a method to introduce | transduce an ion exchange group into said monolithic organic porous body, Well-known methods, such as a polymer reaction and graft polymerization, can be used. For example, as a method of introducing a sulfonic acid group, if the monolithic organic porous material is a styrene-divinylbenzene copolymer or the like, a method of sulfonation using chlorosulfuric acid, concentrated sulfuric acid or fuming sulfuric acid; Introducing radical initiator groups and chain transfer groups on the skeleton surface and inside the skeleton, and graft polymerizing sodium styrene sulfonate or acrylamide-2-methylpropane sulfonic acid; similarly graft polymerization of glycidyl methacrylate followed by functional group conversion And a method for introducing a sulfonic acid group. As a method for introducing a quaternary ammonium group, if the monolithic organic porous material is a styrene-divinylbenzene copolymer or the like, after introducing a chloromethyl group with chloromethyl methyl ether or the like, it reacts with a tertiary amine. A method of producing a monolithic organic porous material by copolymerization of chloromethylstyrene and divinylbenzene and reacting with a tertiary amine; a radical initiating group or chain transfer on the skeleton surface and inside the skeleton of the monolithic organic porous material A method of grafting N, N, N-trimethylammonium ethyl acrylate or N, N, N-trimethylammonium propylacrylamide by introducing a group; similarly, glycidyl methacrylate is graft-polymerized, and then quaternary ammonium group is converted by functional group conversion. The method etc. which introduce | transduce are mentioned. Examples of the method for introducing betaine include a method in which a tertiary amine is introduced into a monolithic organic porous material by the above-described method and then reacted with monoiodoacetic acid. Among these methods, the method of introducing a sulfonic acid group includes a method of introducing a sulfonic acid group into a styrene-divinylbenzene copolymer using chlorosulfuric acid, and a method of introducing a quaternary ammonium group includes styrene. -A monolithic organic porous material is produced by introducing a chloromethyl group into the divinylbenzene copolymer using chloromethyl methyl ether or the like and then reacting with a tertiary amine or copolymerizing chloromethylstyrene and divinylbenzene. A method of reacting with a secondary amine is preferable in that the ion exchange group can be introduced uniformly and quantitatively. The ion exchange groups to be introduced include cation exchange groups such as carboxylic acid groups, iminodiacetic acid groups, sulfonic acid groups, phosphoric acid groups, and phosphoric ester groups; quaternary ammonium groups, tertiary amino groups, and secondary amino groups. Groups, primary amino groups, polyethyleneimine groups, tertiary sulfonium groups, phosphonium groups and the like; and amphoteric ion exchange groups such as aminophosphate groups, betaines and sulfobetaines.

イオン交換容量の調整は、多孔質体と反応試薬の選択により適宜決定できる。例えば、0.01mg当量/gといった比較的低いカチオン交換容量の多孔質体を製造する場合には、濃硫酸やクロロスルホン酸といったスルホン化試薬との反応性が低いジビニルベンゼンを主成分とする多孔質体をスルホン化することで達成できる。また、グラフト反応によりカチオン交換基を導入する場合は、多孔質体に導入するラジカル開始基や連鎖移動基の導入量を低く抑えることで、カチオン交換容量を低くすることができる。一方、カチオン交換容量を高くしたい場合には、スルホン化試薬との反応性が高いスチレンを主成分とする多孔質体をスルホン化する。また、グラフト反応を用いる場合には、多孔質体に導入するラジカル開始基や連鎖移動基の導入量を多くすればよい。また、アニオン交換容量や両性イオン交換容量の場合も、前記カチオン交換容量の場合と同じ方法で行うことができる。   The ion exchange capacity can be adjusted as appropriate by selecting the porous material and the reaction reagent. For example, when producing a porous body having a relatively low cation exchange capacity of 0.01 mg equivalent / g, a porous material mainly composed of divinylbenzene having a low reactivity with a sulfonation reagent such as concentrated sulfuric acid or chlorosulfonic acid. This can be achieved by sulfonating the mass. In addition, when introducing a cation exchange group by a graft reaction, the cation exchange capacity can be lowered by suppressing the introduction amount of radical initiation groups and chain transfer groups introduced into the porous body. On the other hand, when it is desired to increase the cation exchange capacity, a porous material mainly composed of styrene having a high reactivity with the sulfonation reagent is sulfonated. Further, when a graft reaction is used, the amount of radical initiation group or chain transfer group introduced into the porous body may be increased. In addition, in the case of anion exchange capacity or amphoteric ion exchange capacity, the same method as in the case of the cation exchange capacity can be used.

本発明のケミカルフィルターは、上記モノリス状多孔質体等を吸着層として備えるもの、さらには、すでに公知のイオン交換樹脂やイオン交換繊維を用いた吸着層と上記モノリスを組み合わせたものを吸着層として備えるものであれば、フィルターの構成に特に制限はないが、通常、吸着層と該吸着層を支持する支持枠体(ケーシング)とで構成される。該支持枠体は吸着層を支持すると共に、既存設備(設置場所)との接合を司る機能を有する。支持部材の被処理気体流通部分は、脱ガスのないステンレス、アルミニウム、プラスチック等の素材からなる。吸着層の形状としては、特に制限されず、所定の厚みを有するブロック形状、薄板を複数枚重ね合わせた積層形状、定形状又は不定形状の粒状物を多数充填した充填構造などが挙げられる。また、吸着層からガス状有機系汚染物質が極微量発生する恐れのある場合、あるいは被処理気体中の有機性ガス状汚染物質の濃度が高い場合には、吸着層の下流側に物理吸着層を付設することが、下流側の物理吸着層で上流側の吸着層で除去できなかった残部のガス状有機系汚染物質を確実に除去できる点で好適である。   The chemical filter of the present invention is provided with the above monolithic porous body or the like as an adsorption layer, and further, an adsorption layer using a combination of an adsorption layer using an already known ion exchange resin or ion exchange fiber and the above monolith as an adsorption layer. As long as the filter is provided, the configuration of the filter is not particularly limited, but is usually configured by an adsorption layer and a support frame (casing) that supports the adsorption layer. The support frame supports the adsorbing layer and has a function of managing joining with existing equipment (installation location). The gas distribution portion of the support member is made of a material such as stainless steel, aluminum, or plastic that is not degassed. The shape of the adsorbing layer is not particularly limited, and examples thereof include a block shape having a predetermined thickness, a laminated shape in which a plurality of thin plates are stacked, and a packed structure in which a large number of regular or irregular shaped particles are filled. In addition, when there is a possibility that trace amounts of gaseous organic pollutants may be generated from the adsorption layer, or when the concentration of organic gaseous pollutants in the gas to be treated is high, a physical adsorption layer is provided downstream of the adsorption layer. It is preferable that the remaining gaseous organic pollutant that could not be removed by the upstream adsorption layer in the downstream physical adsorption layer can be reliably removed.

本発明のケミカルフィルターの比表面積は1〜20m/g、好ましくは2〜18m/gである。比表面積が小さ過ぎると、処理能力が低下するため好ましくなく、大き過ぎると、モノリス状多孔質体等の強度が著しく低下するため、好ましくない。比表面積を上記範囲とするには、ビニルモノマー、架橋剤、重合開始剤及び重合温度などにより異なり一概には決定できないものの、概ね水、ビニルモノマー、架橋剤の合計使用量に対する水使用量が、30〜80%、好適には40〜70%のような条件で重合すればよい。比表面積は水銀圧入法で測定することができる。 The specific surface area of the chemical filter of the present invention is 1 to 20 m 2 / g, preferably 2 to 18 m 2 / g. If the specific surface area is too small, it is not preferable because the processing ability decreases, and if it is too large, the strength of the monolithic porous body or the like is significantly decreased. In order to make the specific surface area within the above range, depending on the vinyl monomer, the crosslinking agent, the polymerization initiator, the polymerization temperature and the like, it cannot be determined unconditionally. Polymerization may be performed under conditions of 30 to 80%, preferably 40 to 70%. The specific surface area can be measured by a mercury intrusion method.

該物理吸着層としては、脱臭用途に使用できる吸着剤が使用できる。具体的には、活性炭、活性炭素繊維及びゼオライトなどが挙げられる。該吸着剤は、比表面積が200m2/g以上の多孔質体が好ましく、比表面積が500m2/g以上の多孔質体がさらに好ましい。また、該物理吸着層から物理吸着剤などが飛散する恐れのある場合には、該物理吸着層の下流側に通気性を有するカバー材を配置することが好ましい。カバー材としては、有機高分子材料からなる不織布及び多孔質膜、並びにアルミニウム及びステンレス製のメッシュ等が挙げられる。これらの中、有機高分子材料からなる不織布や多孔質膜は低圧力損失で気体を透過でき、且つ微粒子捕集能力が高いため、特に好適である。 As the physical adsorption layer, an adsorbent that can be used for deodorization can be used. Specific examples include activated carbon, activated carbon fiber, and zeolite. The adsorbent is preferably a porous body having a specific surface area of 200 m 2 / g or more, and more preferably a porous body having a specific surface area of 500 m 2 / g or more. In addition, when there is a possibility that a physical adsorbent or the like is scattered from the physical adsorption layer, it is preferable to arrange a cover material having air permeability on the downstream side of the physical adsorption layer. Examples of the cover material include a nonwoven fabric and a porous film made of an organic polymer material, and a mesh made of aluminum and stainless steel. Among these, non-woven fabrics and porous membranes made of organic polymer materials are particularly suitable because they can permeate gas with low pressure loss and have a high particulate collection ability.

本発明のケミカルフィルターは、半導体産業や医療用等に用いられるクリーンルームやクリーンベンチ等の高度清浄空間を形成するため、クリーンルーム内の空気や雰囲気中に含まれる有機系又は無機系のガス状汚染物質及びその他の汚染物質をイオン交換又は吸着により除去する。ガス状汚染物質及びその他の汚染物質としては、二酸化硫黄、塩酸、フッ酸、硝酸等の酸性ガス、アンモニア等の塩基性ガス、塩化アンモニウム等の塩類、フタル酸エステル系に代表される各種可塑剤、フェノール系及びリン系の酸化防止剤、ベンゾトリアゾール系などの紫外線吸収剤、リン系及びハロゲン系の難燃剤等が挙げられる。酸性ガス、塩基性ガス及び塩類はイオン交換により除去でき、各種可塑剤、酸化防止剤、紫外線吸収剤及び難燃剤は強い極性を有するため、吸着により除去することができる。   The chemical filter of the present invention is an organic or inorganic gaseous pollutant contained in the air or atmosphere in a clean room in order to form a highly clean space such as a clean room or clean bench used in the semiconductor industry or medical applications. And other contaminants are removed by ion exchange or adsorption. Gaseous pollutants and other pollutants include acid gases such as sulfur dioxide, hydrochloric acid, hydrofluoric acid, and nitric acid, basic gases such as ammonia, salts such as ammonium chloride, and various plasticizers represented by phthalate esters And phenolic and phosphorus antioxidants, ultraviolet absorbers such as benzotriazole, phosphorus and halogen flame retardants, and the like. Acid gas, basic gas and salts can be removed by ion exchange, and various plasticizers, antioxidants, ultraviolet absorbers and flame retardants have strong polarity and can be removed by adsorption.

本発明のケミカルフィルターの使用条件としては、公知の条件で行なうことができる。使用雰囲気の湿度としては、相対湿度で30〜80%程度である。気体透過速度としては、特に制限されないが、例えば0.1〜10m/sの範囲である。従来の粒状イオン交換樹脂を吸着層として使用する場合、気体透過速度は0.3〜0.5m/s程度であるが、本発明のケミカルフィルターによれば、気体透過速度が5〜10m/sのように速くても、骨格部が粒子凝集型構造でありイオン交換容量が大きく且つ効率良くイオン交換が行なわれるため、ガス状汚染物質を吸着除去できる。また、被処理空気中の汚染物質濃度において、従来のケミカルフィルターによれば、適用範囲はアンモニアの場合、通常0.1〜10μg/m、塩化水素の場合、通常5〜50ng/m、二酸化硫黄の場合、通常0.1〜10μg/m、フタル酸エステルの場合、通常0.1〜5μg/mであるが、本発明のケミカルフィルターによれば、上記範囲に加えて、アンモニア100ng/m以下、塩化水素5ng/m以下、二酸化硫黄100ng/m以下、フタル酸エステル100ng/m以下の極微量濃度であっても十分除去できる。なお、吸着層として用いるモノリス状有機多孔質イオン交換体は、使用に際しては、従来のイオン交換樹脂の場合と同様、得られた有機多孔質イオン交換体を公知の再生方法により処理して用いる。すなわち、多孔質陽イオン交換体は、酸処理により酸型として用い、多孔質陰イオン交換体は、アルカリ処理によりOH型として用いる。また、ケミカルフィルター処理気体が使用雰囲気の湿度になるよう、予めケミカルフィルターをその使用空間における平衡水分率となる水分保有量にしておくことが、慣らし運転を省略できる点で好ましい。本発明のケミカルフィルターをブロック状で用い、気体透過速度が5〜10m/sの場合、ブロック状の吸着層の通気方向の長さは概ね50〜200mmである。 The use conditions of the chemical filter of the present invention can be performed under known conditions. The humidity of the use atmosphere is about 30 to 80% in relative humidity. Although it does not restrict | limit especially as a gas permeation | transmission speed | rate, For example, it is the range of 0.1-10 m / s. When a conventional granular ion exchange resin is used as the adsorption layer, the gas permeation rate is about 0.3 to 0.5 m / s, but according to the chemical filter of the present invention, the gas permeation rate is 5 to 10 m / s. Even at such a high speed, the skeleton part has a particle aggregation type structure, a large ion exchange capacity and efficient ion exchange, so that gaseous pollutants can be adsorbed and removed. Further, the concentration of contaminants in the air to be processed, according to the conventional chemical filter, the applicable range in the case of ammonia, usually 0.1-10 / m 3, the case of hydrogen chloride, typically 5-50 ng / m 3, In the case of sulfur dioxide, it is usually 0.1 to 10 μg / m 3 , and in the case of phthalate ester, it is usually 0.1 to 5 μg / m 3 , but according to the chemical filter of the present invention, in addition to the above range, ammonia Even a trace concentration of 100 ng / m 3 or less, hydrogen chloride 5 ng / m 3 or less, sulfur dioxide 100 ng / m 3 or less, and phthalate ester 100 ng / m 3 or less can be sufficiently removed. In addition, when using the monolithic organic porous ion exchanger used as the adsorption layer, the obtained organic porous ion exchanger is used by a known regeneration method as in the case of conventional ion exchange resins. That is, the porous cation exchanger is used as an acid type by acid treatment, and the porous anion exchanger is used as an OH type by alkali treatment. In addition, it is preferable that the chemical filter is previously set to a moisture content that provides an equilibrium moisture content in the use space so that the chemical filter treatment gas has a humidity of the use atmosphere in terms of omitting the break-in operation. When the chemical filter of the present invention is used in a block shape and the gas permeation rate is 5 to 10 m / s, the length of the block-shaped adsorption layer in the ventilation direction is approximately 50 to 200 mm.

本発明のケミカルフィルターは、吸着層として用いるモノリス又はモノリス状イオン交換体の細孔容積や比表面積が格段に大きく、その表面や内部にイオン交換基が高密度に導入されているため、気体透過速度が速くてもガス状汚染物質の吸着除去能力を保持でき、また、ガス状汚染物質が超微量であっても除去可能である。すなわち、従来の粒状のイオン交換樹脂は、粒子内部のイオン交換が遅く、イオン交換容量の全てが有効に使用されない。例えば粒径500μmの粒状イオン交換樹脂の場合、効率よく吸着が行なわれる範囲が表面から100μmと仮定すると、表面層の体積分率は約50%であり、効率よく吸着が行なわれる範囲のイオン交換容量は約半分となる。一方、本発明に係る有機多孔質イオン交換体は壁の厚みが2〜10μmであるため、全てのイオン交換基が効率よく使用される。   In the chemical filter of the present invention, the monolith or monolithic ion exchanger used as the adsorption layer has a remarkably large pore volume and specific surface area, and ion exchange groups are introduced at a high density on the surface and inside thereof. Even if the speed is high, the adsorption removal ability of gaseous pollutants can be maintained, and even if the amount of gaseous pollutants is extremely small, it can be removed. That is, the conventional granular ion exchange resin has a slow ion exchange inside the particles, and the entire ion exchange capacity is not used effectively. For example, in the case of a granular ion exchange resin having a particle diameter of 500 μm, assuming that the range in which the efficient adsorption is performed is 100 μm from the surface, the volume fraction of the surface layer is about 50%, and the ion exchange in the range in which the efficient adsorption is performed. The capacity is about half. On the other hand, since the organic porous ion exchanger according to the present invention has a wall thickness of 2 to 10 μm, all ion exchange groups are efficiently used.

本発明のケミカルフィルターの吸着層に用いるモノリス状多孔質イオン交換体はイオン交換体長さについても、従来の粒状イオン交換樹脂に比べて約1/4と非常に小さく、同じ体積の吸着層を用いても寿命が長くなる。   The monolithic porous ion exchanger used for the adsorption layer of the chemical filter of the present invention is also about 1/4 of the ion exchanger length as compared with the conventional granular ion exchange resin, and uses the same volume of the adsorption layer. Even the life is extended.

本発明のケミカルフィルターは、送風機ユニットと組み合わせて又は送風機ユニットに組み込まれて使用することができる。送風機ユニットとしては、特に制限はないが、通常、軸流ファンまたはブロアを送風源とする送風機と、その出力を調節するコントローラーと、該送風機と該コントローラーを収める第1ケーシングと、該ケーシングに連結される微粒子除去用のHEPAまたはULPAフィルターと、HEPAまたはULPAフィルターを収める第2ケーシングからなる。第1ケーシング及び第2ケーシングの被処理気体流通部分は、脱ガスのないステンレス、アルミニウム、プラスチック等の素材からなる。微粒子除去用フィルターのろ材についても特に制限はなく、一般的なガラス繊維やPTFEを用いることができる。クリーンルーム等で用いる場合には、ボロンや有機物を放出しないガラス繊維やPTFEがなお好ましい。   The chemical filter of the present invention can be used in combination with a blower unit or incorporated in a blower unit. Although there is no restriction | limiting in particular as an air blower unit, Usually, it is connected to the air blower which uses an axial fan or a blower as an air supply source, the controller which adjusts the output, the air blower, the 1st casing which accommodates the controller, and the casing The HEPA or ULPA filter for removing fine particles and a second casing that houses the HEPA or ULPA filter. The to-be-processed gas distribution parts of the first casing and the second casing are made of a material such as stainless steel, aluminum, or plastic that is not degassed. The filter medium for the particulate removal filter is not particularly limited, and general glass fiber or PTFE can be used. When used in a clean room or the like, glass fiber or PTFE that does not release boron or organic matter is still more preferable.

本発明のケミカルフィルターは微粒子除去用のHEPAまたはULPAフィルターの上流側に付設される。本発明のケミカルフィルターと送風機ユニットを組み合わせる形態としては、互いのケーシング同士を接続して一体化して使用する方法が挙げられる。本発明のケミカルフィルターを送風機ユニットに組み込む形態としては、吸着層を送風機ユニットに組み込む形態である。ケミカルフィルターを送風機ユニットに組み込む形態において、送風機とケミカルフィルターの位置は、どちらが上流側にきてもよい。本発明のケミカルフィルターを送風機ユニットとを組み合わせて使用すれば、ガス状汚染物質と微粒子を共に除去できる点で好ましい。   The chemical filter of the present invention is attached upstream of the HEPA or ULPA filter for removing fine particles. As a form which combines the chemical filter and blower unit of this invention, the method of connecting and mutually using casings is mentioned. As a form which incorporates the chemical filter of this invention in a fan unit, it is a form which incorporates an adsorption layer in a fan unit. In the form in which the chemical filter is incorporated in the blower unit, either the blower or the chemical filter may be located upstream. Use of the chemical filter of the present invention in combination with a blower unit is preferable in that both gaseous pollutants and fine particles can be removed.

本発明においては、モノリス状多孔質体等をケミカルフィルターの吸着層として用いるため、マクロボイドによる大きな流路と均一に導入されたイオン交換基により、静圧の小さな小型の送風機においても効率よく被処理気体中の不純物を除去できる。また、体積当たりのイオン交換容量、比表面積が非常に大きく均一にイオン交換基が導入されているため、除去率の向上と長寿命化が図れる。   In the present invention, since a monolithic porous body or the like is used as an adsorption layer of a chemical filter, a large flow path by macrovoids and ion exchange groups introduced uniformly can efficiently cover even a small fan with a small static pressure. Impurities in the processing gas can be removed. Further, since the ion exchange capacity per volume and the specific surface area are very large and the ion exchange groups are uniformly introduced, the removal rate can be improved and the life can be extended.

次に、実施例を挙げて本発明を更に具体的に説明するが、これは単に例示であって、本発明を制限するものではない。 EXAMPLES Next, although an Example is given and this invention is demonstrated more concretely, this is only an illustration and does not restrict | limit this invention.

(モノリス状有機多孔質体の製造)
スチレン9.9g、ジビニルベンゼン0.3g、1−デカノール15.3gおよび2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.1gを混合し、均一に溶解させた。スチレンとジビニルベンゼンの合計量に対して、ジビニルベンゼンは1.9モル%であった(I工程)。
(Production of monolithic organic porous material)
9.9 g of styrene, 0.3 g of divinylbenzene, 15.3 g of 1-decanol and 0.1 g of 2,2′-azobis (2,4-dimethylvaleronitrile) were mixed and dissolved uniformly. Divinylbenzene was 1.9 mol% based on the total amount of styrene and divinylbenzene (Step I).

次に当該スチレン/ジビニルベンゼン/1-デカノール/2,2’-アゾビス(2,4-ジメチルバレロニトリル)混合物をポリエチレン製円筒容器に入れ、粒子半径約1.5mmの真球状のアルギン酸カルシウムハイドロゲルを最密充填し、系内を窒素で十分置換した後密封し、静置下60℃で24時間重合させた(II工程)。   Next, the styrene / divinylbenzene / 1-decanol / 2,2′-azobis (2,4-dimethylvaleronitrile) mixture was put into a polyethylene cylindrical container, and a spherical calcium alginate hydrogel having a particle radius of about 1.5 mm. Was tightly packed, the inside of the system was sufficiently substituted with nitrogen, sealed, and polymerized at 60 ° C. for 24 hours under standing (step II).

重合終了後、モノリス状の内容物を取り出し、10%ヘキサンメタリン酸ナトリウム水溶液中で4時間攪拌することで、アルギン酸カルシウムハイドロゲルを除去した。その後、2−プロパノールで10時間ソックスレー抽出し、未反応モノマー、1-デカノールを除去した後、85℃で一夜減圧乾燥することで、スチレン/ジビニベンゼン共重合体よりなる架橋成分を1.9モル%含有したモノリス状有機多孔質体を得た。このモノリス状有機多孔質体の内部構造を、SEMにより観察した結果を図2に示す。   After completion of the polymerization, the monolithic contents were taken out and stirred in a 10% aqueous sodium hexanemetaphosphate solution for 4 hours to remove the calcium alginate hydrogel. Thereafter, Soxhlet extraction with 2-propanol was performed for 10 hours to remove unreacted monomers and 1-decanol, followed by drying under reduced pressure at 85 ° C. overnight to obtain 1.9 mol% of a crosslinking component composed of a styrene / divinibenzene copolymer. The contained monolithic organic porous material was obtained. The result of observing the internal structure of this monolithic organic porous material with SEM is shown in FIG.

実施例1の有機多孔質体の構造は、連続マクロボイド構造の骨格部が粒子凝集型空孔構造となり、両構造の流路が互いに繋がったものであった。すなわち、連続マクロボイド構造は、平均半径1.5mmのマクロボイドの大部分が重なり合い、マクロボイドとマクロボイドの重なりで形成される開口の平均半径は0.8mmであった。また、粒子凝集型空孔構造は、平均半径が5μmの架橋ポリスチレン粒子が凝集して三次元的に連続した骨格部分を形成していた。また、空孔部分の平均半径は25μmであった。得られた多孔質体は、重量8.3g、直径73.5mm、高さ30.0mmの円柱状であった。   The structure of the organic porous body of Example 1 was such that the skeleton part of the continuous macrovoid structure was a particle aggregation type pore structure, and the flow paths of both structures were connected to each other. That is, in the continuous macrovoid structure, most of the macrovoids having an average radius of 1.5 mm overlap each other, and the average radius of the openings formed by the overlap of the macrovoids and the macrovoids is 0.8 mm. Further, in the particle aggregation type pore structure, crosslinked polystyrene particles having an average radius of 5 μm aggregate to form a three-dimensional continuous skeleton portion. Moreover, the average radius of the hole portion was 25 μm. The obtained porous body was a columnar shape having a weight of 8.3 g, a diameter of 73.5 mm, and a height of 30.0 mm.

なお、モノリス状有機多孔質体の粒子凝集型空孔構造の空孔半径の測定は、別途調製した、連続マクロボイド構造を有しない粒子凝集型有機多孔質体を対象として行った。すなわち、アルギン酸カルシウムハイドロゲルを使用しないこと以外は、実施例1と同様の方法でモノリス状有機多孔質体を調製した。得られた有機多孔質体の内部構造をSEMにより観察したところ、当該有機多孔質体は半径が約5μmの架橋ポリスチレン粒子が凝集して三次元的に連続した骨格部分を形成していた。また、水銀圧入法により測定した当該有機多孔質体の細孔分布曲線はシャープであり、細孔分布曲線の極大値の半径は25μmであった。また、当該粒子凝集型有機多孔質体の全細孔容積は、2.4ml/gであった。   In addition, the measurement of the pore radius of the particle aggregation type pore structure of the monolithic organic porous material was performed on a particle aggregation type organic porous material prepared separately and having no continuous macrovoid structure. That is, a monolithic organic porous material was prepared in the same manner as in Example 1 except that calcium alginate hydrogel was not used. When the internal structure of the obtained organic porous material was observed by SEM, the organic porous material was aggregated with crosslinked polystyrene particles having a radius of about 5 μm to form a three-dimensionally continuous skeleton portion. Further, the pore distribution curve of the organic porous material measured by the mercury intrusion method was sharp, and the radius of the maximum value of the pore distribution curve was 25 μm. Further, the total pore volume of the particle-aggregated organic porous material was 2.4 ml / g.

(モノリス状有機多孔質カチオン交換体の製造)
実施例1で得られた有機多孔質体に、ジクロロメタン1800mlを加え、35℃で1時間加熱した後、10℃以下まで冷却し、クロロ硫酸22.3gを徐々に加え、昇温して35℃で24時間反応させた。その後、メタノールを加え、残存するクロロ硫酸をクエンチした後、メタノールで洗浄してジクロロメタンを除き、更に純水で洗浄してモノリス状有機多孔質カチオン交換体を得た。得られたカチオン交換体の直径は122.0mm、体積当りのイオン交換容量は、水湿潤状態で0.212mg当量/mlであった。
(Production of monolithic organic porous cation exchanger)
To the organic porous material obtained in Example 1, 1800 ml of dichloromethane was added and heated at 35 ° C. for 1 hour, then cooled to 10 ° C. or lower, 22.3 g of chlorosulfuric acid was gradually added, and the temperature was raised to 35 ° C. For 24 hours. Thereafter, methanol was added to quench the remaining chlorosulfuric acid, which was then washed with methanol to remove dichloromethane and further washed with pure water to obtain a monolithic organic porous cation exchanger. The obtained cation exchanger had a diameter of 122.0 mm and an ion exchange capacity per volume of 0.212 mg equivalent / ml in a wet state.

水湿潤状態での有機多孔質カチオン交換体において、連続マクロボイド構造におけるマクロボイド平均半径は2.5mm、マクロボイドとマクロボイドの重なりで形成される開口の平均半径は1.3mmであった(図3参照)。また、水湿潤状態における粒子凝集型空孔構造部分の平均細孔半径を、有機多孔質体の平均細孔半径と水湿潤状態のカチオン交換体の膨潤率から見積もったところ、41μmであった。   In the organic porous cation exchanger in a water-wet state, the average macrovoid radius in the continuous macrovoid structure was 2.5 mm, and the average radius of the opening formed by the overlap of the macrovoid and the macrovoid was 1.3 mm ( (See FIG. 3). Further, the average pore radius of the particle-aggregated pore structure portion in the water wet state was estimated from the average pore radius of the organic porous body and the swelling ratio of the cation exchanger in the water wet state, and was 41 μm.

(モノリス状有機多孔質体の製造)
粒子半径約1.5mmのアルギン酸カルシウムハイドロゲルに代えて、粒子半径約2.5mmのアルギン酸カルシウムハイドロゲルを使用した以外は、実施例1と同様の方法でモノリス状有機多孔質体を製造した。このモノリス状有機多孔質体の内部構造を、SEMにより観察した結果を図4に示す。
(Production of monolithic organic porous material)
A monolithic organic porous material was produced in the same manner as in Example 1 except that a calcium alginate hydrogel having a particle radius of about 2.5 mm was used instead of the calcium alginate hydrogel having a particle radius of about 1.5 mm. The result of observing the internal structure of the monolithic organic porous body with SEM is shown in FIG.

実施例2の有機多孔質体の構造は、連続マクロボイド構造の骨格部が粒子凝集型空孔構造となり、両構造の流路が互いに繋がったものであった。すなわち、連続マクロボイド構造は、平均半径2.5mmのマクロボイドの大部分が重なり合い、マクロボイドとマクロボイドの重なりで形成される開口の平均半径は1.2mmであった。また、粒子凝集型空孔構造は、平均半径が5μmの架橋ポリスチレン粒子が凝集して三次元的に連続した骨格部分を形成していた。また、空孔部分の平均半径は26μmであった。得られた多孔質体は、重量8.4g、直径72.9mm、高さ31.0mmの円柱状であった。   The structure of the organic porous body of Example 2 was such that the skeleton part of the continuous macrovoid structure was a particle aggregation type pore structure, and the flow paths of both structures were connected to each other. That is, in the continuous macrovoid structure, most of the macrovoids having an average radius of 2.5 mm overlap each other, and the average radius of the openings formed by the overlap of the macrovoids and the macrovoids is 1.2 mm. Further, in the particle aggregation type pore structure, crosslinked polystyrene particles having an average radius of 5 μm aggregate to form a three-dimensional continuous skeleton portion. Moreover, the average radius of the pores was 26 μm. The obtained porous body was a columnar shape having a weight of 8.4 g, a diameter of 72.9 mm, and a height of 31.0 mm.

(モノリス状有機多孔質カチオン交換体の製造)
実施例2で得られたモノリス状有機多孔質体を、実施例1と同様の方法でクロロ硫酸と反応させ、モノリス状有機多孔質体を製造した。得られたカチオン交換体の直径は122.4mm、体積当りのイオン交換容量は、水湿潤状態で0.221mg当量/mlであった。
(Production of monolithic organic porous cation exchanger)
The monolithic organic porous material obtained in Example 2 was reacted with chlorosulfuric acid in the same manner as in Example 1 to produce a monolithic organic porous material. The obtained cation exchanger had a diameter of 122.4 mm and an ion exchange capacity per volume of 0.221 mg equivalent / ml in a wet state.

水湿潤状態での有機多孔質カチオン交換体において、連続マクロボイド構造のマクロボイド平均半径は4.2mm、マクロボイドとマクロボイドの重なりで形成される開口の平均半径は2.0mmであった。また、水湿潤状態の粒子凝集型空孔構造部分の平均細孔半径を、有機多孔質体の平均細孔半径と水湿潤状態のカチオン交換体の膨潤率から見積もったところ、44μmであった。   In the organic porous cation exchanger in the water-wet state, the average macrovoid radius of the continuous macrovoid structure was 4.2 mm, and the average radius of the openings formed by the overlap of the macrovoid and the macrovoid was 2.0 mm. The average pore radius of the water-wet state particle aggregation type pore structure portion was estimated to be 44 μm from the average pore radius of the organic porous material and the swelling rate of the water-wet cation exchanger.

(モノリス状有機多孔質体の製造)
粒子半径約1.5mmのアルギン酸カルシウムハイドロゲルに代えて、粒子半径約12.5mmの寒天を使用したこと、テンプレート除去条件をpH≒1に調製した硫酸水溶液中、80℃に加熱しながら4時間撹拌としたこと以外は、実施例1と同様の方法でモノリス状有機多孔質体を製造した。このモノリス状有機多孔質体の内部構造を、SEMにより観察した結果を図5に示す。
(Production of monolithic organic porous material)
In place of calcium alginate hydrogel having a particle radius of about 1.5 mm, agar having a particle radius of about 12.5 mm was used, and heating was performed at 80 ° C. for 4 hours in an aqueous sulfuric acid solution having a template removal condition adjusted to pH≈1. A monolithic organic porous material was produced in the same manner as in Example 1 except that stirring was used. The result of observing the internal structure of this monolithic organic porous material with SEM is shown in FIG.

この有機多孔質体の構造は、連続マクロボイド構造の骨格部が粒子凝集型空孔構造となり、両構造の流路が互いに繋がったものであった。すなわち、連続マクロボイド構造は、平均半径12.5mmのマクロボイドの大部分が重なり合い、マクロボイドとマクロボイドの重なりで形成される開口の平均半径は6.3mmであった。また、粒子凝集型空孔構造は、半径が約5μmの架橋ポリスチレン粒子が凝集して三次元的に連続した骨格部分を形成していた。また、空孔部分の平均半径は25μmであった。得られた多孔質体は、重量8.5g、直径73.4mm、高さ31.7mmの円柱状であった。   The structure of this organic porous body was such that the skeleton part of the continuous macrovoid structure was a particle aggregation type pore structure, and the flow paths of both structures were connected to each other. That is, in the continuous macrovoid structure, most of the macrovoids having an average radius of 12.5 mm overlap each other, and the average radius of the openings formed by the overlap of the macrovoids and the macrovoids is 6.3 mm. In the particle aggregation type pore structure, crosslinked polystyrene particles having a radius of about 5 μm aggregate to form a three-dimensional continuous skeleton portion. Moreover, the average radius of the hole portion was 25 μm. The obtained porous body was a cylindrical shape having a weight of 8.5 g, a diameter of 73.4 mm, and a height of 31.7 mm.

(モノリス状有機多孔質カチオン交換体の製造)
実施例3で得られたモノリス状有機多孔質体を、実施例1と同様の方法でクロロ硫酸と反応させ、連続マクロボイド構造を有するモノリス状有機多孔質体を製造した。得られたカチオン交換体の直径は123.2mm、体積当りのイオン交換容量は、水湿潤状態で0.227mg当量/mlであった。
(Production of monolithic organic porous cation exchanger)
The monolithic organic porous material obtained in Example 3 was reacted with chlorosulfuric acid in the same manner as in Example 1 to produce a monolithic organic porous material having a continuous macrovoid structure. The obtained cation exchanger had a diameter of 123.2 mm and an ion exchange capacity per volume of 0.227 mg equivalent / ml in a wet state.

水湿潤状態での有機多孔質カチオン交換体において、連続マクロボイド構造のマクロボイド平均半径は19.2mm、マクロボイドとマクロボイドの重なりで形成される開口の平均半径は9.8mmであった。また、水湿潤状態の粒子凝集型空孔構造部分の平均細孔半径を、有機多孔質体の平均細孔半径と水湿潤状態のカチオン交換体の膨潤率から見積もったところ、42μmであった。   In the organic porous cation exchanger in the water-wet state, the average macrovoid radius of the continuous macrovoid structure was 19.2 mm, and the average radius of the openings formed by the overlap of the macrovoid and the macrovoid was 9.8 mm. The average pore radius of the water-wet state particle aggregated pore structure portion was estimated to be 42 μm from the average pore radius of the organic porous material and the swelling rate of the water-wet cation exchanger.

(モノリス状有機多孔質体の製造)
スチレンに代えてビニルベンジルクロライドを用いたこと、1−デカノールに代えて1−ブタノールを用いたこと以外は、実施例1と同様の方法でモノリス状有機多孔質体を製造した。このモノリス状有機多孔質体の内部構造を、SEMにより観察した結果を図6に示す。
(Production of monolithic organic porous material)
A monolithic organic porous material was produced in the same manner as in Example 1 except that vinylbenzyl chloride was used instead of styrene, and 1-butanol was used instead of 1-decanol. The result of observing the internal structure of this monolithic organic porous body with SEM is shown in FIG.

実施例4の有機多孔質体の構造は、連続マクロボイド構造の骨格部が粒子凝集型空孔構造となり、両構造の流路が互いに繋がったものであった。すなわち、連続マクロボイド構造は、平均半径1.5mmのマクロボイドの大部分が重なり合い、マクロボイドとマクロボイドの重なりで形成される開口の平均半径は0.8mmであった。また、粒子凝集構造は、平均半径が5μmの架橋ポリビニルベンジルクロライド粒子が凝集して三次元的に連続した骨格部分を形成していた。また、空孔部分の平均半径は30μmであった。得られた多孔質体は、重量8.6g、直径72.5mm、高さ32.1mmの円柱状であった。   The structure of the organic porous body of Example 4 was such that the skeleton part of the continuous macrovoid structure was a particle aggregation type pore structure, and the flow paths of both structures were connected to each other. That is, in the continuous macrovoid structure, most of the macrovoids having an average radius of 1.5 mm overlap each other, and the average radius of the openings formed by the overlap of the macrovoids and the macrovoids is 0.8 mm. In the particle aggregation structure, crosslinked polyvinylbenzyl chloride particles having an average radius of 5 μm aggregated to form a three-dimensionally continuous skeleton portion. Moreover, the average radius of the pores was 30 μm. The obtained porous body was a columnar shape having a weight of 8.6 g, a diameter of 72.5 mm, and a height of 32.1 mm.

(モノリス状有機多孔質アニオン交換体の製造)
実施例4で得られた有機多孔質体を、厚み約15mmの円盤状に切断した。これにテトラヒドロフラン1500mlを加え、40℃で1時間加熱した後、10℃以下まで冷却し、トリメチルアミン30%水溶液140gを徐々に加え、昇温して40℃で24時間反応させた。反応終了後、生成物を取り出し、メタノール、純水の順で洗浄し、モノリス状有機多孔質アニオン交換体を得た。得られたアニオン交換体の直径は111.0mm、体積当りのイオン交換容量は、水湿潤状態で0.163mg当量/mlであった。
(Production of monolithic organic porous anion exchanger)
The organic porous material obtained in Example 4 was cut into a disk shape having a thickness of about 15 mm. To this was added 1500 ml of tetrahydrofuran, heated at 40 ° C. for 1 hour, then cooled to 10 ° C. or less, 140 g of a 30% trimethylamine aqueous solution was gradually added, and the temperature was raised and reacted at 40 ° C. for 24 hours. After completion of the reaction, the product was taken out and washed with methanol and pure water in this order to obtain a monolithic organic porous anion exchanger. The obtained anion exchanger had a diameter of 111.0 mm and an ion exchange capacity per volume of 0.163 mg equivalent / ml in a wet state.

水湿潤状態での有機多孔質アニオン交換体において、連続マクロボイド構造におけるマクロボイド平均半径は、2.3mm、マクロボイドとマクロボイドの重なりで形成される開口の平均半径は1.2mmであった。また、水湿潤状態における粒子凝集型空孔構造部分の平均細孔半径を、有機多孔質体の平均細孔半径と水湿潤状態のアニオン交換体の膨潤率から見積もったところ、46μmであった。   In the organic porous anion exchanger in a water-wet state, the average macrovoid radius in the continuous macrovoid structure was 2.3 mm, and the average radius of the opening formed by the overlap of the macrovoid and the macrovoid was 1.2 mm. . The average pore radius of the particle-aggregated pore structure portion in the water wet state was 46 μm as estimated from the average pore radius of the organic porous body and the swelling ratio of the anion exchanger in the water wet state.

比較例1
(粒子凝集型モノリス状有機多孔質体の製造)
比較例1はアルギン酸カルシウムハイドロゲルを使用しなかったこと以外は、実質的に実施例1と同様の方法で行ったものである。すなわち、スチレン38.8g、ジビニルベンゼン1.2g、1−デカノール60gおよび2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.4gを混合し、均一に溶解させた。スチレンとジビニルベンゼンの合計量に対して、ジビニルベンゼンは1.9モル%であった。次に当該スチレン/ジビニルベンゼン/1-デカノール/2,2’-アゾビス(2,4-ジメチルバレロニトリル)混合物をポリエチレン製円筒容器に入れ、窒素で3回パージした後密封し、静置下60℃で24時間重合させた。重合終了後、厚さ約30mmのモノリス状の内容物を取り出し、アセトンで10時間ソックスレー抽出し、未反応モノマー、1-デカノールを除去した後、85℃で一夜減圧乾燥した。
Comparative Example 1
(Production of particle agglomerated monolithic organic porous material)
Comparative Example 1 was carried out in substantially the same manner as Example 1 except that calcium alginate hydrogel was not used. That is, 38.8 g of styrene, 1.2 g of divinylbenzene, 60 g of 1-decanol and 0.4 g of 2,2′-azobis (2,4-dimethylvaleronitrile) were mixed and dissolved uniformly. Divinylbenzene was 1.9 mol% with respect to the total amount of styrene and divinylbenzene. Next, the styrene / divinylbenzene / 1-decanol / 2,2′-azobis (2,4-dimethylvaleronitrile) mixture was placed in a polyethylene cylindrical container, purged three times with nitrogen, sealed, and left to stand for 60 minutes. Polymerization was carried out at 24 ° C. for 24 hours. After completion of the polymerization, the monolith-like contents having a thickness of about 30 mm were taken out, subjected to Soxhlet extraction with acetone for 10 hours to remove unreacted monomers and 1-decanol, and then dried under reduced pressure at 85 ° C. overnight.

このようにして得られたスチレン/ジビニルベンゼン共重合体よりなる架橋成分を1.9モル%含有した有機多孔質体の内部構造を、SEMにより観察したところ、当該有機多孔質体は連続マクロボイド構造を有さず、直径が約10μmの架橋ポリスチレン粒子が凝集して三次元的に連続した骨格部分を形成していることがわかった。また、水銀圧入法により測定した当該有機多孔質体の細孔分布曲線はシャープであり、細孔分布曲線の極大値の半径は25μmであった。なお、当該有機多孔質体の全細孔容積は、2.4ml/gであった。   When the internal structure of the organic porous material containing 1.9 mol% of the crosslinking component comprising the styrene / divinylbenzene copolymer thus obtained was observed by SEM, the organic porous material was a continuous macrovoid. It was found that cross-linked polystyrene particles having no structure and having a diameter of about 10 μm aggregated to form a three-dimensional continuous skeleton portion. Further, the pore distribution curve of the organic porous material measured by the mercury intrusion method was sharp, and the radius of the maximum value of the pore distribution curve was 25 μm. The total pore volume of the organic porous material was 2.4 ml / g.

(粒子凝集型モノリス状有機多孔質カチオン交換体の製造)
比較例1で製造した有機多孔質体を、厚み約15mmの円盤状に切断した。これにジクロロメタン1500mlを加え、35℃で1時間加熱した後、10℃以下まで冷却し、クロロ硫酸64.0gを徐々に加え、昇温して35℃で24時間反応させた。その後、メタノールを加え、残存するクロロ硫酸をクエンチした後、メタノールで洗浄してジクロロメタンを除き、更に純水で洗浄して粒子凝集型モノリス状多孔質カチオン交換体を得た。得られたカチオン交換体の直径は122mm、体積当りのイオン交換容量は、水湿潤状態で0.83mg当量/mlであった。水湿潤状態の有機多孔質イオン交換体の細孔径を、有機多孔質体の細孔径と水湿潤状態のカチオン交換体の膨潤率から見積もったところ、80μmであった。なお、水銀圧入法により求めた全細孔容積は2.4ml/gであった。
(Production of particle aggregation type monolithic organic porous cation exchanger)
The organic porous material produced in Comparative Example 1 was cut into a disk shape having a thickness of about 15 mm. To this was added 1500 ml of dichloromethane, heated at 35 ° C. for 1 hour, cooled to 10 ° C. or lower, gradually added 64.0 g of chlorosulfuric acid, heated to react at 35 ° C. for 24 hours. Thereafter, methanol was added to quench the remaining chlorosulfuric acid, which was then washed with methanol to remove dichloromethane and further washed with pure water to obtain a particle-aggregated monolithic porous cation exchanger. The obtained cation exchanger had a diameter of 122 mm and an ion exchange capacity per volume of 0.83 mg equivalent / ml in a wet state. When the pore diameter of the organic porous ion exchanger in the water-wet state was estimated from the pore diameter of the organic porous body and the swelling ratio of the cation exchanger in the water-wet state, it was 80 μm. The total pore volume determined by the mercury intrusion method was 2.4 ml / g.

(イオン除去性能試験)
実施例1で得られたモノリス状有機多孔質カチオン交換体を、内径10mm、高さ100mmのカラムに充填し、0.004mol/l 塩化ナトリウム水溶液(Naイオン濃度:92.0ppm)を、線速度10m/hで通液し、Naイオンの除去性能を測定した。その結果、Naイオン除去率は99%以上であり、圧力損失は0.002MPaであった。また、モノリス状有機多孔質カチオン交換体は、イオン除去性能試験に耐える強度を有するものであった。
(Ion removal performance test)
The monolithic organic porous cation exchanger obtained in Example 1 was packed in a column having an inner diameter of 10 mm and a height of 100 mm, and 0.004 mol / l sodium chloride aqueous solution (Na + ion concentration: 92.0 ppm) was The solution was passed at a speed of 10 m / h, and the removal performance of Na + ions was measured. As a result, the Na + ion removal rate was 99% or more, and the pressure loss was 0.002 MPa. Moreover, the monolithic organic porous cation exchanger had a strength that can withstand the ion removal performance test.

比較例2
(イオン除去性能試験)
実施例1で得られたモノリス状有機多孔質カチオン交換体に代えて、比較例1で製造した粒子凝集型有機多孔質カチオン交換体を用いたこと以外は、実施例4と同様のイオン除去性能試験を行った。その結果、Naイオン除去率は99%以上であったが、圧力損失は0.020MPaであった。
Comparative Example 2
(Ion removal performance test)
Ion removal performance similar to that of Example 4 except that the particle aggregation type organic porous cation exchanger produced in Comparative Example 1 was used instead of the monolithic organic porous cation exchanger obtained in Example 1. A test was conducted. As a result, the Na + ion removal rate was 99% or more, but the pressure loss was 0.020 MPa.

(モノリス状有機多孔質カチオン交換体を用いた塩基性ガスの吸着)
実施例1で得られたモノリス状有機多孔質カチオン交換体を3N塩酸中に24時間浸漬した後、純水で十分洗浄し、乾燥させた。得られたモノリス状有機多孔質カチオン交換体を25℃、相対湿度40%の状態で48時間放置した後、直径50mm、厚み50mmの円盤状に切り出し、円筒状カラムに充填してケミカルフィルターを作製した。このフィルターに25℃、40%の温湿度条件下、アンモニア濃度5,000ng/mの空気を面風速0.5m/sで供給したときの通気差圧を測定し、透過気体を超純水インピンジャー法でサンプリングし、イオンクロマトグラフ法でアンモニウムイオンの定量を行った。その結果、面風速0.5m/sのときの通気差圧は40Paと非常に低圧損であり、除去率は約96%であった。
(Adsorption of basic gas using monolithic organic porous cation exchanger)
The monolithic organic porous cation exchanger obtained in Example 1 was immersed in 3N hydrochloric acid for 24 hours, then sufficiently washed with pure water and dried. The obtained monolithic organic porous cation exchanger was allowed to stand for 48 hours at 25 ° C. and a relative humidity of 40%, then cut into a disk shape having a diameter of 50 mm and a thickness of 50 mm, and filled into a cylindrical column to produce a chemical filter. did. When this filter was supplied with air with an ammonia concentration of 5,000 ng / m 3 at a surface wind speed of 0.5 m / s under a temperature and humidity condition of 25 ° C. and 40%, the permeating gas was measured as ultrapure water. Sampling was performed by the impinger method, and ammonium ions were quantified by ion chromatography. As a result, the airflow differential pressure at a surface wind speed of 0.5 m / s was a very low pressure loss of 40 Pa, and the removal rate was about 96%.

比較例3
スチレン38g、ジビニルベンゼン2.0g、ソルビタンモノオレート2.1gおよびアゾビスイソブチロニトリル0.1gを混合し、均一に溶解させた。次に当該スチレン/ジビニルベンゼン/ソルビタンモノオレート/アゾビスイソブチロニトリル混合物を360gの純水に添加し、遊星式攪拌装置である真空攪拌脱泡ミキサー(イーエムイー社製)を用いて13.3kPaの減圧下、底面直径と充填物の高さの比が1:1、公転回転数1000回転/分、自転回転数330回転/分で2分間攪拌し、油中水滴型エマルジョンを得た。乳化終了後、系を窒素で十分置換した後密封し、静置下60℃で24時間重合させた。重合終了後、内容物を取り出し、イソプロパノールで18時間ソックスレー抽出し、未反応モノマー、水およびソルビタンモノオレエートを除去した後、85℃で一昼夜減圧乾燥した。このようにして得られたスチレン/ジビニルベンゼン共重合体よりなる架橋成分を3モル%含有した有機多孔質体の内部構造をSEMにより観察した結果、当該有機多孔質体は連続気泡構造を有していた。
Comparative Example 3
38 g of styrene, 2.0 g of divinylbenzene, 2.1 g of sorbitan monooleate and 0.1 g of azobisisobutyronitrile were mixed and dissolved uniformly. Next, the styrene / divinylbenzene / sorbitan monooleate / azobisisobutyronitrile mixture is added to 360 g of pure water, and 13 using a vacuum stirring and defoaming mixer (EM Co., Ltd.) which is a planetary stirring device. Under reduced pressure of 3 kPa, the mixture was stirred for 2 minutes at a ratio of the bottom surface diameter to the height of the packing of 1: 1, a revolution speed of 1000 revolutions / minute, and a rotation speed of 330 revolutions / minute to obtain a water-in-oil emulsion. After completion of emulsification, the system was sufficiently substituted with nitrogen, sealed, and allowed to polymerize at 60 ° C. for 24 hours. After completion of the polymerization, the content was taken out, extracted with Soxhlet for 18 hours with isopropanol to remove unreacted monomers, water and sorbitan monooleate, and then dried under reduced pressure at 85 ° C. overnight. As a result of observing the internal structure of the organic porous material containing 3 mol% of the crosslinking component composed of the styrene / divinylbenzene copolymer thus obtained by SEM, the organic porous material has an open-cell structure. It was.

次いで上記有機多孔質体を切断して18gを分取し、ジクロロエタン2400mlを加え60℃で30分加熱した後、室温まで冷却し、クロロ硫酸90gを徐々に加え、室温で24時間反応させた。その後、酢酸を加え、多量の水中に反応物を投入し、水洗して有機多孔質陽イオン交換体を得た。この有機多孔質陽イオン交換体のイオン交換容量は、乾燥多孔質体換算で4.8mg当量/gであり、EPMAを用いた硫黄原子のマッピングにより、スルホン酸基がμmオーダーで有機多孔質体に均一に導入されていることを確認した。また、SEM観察により、有機多孔質体の連続気泡構造はイオン交換基導入後も保持されていることを確認した。また、この有機多孔質陽イオン交換体のメソポアの平均径は、30μm、全細孔容積は10.2ml/gであった。   Next, the organic porous material was cut to obtain 18 g, and after adding 2400 ml of dichloroethane and heating at 60 ° C. for 30 minutes, the mixture was cooled to room temperature, 90 g of chlorosulfuric acid was gradually added, and the mixture was reacted at room temperature for 24 hours. Thereafter, acetic acid was added, and the reaction product was poured into a large amount of water and washed with water to obtain an organic porous cation exchanger. The ion exchange capacity of this organic porous cation exchanger is 4.8 mg equivalent / g in terms of dry porous material, and the organic porous material has sulfonic acid groups on the order of μm by mapping sulfur atoms using EPMA. It was confirmed that it was introduced uniformly. Moreover, it was confirmed by SEM observation that the open-cell structure of the organic porous material was retained even after the introduction of ion exchange groups. The organic porous cation exchanger had an average mesopore diameter of 30 μm and a total pore volume of 10.2 ml / g.

(連続気泡型有機多孔質陽イオン交換体を用いた塩基性ガスの吸着)
上記方法で得られた連続気泡型の有機多孔質陽イオン交換体を3N塩酸中に24時間浸漬した後、純水で十分洗浄し、乾燥させた。得られたモノリスカチオン交換体を25℃、相対湿度40%の状態で48時間放置した後、直径50mm、厚み50mmの円盤状に切り出し、円筒状カラムに充填してケミカルフィルターを作製した。このフィルターに実施例6と同様の方法でアンモニア除去試験を行った結果、面風速0.5m/sのときの通気差圧は2500Paと非常に高圧損であり、除去率は約98%と実施例6に比べて同等程度であった。
(Adsorption of basic gas using an open-cell organic porous cation exchanger)
The open-cell organic porous cation exchanger obtained by the above method was immersed in 3N hydrochloric acid for 24 hours, washed thoroughly with pure water, and dried. The obtained monolith cation exchanger was allowed to stand at 25 ° C. and a relative humidity of 40% for 48 hours, then cut into a disk shape having a diameter of 50 mm and a thickness of 50 mm, and filled into a cylindrical column to prepare a chemical filter. As a result of performing an ammonia removal test on the filter in the same manner as in Example 6, the air flow differential pressure when the surface wind speed was 0.5 m / s was a very high pressure loss of 2500 Pa, and the removal rate was about 98%. Compared with Example 6, it was comparable.

(モノリス状有機多孔質アニオン交換体を用いた酸性ガスの吸着)
実施例4により製造したモノリス状有機多孔質アニオン交換体を1N水酸化ナトリウム水溶液中に24時間浸漬した後、純水で十分洗浄し、乾燥させた。得られたモノリス状有機多孔質アニオン交換体を25℃、相対湿度40%の状態で48時間放置した後、直径50mm、厚み50mmの円盤状に切り出し、円筒状カラムに充填してケミカルフィルターを作製した。このフィルターに25℃、40%の温湿度条件下、二酸化硫黄濃度5,000ng/mの空気を面風速0.5m/sで供給したときの通気差圧を測定し、透過気体を超純水インピンジャー法でサンプリングし、イオンクロマトグラフ法で硫酸イオンの定量を行った。その結果、面風速0.5m/sのときの通気差圧は40Paと非常に低圧損であり、除去率は約95%であった。
(Adsorption of acid gas using monolithic organic porous anion exchanger)
The monolithic organic porous anion exchanger produced in Example 4 was immersed in a 1N aqueous sodium hydroxide solution for 24 hours, and then sufficiently washed with pure water and dried. The resulting monolithic organic porous anion exchanger was allowed to stand for 48 hours at 25 ° C. and a relative humidity of 40%, then cut into a disk with a diameter of 50 mm and a thickness of 50 mm, and filled into a cylindrical column to produce a chemical filter. did. The air permeation pressure was measured when air with a sulfur dioxide concentration of 5,000 ng / m 3 was supplied at a surface wind speed of 0.5 m / s under conditions of 25 ° C. and 40% temperature and humidity, and the permeated gas was ultrapure. Sampling was performed by a water impinger method, and sulfate ions were quantified by an ion chromatography method. As a result, the airflow differential pressure at a surface wind speed of 0.5 m / s was a very low pressure loss of 40 Pa, and the removal rate was about 95%.

比較例4
スチレンに代えてクロロメチルスチレンを用いたこと及びソルビタンモノオレートの量を4.5gに変更したこと以外は、比較例3と同様の方法でモノリス状有機多孔質体を製造した。この有機多孔質体を切断して15.0gを分取し、テトラヒドロフラン1500gを加え60℃で30分加熱した後、室温まで冷却し、トリメチルアミン(30%)水溶液195gを徐々に加え、50℃で3時間反応させた後、室温で一昼夜放置した。反応終了後、有機多孔質体を取り出し、アセトンで洗浄後水洗し、乾燥して有機多孔質陰イオン交換体を得た。この有機多孔質陰イオン交換体のイオン交換容量は、乾燥多孔質体換算で3.7mg当量/gであり、SIMSにより、トリメチルアンモニウム基が有機多孔質体にμmオーダーで均一に導入されていることを確認した。また、SEM観察により、有機多孔質体の連続気泡構造はイオン交換基導入後も保持されていることを確認した。また、この有機多孔質陰イオン交換体のメソポアの平均径は、25μm、全細孔容積は9.8ml/gであった。
Comparative Example 4
A monolithic organic porous material was produced in the same manner as in Comparative Example 3 except that chloromethylstyrene was used instead of styrene and the amount of sorbitan monooleate was changed to 4.5 g. The organic porous material was cut to take 15.0 g, 1500 g of tetrahydrofuran was added and the mixture was heated at 60 ° C. for 30 minutes, then cooled to room temperature, and 195 g of a trimethylamine (30%) aqueous solution was gradually added. After reacting for 3 hours, the mixture was allowed to stand overnight at room temperature. After completion of the reaction, the organic porous material was taken out, washed with acetone, washed with water, and dried to obtain an organic porous anion exchanger. The ion exchange capacity of this organic porous anion exchanger is 3.7 mg equivalent / g in terms of dry porous body, and trimethylammonium groups are uniformly introduced into the organic porous body in the order of μm by SIMS. It was confirmed. Moreover, it was confirmed by SEM observation that the open-cell structure of the organic porous material was retained even after the introduction of ion exchange groups. The organic porous anion exchanger had an average mesopore diameter of 25 μm and a total pore volume of 9.8 ml / g.

得られたアニオン交換体を実施例7と同様の方法で二酸化硫黄の除去試験を行った。その結果、面風速0.5m/sのときの通気差圧は2500Paと非常に高圧損であり、除去率は約96%と実施例7に比べて同等程度であった。   The obtained anion exchanger was subjected to a sulfur dioxide removal test in the same manner as in Example 7. As a result, the airflow differential pressure at the surface wind speed of 0.5 m / s was a very high pressure loss of 2500 Pa, and the removal rate was about 96%, which was comparable to that in Example 7.

(モノリス状有機多孔質体の製造)
I工程の試薬量を2倍にしてモノリス状有機多孔質体を製造したこと以外は、実施例1に準拠してモノリス状有機多孔質体を製造した。
(Production of monolithic organic porous material)
A monolithic organic porous material was produced according to Example 1 except that the amount of reagent in Step I was doubled to produce a monolithic organic porous material.

(モノリス状有機多孔質体を用いた有機性ガスの吸着)
上記方法で得られたモノリス状有機多孔質体を純水で十分洗浄し、乾燥させた。得られたモノリス状有機多孔質体を25℃、相対湿度40%の状態で48時間放置した後、直径50mm、厚み50mmの円盤状に切り出し、円筒状カラムに充填してケミカルフィルターを作製した。このフィルターに25℃、40%の温湿度条件下、トルエン濃度1,000ng/mの空気を面風速0.5m/sで供給したときの透過気体を固体吸着剤(TENAX−GR)を用いて捕集し、ガスクロマトグラフ質量分析法でトルエンの定量を行った。その結果、面風速0.5m/sのときの通気差圧は40Paと非常に低圧損であり、約78%の除去率であった。
(Adsorption of organic gas using monolithic organic porous material)
The monolithic organic porous material obtained by the above method was sufficiently washed with pure water and dried. The obtained monolithic organic porous material was allowed to stand at 25 ° C. and a relative humidity of 40% for 48 hours, then cut into a disk shape having a diameter of 50 mm and a thickness of 50 mm, and filled into a cylindrical column to prepare a chemical filter. A solid adsorbent (TENAX-GR) was used as the permeated gas when air with a toluene concentration of 1,000 ng / m 3 was supplied at a surface wind speed of 0.5 m / s under conditions of 25 ° C. and 40% temperature and humidity. The toluene was quantified by gas chromatography mass spectrometry. As a result, the airflow differential pressure at a surface wind speed of 0.5 m / s was a very low pressure loss of 40 Pa, and the removal rate was about 78%.

比較例5
比較例3に準じて連続気泡型モノリス状有機多孔質体を製造し、実施例8と同様に直径50mm、厚み50mmの円盤状ケミカルフィルターを作製した。
Comparative Example 5
An open-cell monolithic organic porous body was produced according to Comparative Example 3, and a disc-shaped chemical filter having a diameter of 50 mm and a thickness of 50 mm was produced in the same manner as in Example 8.

このフィルターを実施例8と同様の条件でトルエン除去試験を行った結果、面風速0.5m/sのときの通気差圧は2500Paと非常に高圧損であり、除去率は約80%であり、実施例8に比べて同等程度であった。   As a result of performing a toluene removal test on this filter under the same conditions as in Example 8, the aeration differential pressure at a surface wind speed of 0.5 m / s is a very high pressure loss of 2500 Pa, and the removal rate is about 80%. Compared with Example 8, it was comparable.

本発明のモノリス状多孔質体等は、連続マクロボイド構造の骨格部が粒子凝集型空孔構造となるユニークな構造である。このことから、水や気体などの流体を流した際圧力損失が極めて低くなることが期待でき、フィルターや吸着剤;2床3塔式純水製造装置や電気式脱イオン水製造装置に充填して用いられるイオン交換体;固体酸/塩基触媒として有用であり、広範な用途分野に応用することができる。また、本発明のケミカルフィルターは、大きな細孔容積と比表面積を有し、またイオン交換基密度が高いため、高いガス状汚染物質除去能力を有しており、気体透過速度が速くてもガス状汚染物質の吸着除去能力を保持でき、超微量ガス状汚染物質も除去可能である。そのため、既存の半導体産業や医療用クリーンルームを対象としたケミカルフィルターとして応用できるばかりでなく、今後、要求清浄度が10倍以上厳しくなると予想される半導体産業でのクリーンルーム向けケミカルフィルターとして特に有用である。   The monolithic porous body or the like of the present invention has a unique structure in which the skeleton part of the continuous macrovoid structure has a particle aggregation type pore structure. From this, it can be expected that the pressure loss will be extremely low when a fluid such as water or gas is flowed, and it will be packed in filters and adsorbents; two-bed, three-column pure water production equipment and electric deionized water production equipment. It is useful as a solid acid / base catalyst, and can be applied to a wide range of application fields. In addition, the chemical filter of the present invention has a large pore volume and specific surface area, and has a high ion exchange group density. Therefore, the chemical filter has a high ability to remove gaseous contaminants. The ability to adsorb and remove gaseous contaminants can be maintained, and ultra-trace gaseous contaminants can also be removed. Therefore, not only can it be applied as a chemical filter for the existing semiconductor industry and medical clean rooms, but it is particularly useful as a chemical filter for clean rooms in the semiconductor industry, where the required cleanliness is expected to become ten times more severe in the future. .

本発明のモノリス状多孔質体等の基本骨格構造を示す模式図である。It is a schematic diagram which shows basic skeleton structures, such as a monolithic porous body of this invention. 実施例1のモノリス状有機多孔質カチオン交換体のSEM画像である。2 is a SEM image of the monolithic organic porous cation exchanger of Example 1. FIG. 実施例1のモノリス状有機多孔質カチオン交換体の外観写真である。2 is an appearance photograph of the monolithic organic porous cation exchanger of Example 1. FIG. 実施例2で得られたモノリス状有機多孔質体のSEM画像である。2 is a SEM image of the monolithic organic porous material obtained in Example 2. 実施例3で得られたモノリス状有機多孔質体のSEM画像である。3 is a SEM image of the monolithic organic porous material obtained in Example 3. 実施例4で得られたモノリス状有機多孔質体のSEM画像である。4 is a SEM image of the monolithic organic porous material obtained in Example 4.

Claims (8)

互いに繋がっているマクロボイドとマクロボイドの該繋がり部分が半径0.1〜25mmの開口となる連続マクロボイド構造の有機多孔質体であって、該有機多孔質体の骨格部が、有機ポリマー粒子が凝集して三次元的に連続した空孔を有する粒子凝集型空孔構造であることを特徴とするモノリス状有機多孔質体。   The macrovoids that are connected to each other are organic porous bodies having a continuous macrovoid structure in which the connecting portions of the macrovoids have an opening with a radius of 0.1 to 25 mm, and the skeleton of the organic porous body is an organic polymer particle. A monolithic organic porous material having a particle-aggregated pore structure in which particles are aggregated and have three-dimensionally continuous pores. 前記粒子凝集型空孔構造は、架橋構造単位を有する半径0.5〜25μmの有機ポリマー粒子が凝集して三次元的に連続した骨格部分を形成し、その骨格間に空孔半径が10〜50μmの三次元的に連続した空孔を有する構造であることを特徴とする請求項1記載のモノリス状有機多孔質体。   In the particle aggregation type pore structure, organic polymer particles having a radius of 0.5 to 25 μm having a crosslinked structural unit are aggregated to form a three-dimensional continuous skeleton part, and the pore radius is 10 to 10 between the skeletons. 2. The monolithic organic porous material according to claim 1, which has a structure having three-dimensionally continuous pores of 50 μm. ビニルモノマー、一分子中に少なくとも2個のビニル基を有する架橋剤、ビニルモノマーや架橋剤は溶解するがビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる液状混合物を調製する工程と、
容器内の該液状混合物中に多数の粒子状テンプレートを存在させ静置下重合する工程と、
該重合体から該粒子状テンプレートを除去する工程とを有することを特徴とするモノリス状有機多孔質体の製造方法。
A liquid mixture comprising a vinyl monomer, a crosslinking agent having at least two vinyl groups in one molecule, an organic solvent that dissolves the vinyl monomer and the crosslinking agent but does not dissolve the polymer formed by polymerization of the vinyl monomer, and a polymerization initiator. A step of preparing;
Presenting a number of particulate templates in the liquid mixture in a container and polymerizing under standing;
And a step of removing the particulate template from the polymer. A method for producing a monolithic organic porous material, comprising:
前記粒子状テンプレートが、多糖類ハイドロゲルであることを特徴とする請求項3記載のモノリス状有機多孔質体の製造方法。   The method for producing a monolithic organic porous material according to claim 3, wherein the particulate template is a polysaccharide hydrogel. 前記架橋剤をビニルモノマーと架橋剤の合計量に対して1〜5モル%用いることを特徴とする請求項3又は4記載のモノリス状有機多孔質体の製造方法。   5. The method for producing a monolithic organic porous material according to claim 3, wherein the crosslinking agent is used in an amount of 1 to 5 mol% based on the total amount of the vinyl monomer and the crosslinking agent. 請求項1又は2記載のモノリス状有機多孔質体の骨格表面及び骨格内部にイオン交換基が導入されたものであって、水湿潤状態での体積当りのイオン交換容量が0.01mg当量/ml以上であることを特徴とするモノリス状有機多孔質イオン交換体。   An ion exchange group is introduced into the skeleton surface and inside the skeleton of the monolithic organic porous material according to claim 1 or 2, and the ion exchange capacity per volume in a water-wet state is 0.01 mg equivalent / ml. A monolithic organic porous ion exchanger characterized by the above. 請求項1又は2記載のモノリス状有機多孔質体を吸着層として用いることを特徴とするケミカルフィルター。   A chemical filter using the monolithic organic porous material according to claim 1 or 2 as an adsorption layer. 請求項6記載のモノリス状有機多孔質イオン交換体を吸着層として用いることを特徴とするケミカルフィルター。   A chemical filter using the monolithic organic porous ion exchanger according to claim 6 as an adsorption layer.
JP2008081613A 2007-06-12 2008-03-26 Monolithic organic porous body, method for producing the same, monolithic organic porous ion exchanger, and chemical filter Active JP5208550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008081613A JP5208550B2 (en) 2007-06-12 2008-03-26 Monolithic organic porous body, method for producing the same, monolithic organic porous ion exchanger, and chemical filter

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007155718 2007-06-12
JP2007155718 2007-06-12
JP2008081613A JP5208550B2 (en) 2007-06-12 2008-03-26 Monolithic organic porous body, method for producing the same, monolithic organic porous ion exchanger, and chemical filter

Publications (2)

Publication Number Publication Date
JP2009019188A true JP2009019188A (en) 2009-01-29
JP5208550B2 JP5208550B2 (en) 2013-06-12

Family

ID=40359099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008081613A Active JP5208550B2 (en) 2007-06-12 2008-03-26 Monolithic organic porous body, method for producing the same, monolithic organic porous ion exchanger, and chemical filter

Country Status (1)

Country Link
JP (1) JP5208550B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009019187A (en) * 2007-06-12 2009-01-29 Japan Organo Co Ltd Monolith-shaped organic porous body, its manufacturing method, monolith-shaped organic porous ion exchanger and chemical filter
JP2009062512A (en) * 2007-08-10 2009-03-26 Japan Organo Co Ltd Monolith organic porous body, monolith organic porous ion exchanger, method for producing those and chemical filter
JP2010115569A (en) * 2008-11-11 2010-05-27 Japan Organo Co Ltd Monolithic organic porous anion exchanger and method for producing the same
WO2010070774A1 (en) * 2008-12-18 2010-06-24 オルガノ株式会社 Monolithic organic porous body, monolithic organic porous ion exchanger, and process for producing the monolithic organic porous body and the monolithic organic porous ion exchanger
WO2010104004A1 (en) * 2009-03-10 2010-09-16 オルガノ株式会社 Ion adsorption module and method of treating water
JP2010207733A (en) * 2009-03-10 2010-09-24 Japan Organo Co Ltd Electric deionized water manufacturing device and deionized water manufacturing method
JP2010234360A (en) * 2009-03-12 2010-10-21 Japan Organo Co Ltd Electric deionized water production apparatus
JP2010234357A (en) * 2009-03-10 2010-10-21 Japan Organo Co Ltd Ion adsorption module and method of treating water
JP2010234356A (en) * 2009-03-10 2010-10-21 Japan Organo Co Ltd Ultrapure water producing apparatus
JP2010234361A (en) * 2009-03-12 2010-10-21 Japan Organo Co Ltd Electric deionized water production apparatus
JP2010234362A (en) * 2009-03-12 2010-10-21 Japan Organo Co Ltd Electric deionized water production apparatus and method of operating the same
JP2010240638A (en) * 2009-03-18 2010-10-28 Japan Organo Co Ltd Electric deionized liquid producing apparatus
JP2010240642A (en) * 2009-03-18 2010-10-28 Japan Organo Co Ltd Method of manufacturing dissolved oxygen-removed water, apparatus for manufacturing dissolved oxygen-removed water, dissolved oxygen treatment tank, method of manufacturing ultrapure water, method of manufacturing hydrogen dissolved water, apparatus for manufacturing hydrogen dissolved water, and method of cleaning electronic components
JP2010264362A (en) * 2009-05-13 2010-11-25 Japan Organo Co Ltd Electric deionized-water producing apparatus
JP2010264344A (en) * 2009-05-12 2010-11-25 Japan Organo Co Ltd Apparatus for manufacturing ultrapure water
JP2010264345A (en) * 2009-05-12 2010-11-25 Japan Organo Co Ltd Ion adsorption module and water treatment method
JP2010264375A (en) * 2009-05-14 2010-11-25 Japan Organo Co Ltd Electric deionized-water producing apparatus
JP2010264361A (en) * 2009-05-13 2010-11-25 Japan Organo Co Ltd Electric deionized-water producing apparatus
JP2012061455A (en) * 2010-09-17 2012-03-29 Japan Organo Co Ltd Platinum group metal-supported catalyst, method for producing the same, method for producing hydrogen peroxide-decomposed water, and method for producing dissolved oxygen-removed water
JP2014055974A (en) * 2009-03-18 2014-03-27 Japan Organo Co Ltd Column for ion chromatography device, suppressor, and ion chromatography device
JP7484051B2 (en) 2020-08-24 2024-05-16 大成建設株式会社 Gas storage and release materials

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002306976A (en) * 2001-04-13 2002-10-22 Japan Organo Co Ltd Porous ion exchanger, deionizing module using the same, and electrical device for producing deionized water
WO2003099933A1 (en) * 2002-05-29 2003-12-04 Daicel Chemical Industries, Ltd. Dispersion and process for production of moldings by using the same
JP2005023265A (en) * 2003-07-01 2005-01-27 Japan Organo Co Ltd Method for producing aminated organic porous material
JP2009221428A (en) * 2008-03-18 2009-10-01 Japan Organo Co Ltd Monolithic organic porous material, method for producing the same, and monolithic organic porous ion exchanger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002306976A (en) * 2001-04-13 2002-10-22 Japan Organo Co Ltd Porous ion exchanger, deionizing module using the same, and electrical device for producing deionized water
WO2003099933A1 (en) * 2002-05-29 2003-12-04 Daicel Chemical Industries, Ltd. Dispersion and process for production of moldings by using the same
JP2005023265A (en) * 2003-07-01 2005-01-27 Japan Organo Co Ltd Method for producing aminated organic porous material
JP2009221428A (en) * 2008-03-18 2009-10-01 Japan Organo Co Ltd Monolithic organic porous material, method for producing the same, and monolithic organic porous ion exchanger

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009019187A (en) * 2007-06-12 2009-01-29 Japan Organo Co Ltd Monolith-shaped organic porous body, its manufacturing method, monolith-shaped organic porous ion exchanger and chemical filter
JP2009062512A (en) * 2007-08-10 2009-03-26 Japan Organo Co Ltd Monolith organic porous body, monolith organic porous ion exchanger, method for producing those and chemical filter
JP2010115569A (en) * 2008-11-11 2010-05-27 Japan Organo Co Ltd Monolithic organic porous anion exchanger and method for producing the same
WO2010070774A1 (en) * 2008-12-18 2010-06-24 オルガノ株式会社 Monolithic organic porous body, monolithic organic porous ion exchanger, and process for producing the monolithic organic porous body and the monolithic organic porous ion exchanger
US9346895B2 (en) 2008-12-18 2016-05-24 Organo Corporation Monolithic organic porous body, monolithic organic porous ion exchanger, and process for producing the monolithic organic porous body and the monolithic organic porous ion exchanger
CN102348505A (en) * 2009-03-10 2012-02-08 奥加诺株式会社 Ion adsorption module and method of treating water
WO2010104004A1 (en) * 2009-03-10 2010-09-16 オルガノ株式会社 Ion adsorption module and method of treating water
JP2010207733A (en) * 2009-03-10 2010-09-24 Japan Organo Co Ltd Electric deionized water manufacturing device and deionized water manufacturing method
JP2010234357A (en) * 2009-03-10 2010-10-21 Japan Organo Co Ltd Ion adsorption module and method of treating water
JP2010234356A (en) * 2009-03-10 2010-10-21 Japan Organo Co Ltd Ultrapure water producing apparatus
JP2014028370A (en) * 2009-03-10 2014-02-13 Japan Organo Co Ltd Ion adsorption module and water treatment method
JP2013255921A (en) * 2009-03-10 2013-12-26 Japan Organo Co Ltd Ultrapure water producing apparatus
JP2010234360A (en) * 2009-03-12 2010-10-21 Japan Organo Co Ltd Electric deionized water production apparatus
JP2010234362A (en) * 2009-03-12 2010-10-21 Japan Organo Co Ltd Electric deionized water production apparatus and method of operating the same
JP2010234361A (en) * 2009-03-12 2010-10-21 Japan Organo Co Ltd Electric deionized water production apparatus
JP2010240642A (en) * 2009-03-18 2010-10-28 Japan Organo Co Ltd Method of manufacturing dissolved oxygen-removed water, apparatus for manufacturing dissolved oxygen-removed water, dissolved oxygen treatment tank, method of manufacturing ultrapure water, method of manufacturing hydrogen dissolved water, apparatus for manufacturing hydrogen dissolved water, and method of cleaning electronic components
JP2010240638A (en) * 2009-03-18 2010-10-28 Japan Organo Co Ltd Electric deionized liquid producing apparatus
JP2014055974A (en) * 2009-03-18 2014-03-27 Japan Organo Co Ltd Column for ion chromatography device, suppressor, and ion chromatography device
JP2010264344A (en) * 2009-05-12 2010-11-25 Japan Organo Co Ltd Apparatus for manufacturing ultrapure water
JP2010264345A (en) * 2009-05-12 2010-11-25 Japan Organo Co Ltd Ion adsorption module and water treatment method
JP2010264362A (en) * 2009-05-13 2010-11-25 Japan Organo Co Ltd Electric deionized-water producing apparatus
JP2010264361A (en) * 2009-05-13 2010-11-25 Japan Organo Co Ltd Electric deionized-water producing apparatus
JP2010264375A (en) * 2009-05-14 2010-11-25 Japan Organo Co Ltd Electric deionized-water producing apparatus
JP2012061455A (en) * 2010-09-17 2012-03-29 Japan Organo Co Ltd Platinum group metal-supported catalyst, method for producing the same, method for producing hydrogen peroxide-decomposed water, and method for producing dissolved oxygen-removed water
JP7484051B2 (en) 2020-08-24 2024-05-16 大成建設株式会社 Gas storage and release materials

Also Published As

Publication number Publication date
JP5208550B2 (en) 2013-06-12

Similar Documents

Publication Publication Date Title
JP5208550B2 (en) Monolithic organic porous body, method for producing the same, monolithic organic porous ion exchanger, and chemical filter
JP5290603B2 (en) Particle aggregation type monolithic organic porous body, method for producing the same, particle aggregation type monolithic organic porous ion exchanger, and chemical filter
JP5290604B2 (en) Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter
JP5021540B2 (en) Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter
JP5019470B2 (en) Monolithic organic porous body, method for producing the same, monolithic organic porous ion exchanger, and chemical filter
JP5019471B2 (en) Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter
JP5089420B2 (en) Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter
JP5131911B2 (en) Monolithic organic porous body, production method thereof, and monolithic organic porous ion exchanger
JP3852926B2 (en) Organic porous body having selective boron adsorption capacity, boron removal module and ultrapure water production apparatus using the same
JP3966501B2 (en) Ultrapure water production equipment
JP4931006B2 (en) Monolithic organic porous ion exchanger, method of using the same, method of production, and mold used for production
WO2010070774A1 (en) Monolithic organic porous body, monolithic organic porous ion exchanger, and process for producing the monolithic organic porous body and the monolithic organic porous ion exchanger
JP5486162B2 (en) Monolithic organic porous body, production method thereof, and monolithic organic porous ion exchanger
WO2010104004A1 (en) Ion adsorption module and method of treating water
JP2010264344A (en) Apparatus for manufacturing ultrapure water
JP4034163B2 (en) Organic porous body, production method thereof, and organic porous ion exchanger
JP4216142B2 (en) Method for producing aminated organic porous material
JP5411737B2 (en) Ion adsorption module and water treatment method
JP2004321930A (en) Chemical filter
JP5283893B2 (en) Monolithic organic porous body, production method thereof, and monolithic organic porous ion exchanger
JP2010264345A (en) Ion adsorption module and water treatment method
JP3957179B2 (en) Organic porous ion exchanger
JP3957182B2 (en) Method for producing sulfonated organic porous material
JP2004131517A (en) Method for producing organic porous material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5208550

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250