JP2009013477A - Method of preparing quaternary ammonium hydroxide - Google Patents

Method of preparing quaternary ammonium hydroxide Download PDF

Info

Publication number
JP2009013477A
JP2009013477A JP2007177680A JP2007177680A JP2009013477A JP 2009013477 A JP2009013477 A JP 2009013477A JP 2007177680 A JP2007177680 A JP 2007177680A JP 2007177680 A JP2007177680 A JP 2007177680A JP 2009013477 A JP2009013477 A JP 2009013477A
Authority
JP
Japan
Prior art keywords
exchange membrane
anion exchange
membrane
quaternary ammonium
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007177680A
Other languages
Japanese (ja)
Other versions
JP5100222B2 (en
Inventor
Satoshi Kawada
聡志 川田
Takayuki Kishino
剛之 岸野
Hiroyuki Morimoto
裕之 森本
Hisahiko Iwamoto
久彦 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Astom Corp
Original Assignee
Tokuyama Corp
Astom Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp, Astom Corp filed Critical Tokuyama Corp
Priority to JP2007177680A priority Critical patent/JP5100222B2/en
Priority to KR1020107000042A priority patent/KR20100029816A/en
Priority to PCT/JP2008/061335 priority patent/WO2009004937A1/en
Priority to CN200880016713XA priority patent/CN101680101B/en
Priority to TW097124063A priority patent/TW200912045A/en
Publication of JP2009013477A publication Critical patent/JP2009013477A/en
Application granted granted Critical
Publication of JP5100222B2 publication Critical patent/JP5100222B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/26Chlorine; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method by which high purity quaternary ammonium hydroxide is stably prepared over a long period without changing an anion exchange membrane by effectively suppressing the deterioration of the membrane in a short period. <P>SOLUTION: In the method of preparing quaternary ammonium hydroxide by arranging the anion exchange membrane and a cation exchange membrane between electrodes, feeding an aqueous solution of quaternary ammonium halide to a raw liquid chamber facing the cathode side of the anion exchange membrane and electrolyzing, a membrane comprising a base material layer 31 and a surface layer 33 formed on one surface of the base material layer 31 and having high cross-link density is used as the anion exchange membrane and the anion exchange membrane is arranged to position the surface layer in the anode 1 side. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、水酸化第4級アンモニウムを、イオン交換膜を用いての電解により製造する方法に関する。   The present invention relates to a method for producing quaternary ammonium hydroxide by electrolysis using an ion exchange membrane.

水酸化テトラメチルアンモニウムに代表される水酸化第4級アンモニウムは、相間移動触媒、非水溶媒滴定における塩基の標準液、有機系のアルカリ剤などとして、各種の化学反応の実行乃至分析などに使用される化合物である。また、最近では、ICやLSIを製造するに際して、半導体基板の製造、レジストの現像などのための処理剤としても広く使用されている。   Quaternary ammonium hydroxide, typified by tetramethylammonium hydroxide, is used for the execution or analysis of various chemical reactions as a phase transfer catalyst, a base standard solution in nonaqueous solvent titration, an organic alkaline agent, etc. It is a compound. Recently, when manufacturing ICs and LSIs, they are widely used as processing agents for manufacturing semiconductor substrates, developing resists, and the like.

このような水酸化第4級アンモニウムとしては、不純物の少ない高純度のものが求められており、特に半導体製造プロセスで使用される場合において、高純度の水酸化第4級アンモニウムに対する要求が大きい。近年では、半導体装置が著しく高集積化しており、純度の低い水酸化第4級アンモニウムを含む現像液等を用いて半導体基板を製造すると、高集積回路にリークを生じるなど、半導体基板の劣化を生じてしまうからである。   Such quaternary ammonium hydroxide is required to have high purity with few impurities, and there is a great demand for high purity quaternary ammonium hydroxide particularly when used in a semiconductor manufacturing process. In recent years, semiconductor devices have been remarkably highly integrated, and when a semiconductor substrate is manufactured using a developer containing quaternary ammonium hydroxide having a low purity, the semiconductor substrate is deteriorated, for example, leakage occurs in a highly integrated circuit. It will occur.

高純度の水酸化第4級アンモニウムの製造方法としては、ハロゲン化第4級アンモニウム塩を原料として使用し、電解を行う方法が知られている(特許文献1参照)。即ち、この方法では、電極間に陰イオン交換膜及び陽イオン交換膜を配置し、該陰イオン交換膜と陽イオン交換膜によって仕切られた室(原液室)にハロゲン化第4級アンモニウム塩の水溶液を供給して電解が行われるものであり、第4級アンモニウムイオンが陰極側に配置された陽イオン交換膜を通って水が供給されている塩基室(陰極室)に移行し、この塩基室で水酸化第4級アンモニウムが生成し、高濃度の水酸化第4級アンモニウム水溶液が得られるというものである。   As a method for producing high-purity quaternary ammonium hydroxide, a method of performing electrolysis using a halogenated quaternary ammonium salt as a raw material is known (see Patent Document 1). That is, in this method, an anion exchange membrane and a cation exchange membrane are arranged between electrodes, and a halogenated quaternary ammonium salt salt is contained in a chamber (stock solution chamber) partitioned by the anion exchange membrane and the cation exchange membrane. Electrolysis is performed by supplying an aqueous solution, and the quaternary ammonium ions are transferred to a base chamber (cathode chamber) to which water is supplied through a cation exchange membrane disposed on the cathode side. Quaternary ammonium hydroxide is produced in the chamber, and a high concentration quaternary ammonium hydroxide aqueous solution is obtained.

特開昭64−87793JP-A-64-87793 特開平1−108388JP-A-1-108388

しかるに、特許文献1の方法によれば、高純度の水酸化第4級アンモニウムを得ることができるが、反面、用いる陰イオン交換膜が陽イオン交換膜に比して耐酸化性が低いため、短期間で劣化してしまい、頻繁に陰イオン交換膜を交換しなければならないという問題があった。即ち、特許文献1の方法では、原液室のハロゲンイオンが陰イオン交換膜を通って、陽極室に移行し、陽極でハロゲンガスを生成する。これが陰イオン交換膜と接触し、陰イオン交換膜を酸化劣化させてしまう。   However, according to the method of Patent Document 1, high-purity quaternary ammonium hydroxide can be obtained, but on the other hand, since the anion exchange membrane used has lower oxidation resistance than the cation exchange membrane, There was a problem that the anion exchange membrane had to be frequently replaced because it deteriorated in a short period of time. That is, in the method of Patent Document 1, halogen ions in the stock solution chamber pass through the anion exchange membrane and move to the anode chamber, and generate halogen gas at the anode. This comes into contact with the anion exchange membrane, and oxidatively degrades the anion exchange membrane.

さらに特許文献2の方法のように、陽極と陰イオン交換膜との間に、陽イオン交換膜を配置する方法も考案された。この方法により、陰イオン交換膜の寿命を長くできるが、完全にハロゲンガスを遮断することは難しく、わずかではあるが電極で発生したハロゲンガスが、陽イオン交換膜を通過して、陰イオン交換膜と接触し、徐々に陰イオン交換膜を酸化劣化させてしまうなどの課題が残されていた。   Further, a method of arranging a cation exchange membrane between the anode and the anion exchange membrane as in the method of Patent Document 2 has been devised. Although this method can prolong the life of the anion exchange membrane, it is difficult to completely shut off the halogen gas, and a small amount of the halogen gas generated at the electrode passes through the cation exchange membrane to exchange the anion. Problems such as contact with the membrane and oxidative degradation of the anion exchange membrane gradually remained.

従って、本発明の目的は、短期間での陰イオン交換膜の劣化が有効に抑制され、膜交換を行うことなく、長期間にわたって高純度の水酸化第4級アンモニウムを安定して製造することが可能な方法を提供することにある。   Therefore, an object of the present invention is to effectively produce high-purity quaternary ammonium hydroxide over a long period of time without effectively deteriorating the anion exchange membrane in a short period of time and performing membrane exchange. Is to provide a possible way.

本発明によれば、電極間に陰イオン交換膜及び陽イオン交換膜を配して構成された電解槽において、陰イオン交換膜と陽イオン交換膜によって仕切られた室にハロゲン化第4級アンモニウム塩の水溶液を供給して電解を行うことにより、水酸化第4級アンモニウムを製造する方法において、前記陰イオン交換膜として、基材層と該基材層の一方側の表面に形成された表面架橋層とからなる膜を使用し、該陰イオン交換膜を、表面層が陽極側に位置するように配置して電解を行うことを特徴とする水酸化第4級アンモニウムの製造方法が提供される。   According to the present invention, in an electrolytic cell configured by arranging an anion exchange membrane and a cation exchange membrane between electrodes, a quaternary ammonium halide is provided in a chamber partitioned by the anion exchange membrane and the cation exchange membrane. In the method for producing quaternary ammonium hydroxide by supplying an aqueous salt solution and performing electrolysis, the anion exchange membrane is formed as a base material layer and a surface formed on one surface of the base material layer There is provided a method for producing quaternary ammonium hydroxide, characterized in that a membrane comprising a cross-linked layer is used, and the anion exchange membrane is electrolyzed with the surface layer positioned on the anode side. The

本発明においては、前記陰イオン交換膜の表面架橋層は、0.005〜0.5meq/g−乾燥膜の交換容量を有し、且つ該表面架橋層の交換容量が、陰イオン交換膜全体の交換容量に対して0.002〜0.3倍、特に0.005〜0.25倍の範囲にあることが好ましい。   In the present invention, the surface cross-linked layer of the anion exchange membrane has an exchange capacity of 0.005 to 0.5 meq / g-dry membrane, and the exchange capacity of the surface cross-linked layer is the entire anion exchange membrane. The exchange capacity is preferably in the range of 0.002 to 0.3 times, particularly 0.005 to 0.25 times.

本発明においては、架橋度の高い表面層(以下、高架橋層と呼ぶことがある)が膜表面に形成されている陰イオン交換膜を使用し、この陰イオン交換膜の高架橋層が陽極側(即ち酸室側)に面するように陰イオン交換膜を配置して電解を行うことが重要な特徴である。即ち、本発明においては、電極間に陰イオン交換膜及び陽イオン交換膜を配した電解槽において、陰イオン交換膜と陽イオン交換膜によって仕切られ原料室に、ハロゲン化第4級アンモニウム塩の水溶液を供給して電解が行われ、陰極室に水酸化第4級アンモニウムが生成するが、陰イオン交換膜の陽極側の面が酸化に対して耐性を有する高架橋層となっているため、陽極室で発生した、例えば、塩素ガスが流入し、陽極中の酸性水溶液(例えば、塩酸)中で、酸化力の強い次亜塩素酸が発生しても、これによる酸化劣化が有効に抑制されるのである。   In the present invention, an anion exchange membrane in which a surface layer having a high degree of crosslinking (hereinafter sometimes referred to as a highly crosslinked layer) is formed on the membrane surface is used, and the highly crosslinked layer of the anion exchange membrane is on the anode side ( That is, it is an important feature to perform electrolysis by disposing an anion exchange membrane so as to face the acid chamber side). That is, in the present invention, in an electrolytic cell in which an anion exchange membrane and a cation exchange membrane are arranged between electrodes, a halogenated quaternary ammonium salt is separated in the raw material chamber by the anion exchange membrane and the cation exchange membrane. Electrolysis is performed by supplying an aqueous solution, and quaternary ammonium hydroxide is generated in the cathode chamber, but the anode side surface of the anion exchange membrane is a highly crosslinked layer that is resistant to oxidation. Even if, for example, chlorine gas flows in the chamber, and hypochlorous acid with strong oxidizing power is generated in an acidic aqueous solution (for example, hydrochloric acid) in the anode, the oxidative deterioration due to this is effectively suppressed. It is.

ところで、陰イオン交換膜の全体が高架橋体となっていると、酸化に対する耐性は高いが、膜抵抗が増大してしまい、結局、電解の効率が著しく低下してしまう。しかるに、本発明にしたがって、表面層のみを高架橋度の層とすることにより、膜抵抗の増大を抑制し、次亜塩素酸等による酸化劣化を有効に抑制し、膜交換を行うことなく、長期間にわたって高純度の水酸化第4級アンモニウムを製造することが可能となるのである。
尚、陰イオン交換膜における表面架橋度は、後述する方法で測定することができる。
By the way, if the whole anion exchange membrane is a highly cross-linked body, the resistance to oxidation is high, but the membrane resistance increases, and eventually the efficiency of electrolysis is significantly reduced. However, according to the present invention, only the surface layer is a layer having a high degree of crosslinking, thereby suppressing an increase in membrane resistance, effectively suppressing oxidative degradation due to hypochlorous acid, etc. It is possible to produce high purity quaternary ammonium hydroxide over a period of time.
In addition, the surface crosslinking degree in an anion exchange membrane can be measured by the method mentioned later.

本発明の原理を説明するための図1において、本発明の実施に使用される電解装置では、陽極1と陰極3との間に、陽極側に陰イオン交換膜A、陰極側に陽イオン交換膜Cが配置され、陰イオン交換膜Aと陽イオン交換膜Cとの間には原液室5が形成され、陰イオン交換膜Aと陽極1との間には陽極室11が形成されている。また、陽イオン交換膜Cと陰極3との間には、陰極室9が隣接している。   In FIG. 1 for explaining the principle of the present invention, in the electrolysis apparatus used for carrying out the present invention, an anion exchange membrane A on the anode side and a cation exchange on the cathode side between the anode 1 and the cathode 3. A membrane C is disposed, a stock solution chamber 5 is formed between the anion exchange membrane A and the cation exchange membrane C, and an anode chamber 11 is formed between the anion exchange membrane A and the anode 1. . A cathode chamber 9 is adjacent between the cation exchange membrane C and the cathode 3.

即ち、上記のように構成された電解装置を使用し、原液室5に原料となるハロゲン化第4級アンモニウム塩の水溶液が供給され、陽極室11に酸の水溶液が供給され、陰極室9に純水を供給し、この状態で陽極1及び陰極3の間に所定の電圧が印加され、所定の電流密度でハロゲン化第4級アンモニウム塩の電解が行われる。   That is, using the electrolysis apparatus configured as described above, an aqueous solution of a quaternary ammonium halide as a raw material is supplied to the stock solution chamber 5, an aqueous acid solution is supplied to the anode chamber 11, and an aqueous solution of the acid is supplied to the cathode chamber 9. Pure water is supplied, and a predetermined voltage is applied between the anode 1 and the cathode 3 in this state, and electrolysis of the halogenated quaternary ammonium salt is performed at a predetermined current density.

さらに陰イオン交換膜の耐久性を上げるために、陽極と陰イオン交換膜の間に陽イオン交換膜を配置しても良い。この場合、図2に示すように、陽イオン交換膜と陰イオン交換膜の間の室11には、純水が供給される。   Further, in order to increase the durability of the anion exchange membrane, a cation exchange membrane may be disposed between the anode and the anion exchange membrane. In this case, as shown in FIG. 2, pure water is supplied to the chamber 11 between the cation exchange membrane and the anion exchange membrane.

本発明の電解槽における電極のうち陽極としては、酸化雰囲気で安定的な陽極が用いられ、例えば炭素、白金コーティングチタン板、Ru、Ir等をチタン板上にコーティングした所謂不溶性陽極が好適に用いられる。陰極としては強塩基性雰囲気で安定であり、かつ通電圧の低いものが用いられ、例えばSUS316、白金板、白金コーティングニッケル板等の不溶性の食塩電解において広く用いられている活性陰極が何ら制限無く用いられる。   Of the electrodes in the electrolytic cell of the present invention, an anode that is stable in an oxidizing atmosphere is used. For example, a so-called insoluble anode in which carbon, platinum-coated titanium plate, Ru, Ir, or the like is coated on a titanium plate is preferably used. It is done. A cathode that is stable in a strongly basic atmosphere and has a low voltage is used. For example, an active cathode widely used in insoluble salt electrolysis such as SUS316, platinum plate, and platinum-coated nickel plate is not limited. Used.

これらの電極の形状は、板状、網状、スダレ状、その他公知の電極が用いられる。   As for the shape of these electrodes, plate-like, net-like, suede-like and other known electrodes are used.

本発明において、原料として使用される上記の第4級アンモニウム塩としては、例えば、下記一般式(1):
[R]・X (1)
式中、Rは、アルキル基、ヒドロキシアルキル基またはアリール基を示し、4個のRは、同一の基であっても互いに異なる基であってもよく、Xは、ハロゲンである、
で表されるものが使用される。上記の基のRのうち、アルキル基及びヒドロキシアルキル基としては、炭素数が4以下のものが好ましく、またハロゲンとしては、塩素、臭素及びフッ素の何れであってもよいが、一般的には塩素である。かかる第4級アンモニウム塩の代表的な例としては、ハロゲン化テトラメチルアンモニウム、ハロゲン化テトラエチルアンモニウム、ハロゲン化テトラエチルアンモニウム、炭酸テトラメチルアンモニウム、炭酸テトラエチルアンモニウム、ギ酸炭酸テトラエチルアンモニウム、ギ酸テトラエチルアンモニウム等が挙げることができる。
In the present invention, examples of the quaternary ammonium salt used as a raw material include the following general formula (1):
[R 4 N + ] · X (1)
In the formula, R represents an alkyl group, a hydroxyalkyl group or an aryl group, and four Rs may be the same group or different from each other, and X is a halogen.
The one represented by is used. Of the Rs in the above group, the alkyl group and hydroxyalkyl group preferably have 4 or less carbon atoms, and the halogen may be any of chlorine, bromine and fluorine. Chlorine. Representative examples of such quaternary ammonium salts include tetramethylammonium halide, tetraethylammonium halide, tetraethylammonium halide, tetramethylammonium carbonate, tetraethylammonium carbonate, tetraethylammonium formate, tetraethylammonium formate, and the like. be able to.

即ち、本発明においては、上記一般式(1)の第4級アンモニウム塩を原料として、下記一般式(2):
[R]・OH (2)
式中、Rは、上記一般式(1)で示すものと同義である、
で表される水酸化第4級アンモニウムを製造するものであり、例えば水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム等である。
That is, in the present invention, using the quaternary ammonium salt of the above general formula (1) as a raw material, the following general formula (2):
[R 4 N + ] · OH (2)
In the formula, R is as defined in the general formula (1).
Quaternary ammonium hydroxide represented by, for example, tetramethylammonium hydroxide, tetraethylammonium hydroxide, and the like.

図1では、原料として塩化テトラメチルアンモニウム(TMA・Cl)を用いた例を示しているので、以下、TMA・Clを用いた場合を例にとって、電解により水酸化第4級アンモニウム(TMAH)が製造される原理を説明する。 FIG. 1 shows an example in which tetramethylammonium chloride (TMA + · Cl ) is used as a raw material. Hereinafter, quaternary ammonium hydroxide is obtained by electrolysis using TMA + · Cl as an example. The principle of manufacturing (TMAH) will be described.

図1を参照して、先に述べたように、原料となるハロゲン化第4級アンモニウム塩(TMA・Cl)の水溶液は原液室5に供給され、塩酸の水溶液を酸室7に供給、陰極室9に純水を供給し、この状態で陽極1及び陰極3の間に所定の電圧が印加され、例えば1〜50A/dm2の電流密度で、電解槽内の温度は90℃を超えないように維持することが好ましい。上記の原料である、第四級アンモニウム塩の濃度は一般に0.2〜4.0規定であることが望ましく、この濃度が余りに低いと溶液の電気抵抗が大きく、余りに濃度が高いと溶液が粘調となり好ましくない。 Referring to FIG. 1, as described above, an aqueous solution of a halogenated quaternary ammonium salt (TMA + · Cl ) as a raw material is supplied to a stock solution chamber 5 and an aqueous solution of hydrochloric acid is supplied to an acid chamber 7. Pure water is supplied to the cathode chamber 9, and a predetermined voltage is applied between the anode 1 and the cathode 3 in this state, and the temperature in the electrolytic cell exceeds 90 ° C., for example, at a current density of 1 to 50 A / dm 2. It is preferable to maintain such that no. It is desirable that the concentration of the quaternary ammonium salt as the raw material is generally 0.2 to 4.0 N. If this concentration is too low, the electrical resistance of the solution is large, and if the concentration is too high, the solution is viscous. This is not preferable.

上記のようにして電解を行うと、TMA(テトラメチルアンモニウムイオン)が陽イオン交換膜Cを通って原液室5から陰極室9に移行し、下記式:
TMA+HO+e → TMAH+1/2H
で表される電極反応が陰極3で発生し、TMAH(水酸化テトラメチルアンモニウム)が得られる。陰極室には水酸化第4級アンモニウムの水溶液を供給するが、該水酸化第4級アンモニウムの濃度を高くすると電流効率の低下を招くため、一般に0.1〜4.5規定に調節するのが好ましい。
When electrolysis is performed as described above, TMA + (tetramethylammonium ion) moves from the stock solution chamber 5 to the cathode chamber 9 through the cation exchange membrane C, and the following formula:
TMA + + H 2 O + e → TMAH + 1 / 2H 2
Is generated at the cathode 3, and TMAH (tetramethylammonium hydroxide) is obtained. Although an aqueous solution of quaternary ammonium hydroxide is supplied to the cathode chamber, increasing the concentration of the quaternary ammonium hydroxide causes a decrease in current efficiency. Is preferred.

原液室5中のClは陰イオン交換膜Aを通って陽極室11に移行する。この陽極室11で、Clは、下記式:
2Cl → Cl+2e
で示される電極反応により塩素となる。陽極室で使用される酸としては、塩酸、硫酸、リン酸などの無機酸、またはギ酸、酢酸などの有機酸が使用され、濃度は0.05〜3.0規定の範囲、特に電流効率を高く保つために0.1〜1.0規定の酸が好適に使用される。このように陽極室は酸液であるので、一部は下記式:
Cl+HO → HCl+HClO
で示されるように酸化力が強い過塩素酸を生成し、酸化に対して弱い陰イオン交換膜Aを酸化劣化させてしまう。
Cl in the stock solution chamber 5 moves to the anode chamber 11 through the anion exchange membrane A. In the anode chamber 11, Cl represents the following formula:
2Cl over → Cl 2 + 2e -
It becomes chlorine by the electrode reaction indicated by As the acid used in the anode chamber, an inorganic acid such as hydrochloric acid, sulfuric acid or phosphoric acid, or an organic acid such as formic acid or acetic acid is used, and the concentration is in the range of 0.05 to 3.0 N, particularly the current efficiency. In order to keep it high, an acid of 0.1 to 1.0 N is preferably used. Thus, since the anode chamber is an acid solution, a part of the following formula:
Cl 2 + H 2 O → HCl + HClO
As shown in FIG. 2, perchloric acid having a strong oxidizing power is generated, and the anion exchange membrane A weak against oxidation is oxidized and deteriorated.

図2のように、陽極と陰イオン交換膜との間に陽イオン交換膜を配置した場合、原液室5中のClは陰イオン交換膜Aを通って酸室7に移行する。また、陽極室11には、希薄な酸水溶液(例えば硫酸水溶液)が供給されており、このため、水素イオン(H)が陽イオン交換膜Cを通って酸室7に移行する。この結果、酸室7では酸(HCl)が生成することとなる。酸室で使用される酸としては、塩酸、硫酸、リン酸などの無機酸、またはギ酸、酢酸などの有機酸が使用され、濃度は0.05〜3.0規定の範囲、特に電流効率を高く保つために0.1〜1.0規定の酸が好適に使用される。 As shown in FIG. 2, when a cation exchange membrane is disposed between the anode and the anion exchange membrane, Cl in the stock solution chamber 5 moves to the acid chamber 7 through the anion exchange membrane A. In addition, a dilute acid aqueous solution (for example, sulfuric acid aqueous solution) is supplied to the anode chamber 11, so that hydrogen ions (H + ) migrate to the acid chamber 7 through the cation exchange membrane C. As a result, acid (HCl) is generated in the acid chamber 7. As the acid used in the acid chamber, inorganic acids such as hydrochloric acid, sulfuric acid and phosphoric acid, or organic acids such as formic acid and acetic acid are used, and the concentration is in the range of 0.05 to 3.0 N, particularly the current efficiency. In order to keep it high, an acid of 0.1 to 1.0 N is preferably used.

以上のようなプロセスで電解が進行していくが、酸室7に移行したClには電界が作用しているため、その一部は、陽イオン交換膜Cを透過して陽極室11内に侵入してしまう。陽極室11内にClが侵入すると、前述したように電極反応が正極1で生じ、塩素ガス(Cl)が発生する。このような塩素ガスが陽イオン交換膜Cを通って酸室7に移行し、例えば、下記式:
Cl+HO → HCl+HClO
で示されるように酸化力の強い過塩素酸を生成し、酸化に対して弱い陰イオン交換膜Aを酸化劣化させてしまうという不都合が生じることとなる。
Although the electrolysis proceeds in the above process, since an electric field is acting on Cl transferred to the acid chamber 7, a part thereof passes through the cation exchange membrane C and passes through the anode chamber 11. Invades. When Cl enters the anode chamber 11, the electrode reaction occurs at the positive electrode 1 as described above, and chlorine gas (Cl 2 ) is generated. Such chlorine gas moves to the acid chamber 7 through the cation exchange membrane C. For example, the following formula:
Cl 2 + H 2 O → HCl + HClO
As shown in FIG. 2, there is a disadvantage that perchloric acid having a strong oxidizing power is generated, and the anion exchange membrane A that is weak against oxidation is oxidized and deteriorated.

本発明においては、このようなハロゲンガス(塩素ガス)による酸化劣化を抑制するために、図3に示すような2層構造を有する陰イオン交換膜Aを使用することが重要である。   In the present invention, it is important to use an anion exchange membrane A having a two-layer structure as shown in FIG. 3 in order to suppress such oxidative degradation caused by halogen gas (chlorine gas).

即ち、図3において、本発明で使用する陰イオン交換膜Aは、基材層31と、基材層31の一方の表面に形成された高架橋層33とから形成されている。   That is, in FIG. 3, the anion exchange membrane A used in the present invention is formed of a base material layer 31 and a highly crosslinked layer 33 formed on one surface of the base material layer 31.

基材層31は、所謂公知の陰イオン交換膜(以下、基材陰イオン交換膜と呼ぶことがある)から形成されている。該陰イオン交換膜は、例えばポリ塩化ビニル、ポリオレフィン等から形成された織布、不織布、多孔性フィルム等から形成された基材に、所定のペースト状物である重合性組成物を塗布せしめて重合を行い、必要により陰イオン交換基を導入すること(以下、単にペースト法ともいう)により得られる。陰イオン交換基は、水溶液中で負又は正の電荷となり得る官能基なら特に制限されるものではなく、例えば、1〜3級アミノ基、4級アンモニウム基、ピリジル基、イミダゾール基、4級ピリジニウム基等が挙げられ、一般的に、強塩基性基である4級アンモニウム基や4級ピリジニウム基が好適である。   The base material layer 31 is formed of a so-called known anion exchange membrane (hereinafter sometimes referred to as a base material anion exchange membrane). The anion exchange membrane is obtained by, for example, applying a predetermined paste-form polymerizable composition to a substrate formed from a woven fabric, a nonwoven fabric, a porous film, or the like formed from polyvinyl chloride, polyolefin, or the like. Polymerization is performed, and an anion exchange group is introduced as necessary (hereinafter also simply referred to as a paste method). The anion exchange group is not particularly limited as long as it is a functional group that can be negatively or positively charged in an aqueous solution. For example, the primary to tertiary amino group, the quaternary ammonium group, the pyridyl group, the imidazole group, and the quaternary pyridinium. In general, a quaternary ammonium group or a quaternary pyridinium group which is a strongly basic group is preferable.

上記のような基材陰イオン交換膜の形成に用いる重合性組成物は、陰イオン交換基を有する単量体或いは陰イオン交換基を導入し得る官能基を有する単量体、架橋剤、重合開始剤及びマトリックス樹脂を含むものである。   The polymerizable composition used for the formation of the base anion exchange membrane as described above includes a monomer having an anion exchange group or a monomer having a functional group capable of introducing an anion exchange group, a crosslinking agent, and a polymerization agent. It contains an initiator and a matrix resin.

陰イオン交換基を有する単量体としては、スチレンや該スチレンの芳香環やビニル基にハロゲン基、アルキル基あるいはハロアルキル基等の置換基が導入されたスチレン置換体が何ら制限無く使用できる。こうしたスチレン置換体としては、アミノスチレン、アルキルアミノスチレン、ジアルキルアミノスチレン、トリアルキルアミノスチレン、ビニルベンジルトリメチルアミン、ビニルベンジルトリエチルアミン等のアミン系単量体、ビニルピリジン、メチルビニルピリジン、エチルビニルピリジン、ビニルピロリドン、ビニルカルバゾール、ビニルイミダゾール等の含窒素複素環系単量体、それらの塩類およびエステル類等を挙げることができ、また、陰イオン交換基が導入可能な官能基を有する単量体としては、スチレン、ビニルトルエン、クロロメチルスチレン、ビニルピリジン、ビニルイミダゾール、α−メチルスチレン、ビニルナフタレン、アクリル酸アミド、ビニルピロリドン、メチルビニルケトン等が挙げられる。   As the monomer having an anion exchange group, styrene or a styrene substituted product in which a substituent such as a halogen group, an alkyl group or a haloalkyl group is introduced into the aromatic ring or vinyl group of the styrene can be used without any limitation. Examples of such styrene substitution products include amine monomers such as aminostyrene, alkylaminostyrene, dialkylaminostyrene, trialkylaminostyrene, vinylbenzyltrimethylamine, vinylbenzyltriethylamine, vinylpyridine, methylvinylpyridine, ethylvinylpyridine, vinyl. Nitrogen-containing heterocyclic monomers such as pyrrolidone, vinylcarbazole and vinylimidazole, salts and esters thereof, and the like, and monomers having a functional group into which an anion exchange group can be introduced Styrene, vinyl toluene, chloromethyl styrene, vinyl pyridine, vinyl imidazole, α-methyl styrene, vinyl naphthalene, acrylic amide, vinyl pyrrolidone, methyl vinyl ketone and the like.

また、架橋剤も従来公知であるイオン交換膜の製造において用いられる単量体が特に制限なく使用できる。具体的には、例えば、m−、p−或いはo−ジビニルベンゼン、ジビニルビフェニル、ジビニルスルホン、ブタジエン、クロロプレン、イソプレン、トリビニルベンゼン、ジビニルナフタリン、ジアリルアミン、トリアリルアミン、ジビニルピリジン、或いは特開昭62−205153号公報等に開示されているビニルベンジル基を3個以上有する他官能ビニルベンジル系化合物などが使用される。   As the cross-linking agent, monomers used in the production of conventionally known ion exchange membranes can be used without any particular limitation. Specifically, for example, m-, p- or o-divinylbenzene, divinylbiphenyl, divinylsulfone, butadiene, chloroprene, isoprene, trivinylbenzene, divinylnaphthalene, diallylamine, triallylamine, divinylpyridine, or JP-A-62. Other functional vinylbenzyl compounds having 3 or more vinylbenzyl groups disclosed in JP-A-205153 and the like are used.

前述した陰イオン交換基を有する単量体或いは陰イオン交換基導入可能な単量体成分は、基材陰イオン交換膜に要求される陰イオン交換容量に応じた量で使用され、一般に、前述した単量体100重量部当り5乃至150重量部の量で使用される。この架橋剤の使用量が少ないと、架橋度が低くなる結果、電流効率が低下してしまう。一方、必要以上に多量に使用すると、架橋度が高くなる結果、膜抵抗が増大してしまい、電力原単位が高くなってしまうからである。   The monomer having an anion exchange group or the monomer component capable of introducing an anion exchange group is used in an amount corresponding to the anion exchange capacity required for the base anion exchange membrane. It is used in an amount of 5 to 150 parts by weight per 100 parts by weight of the monomer. If the amount of the crosslinking agent used is small, the degree of crosslinking is lowered, resulting in a decrease in current efficiency. On the other hand, if it is used in a larger amount than necessary, the degree of crosslinking increases, resulting in an increase in membrane resistance and an increase in power intensity.

重合性組成物中の重合開始剤としては、従来公知の重合開始剤が特に制限されること無く使用され、用いる基材、成形条件により適宜選択すれば良い。   As the polymerization initiator in the polymerizable composition, a conventionally known polymerization initiator is used without particular limitation, and may be appropriately selected depending on the substrate to be used and molding conditions.

その具体例としては、p−メンタンヒドロパーオキシド、ジイソプロピルベンゼンヒドロパーオキシド、α,α’−ビス(tert−ブチルパーオキシ−m−イソプロピル)ベンゼン、ジ−tert−ブチルパーオキシド、tert−ブチルヒドロパーオキシド、ジ−tert−アミルパーオキシド、tert−ブチルクミルパーオキシド、ジクミルパーオキシド、2,5−ジメチル−2,5−ジ(tert−ブチルパーオキシ)ヘキサン、2,5−ジメチル−2,5−ジ(tert−ブチルパーオキシ)ヘキシン−3、クメンヒドロパーオキシド、1,1,3,3−テトラメチルブチルヒドロパーオキシド、2,5−ジメチル−2,5−ジヒドロパーオキシヘキサン、2,5−ジメチル−2,5−ジヒドロパーオキシヘキシン−3、ベンゾイルパーオキシド、メチルエチルケトンパーオキシド、メチルイソブチルケトンパーオキシド、シクロヘキサンパーオキシド、メチルシクロヘキサンパーオキシド、イソブチルパーオキシド、2,4−ジクロロベンゾイルパーオキシド、o−メチルベンゾイルパーオキド、ビス−3,5,5−トリメチルヘキサノイルパーオキシド、ラウロイルパーオキシド、p−クロロベンゾイルパーオキシド、1,1−ジ−tert−ブチルパーオキシ−トリメチルシクロヘキサン、1,1−ジ−tert−ブチルパーオキシシクロヘキサン、2,2−ジ−(tert−ブチルパーオキシ)−ブタン、4,4−ジ−tert−ブチルパーオキシバレリアン酸−n−ブチルエステル、2,4,4−トリメチルペンチルパーオキシ−フェノキシアセテート、α−クミルパーオキシネオデカノエート、tert−ブチルパーオキシネオデカノエート、tert−ブチルパーオキシピバレート、tert−ブチルパーオキシ−2−エチルヘキサノエート、tert−ブチルパーオキシ−イソブチレート、ジ−tert−ブチルパーオキシ−ヘキサハイドロテレフタレート、ジ−tert−ブチルパーオキシアゼレート、tert−ブチルパーオキシ−3,5,5−トリメチルヘキサノエート、tert−ブチルパーオキシアセテート、tert−ブチルパーオキシベンゾエート等が好適である。これらは、単独または2種以上の組み合わせでモノマーペースト中に添加混合される。   Specific examples thereof include p-menthane hydroperoxide, diisopropylbenzene hydroperoxide, α, α′-bis (tert-butylperoxy-m-isopropyl) benzene, di-tert-butyl peroxide, tert-butylhydro Peroxide, di-tert-amyl peroxide, tert-butylcumyl peroxide, dicumyl peroxide, 2,5-dimethyl-2,5-di (tert-butylperoxy) hexane, 2,5-dimethyl-2 , 5-di (tert-butylperoxy) hexyne-3, cumene hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, 2,5-dimethyl-2,5-dihydroperoxyhexane, 2,5-dimethyl-2,5-dihydroperoxyhexyne-3, benzoy Luperoxide, methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, cyclohexane peroxide, methylcyclohexane peroxide, isobutyl peroxide, 2,4-dichlorobenzoyl peroxide, o-methylbenzoyl peroxide, bis-3,5,5 -Trimethylhexanoyl peroxide, lauroyl peroxide, p-chlorobenzoyl peroxide, 1,1-di-tert-butylperoxy-trimethylcyclohexane, 1,1-di-tert-butylperoxycyclohexane, 2,2- Di- (tert-butylperoxy) -butane, 4,4-di-tert-butylperoxyvaleric acid-n-butyl ester, 2,4,4-trimethylpentylperoxy-phenoxyacetate, α- Milperoxyneodecanoate, tert-butylperoxyneodecanoate, tert-butylperoxypivalate, tert-butylperoxy-2-ethylhexanoate, tert-butylperoxy-isobutyrate, di-tert -Butylperoxy-hexahydroterephthalate, di-tert-butylperoxyazelate, tert-butylperoxy-3,5,5-trimethylhexanoate, tert-butylperoxyacetate, tert-butylperoxybenzoate, etc. Is preferred. These are added or mixed in the monomer paste alone or in combination of two or more.

上記のような重合開始剤の使用量は、通常、前述した単量体成分100重量部に対して、0.1乃至30重量部の範囲が好適である。   The amount of the polymerization initiator as described above is usually preferably in the range of 0.1 to 30 parts by weight with respect to 100 parts by weight of the monomer component described above.

また、重合性組成物中には、粘度調整剤としてマトリックス樹脂を配合する。このようなマトリックス樹脂を配合することにより、重合性組成物の塗布性を高め、これを基材に塗布させたときの垂れ等を防止することができる。   Moreover, in the polymerizable composition, a matrix resin is blended as a viscosity modifier. By mix | blending such matrix resin, the applicability | paintability of polymeric composition can be improved and dripping etc. when this is apply | coated to a base material can be prevented.

このようなマトリックス樹脂としては、例えば、ポリ塩化ビニル、塩素化ポリ塩化ビニル、エチレン−塩化ビニルの共重合体、塩化ビニル系エラストマー、塩素化ポリエチレン、クロロスルホン化ポリエチレン、エチレン−プロピレン共重合体、ポリブチレン等の飽和脂肪族炭化水素系ポリマー、スチレン−ブタジエン共重合体などのスチレン系ポリマー及び、これらに、ビニルトルエン、ビニルキシレン、クロロスチレン、クロロメチルスチレン、α−メチルスチレン、α−ハロゲン化スチレン、α,β,β’−トリハロゲン化スチレン等のスチレン系モノマー、エチレン、ブチレン等のモノオレフィンや、ブタジエン、イソプレン等の共役ジオレフィンなどを共重合させたもの;などを使用することができる。またスチレン−ブタジエンゴムまたはその水素添加ゴム、ニトリルゴムまたはその水素添加ニトリルゴム、ピリジンゴムまたはその水素添加ゴム、スチレン系熱可塑性エラストマーも好適に使用できる。   Examples of such matrix resins include polyvinyl chloride, chlorinated polyvinyl chloride, ethylene-vinyl chloride copolymers, vinyl chloride elastomers, chlorinated polyethylene, chlorosulfonated polyethylene, ethylene-propylene copolymers, Saturated aliphatic hydrocarbon polymers such as polybutylene, styrene polymers such as styrene-butadiene copolymer, and vinyl toluene, vinyl xylene, chlorostyrene, chloromethyl styrene, α-methyl styrene, α-halogenated styrene , Styrene monomers such as α, β, β′-trihalogenated styrene, monoolefins such as ethylene and butylene, and conjugated diolefins such as butadiene and isoprene, and the like can be used. . Styrene-butadiene rubber or its hydrogenated rubber, nitrile rubber or its hydrogenated nitrile rubber, pyridine rubber or its hydrogenated rubber, and styrene-based thermoplastic elastomer can also be suitably used.

ここで、スチレン系熱可塑性エラストマーとは、ポリスチレン重合体と、スチレンとポリブタジエン、ポリイソプレン、ビニルポリイソプレン、エチレン−ブチレンの交互共重合体、エチレン−プロピレンの交互共重合体をいう。例えば、ポリスチレン−水素添加ポリブタジエン−ポリスチレン共重合体、ポリスチレン−(ポリエチレン/ブチレンゴム)−ポリスチレン共重合体、ポリスチレン−水素添加ポリイソプレンゴム−ポリスチレン共重合体、ポリスチレン−(ポリエチレン/プロピレンゴム)−ポリスチレン共重合体、ポリスチレン−ポリエチレン−(ポリエチレン/プロピレンゴム)−ポリスチレン共重合体、ポリスチレン−ビニルポリイソプレン−ポリスチレン共重合体等が例示される。かかるマトリックス樹脂の分子量は、特に制限されるものではないが、通常、1,000乃至1,000,000、特に50,000乃至500,000の範囲にあることが好ましい。また、かかるマトリックス樹脂は、適度な粘性を確保できる程度の量で分子量に応じて重合性組成物中に配合され、例えば、その量は、前述した単量体成分100重量部当り、5〜50重量部程度である。   Here, the styrene thermoplastic elastomer refers to a polystyrene polymer, an alternating copolymer of styrene and polybutadiene, polyisoprene, vinyl polyisoprene, ethylene-butylene, and an alternating copolymer of ethylene-propylene. For example, polystyrene-hydrogenated polybutadiene-polystyrene copolymer, polystyrene- (polyethylene / butylene rubber) -polystyrene copolymer, polystyrene-hydrogenated polyisoprene rubber-polystyrene copolymer, polystyrene- (polyethylene / propylene rubber) -polystyrene copolymer Examples include polymers, polystyrene-polyethylene- (polyethylene / propylene rubber) -polystyrene copolymers, polystyrene-vinylpolyisoprene-polystyrene copolymers, and the like. The molecular weight of such a matrix resin is not particularly limited, but it is usually preferably in the range of 1,000 to 1,000,000, particularly 50,000 to 500,000. Further, such a matrix resin is blended in the polymerizable composition according to the molecular weight in an amount capable of securing an appropriate viscosity. For example, the amount is 5 to 50 per 100 parts by weight of the monomer component. About parts by weight.

尚、上述した重合性組成物には、上述した各種成分以外にも、必要により、ジオクチルフタレート、ジブチルフタレート、リン酸トリブチル、スチレンオキサイド、或いは脂肪酸や芳香族酸のアルコールエステル等の可塑剤や、有機溶媒などが配合されていてもよい。   In addition to the various components described above, the polymerizable composition described above, if necessary, a plasticizer such as dioctyl phthalate, dibutyl phthalate, tributyl phosphate, styrene oxide, or an alcohol ester of a fatty acid or aromatic acid, An organic solvent or the like may be blended.

重合性組成物の基材へのコーティングは、ロールコーター、フローコーター、ナイフコーター、コンマコーター、スプレー、ディッピング等の公知の手段によって行うことができる。   Coating of the polymerizable composition on the substrate can be performed by a known means such as a roll coater, a flow coater, a knife coater, a comma coater, spraying, dipping and the like.

上記のようにして基材に重合性組成物をコーティングした後、加熱して重合を行い、膜状高分子体(以下、単に原膜という)を得る。通常の陰イオン交換膜の場合、この後アミノ化、アルキル化等の処理により前述した陰イオン交換基を導入しうる単量体単位が有している反応基に、第4級アンモニウム塩等の陰イオン交換基を導入することにより、陰イオン交換膜を得る。   After coating the polymerizable composition on the substrate as described above, polymerization is carried out by heating to obtain a film-like polymer (hereinafter simply referred to as the original film). In the case of a normal anion exchange membrane, a reactive group possessed by the monomer unit capable of introducing the above anion exchange group by treatment such as amination or alkylation is added to a quaternary ammonium salt or the like. An anion exchange membrane is obtained by introducing an anion exchange group.

しかしながら、本発明においては、この原膜の一方側の面だけに、基材層31よりもさらに密な架橋構造を有する高架橋層33を形成させる。その具体的な方法は、原膜の片側をフィルム等で覆い、フィルムに覆われていない面をアミン化合物と接触させる。アミン化合物としては、例えばジメチルアミン及びジアミン類、例えばエチレンジアミン、ジエチレントリアミン、プロピレンジアミン、ブチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、テトラメチルヘキサンジアミンなどが好適に使用できる。原膜中には、陰イオン交換基または陰イオン交換基を導入しうる官能基が存在する。これらが上述するアミン化合物を介して、交換容量を有した架橋構造が形成される。よってこの反応を原膜に行った後、交換容量を測定することで、架橋の度合いを知ることが出来る。   However, in the present invention, the highly crosslinked layer 33 having a denser crosslinked structure than the base material layer 31 is formed only on one surface of the original film. Specifically, one side of the original film is covered with a film or the like, and the surface not covered with the film is brought into contact with the amine compound. As the amine compound, for example, dimethylamine and diamines such as ethylenediamine, diethylenetriamine, propylenediamine, butylenediamine, pentamethylenediamine, hexamethylenediamine, and tetramethylhexanediamine can be preferably used. An anion exchange group or a functional group capable of introducing an anion exchange group exists in the original membrane. A cross-linked structure having an exchange capacity is formed through the amine compound described above. Therefore, after this reaction is performed on the original membrane, the degree of crosslinking can be determined by measuring the exchange capacity.

このような高架橋層33の交換容量は、0.005〜0.5meq/g−乾燥膜、特に0.01〜0.2meq/g−乾燥膜の範囲にあるのがよい。この範囲を下回ると、架橋構造が不十分で耐酸化性を保持できず、この範囲を上回ると架橋構造が多すぎて抵抗が高くなりすぎ、電力原単位が高くなってしまう。   The exchange capacity of such a highly crosslinked layer 33 is preferably in the range of 0.005 to 0.5 meq / g-dry membrane, particularly 0.01 to 0.2 meq / g-dry membrane. Below this range, the cross-linked structure is insufficient and the oxidation resistance cannot be maintained, and above this range, there are too many cross-linked structures, the resistance becomes too high, and the power consumption becomes high.

こうして高架橋層33を形成させた後、アミノ化、アルキル化等の処理により第4級アンモニウム塩等の陰イオン交換基を導入することにより、基材層31を形成し、本発明で使用する陰イオン交換膜Aを得る。   After forming the highly cross-linked layer 33 in this manner, an anion exchange group such as a quaternary ammonium salt is introduced by treatment such as amination and alkylation to form the base material layer 31 and an anion used in the present invention. An ion exchange membrane A is obtained.

本発明において、上記の方法で得た陰イオン交換膜Aは、効率よく電解を行うために、その陰イオン交換容量は、0.5〜5.0meq/g−乾燥膜、特に0.8〜2.0meq/g−乾燥膜の範囲にあるのがよく、厚みは10〜500μm、特に40〜300μmの範囲にあるのが好ましい。即ち、このような物性を有するように、重合性組成物の組成(単量体成分や架橋剤の量或いはその種類)、コーティング厚み及び導入する陰イオン交換基量が適宜の範囲に設定される。さらに、このようにして得られる陰イオン交換膜Aでは、該表面架橋層の交換容量が、陰イオン交換膜A全体の交換容量に対して0.002〜0.3倍、特に0.005〜0.25倍の範囲にあることが好適である。
表面また、
In the present invention, the anion exchange membrane A obtained by the above method has an anion exchange capacity of 0.5 to 5.0 meq / g-dry membrane, particularly 0.8 to The thickness should be in the range of 2.0 meq / g-dry film, and the thickness is preferably in the range of 10 to 500 μm, particularly 40 to 300 μm. That is, in order to have such physical properties, the composition of the polymerizable composition (amount of monomer component or crosslinking agent or the type thereof), coating thickness, and amount of anion exchange group to be introduced are set within an appropriate range. . Furthermore, in the anion exchange membrane A thus obtained, the exchange capacity of the surface cross-linked layer is 0.002 to 0.3 times, particularly 0.005 to the exchange capacity of the entire anion exchange membrane A. It is preferable to be in the range of 0.25 times.
Surface also

また、本発明で用いる陰イオン交換膜Aは、上記のような基材陰イオン交換膜から形成される基材層31の表面に、高架橋度の層33が形成されており、前述した図1、図2に示す電解に際して、この高架橋度層33が正極1側(即ち酸室7側)に面するように配置される。   In addition, the anion exchange membrane A used in the present invention has a highly crosslinked layer 33 formed on the surface of the base material layer 31 formed from the base material anion exchange membrane as described above. In the electrolysis shown in FIG. 2, the highly crosslinked layer 33 is disposed so as to face the positive electrode 1 side (that is, the acid chamber 7 side).

また、本発明において、前述した陰イオン交換膜と共に使用される陽イオン交換膜としては、それ自体公知のものでよく、例えば、ポリオレフィン樹脂、ポリ塩化ビニル、フッ素系樹脂などからなる織布、不織布、多孔性フィルム等を基材とし、この基材に陽イオン交換樹脂が充填された構造を有するものである。   In the present invention, the cation exchange membrane used together with the anion exchange membrane described above may be a known cation exchange membrane, for example, a woven fabric or a nonwoven fabric made of polyolefin resin, polyvinyl chloride, fluorine resin, or the like. A porous film or the like is used as a base material, and the base material is filled with a cation exchange resin.

また、上記の陽イオン交換樹脂は、炭化水素系又はフッ素系の基材樹脂陽イオン交換基が導入されたものであるが、特に耐酸性等の観点からパーフロオロカーボン系樹脂等のフッ素系樹脂を基材樹脂としているものが好適である。また陰極面側の膜面には、陽イオン交換基としてカルボン酸基が結合し、残余の部分はスルホン酸基が結合したものが望ましい。   In addition, the cation exchange resin described above is one in which a hydrocarbon-based or fluorine-based base resin cation-exchange group is introduced. In particular, from the viewpoint of acid resistance and the like, a fluorine-based resin such as a perfluorocarbon-based resin. The base resin is preferably used. Further, it is desirable that a carboxylic acid group as a cation exchange group is bonded to the film surface on the cathode surface side, and a sulfonic acid group is bonded to the remaining portion.

本発明では、上記のような陰イオン交換膜A及び陽イオン交換膜Cを図1、図2に示すように配置し、原液室5にハロゲン化第4級アンモニウム塩の水溶液を供給して電解を行うことにより、陰イオン交換膜Aを長期間にわたって交換することなく、水酸化第4級アンモニウムを安定して製造することができる。必要に応じて、陽イオン交換膜Cと電極の間にさらに複数の陽イオン交換膜を配置してもよい。   In the present invention, the anion exchange membrane A and the cation exchange membrane C as described above are arranged as shown in FIGS. 1 and 2, and an aqueous solution of a quaternary ammonium salt halide is supplied to the stock solution chamber 5 for electrolysis. By performing the above, quaternary ammonium hydroxide can be stably produced without exchanging the anion exchange membrane A over a long period of time. If necessary, a plurality of cation exchange membranes may be further arranged between the cation exchange membrane C and the electrode.

以下、実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.

<実施例1>
クロルメチルスチレン35重量部、スチレン35重量部、ジビニルベンゼン15重量部、ラジカル重合開始剤としてジ−tert−ブチルパーオキシド5重量部及びマトリックス樹脂として、スチレン−ブタジエン共重合体10重量部を加えてペースト状混合物にした。
<Example 1>
Add 35 parts by weight of chloromethylstyrene, 35 parts by weight of styrene, 15 parts by weight of divinylbenzene, 5 parts by weight of di-tert-butyl peroxide as a radical polymerization initiator and 10 parts by weight of styrene-butadiene copolymer as a matrix resin. A pasty mixture was obtained.

次いでカレンダー加工された高密度ポリエチレン製の1平方メートル当たり目数が200の網(商品名:ニップ強力網、NBC工業製、厚さ150μm)に上記したペースト混合物を塗布し、ポリエステルフィルムを剥離フィルムとして被覆した後、ペースト法による重合を行った。重合パターンは、20℃から100℃まで2時間かけて昇温し、次いで120℃まで30分かけて昇温し、120℃を6時間保持した。   Next, the above-mentioned paste mixture is applied to a calendered mesh made of high-density polyethylene with a mesh of 200 per square meter (trade name: NIP STRONG NET, NBC Kogyo, thickness 150 μm), and the polyester film is used as a release film After coating, polymerization was performed by a paste method. The polymerization pattern was heated from 20 ° C. to 100 ° C. over 2 hours, then heated to 120 ° C. over 30 minutes, and maintained at 120 ° C. for 6 hours.

次いで、剥離フィルムと原膜を剥ぎとるが、この時、原膜と剥離フィルムを完全に剥がすのではなく、原膜の片面のみに剥離フィルムを付けたままにする。この片側のみ剥離フィルムで覆われた原膜を1.0N−ジメチルアミン水溶液に、8時間、30℃で浸漬した。この段階で、表面架橋層の交換容量は0.02meq/g−乾燥膜であった。   Next, the release film and the original film are peeled off. At this time, the original film and the release film are not completely peeled off, but the release film is left attached to only one side of the original film. The original film covered with the release film only on one side was immersed in a 1.0N-dimethylamine aqueous solution at 30 ° C. for 8 hours. At this stage, the exchange capacity of the surface cross-linked layer was 0.02 meq / g-dry membrane.

次いで、片面を覆っているペットフィルムを取り除く。これをトリメチルアミン10重量%及びアセトン20重量%水溶液を用いて、16時間、30℃で4級化反応を行い、厚さ190μmの陰イオン交換膜を得た。得られた陰イオン交換膜は、イオン交換容量が1.3meq/g−乾燥膜、ミューレン式の破裂強度は1.0MPa以上、透水量は0ml/(m・hr・0.1MPa)であった。 The pet film covering one side is then removed. This was subjected to a quaternization reaction at 30 ° C. for 16 hours using an aqueous solution of 10% by weight of trimethylamine and 20% by weight of acetone to obtain an anion exchange membrane having a thickness of 190 μm. The obtained anion exchange membrane had an ion exchange capacity of 1.3 meq / g-dry membrane, a Murren burst strength of 1.0 MPa or more, and a water permeability of 0 ml / (m 2 · hr · 0.1 MPa). It was.

次いで、得られた陰イオン交換膜と陽イオン交換膜としてデュポン社製のナフィオン90209を、図1のように配置した有効膜面積は2dmの電解装置に組込んだ。尚、ナフィオン膜は、カルボン酸基を有する面を陰極側に向けて設置した。陽極はチタン板に白金めっき、陰極はSUS316を使用した。 Next, as an anion exchange membrane and a cation exchange membrane obtained, Nafion 90209 manufactured by DuPont was incorporated in an electrolysis apparatus having an effective membrane area of 2 dm 2 arranged as shown in FIG. The Nafion membrane was installed with the surface having a carboxylic acid group facing the cathode side. For the anode, a titanium plate was plated with platinum, and for the cathode, SUS316 was used.

上記の電解装置の陽極室に0.5規定の硫酸を、陰イオン交換膜と陰極側の陽イオン交換膜の間に2.5規定のテトラメチルアンモニウムクロライド水溶液を、陰極室に純水をそれぞれ循環させ、電流密度30A/dm、温度は40℃に維持しながら、連続的に電解を実施した。連続運転中は、陰極室の水酸化テトラメチルアンモニウム濃度が2.0規定になるようにした。同じく各室を循環する液の濃度が一定になるように、濃度が濃くなったときは純水を、薄くなったときは、その成分を添加した。 0.5N sulfuric acid is added to the anode chamber of the electrolyzer, 2.5N tetramethylammonium chloride aqueous solution is added between the anion exchange membrane and the cation exchange membrane on the cathode side, and pure water is added to the cathode chamber. Circulation was performed, and electrolysis was continuously performed while maintaining a current density of 30 A / dm 2 and a temperature of 40 ° C. During continuous operation, the concentration of tetramethylammonium hydroxide in the cathode chamber was adjusted to 2.0 N. Similarly, pure water was added when the concentration increased, and the components were added when the concentration decreased, so that the concentration of the liquid circulating in each chamber became constant.

その結果、陰イオン交換膜は1年間の連続運転後、イオン交換容量が1.1meq/g−乾燥膜、ミューレン式の破裂強度は0.9MPa、透水量は0ml/(m2・hr・0.1MPa)であった。   As a result, the anion exchange membrane had an ion exchange capacity of 1.1 meq / g-dry membrane after continuous operation for one year, a rupture strength of the Murren type of 0.9 MPa, and a water permeability of 0 ml / (m 2 · hr · 0. 1 MPa).

<実施例2>
図2のように配置した有効膜面積は2dmの電解装置に組込んだ以外は、実施例1と同様に行った。電解前の陰イオン交換膜は、イオン交換容量が1.3meq/g−乾燥膜、ミューレン式の破裂強度は1.0MPa以上、透水量は0ml/(m・hr・0.1MPa)であった。
<Example 2>
The effective membrane area arranged as shown in FIG. 2 was the same as that of Example 1 except that it was incorporated in a 2 dm 2 electrolyzer. The anion exchange membrane before electrolysis had an ion exchange capacity of 1.3 meq / g-dry membrane, a Murren burst strength of 1.0 MPa or more, and a water permeability of 0 ml / (m 2 · hr · 0.1 MPa). It was.

図2に示す電解装置の陽極室に0.5規定の硫酸を、陽極側の陽イオン交換膜と陰イオン交換膜の間に0.5規定の塩酸を、陰イオン交換膜と陰極側の陽イオン交換膜の間に2.5規定のテトラメチルアンモニウムクロライド水溶液を、陰極室に純水をそれぞれ循環させ、電流密度30A/dm、温度は40℃に維持しながら、連続的に電解を実施した。連続運転中は、陰極室の水酸化テトラメチルアンモニウム濃度が2.0規定になるようにした。同じく各室を循環する液の濃度が一定になるように、濃度が濃くなったときは純水を、薄くなったときは、その成分を添加した。 In the electrolytic chamber shown in FIG. 2, 0.5 N sulfuric acid is added to the anode chamber, 0.5 N hydrochloric acid is added between the cation exchange membrane on the anode side and the anion exchange membrane, and a cation exchange on the anion exchange membrane and the cathode side. Continuous electrolysis is performed while circulating a 2.5N tetramethylammonium chloride aqueous solution between the ion exchange membranes and pure water in the cathode chamber, maintaining a current density of 30 A / dm 2 and a temperature of 40 ° C. did. During continuous operation, the concentration of tetramethylammonium hydroxide in the cathode chamber was adjusted to 2.0 N. Similarly, pure water was added when the concentration increased, and the components were added when the concentration decreased, so that the concentration of the liquid circulating in each chamber became constant.

連続的に電解運転を行った結果、陰イオン交換膜は1年間の連続運転後、イオン交換容量が1.0meq/g−乾燥膜、ミューレン式の破裂強度は0.8MPa、透水量は0ml/(m・hr・0.1MPa)であった。 As a result of continuous electrolytic operation, the anion exchange membrane was 1.0 meq / g-dry membrane after a continuous operation for 1 year, the rupture strength of the Murren type was 0.8 MPa, and the water permeability was 0 ml / (M 2 · hr · 0.1 MPa).

<実施例3>
1.0N−ジメチルアミン水溶液に3時間、浸漬した他は、実施例2と同様に行った。表面架橋層の交換容量は、0.008meq/g−乾燥膜であった。電解前の陰イオン交換膜は、イオン交換容量が1.2meq/g−乾燥膜、ミューレン式の破裂強度は1.0MPa以上、透水量は0ml/(m・hr・0.1MPa)であった。
<Example 3>
The same procedure as in Example 2 was performed except that the sample was immersed in a 1.0N-dimethylamine aqueous solution for 3 hours. The exchange capacity of the surface cross-linked layer was 0.008 meq / g-dry membrane. The anion exchange membrane before electrolysis had an ion exchange capacity of 1.2 meq / g-dry membrane, a Murren burst strength of 1.0 MPa or more, and a water permeability of 0 ml / (m 2 · hr · 0.1 MPa). It was.

実施例2と同様に、連続的に電解運転を行った結果、陰イオン交換膜は1年間の連続運転後、イオン交換容量が1.0meq/g−乾燥膜、ミューレン式の破裂強度は0.9MPa、透水量は0ml/(m・hr・0.1MPa)であった。 As in Example 2, as a result of continuous electrolytic operation, the anion exchange membrane was 1.0 meq / g-dry membrane after the continuous operation for one year, and the rupture strength of the Murren type was 0. The water permeability was 9 ml, and the water permeability was 0 ml / (m 2 · hr · 0.1 MPa).

<実施例4>
1.0N−ジメチルアミン水溶液に48時間、浸漬した他は、実施例2と同様に行った。表面架橋層の交換容量は、0.3meq/g−乾燥膜であった。電解前の陰イオン交換膜は、イオン交換容量が1.4meq/g−乾燥膜、ミューレン式の破裂強度は1.0MPa以上、透水量は0ml/(m・hr・0.1MPa)であった。
<Example 4>
The same procedure as in Example 2 was performed except that the sample was immersed in a 1.0 N-dimethylamine aqueous solution for 48 hours. The exchange capacity of the surface cross-linked layer was 0.3 meq / g-dry membrane. The anion exchange membrane before electrolysis had an ion exchange capacity of 1.4 meq / g-dry membrane, a Murren burst strength of 1.0 MPa or more, and a water permeability of 0 ml / (m 2 · hr · 0.1 MPa). It was.

実施例2と同様に、連続的に電解運転を行った結果、陰イオン交換膜は1年間の連続運転後、イオン交換容量が1.2meq/g−乾燥膜、ミューレン式の破裂強度は0.9MPa、透水量は0ml/(m・hr・0.1MPa)であった。 As in Example 2, as a result of continuous electrolytic operation, the anion exchange membrane had an ion exchange capacity of 1.2 meq / g-dry membrane after a continuous operation for 1 year, and the Murren burst strength was 0. The water permeability was 9 ml, and the water permeability was 0 ml / (m 2 · hr · 0.1 MPa).

<比較例1>
実施例2で陰イオン交換膜にジメチルアミンによる片面架橋処理を行わず、他は実施例2と同様に行った。この時、電解前の陰イオン交換膜は、イオン交換容量が1.3meq/g−乾燥膜、ミューレン式の破裂強度は1.0MPa以上、透水量は0ml/(m・hr・0.1MPa)であった。
<Comparative Example 1>
In Example 2, the anion exchange membrane was not subjected to the single-side crosslinking treatment with dimethylamine, and the others were performed in the same manner as in Example 2. At this time, the anion exchange membrane before electrolysis has an ion exchange capacity of 1.3 meq / g-dry membrane, a Murren burst strength of 1.0 MPa or more, and a water permeability of 0 ml / (m 2 · hr · 0.1 MPa. )Met.

実施例2と同様に、連続的に電解運転を行った結果、陰イオン交換膜は1年間の連続運転後、イオン交換容量が0.9meq/g−乾燥膜、ミューレン式の破裂強度は0.4MPa、透水量は102ml/(m・hr・0.1MPa)であった。 As in Example 2, as a result of continuous electrolytic operation, the anion exchange membrane was subjected to continuous operation for 1 year, the ion exchange capacity was 0.9 meq / g-dry membrane, and the Murren burst strength was 0. The water permeability was 4 ml / (m 2 · hr · 0.1 MPa).

<比較例2>
1.0N−ジメチルアミンのアセトン溶液に48時間、浸漬した他は、実施例2と同様に行った。表面架橋層の交換容量は、1.1meq/g−乾燥膜であった。電解前の陰イオン交換膜は、イオン交換容量が1.6meq/g−乾燥膜、ミューレン式の破裂強度は1.0MPa以上、透水量は0ml/(m・hr・0.1MPa)であった。
<Comparative Example 2>
The same procedure as in Example 2 was performed except that the sample was immersed in a 1.0 N-dimethylamine acetone solution for 48 hours. The exchange capacity of the surface cross-linked layer was 1.1 meq / g-dry membrane. The anion exchange membrane before electrolysis had an ion exchange capacity of 1.6 meq / g-dry membrane, a Murren burst strength of 1.0 MPa or more, and a water permeability of 0 ml / (m 2 · hr · 0.1 MPa). It was.

実施例2と同様に、連続的に電解運転を行おうとしたが、電圧が整流器の容量を超えてしまい電解運転を行うことが出来なかった。   As in Example 2, continuous electrolysis operation was attempted, but the voltage exceeded the capacity of the rectifier, and electrolysis operation could not be performed.

水酸化第4級アンモニウムを製造するために行われる電解の原理を説明するための図。The figure for demonstrating the principle of the electrolysis performed in order to manufacture quaternary ammonium hydroxide. 水酸化第4級アンモニウムを製造するために行われる電解の原理を説明するための図。The figure for demonstrating the principle of the electrolysis performed in order to manufacture quaternary ammonium hydroxide. 本発明に用いる陰イオン交換膜の構造を示す概略図。Schematic which shows the structure of the anion exchange membrane used for this invention.

符号の説明Explanation of symbols

5:原液室
7:酸室
9:陰極室
11:陽極室
31:基体層
33:高架橋度層
A:陰イオン交換膜
C:陽イオン交換膜
5: Stock chamber 7: Acid chamber 9: Cathode chamber 11: Anode chamber 31: Substrate layer 33: High cross-linking layer A: Anion exchange membrane C: Cation exchange membrane

Claims (2)

電極間に陰イオン交換膜及び陽イオン交換膜を配して構成された電解槽において、陰イオン交換膜と陽イオン交換膜によって仕切られた室にハロゲン化第4級アンモニウム塩の水溶液を供給して電解を行うことにより、水酸化第4級アンモニウムを製造する方法において、前記陰イオン交換膜として、基材層と該基材層の一方側の表面に形成された表面架橋層とからなる膜を使用し、該陰イオン交換膜を、表面層が陽極側に位置するように配置して電解を行うことを特徴とする水酸化第4級アンモニウムの製造方法。   In an electrolytic cell constructed by arranging an anion exchange membrane and a cation exchange membrane between electrodes, an aqueous solution of a quaternary ammonium salt halide is supplied to a chamber partitioned by the anion exchange membrane and the cation exchange membrane. In the method for producing quaternary ammonium hydroxide by electrolysis, a film comprising a base layer and a surface cross-linked layer formed on one surface of the base layer as the anion exchange membrane And the anion exchange membrane is disposed such that the surface layer is located on the anode side, and electrolysis is performed. 前記陰イオン交換膜の表面架橋層は、0.005〜0.5meq/g−乾燥膜の交換容量を有し、且つ、該表面架橋層の交換容量が、陰イオン交換膜全体の交換容量に対して0.002〜0.3倍である請求項1に記載の製造方法。   The surface cross-linked layer of the anion exchange membrane has an exchange capacity of 0.005 to 0.5 meq / g-dry membrane, and the exchange capacity of the surface cross-linked layer is equal to the exchange capacity of the entire anion exchange membrane. The manufacturing method according to claim 1, wherein the amount is 0.002 to 0.3 times.
JP2007177680A 2007-07-05 2007-07-05 Method for producing quaternary ammonium hydroxide Expired - Fee Related JP5100222B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007177680A JP5100222B2 (en) 2007-07-05 2007-07-05 Method for producing quaternary ammonium hydroxide
KR1020107000042A KR20100029816A (en) 2007-07-05 2008-06-20 Method for production of quaternary ammonium hydroxide
PCT/JP2008/061335 WO2009004937A1 (en) 2007-07-05 2008-06-20 Method for production of quaternary ammonium hydroxide
CN200880016713XA CN101680101B (en) 2007-07-05 2008-06-20 Method for production of quaternary ammonium hydroxide
TW097124063A TW200912045A (en) 2007-07-05 2008-06-27 Method for production of quaternary ammonium hydroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007177680A JP5100222B2 (en) 2007-07-05 2007-07-05 Method for producing quaternary ammonium hydroxide

Publications (2)

Publication Number Publication Date
JP2009013477A true JP2009013477A (en) 2009-01-22
JP5100222B2 JP5100222B2 (en) 2012-12-19

Family

ID=40225986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007177680A Expired - Fee Related JP5100222B2 (en) 2007-07-05 2007-07-05 Method for producing quaternary ammonium hydroxide

Country Status (5)

Country Link
JP (1) JP5100222B2 (en)
KR (1) KR20100029816A (en)
CN (1) CN101680101B (en)
TW (1) TW200912045A (en)
WO (1) WO2009004937A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170664A1 (en) * 2016-04-01 2017-10-05 三菱重工環境・化学エンジニアリング株式会社 Organic electrolytic synthesis apparatus and organic electrolytic synthesis method
US10421044B2 (en) 2015-02-19 2019-09-24 Fujifilm Corporation Composite anion exchange membrane, method for producing the same, ion exchange membrane module, and ion exchange device
WO2021002235A1 (en) * 2019-07-04 2021-01-07 株式会社トクヤマ Method and device for producing quaternary ammonium hydroxide

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103526224B (en) * 2013-09-22 2016-03-09 镇江润晶高纯化工有限公司 A kind of continuous electrolysis prepares the method for high-purity tetraethyl ammonium hydroxide
CN106350832B (en) * 2016-08-26 2018-04-10 肯特催化材料股份有限公司 Molecular Sieves as Template agent high-purity hydrogen aoxidizes the preparation method of the hexamethonium C6 aqueous solution
CN107904618B (en) * 2017-09-06 2020-02-18 肯特催化材料股份有限公司 Method for preparing parallel-connection hydrogen halide acid by four-chamber three-membrane electrolysis of short-chain quaternary ammonium hydroxide
CN109082680B (en) * 2018-09-04 2020-05-05 安庆师范大学 Preparation method of bipyridine ionic liquid
CN110669591A (en) * 2019-09-30 2020-01-10 上海新阳半导体材料股份有限公司 non-TMAH alkali cleaning solution used after chemical mechanical polishing and preparation method thereof
CN113620810B (en) * 2021-08-05 2022-04-15 肯特催化材料股份有限公司 Preparation method of quaternary ammonium salt and method for preparing quaternary ammonium base by using quaternary ammonium salt
KR102657799B1 (en) 2021-11-03 2024-04-16 (주)테크윈 Compartmental tank
JP2024008512A (en) * 2022-07-08 2024-01-19 株式会社トクヤマ Electrolyzer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5235839A (en) * 1975-09-17 1977-03-18 Furukawa Electric Co Ltd Battery separator
JPS6487796A (en) * 1987-05-11 1989-03-31 Tokuyama Soda Kk Production of quaternary ammonium hydroxide
JPS6488796A (en) * 1987-09-30 1989-04-03 Toshiba Corp Printing system
JPH11229169A (en) * 1998-02-12 1999-08-24 Tokuyama Corp Production of quaternary ammonium hydroxide
JP2004502786A (en) * 2000-06-13 2004-01-29 ハイドロ−ケベック Crosslinkable bromosulfonated fluoroelastomer based on vinylidene fluoride showing low Tg
JP2006179301A (en) * 2004-12-22 2006-07-06 Japan Atomic Energy Agency High-durability polymer electrolyte membrane for fuel cell with cross-linked structure introduced therein

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6297610A (en) * 1985-10-25 1987-05-07 Toyo Soda Mfg Co Ltd Method for separating acid and alkali from aqueous solution of salt

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5235839A (en) * 1975-09-17 1977-03-18 Furukawa Electric Co Ltd Battery separator
JPS6487796A (en) * 1987-05-11 1989-03-31 Tokuyama Soda Kk Production of quaternary ammonium hydroxide
JPS6488796A (en) * 1987-09-30 1989-04-03 Toshiba Corp Printing system
JPH11229169A (en) * 1998-02-12 1999-08-24 Tokuyama Corp Production of quaternary ammonium hydroxide
JP2004502786A (en) * 2000-06-13 2004-01-29 ハイドロ−ケベック Crosslinkable bromosulfonated fluoroelastomer based on vinylidene fluoride showing low Tg
JP2006179301A (en) * 2004-12-22 2006-07-06 Japan Atomic Energy Agency High-durability polymer electrolyte membrane for fuel cell with cross-linked structure introduced therein

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10421044B2 (en) 2015-02-19 2019-09-24 Fujifilm Corporation Composite anion exchange membrane, method for producing the same, ion exchange membrane module, and ion exchange device
WO2017170664A1 (en) * 2016-04-01 2017-10-05 三菱重工環境・化学エンジニアリング株式会社 Organic electrolytic synthesis apparatus and organic electrolytic synthesis method
JP2017186588A (en) * 2016-04-01 2017-10-12 三菱重工環境・化学エンジニアリング株式会社 Electroorganic synthesis apparatus and electroorganic synthesis method
KR101899765B1 (en) 2016-04-01 2018-09-17 미츠비시 쥬코 칸쿄 카가쿠 엔지니어링 가부시키가이샤 Organic electrolytic synthesis apparatus and organic electrolytic synthesis method
WO2021002235A1 (en) * 2019-07-04 2021-01-07 株式会社トクヤマ Method and device for producing quaternary ammonium hydroxide

Also Published As

Publication number Publication date
TW200912045A (en) 2009-03-16
JP5100222B2 (en) 2012-12-19
WO2009004937A1 (en) 2009-01-08
KR20100029816A (en) 2010-03-17
CN101680101A (en) 2010-03-24
CN101680101B (en) 2011-11-23

Similar Documents

Publication Publication Date Title
JP5100222B2 (en) Method for producing quaternary ammonium hydroxide
JP6568325B2 (en) Water electrolyzer
CN109071852B (en) Bipolar membrane
US6632848B2 (en) Heterogeneous anion exchanger
US4101395A (en) Cathode-structure for electrolysis
CA2475964C (en) Resins containing ionic or ionizable groups with small domain sizes and improved conductivity
EP1794823B1 (en) Multi-layer polyelectrolyte membrane
JP6416359B2 (en) Solid polymer membrane electrode
Choi et al. Preparation and electrochemical characterizations of anion-permselective membranes with structurally stable ion-exchange sites
JP2007157428A (en) Polymer electrolyte membrane and method of manufacturing same
JPWO2018164143A1 (en) Electrodialysis and reverse electrodialysis
JP2002102717A (en) Heterogeneous anion exchanger and heterogeneous anion exchange membrane
JP6909935B2 (en) Manufacturing method and equipment for quaternary ammonium hydroxide
JP5893511B2 (en) Diaphragm for alkaline water electrolysis
JP3542265B2 (en) Method for producing quaternary ammonium hydroxide
WO2023038133A1 (en) Ion exchange membrane and method for producing ion exchange membrane with catalyst layer
WO2023032776A1 (en) Anion exchange membrane and manufacturing method for same
JP7361174B1 (en) Efficient method for producing iodine component-containing aqueous solution using anion exchange membrane
JPH01136983A (en) Production of quaternary ammonium hydroxide
JP2023041181A (en) Ion exchange membrane, and method of producing ion exchange membrane provided with catalyst layer
JPS582970B2 (en) Youion Koukan Makunoseizouhouhou
ITMI20121909A1 (en) ELECTROLYTIC CELL WITH MICRO ELECTRODE
JP7454423B2 (en) Anion exchange membrane and its manufacturing method
JPS6241319B2 (en)
JPS5940848B2 (en) Manufacturing method of cation exchange membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120925

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees