JP2009005182A - Voltage controlled temperature compensated crystal oscillator, and temperature-oscillation frequency characteristics adjustment method - Google Patents

Voltage controlled temperature compensated crystal oscillator, and temperature-oscillation frequency characteristics adjustment method Download PDF

Info

Publication number
JP2009005182A
JP2009005182A JP2007165381A JP2007165381A JP2009005182A JP 2009005182 A JP2009005182 A JP 2009005182A JP 2007165381 A JP2007165381 A JP 2007165381A JP 2007165381 A JP2007165381 A JP 2007165381A JP 2009005182 A JP2009005182 A JP 2009005182A
Authority
JP
Japan
Prior art keywords
voltage
circuit
temperature
constant voltage
oscillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007165381A
Other languages
Japanese (ja)
Other versions
JP5125250B2 (en
Inventor
Naoto Sano
直人 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kenwood KK
Original Assignee
Kenwood KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kenwood KK filed Critical Kenwood KK
Priority to JP2007165381A priority Critical patent/JP5125250B2/en
Publication of JP2009005182A publication Critical patent/JP2009005182A/en
Application granted granted Critical
Publication of JP5125250B2 publication Critical patent/JP5125250B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To maintain an oscillation frequency with high accuracy despite a change of an impressed voltage accompanying a temperature change in a VC-TCXO10 generating a nominal oscillation frequency upon impressing a reference voltage to a control voltage input terminal 22. <P>SOLUTION: A constant voltage circuit 11 generates a constant voltage supplied to a crystal oscillation circuit 14. A constant voltage output terminal 20 is a terminal which derives the constant voltage to the outside. At the time of an adjustment of a temperature-oscillation frequency characteristic of a VC-TCXO10 in a thermostatic oven 30, a connection line 38 is connected between the constant voltage output terminal 20 and a control voltage input terminal 22, and control data of a temperature compensation circuit 12 is set from a temperature compensation circuit adjustment terminal 21 so that the oscillation frequency may become a nominal value over the whole operating allowable temperature range. At the time of mounting the VC-TCXO10 on a mobile wireless device 45, a connection line 52 is connected between the constant voltage output terminal 20 and the control voltage input terminal 22. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、例えば無線機に実装される電圧制御温度補償水晶発振器(VC−TCXO:Voltage Controlled, Temperature Compensated Crystal Oscillator)及びその温度−発振周波数特性調整方法に関する。   The present invention relates to a voltage-controlled temperature compensated crystal oscillator (VC-TCXO) mounted on a radio device, for example, and a temperature-oscillation frequency characteristic adjusting method thereof.

特許文献1は、VC−TCXOを装備する通信装置を開示する(特許文献1の図1等)。該通信装置では、ベースバンド部のDAC(デジタル/アナログ変換器)とVC−TCXOとの間に電圧保持部を介在させ、非送信期間では、該電圧保持部のFETをオンにして、DACからの制御電圧を電圧保持部のコンデンサに蓄積し、また、送信期間では、電圧保持部のFETをオフにすることにし、これにより、送信期間には、VC−TCXOの制御電圧からノイズを除去して、送信波の変調精度を改善している(特許文献1の段落0020)。   Patent Document 1 discloses a communication device equipped with VC-TCXO (FIG. 1 of Patent Document 1). In the communication device, a voltage holding unit is interposed between the DAC (digital / analog converter) of the baseband unit and the VC-TCXO, and in the non-transmission period, the FET of the voltage holding unit is turned on to start from the DAC. Is stored in the capacitor of the voltage holding unit, and the FET of the voltage holding unit is turned off during the transmission period, thereby removing noise from the control voltage of the VC-TCXO during the transmission period. Thus, the modulation accuracy of the transmission wave is improved (paragraph 0020 of Patent Document 1).

図12〜図14を参照して、従来のVC−TCXO150について説明する。図12はVC−TCXO150の構成図、図13はメーカ出荷前のVC−TCXO150の調整時の接続状況図、図14は携帯型無線機45におけるVC−TCXO150の接続状態を示す図である。図12〜図14の記載素子の内、後述の本発明に係る図1〜図3の記載素子と同一の素子については、図1〜図3の記載素子と同符号で指示し、説明は省略し、主要点についてのみ説明することにする。   A conventional VC-TCXO 150 will be described with reference to FIGS. 12 is a configuration diagram of the VC-TCXO 150, FIG. 13 is a connection status diagram when the VC-TCXO 150 is adjusted before shipment from the manufacturer, and FIG. 14 is a diagram showing a connection status of the VC-TCXO 150 in the portable wireless device 45. Among the elements shown in FIGS. 12 to 14, the same elements as those shown in FIGS. 1 to 3 according to the present invention to be described later are designated by the same reference numerals as those shown in FIGS. Only the main points will be described.

図12において、定電圧回路11が生成する定電圧は、同じVC−TCXO150内に実装されている温度補償回路12、周波数制御回路13及び水晶発振回路14へ供給される。VC−TCXO150は、温度補償回路12を備えることにより、温度変化に対する発振周波数の安定性を高めている。発振信号出力端子23の発振周波数は、制御電圧入力端子22に印加する電圧により、微調整することができる。この印加電圧があらかじめ設定された基準電圧と等しい場合には、発振信号出力端子23の発振周波数はその公称周波数と等しくなり、また、印加電圧が基準電圧より高い場合及び低い場合は、それに応じて、発振信号出力端子23の発振周波数はそれぞれ高く及び低くなる。なお、印加電圧の高低とVC−TCXOの周波数の高低との関係がVC−TCXO150とは逆のVC−TCXOも存在する。   In FIG. 12, the constant voltage generated by the constant voltage circuit 11 is supplied to the temperature compensation circuit 12, the frequency control circuit 13, and the crystal oscillation circuit 14 that are mounted in the same VC-TCXO 150. The VC-TCXO 150 includes the temperature compensation circuit 12 to improve the stability of the oscillation frequency against temperature changes. The oscillation frequency of the oscillation signal output terminal 23 can be finely adjusted by the voltage applied to the control voltage input terminal 22. When this applied voltage is equal to a preset reference voltage, the oscillation frequency of the oscillation signal output terminal 23 is equal to its nominal frequency, and when the applied voltage is higher and lower than the reference voltage, the oscillation frequency is accordingly adjusted. The oscillation frequency of the oscillation signal output terminal 23 becomes higher and lower, respectively. There is also a VC-TCXO in which the relationship between the applied voltage level and the VC-TCXO frequency level is opposite to that of the VC-TCXO 150.

図13では、VC−TCXO150は、恒温槽30内に収納されて、1個ずつ、温度−発振周波数特性を調整される。調整時は、制御電圧入力端子22は恒温槽30外の定電圧源160へ接続線161を介して接続される。恒温槽30内の温度は、VC−TCXO150の使用許容温度範囲の全体にわたって変化し、VC−TCXO150は、各温度において、その制御電圧入力端子22へ恒温槽30外の定電圧源160から一定の基準電圧を印加されつつ、温度補償回路調整端子21に公称値の発振周波数を出力するように、ジグ32により温度補償回路12の記憶装置(図示せず)の制御データを設定される。定電圧源160は、非常に高精度のものが使用されるので、恒温槽30内の調整機関において制御電圧入力端子22への印加電圧は極めて安定した電圧となる。   In FIG. 13, the VC-TCXO 150 is housed in the thermostat 30 and the temperature-oscillation frequency characteristics are adjusted one by one. At the time of adjustment, the control voltage input terminal 22 is connected to a constant voltage source 160 outside the thermostat 30 via a connection line 161. The temperature in the thermostat 30 changes over the entire allowable temperature range of the VC-TCXO 150, and the VC-TCXO 150 has a constant voltage from the constant voltage source 160 outside the thermostat 30 to the control voltage input terminal 22 at each temperature. Control data of a storage device (not shown) of the temperature compensation circuit 12 is set by the jig 32 so that a nominal oscillation frequency is output to the temperature compensation circuit adjustment terminal 21 while a reference voltage is applied. Since the constant voltage source 160 is used with very high accuracy, the voltage applied to the control voltage input terminal 22 in the adjusting engine in the thermostat 30 is an extremely stable voltage.

VC−TCXO150は、そのメーカから出荷後、携帯型無線機45等のメーカにおいて所定の製品に実装される。VC−TCXO150が例えば携帯型無線機45(図14)に実装される場合には、VC−TCXO150は、その制御電圧入力端子22へ定電圧回路165からの制御電圧を印加される。
特開2003−174380号公報
The VC-TCXO 150 is mounted on a predetermined product in a manufacturer such as the portable wireless device 45 after shipment from the manufacturer. When the VC-TCXO 150 is mounted on, for example, the portable wireless device 45 (FIG. 14), the VC-TCXO 150 is applied with the control voltage from the constant voltage circuit 165 to the control voltage input terminal 22 thereof.
JP 2003-174380 A

制御電圧入力端子22に印加される基準電圧を生成する携帯型無線機45内部の定電圧回路165には、温度補償されたシリーズレギュレータやシャントレギュレータが使用される。携帯型無線機45のような携帯型では、その大きさや消費電流などに制約があるため、現在使用されるものは、定電圧源160(図13)ほどの精度はなく、その電圧の温度安定性は最良のものでも、30ppm/°C程度が限界である。定電圧回路165の温度安定性が30ppm/°Cと仮定して、以下、VC−TCXO150の問題点について述べる。   A temperature-compensated series regulator or shunt regulator is used for the constant voltage circuit 165 inside the portable radio 45 that generates the reference voltage applied to the control voltage input terminal 22. A portable type such as the portable radio 45 has restrictions on its size, current consumption, etc., and what is currently used is not as accurate as the constant voltage source 160 (FIG. 13), and the temperature of the voltage is stable. Even if the property is the best, the limit is about 30 ppm / ° C. Assuming that the temperature stability of the constant voltage circuit 165 is 30 ppm / ° C., problems of the VC-TCXO 150 will be described below.

VC−TCXO150を−35°C〜+85°Cの120°Cの温度範囲で使用する場合の定電圧源の温度偏差は次のように計算される。
30 [ppm/°C] × 120 [°C]=3600 [ppm]・・・( = 0.36% )
The temperature deviation of the constant voltage source when the VC-TCXO 150 is used in the temperature range of 120 ° C. from −35 ° C. to + 85 ° C. is calculated as follows.
30 [ppm / ° C] × 120 [° C] = 3600 [ppm] (= 0.36%)

制御電圧入力端子22の基準電圧が 1.5V に設定されている場合、該基準電圧の変移量は次のように計算される。
1.5 [V] × 3600 [ppm]= 5.4 [mV]
When the reference voltage of the control voltage input terminal 22 is set to 1.5V, the amount of change of the reference voltage is calculated as follows.
1.5 [V] × 3600 [ppm] = 5.4 [mV]

制御電圧入力端子22の対周波数感度が40ppm/Vであるとき(制御電圧1V当たり発振周波数が40ppm変化するとき)、その発振周波数の変化量は次のように計算される。
40 [ppm/V]× 5.4[mV]= 0.216 [ppm]
When the sensitivity to frequency of the control voltage input terminal 22 is 40 ppm / V (when the oscillation frequency changes by 40 ppm per 1 V of the control voltage), the amount of change in the oscillation frequency is calculated as follows.
40 [ppm / V] × 5.4 [mV] = 0.216 [ppm]

すなわち、制御電圧入力端子22に印加される基準電圧が温度で5.4mV、変移するために、発振信号出力端子23の発振周波数は約0.22ppm動いてしまうことになる。   That is, since the reference voltage applied to the control voltage input terminal 22 changes by 5.4 mV in temperature, the oscillation frequency of the oscillation signal output terminal 23 moves about 0.22 ppm.

VC−TCXO150のメーカの調整時では、−35°C〜+85°Cのすべての温度範囲にわたり不変の基準電圧を使用している。すなわち、定電圧源160(図13)は、恒温槽30内のVC−TCXO150の温度変化にもかかわらず、自身は温度変化無しで一定の基準電圧を制御電圧入力端子22に印加して、VC−TCXO150の発振周波数の調整を行うので、発振信号出力端子23の発振周波数は非常に安定したものとなる。しかし、VC−TCXO150が、実際に、携帯型無線機45に実装されたときには、制御電圧入力端子22へは、定電圧源160に比して精度が劣る定電圧回路165から制御電圧を供給されることになり、また、定電圧回路165は、図12の定電圧源160とは異なり、自身もVC−TCXO150と共に温度変化することになるので、定電圧回路165からの制御電圧入力端子22への現実の印加電圧は、恒温槽30における調整時よりも、温度に対して不安定なものになっている。したがって、携帯型無線機45における制御電圧の変移は、前述の約0.22ppmより十分に大きなものとなる。   When adjusting by the manufacturer of the VC-TCXO 150, a constant reference voltage is used over the entire temperature range of -35 ° C to + 85 ° C. That is, the constant voltage source 160 (FIG. 13) itself applies a constant reference voltage to the control voltage input terminal 22 without any temperature change, regardless of the temperature change of the VC-TCXO 150 in the thermostat 30, and VC -Since the oscillation frequency of the TCXO 150 is adjusted, the oscillation frequency of the oscillation signal output terminal 23 becomes very stable. However, when the VC-TCXO 150 is actually mounted on the portable wireless device 45, the control voltage input terminal 22 is supplied with a control voltage from the constant voltage circuit 165, which is less accurate than the constant voltage source 160. In addition, unlike the constant voltage source 160 of FIG. 12, the constant voltage circuit 165 itself changes in temperature together with the VC-TCXO 150, so that the constant voltage circuit 165 goes to the control voltage input terminal 22 from the constant voltage circuit 165. The actual applied voltage is more unstable with respect to temperature than during adjustment in the thermostat 30. Therefore, the shift of the control voltage in the portable radio device 45 is sufficiently larger than the above-described about 0.22 ppm.

特許文献1は、ノイズ除去によるVC−TCXOの発振周波数の精度改善について言及するものの、温度変化に伴う制御電圧の変動に対する発振周波数の精度改善についての解決手段を開示していない。   Although Patent Document 1 mentions improvement in the accuracy of the oscillation frequency of the VC-TCXO by noise removal, it does not disclose a solution for improving the accuracy of the oscillation frequency with respect to fluctuations in the control voltage caused by a temperature change.

本発明の目的は、実機への搭載状態において温度変化に伴う制御電圧の変動に対する発振周波数の精度を向上することができる電圧制御温度補償水晶発振器及びその温度−発振周波数特性調整方法を提供することである。   An object of the present invention is to provide a voltage-controlled temperature-compensated crystal oscillator capable of improving the accuracy of an oscillation frequency with respect to fluctuations in a control voltage caused by a temperature change in a mounted state in an actual machine and a method for adjusting the temperature-oscillation frequency characteristics It is.

本発明によれば、電圧制御温度補償水晶発振器が内蔵する定電圧回路に着目し、個々の電圧制御温度補償水晶発振器についての温度−発振周波数特性の調整時、及び実機への各電圧制御温度補償水晶発振器の実装時における電圧制御温度補償水晶発振器の水晶発振回路の制御電圧として、該定電圧回路の生成電圧を使用できるように、電圧制御温度補償水晶発振器を構築する。具体的には、定電圧回路の生成した給電用電圧に係る電圧(該電圧には給電用電圧自体も含むものとする。)を外部へ導出する端子を付加したり、電圧制御温度補償水晶発振器内に配線を形成したりする。   According to the present invention, paying attention to the constant voltage circuit built in the voltage-controlled temperature-compensated crystal oscillator, the temperature-oscillation frequency characteristic of each voltage-controlled temperature-compensated crystal oscillator is adjusted, and each voltage-controlled temperature compensation is applied to the actual machine. The voltage-controlled temperature-compensated crystal oscillator is constructed so that the voltage generated by the constant voltage circuit can be used as the control voltage of the crystal-oscillated circuit of the voltage-controlled temperature-compensated crystal oscillator when the crystal oscillator is mounted. Specifically, a terminal for deriving the voltage related to the power supply voltage generated by the constant voltage circuit (including the power supply voltage itself) is added to the outside, or the voltage controlled temperature compensation crystal oscillator Or form wiring.

本発明の電圧制御温度補償水晶発振器は次のものを備えている。
制御電圧入力端子、
該制御電圧入力端子に印加された制御電圧に基づく周波数で発振する水晶発振回路、
該水晶発振回路の発振信号を外部へ導出する発振信号出力端子、
該水晶発振回路へ供給する一定値の給電用電圧を生成する定電圧回路、
前記水晶発振回路の出力について温度補償する温度補償回路、及び
前記定電圧回路の給電用電圧に係る定電圧を外部へ導出する定電圧出力端子。
The voltage controlled temperature compensated crystal oscillator of the present invention includes the following.
Control voltage input terminal,
A crystal oscillation circuit that oscillates at a frequency based on a control voltage applied to the control voltage input terminal;
An oscillation signal output terminal for deriving the oscillation signal of the crystal oscillation circuit to the outside;
A constant voltage circuit for generating a constant voltage supply voltage to be supplied to the crystal oscillation circuit;
A temperature compensation circuit for compensating temperature with respect to an output of the crystal oscillation circuit; and a constant voltage output terminal for deriving a constant voltage related to a power supply voltage of the constant voltage circuit to the outside.

本発明の別の電圧制御温度補償水晶発振器は次のものを備えている。
制御電圧に基づく周波数で発振する水晶発振回路、
該水晶発振回路の発振信号を外部へ導出する発振信号出力端子、
該水晶発振回路へ供給する一定値の給電用電圧を生成する定電圧回路、
前記水晶発振回路の出力について温度補償する温度補償回路、及び
前記定電圧回路の給電用電圧に係る定電圧を前記制御電圧として前記水晶発振回路へ供給する制御電圧供給回路。
Another voltage controlled temperature compensated crystal oscillator of the present invention comprises:
A crystal oscillation circuit that oscillates at a frequency based on the control voltage,
An oscillation signal output terminal for deriving the oscillation signal of the crystal oscillation circuit to the outside;
A constant voltage circuit for generating a constant voltage supply voltage to be supplied to the crystal oscillation circuit;
A temperature compensation circuit that compensates the temperature of the output of the crystal oscillation circuit; and a control voltage supply circuit that supplies a constant voltage related to a power supply voltage of the constant voltage circuit to the crystal oscillation circuit as the control voltage.

本発明の温度−発振周波数特性調整方法は次のステップを備えている。
前述の電圧制御温度補償水晶発振器を、その水晶発振回路の入力側基準電圧が前記定電圧回路の生成電圧に係る電圧となるような接続を施して、恒温槽へ収容するステップ、
前記恒温槽内の温度を所定範囲にわたり変化させるステップ、及び
前記水晶発振回路の発振周波数が前記恒温槽内の各温度において公称値に維持されるように、前記電圧制御温度補償水晶発振器内の発振周波数制御因子を設定するステップ。
The temperature-oscillation frequency characteristic adjusting method of the present invention includes the following steps.
The above-mentioned voltage controlled temperature compensated crystal oscillator is connected so that the input side reference voltage of the crystal oscillation circuit becomes a voltage related to the generated voltage of the constant voltage circuit, and is housed in a thermostatic chamber,
Changing the temperature in the thermostat over a predetermined range; and oscillation in the voltage controlled temperature compensated crystal oscillator so that the oscillation frequency of the crystal oscillator circuit is maintained at a nominal value at each temperature in the thermostat. Setting a frequency control factor;

本発明によれば、電圧制御温度補償水晶発振器の温度−発振周波数特性の調整や、実機への装備では、定電圧回路の生成する給電用電圧に係る電圧が水晶発振回路の制御電圧として使用することができるようになっているので、温度変化に伴う制御電圧の変化について、実機装備時は、温度−発振周波数特性の調整時の制御電圧の変化と同一のものが再現されることになる。したがって、実機搭載時における温度−発振周波数特性は、温度−発振周波数特性の調整時と同一のものとなり、電圧制御温度補償水晶発振器の発振周波数の精度を向上させることができる。   According to the present invention, in the adjustment of the temperature-oscillation frequency characteristic of the voltage controlled temperature compensated crystal oscillator, or in the actual equipment, the voltage related to the power supply voltage generated by the constant voltage circuit is used as the control voltage of the crystal oscillation circuit. Therefore, the change in the control voltage accompanying the change in temperature is reproduced in the same way as the change in the control voltage when adjusting the temperature-oscillation frequency characteristic when the actual machine is equipped. Therefore, the temperature-oscillation frequency characteristic when the actual device is mounted is the same as that when adjusting the temperature-oscillation frequency characteristic, and the accuracy of the oscillation frequency of the voltage controlled temperature compensation crystal oscillator can be improved.

図1はVC−TCXO10の構成図である。VC−TCXO10は、チップ形態で製造され、内部に、定電圧回路11、温度補償回路12、周波数制御回路13、水晶発振回路14を構築されている。VC−TCXO10は、その外部との接続用に、電源入力端子19、定電圧出力端子20、温度補償回路調整端子21、制御電圧入力端子22、発振信号出力端子23及びグランド端子24を備えている。   FIG. 1 is a block diagram of the VC-TCXO 10. The VC-TCXO 10 is manufactured in a chip form, and a constant voltage circuit 11, a temperature compensation circuit 12, a frequency control circuit 13, and a crystal oscillation circuit 14 are built therein. The VC-TCXO 10 includes a power supply input terminal 19, a constant voltage output terminal 20, a temperature compensation circuit adjustment terminal 21, a control voltage input terminal 22, an oscillation signal output terminal 23, and a ground terminal 24 for connection to the outside. .

定電圧回路11は、電源入力端子19から供給される電圧から所定の定電圧を生成し、該定電圧を温度補償回路12、周波数制御回路13、水晶発振回路14及び定電圧出力端子20へ分配する。   The constant voltage circuit 11 generates a predetermined constant voltage from the voltage supplied from the power input terminal 19, and distributes the constant voltage to the temperature compensation circuit 12, the frequency control circuit 13, the crystal oscillation circuit 14, and the constant voltage output terminal 20. To do.

温度補償回路12は、例えば、温度を検出するサーミスタ、出力側の可変容量ダイオードの逆方向電圧を調整するDAC(デジタル/アナログ変換器)、調整値を格納する記憶装置(例:EPROM又はFLHROM)、及び該記憶装置の設定データに基づき温度に応じてDACの出力を制御するマイコンを装備する。温度補償回路12は、後述の図2の温度−発振周波数特性調整時に、温度補償回路調整端子21から入力される信号に基づき記憶装置のデータを設定されるようになっている。   The temperature compensation circuit 12 includes, for example, a thermistor that detects temperature, a DAC (digital / analog converter) that adjusts the reverse voltage of the output-side variable capacitance diode, and a storage device that stores the adjustment value (eg, EPROM or FLHROM). And a microcomputer for controlling the output of the DAC according to the temperature based on the setting data of the storage device. The temperature compensation circuit 12 is configured to set data in the storage device based on a signal input from the temperature compensation circuit adjustment terminal 21 when adjusting a temperature-oscillation frequency characteristic of FIG.

周波数制御回路13は、制御電圧入力端子22に印加された電圧に対応する電圧を、出力側の可変容量ダイオードにその逆方向電圧として印加する。温度補償回路12の出力側の可変容量ダイオードと周波数制御回路13の出力側の可変容量ダイオードとは、それらの一端側を向かい合わせに接続されて、水晶発振回路14の入力電圧を決定する。水晶発振回路14は、該入力電圧に関係する周波数の発振信号を発振信号出力端子23へ出力する。   The frequency control circuit 13 applies a voltage corresponding to the voltage applied to the control voltage input terminal 22 to the output side variable capacitance diode as its reverse voltage. The variable capacitance diode on the output side of the temperature compensation circuit 12 and the variable capacitance diode on the output side of the frequency control circuit 13 are connected with their one ends facing each other to determine the input voltage of the crystal oscillation circuit 14. The crystal oscillation circuit 14 outputs an oscillation signal having a frequency related to the input voltage to the oscillation signal output terminal 23.

図2はVC−TCXO10のメーカにおいて各VC−TCXO10について行う温度−発振周波数特性調整時の接続状況図である。VC−TCXO10は、恒温槽30内に収納され、恒温槽30内における温度−発振周波数特性の調整中、VC−TCXO10の使用許容温度範囲、例えば−35°C〜+85°Cの温度範囲の全体にわたる温度変化を受ける。定電圧源31、ジグ32及び周波数カウンタ33は、恒温槽30の外に配備され、それぞれ接続線37,39,40を介して恒温槽30内のVC−TCXO10の電源入力端子19、定電圧出力端子20及び温度補償回路調整端子21へ接続される。   FIG. 2 is a connection state diagram at the time of adjusting the temperature-oscillation frequency characteristic performed for each VC-TCXO 10 in the manufacturer of the VC-TCXO 10. The VC-TCXO 10 is housed in the thermostat 30 and during the adjustment of the temperature-oscillation frequency characteristics in the thermostat 30, the entire allowable temperature range of the VC-TCXO 10, for example, the entire temperature range of −35 ° C. to + 85 ° C. Subject to temperature changes. The constant voltage source 31, the jig 32, and the frequency counter 33 are provided outside the thermostat 30 and are connected to the power input terminal 19 of the VC-TCXO 10 in the thermostat 30 via the connection lines 37, 39, and 40, and the constant voltage output, respectively. The terminal 20 and the temperature compensation circuit adjustment terminal 21 are connected.

定電圧源31は、VC−TCXO10の電源入力端子19へ電力を供給し、周波数カウンタ33は、発振信号出力端子23から出力される発振信号の周波数を測定する。ジグ32は、VC−TCXO10の温度−発振周波数特性調整における恒温槽30内の変化温度範囲の各温度において周波数が公称値になるように、温度補償回路調整端子21を介して温度補償回路12へデータを送って、温度補償回路12の記憶装置に記憶させる。   The constant voltage source 31 supplies power to the power input terminal 19 of the VC-TCXO 10, and the frequency counter 33 measures the frequency of the oscillation signal output from the oscillation signal output terminal 23. The jig 32 is supplied to the temperature compensation circuit 12 via the temperature compensation circuit adjustment terminal 21 so that the frequency becomes a nominal value at each temperature in the change temperature range in the thermostatic chamber 30 in the temperature-oscillation frequency characteristic adjustment of the VC-TCXO 10. Data is sent and stored in the storage device of the temperature compensation circuit 12.

図3はVC−TCXO10が携帯型無線機45に装備されたときの接続図である。携帯型無線機45は、ハウジング46及びアンテナ47を装備している。VC−TCXO10は、バッテリ50、定電圧回路51及び局部発振回路53と共に、ハウジング46内に配設される。電源入力端子19は、定電圧回路51を介してバッテリ50から電力を供給される。定電圧出力端子20及び制御電圧入力端子22は接続線52により相互に接続される。発振信号出力端子23は、局部発振回路53へ接続されて、発振信号を局部発振回路53へ供給する。グランド端子24はハウジング46内のグランド54へ接続される。   FIG. 3 is a connection diagram when the VC-TCXO 10 is installed in the portable radio device 45. The portable radio device 45 is equipped with a housing 46 and an antenna 47. The VC-TCXO 10 is disposed in the housing 46 together with the battery 50, the constant voltage circuit 51, and the local oscillation circuit 53. The power input terminal 19 is supplied with power from the battery 50 via the constant voltage circuit 51. The constant voltage output terminal 20 and the control voltage input terminal 22 are connected to each other by a connection line 52. The oscillation signal output terminal 23 is connected to the local oscillation circuit 53 and supplies an oscillation signal to the local oscillation circuit 53. The ground terminal 24 is connected to a ground 54 in the housing 46.

携帯型無線機45において、VC−TCXO10の定電圧回路11は、携帯型無線機45内の温度変化に伴い、出力電圧がわずかながら変化する。温度補償回路12の生成電圧は、VC−TCXO10内の温度補償回路12、周波数制御回路13及び水晶発振回路14だけでなく、接続線52を介して制御電圧入力端子22へも供給されており、これは、図2で説明したように、該VC−TCXO10が、出荷元メーカにおいて恒温槽30に収納されて、温度−発振周波数特性を調整された時と同一の状況になっている。したがって、制御電圧入力端子22の印加電圧が、ハウジング46内の温度変化に伴い、変化しても、発振信号出力端子23の発振信号の周波数は、VC−TCXO10の出荷元メーカにおける温度−発振周波数特性調整時と同様に、公称値を維持することができる。   In the portable radio device 45, the output voltage of the constant voltage circuit 11 of the VC-TCXO 10 changes slightly as the temperature in the portable radio device 45 changes. The generated voltage of the temperature compensation circuit 12 is supplied not only to the temperature compensation circuit 12, the frequency control circuit 13 and the crystal oscillation circuit 14 in the VC-TCXO 10, but also to the control voltage input terminal 22 via the connection line 52. As described with reference to FIG. 2, this is the same situation as when the VC-TCXO 10 is housed in the thermostatic chamber 30 at the shipping manufacturer and the temperature-oscillation frequency characteristics are adjusted. Therefore, even if the voltage applied to the control voltage input terminal 22 changes as the temperature in the housing 46 changes, the frequency of the oscillation signal at the oscillation signal output terminal 23 is the temperature-oscillation frequency at the manufacturer that shipped the VC-TCXO 10. As with the characteristic adjustment, the nominal value can be maintained.

図4は、定電圧回路11の生成電圧と制御電圧入力端子22の基準電圧とが相違する場合に、VC−TCXO60に分圧器61を外付けすることにより対処する回路図である。なお、制御電圧入力端子22の基準電圧とは、各温度において発振信号出力端子23に公称値の発振周波数が出力するときの制御電圧入力端子22の電圧と定義する。VC−TCXO60の素子の内、図1のVC−TCXO10の各素子と同一の素子については、VC−TCXO10の素子に付けた符号で指示して、それらの説明は省略する。   FIG. 4 is a circuit diagram to cope with the case where the voltage divider 61 is externally attached to the VC-TCXO 60 when the generated voltage of the constant voltage circuit 11 and the reference voltage of the control voltage input terminal 22 are different. The reference voltage at the control voltage input terminal 22 is defined as the voltage at the control voltage input terminal 22 when a nominal oscillation frequency is output to the oscillation signal output terminal 23 at each temperature. Among the elements of the VC-TCXO 60, the same elements as those of the VC-TCXO 10 of FIG. 1 are designated by the reference numerals attached to the elements of the VC-TCXO 10 and their description is omitted.

分圧器61は、VC−TCXO60の外に設けられ、両端をそれぞれ定電圧出力端子20及びグランドへ接続されるとともに、分圧端子を制御電圧入力端子22へ接続される。VC−TCXO60へ外付けされている分圧器61は、恒温槽30内におけるVC−TCXO60の温度−発振周波数特性調整時及び携帯型無線機45におけるVC−TCXO60の実装時の両方に使用され、接続線38(図2)及び接続線52(図3)の代わりに使用される。現実には、恒温槽30内におけるVC−TCXO60の温度−発振周波数特性調整時に使用する分圧器61と、携帯型無線機45へのVC−TCXO60の実装時に使用する分圧器61とは、異なるので、前者及び後者の分圧器61を、説明の便宜上、それぞれ分圧器61a,61bというように、区別する。   The voltage divider 61 is provided outside the VC-TCXO 60, and both ends thereof are connected to the constant voltage output terminal 20 and the ground, respectively, and the voltage dividing terminal is connected to the control voltage input terminal 22. The voltage divider 61 externally attached to the VC-TCXO 60 is used both for adjusting the temperature-oscillation frequency characteristics of the VC-TCXO 60 in the thermostat 30 and for mounting the VC-TCXO 60 in the portable radio 45. Used in place of line 38 (FIG. 2) and connecting line 52 (FIG. 3). Actually, the voltage divider 61 used when adjusting the temperature-oscillation frequency characteristics of the VC-TCXO 60 in the thermostat 30 is different from the voltage divider 61 used when mounting the VC-TCXO 60 on the portable radio 45. The former and latter voltage dividers 61 are distinguished from each other as voltage dividers 61a and 61b for convenience of explanation.

温度−発振周波数特性調整では、分圧器61aは、あらかじめ、その分圧端子の電圧が、−35°C〜+85°Cの範囲内で適当に選択された所定温度において、制御電圧入力端子22の基準電圧となるように、分圧抵抗が設定されている。そして、分圧器61aは、図4の分圧器61のように、VC−TCXO60と接続されて、恒温槽30内に収容される。その後、恒温槽30内は、VC−TCXO60の使用許容温度範囲全体にわたって温度変化させられる。VC−TCXO60は、各温度において、発振信号出力端子23の発振周波数が公称値になるように、温度補償回路12の記憶装置のデータをジグ32により設定される。   In the temperature-oscillation frequency characteristic adjustment, the voltage divider 61a is previously connected to the control voltage input terminal 22 at a predetermined temperature at which the voltage of the voltage dividing terminal is appropriately selected within the range of -35 ° C to + 85 ° C. The voltage dividing resistor is set so as to be the reference voltage. And the voltage divider 61a is connected with VC-TCXO60 like the voltage divider 61 of FIG. 4, and is accommodated in the thermostat 30. FIG. Thereafter, the temperature in the thermostatic chamber 30 is changed over the entire allowable use temperature range of the VC-TCXO 60. In the VC-TCXO 60, the data in the storage device of the temperature compensation circuit 12 is set by the jig 32 so that the oscillation frequency of the oscillation signal output terminal 23 becomes a nominal value at each temperature.

携帯型無線機45では、分圧器61bは、図4の分圧器61のように、VC−TCXO60へ接続され、制御電圧入力端子22に基準電圧が生成されるように、分圧点を調整される。なお、この時のVC−TCXO60及び分圧器61bの温度は、共に同一であるとともに、VC−TCXO60が恒温槽30内で受けた温度変化範囲に含まれるものとなっている。したがって、それ以降、ハウジング46内の温度が変化しても、それは、VC−TCXO60が、恒温槽30内において、公称の発振周波数を出力するように、調整済みの温度である。結果、VC−TCXO60は、携帯型無線機45において、温度変化にもかかわらず、発振信号出力端子23に公称発振周波数を生成する。   In the portable wireless device 45, the voltage divider 61b is connected to the VC-TCXO 60 like the voltage divider 61 in FIG. 4 and the voltage dividing point is adjusted so that the reference voltage is generated at the control voltage input terminal 22. The Note that the temperatures of the VC-TCXO 60 and the voltage divider 61 b at this time are both the same, and are included in the temperature change range received by the VC-TCXO 60 in the thermostatic chamber 30. Therefore, even if the temperature in the housing 46 changes thereafter, it is the temperature adjusted so that the VC-TCXO 60 outputs the nominal oscillation frequency in the thermostatic bath 30. As a result, the VC-TCXO 60 generates the nominal oscillation frequency at the oscillation signal output terminal 23 in the portable radio device 45 regardless of the temperature change.

図5は、定電圧回路11の生成電圧と制御電圧入力端子22の基準電圧とが相違する場合に、分圧器66を内蔵することにより対処するVC−TCXO65の回路図である。VC−TCXO65の素子の内、図4のVC−TCXO60の素子と同一の素子については、VC−TCXO60の素子に付けた符号で指示して、それらの説明は省略する。   FIG. 5 is a circuit diagram of the VC-TCXO 65 to cope with the case where the voltage divider 66 is incorporated when the generated voltage of the constant voltage circuit 11 and the reference voltage of the control voltage input terminal 22 are different. Among the elements of the VC-TCXO 65, the same elements as the elements of the VC-TCXO 60 in FIG. 4 are designated by the reference numerals attached to the elements of the VC-TCXO 60, and their description is omitted.

VC−TCXO65は、分圧器66を内蔵し、定電圧出力端子67を備えている。分圧器66は、図4の分圧器61と同一の役目を果たすものとなっており、両端において定電圧回路11の出力端とグランドとへ接続されているとともに、分圧点を定電圧出力端子67へ接続されている。分圧器66の分圧点は、分圧器61の分圧点と同一の電圧を生成するようになっている。   The VC-TCXO 65 includes a voltage divider 66 and includes a constant voltage output terminal 67. The voltage divider 66 plays the same role as the voltage divider 61 of FIG. 4, and is connected to the output terminal of the constant voltage circuit 11 and the ground at both ends, and the voltage dividing point is a constant voltage output terminal. 67. The voltage dividing point of the voltage divider 66 generates the same voltage as the voltage dividing point of the voltage divider 61.

VC−TCXO65は、恒温槽30内での温度−発振周波数特性調整では、定電圧出力端子67−制御電圧入力端子22間に接続線38(図2)を接続され、携帯型無線機45への実装時では、定電圧出力端子67−制御電圧入力端子22間に接続線52(図3)を接続される。図4のVC−TCXO60では、恒温槽30内での温度−発振周波数特性調整時及び携帯型無線機45への実装時、分圧器61a,61bが必要になったが、VC−TCXO65では、分圧器61a,61bを省略することができる。なお、接続線38,52は、抵抗値上の製品のばらつきは分圧器61a,61bに比して小さい。   The VC-TCXO 65 has a connection line 38 (FIG. 2) connected between the constant voltage output terminal 67 and the control voltage input terminal 22 in the temperature-oscillation frequency characteristic adjustment in the thermostatic chamber 30, and is connected to the portable radio device 45. At the time of mounting, the connection line 52 (FIG. 3) is connected between the constant voltage output terminal 67 and the control voltage input terminal 22. In the VC-TCXO 60 of FIG. 4, the voltage dividers 61 a and 61 b are necessary when adjusting the temperature-oscillation frequency characteristics in the thermostatic chamber 30 and mounting the portable radio device 45. In the VC-TCXO 65, The pressure devices 61a and 61b can be omitted. In addition, the connection lines 38 and 52 have a smaller product variation in resistance value than the voltage dividers 61a and 61b.

VC−TCXO65では、分圧器66の分圧点をVC−TCXO65の内部配線により周波数制御回路13の入力側へ接続すれば、定電圧出力端子67を省略することができる。後述の図8のVC−TCXO88はその例である。さらに、図8のVC−TCXO88では、制御電圧入力端子22を残しているが、分圧器66の分圧点をVC−TCXO65の内部配線で周波数制御回路13の入力側へ接続した場合には、制御電圧入力端子22を省略してもよい。   In the VC-TCXO 65, if the voltage dividing point of the voltage divider 66 is connected to the input side of the frequency control circuit 13 by the internal wiring of the VC-TCXO 65, the constant voltage output terminal 67 can be omitted. An example is VC-TCXO 88 in FIG. 8 described later. Further, in the VC-TCXO 88 of FIG. 8, the control voltage input terminal 22 remains, but when the voltage dividing point of the voltage divider 66 is connected to the input side of the frequency control circuit 13 by the internal wiring of the VC-TCXO 65, The control voltage input terminal 22 may be omitted.

図6は発振信号出力端子23が定電圧回路11の定電圧を導出する端子を兼ねるVC−TCXO72の回路図である。VC−TCXO72の素子の内、図1のVC−TCXO10の各素子と同一の素子については、VC−TCXO10の素子に付けた符号で指示して、それらの説明は省略する。   FIG. 6 is a circuit diagram of the VC-TCXO 72 in which the oscillation signal output terminal 23 also serves as a terminal for deriving the constant voltage of the constant voltage circuit 11. Among the elements of the VC-TCXO 72, the same elements as those of the VC-TCXO 10 in FIG. 1 are designated by the reference numerals attached to the elements of the VC-TCXO 10, and their description is omitted.

VC−TCXO72では、VC−TCXO10の定電圧出力端子20(図1)が省略されている。コンデンサ73は水晶発振回路14の出力端子と発振信号出力端子23との間に介在する。抵抗74は、定電圧回路11の出力端と発振信号出力端子23との間に介在する。定電圧回路11の出力は直流であるのに対し、水晶発振回路14の出力は交流である。コンデンサ73は、水晶発振回路14の出力端が定電圧回路11の直流の生成電圧から影響を受けるのを防止している。   In the VC-TCXO 72, the constant voltage output terminal 20 (FIG. 1) of the VC-TCXO 10 is omitted. The capacitor 73 is interposed between the output terminal of the crystal oscillation circuit 14 and the oscillation signal output terminal 23. The resistor 74 is interposed between the output terminal of the constant voltage circuit 11 and the oscillation signal output terminal 23. The output of the constant voltage circuit 11 is a direct current, whereas the output of the crystal oscillation circuit 14 is an alternating current. The capacitor 73 prevents the output terminal of the crystal oscillation circuit 14 from being affected by the DC generated voltage of the constant voltage circuit 11.

携帯型無線機45におけるVC−TCXO72では、発振信号出力端子23はコンデンサ78を介して局部発振回路53の入力側へ接続される。発振信号出力端子23は、また、LPF(低域ろ波器)79を介して制御電圧入力端子22へ接続される。コンデンサ78は、定電圧回路11の直流の定電圧が局部発振回路53へ送られるのを阻止しつつ、水晶発振回路14が生成した発振信号の通過を許容する。LPF79は、水晶発振回路14が生成した発振信号が制御電圧入力端子22へ伝わるのを阻止する。   In the VC-TCXO 72 in the portable radio device 45, the oscillation signal output terminal 23 is connected to the input side of the local oscillation circuit 53 via the capacitor 78. The oscillation signal output terminal 23 is also connected to the control voltage input terminal 22 via an LPF (low-pass filter) 79. The capacitor 78 allows the oscillation signal generated by the crystal oscillation circuit 14 to pass while preventing the DC constant voltage of the constant voltage circuit 11 from being sent to the local oscillation circuit 53. The LPF 79 prevents the oscillation signal generated by the crystal oscillation circuit 14 from being transmitted to the control voltage input terminal 22.

VC−TCXO72の温度−発振周波数特性について恒温槽30内で調整する場合には、電源入力端子19及び温度補償回路調整端子21には、図2の定電圧源31及びジグ32を接続し、制御電圧入力端子22及び発振信号出力端子23には、図6のコンデンサ78及びLPF79を残しつつ、局部発振回路53に代えて、周波数カウンタ33を接続する。携帯型無線機45へのVC−TCXO72の実装時に使用するコンデンサ78及びLPF79と、恒温槽30におけるVC−TCXO72の調整時に使用するコンデンサ78及びLPF79とは、同一のものではないが、携帯型無線機45の製作時に、VC−TCXO72、コンデンサ78及びLPF79を同一の温度環境下の或る温度において、局部発振回路53の入力側の発振周波数を公称周波数になるように、コンデンサ78及びLPF79における所定の素子の値を調整すれば、該温度では、恒温槽30における温度−発振周波数特性調整時の素子値を再現していることになるので、別の温度へ変化しても、発振信号出力端子23の発振信号の周波数が公称値に維持される。   When the temperature-oscillation frequency characteristic of the VC-TCXO 72 is adjusted in the thermostatic chamber 30, the power source input terminal 19 and the temperature compensation circuit adjustment terminal 21 are connected to the constant voltage source 31 and the jig 32 of FIG. A frequency counter 33 is connected to the voltage input terminal 22 and the oscillation signal output terminal 23 in place of the local oscillation circuit 53 while leaving the capacitor 78 and the LPF 79 of FIG. The capacitor 78 and LPF 79 used when the VC-TCXO 72 is mounted on the portable radio 45 and the capacitor 78 and LPF 79 used when adjusting the VC-TCXO 72 in the thermostat 30 are not the same, but the portable radio At the time of manufacture of the machine 45, the VC-TCXO 72, the capacitor 78 and the LPF 79 are set at predetermined values in the capacitor 78 and the LPF 79 so that the oscillation frequency on the input side of the local oscillation circuit 53 becomes a nominal frequency at a certain temperature under the same temperature environment. If the value of the element is adjusted, the element value at the time of adjusting the temperature-oscillation frequency characteristic in the thermostatic chamber 30 is reproduced at the temperature. Therefore, even if the temperature changes to another temperature, the oscillation signal output terminal The frequency of the 23 oscillating signals is maintained at a nominal value.

図7は温度補償回路調整端子21が定電圧回路11の定電圧を導出する端子を兼ねるVC−TCXO82の回路図である。VC−TCXO82の素子の内、図6のVC−TCXO72の各素子と同一の素子については、VC−TCXO72の素子に付けた符号で指示して、それらの説明は省略する。VC−TCXO82では、VC−TCXO72のコンデンサ73及び抵抗74が無い代わりに、VC−TCXO82内に抵抗83が付加される。   FIG. 7 is a circuit diagram of the VC-TCXO 82 in which the temperature compensation circuit adjustment terminal 21 also serves as a terminal for deriving the constant voltage of the constant voltage circuit 11. Among the elements of the VC-TCXO 82, the same elements as those of the VC-TCXO 72 of FIG. 6 are designated by the reference numerals attached to the elements of the VC-TCXO 72, and the description thereof is omitted. In the VC-TCXO 82, a resistor 83 is added in the VC-TCXO 82 in place of the capacitor 73 and the resistor 74 of the VC-TCXO 72.

抵抗83は、定電圧回路11の出力端と複数の温度補償回路調整端子21の中の1つとの間に介在している。ジグ32(図2)の出力インピーダンスは抵抗83の抵抗値より十分に低い値になっている。恒温槽30におけるVC−TCXO82の調整時及び携帯型無線機45へのVC−TCXO82の実装時では、定電圧回路11の定格電圧が出力される1つの温度補償回路調整端子21と制御電圧入力端子22との間に、接続線52(図3)のような接続線又は分圧器61(図4)のような分圧器が接続される。すなわち、接続線の場合には、該接続線は、定電圧出力用温度補償回路調整端子21と制御電圧入力端子22とを接続する。また、分圧器の場合には、該分圧器は、両端を定電圧出力用温度補償回路調整端子21とグランドとへ接続されるとともに、分圧点を制御電圧入力端子22に接続される。   The resistor 83 is interposed between the output terminal of the constant voltage circuit 11 and one of the temperature compensation circuit adjustment terminals 21. The output impedance of the jig 32 (FIG. 2) is sufficiently lower than the resistance value of the resistor 83. When adjusting the VC-TCXO 82 in the thermostat 30 and when mounting the VC-TCXO 82 on the portable wireless device 45, one temperature compensation circuit adjustment terminal 21 for outputting the rated voltage of the constant voltage circuit 11 and a control voltage input terminal 22 is connected to a connection line such as the connection line 52 (FIG. 3) or a voltage divider such as the voltage divider 61 (FIG. 4). That is, in the case of a connection line, the connection line connects the constant voltage output temperature compensation circuit adjustment terminal 21 and the control voltage input terminal 22. In the case of a voltage divider, both ends of the voltage divider are connected to the constant voltage output temperature compensation circuit adjustment terminal 21 and the ground, and the voltage dividing point is connected to the control voltage input terminal 22.

図8はFM等の信号発生に利用されているVC−TCXO88及びその接続図を示している。VC−TCXO88の素子の内、図5のVC−TCXO65の各素子と同一の素子については、VC−TCXO65の素子に付けた符号で指示して、それらの説明は省略する。   FIG. 8 shows a VC-TCXO 88 used for signal generation such as FM and its connection diagram. Among the elements of the VC-TCXO 88, the same elements as those of the VC-TCXO 65 of FIG. 5 are designated by the reference numerals attached to the elements of the VC-TCXO 65, and the description thereof is omitted.

VC−TCXO65では、分圧器66の分圧点は定電圧出力端子67へ接続されているのに対し、VC−TCXO88では、定電圧出力端子67は省略され、分圧器66の分圧点は、VC−TCXO88の内部配線により制御電圧入力端子22へ接続されている。変調信号生成回路91は、FM又はFSK等の変調信号(ベースバンド信号)を生成し、コンデンサ92を介して制御電圧入力端子22へ接続されている。コンデンサ92は、変調信号生成回路91からの直流分が制御電圧入力端子22へ送られるのを阻止する。   In the VC-TCXO 65, the voltage dividing point of the voltage divider 66 is connected to the constant voltage output terminal 67, whereas in the VC-TCXO 88, the constant voltage output terminal 67 is omitted, and the voltage dividing point of the voltage divider 66 is The VC-TCXO 88 is connected to the control voltage input terminal 22 by an internal wiring. The modulation signal generation circuit 91 generates a modulation signal (baseband signal) such as FM or FSK, and is connected to the control voltage input terminal 22 via the capacitor 92. The capacitor 92 prevents the direct current component from the modulation signal generation circuit 91 from being sent to the control voltage input terminal 22.

VC−TCXO88は、そのメーカ出荷前の温度−発振周波数特性調整時に、変調信号生成回路91及びコンデンサ92から分離して、恒温槽30に収容される。その場合、電源入力端子19、温度補償回路調整端子21及び発振信号出力端子23には、それぞれ定電圧源31、ジグ32及び周波数カウンタ33が接続される。また、制御電圧入力端子22には何も接続されない。VC−TCXO88は、携帯型無線機45への実装時には、図8に図示するように、変調信号生成回路91及びコンデンサ92を接続される。携帯型無線機45のハウジング46内のVC−TCXO88では、制御電圧入力端子22へ印加される直流電圧は、ハウジング46内の温度変化に対して、恒温槽30内における温度−発振周波数特性調整時における対応温度変化のときと同じように、変化する。したがって、VC−TCXO88は、変調信号生成回路91からの変調信号を制御電圧入力端子22に重畳されて、温度からの影響を排除されて、該変調信号に精確に対応付けられた発振周波数を生成する。   The VC-TCXO 88 is separated from the modulation signal generation circuit 91 and the capacitor 92 and accommodated in the thermostatic chamber 30 when adjusting the temperature-oscillation frequency characteristics before shipment from the manufacturer. In this case, a constant voltage source 31, a jig 32, and a frequency counter 33 are connected to the power input terminal 19, the temperature compensation circuit adjustment terminal 21, and the oscillation signal output terminal 23, respectively. Also, nothing is connected to the control voltage input terminal 22. The VC-TCXO 88 is connected to a modulation signal generation circuit 91 and a capacitor 92 as shown in FIG. 8 when mounted on the portable wireless device 45. In the VC-TCXO 88 in the housing 46 of the portable radio 45, the DC voltage applied to the control voltage input terminal 22 is adjusted when the temperature-oscillation frequency characteristics in the thermostatic chamber 30 are adjusted with respect to the temperature change in the housing 46. It changes in the same way as the corresponding temperature change in. Therefore, the VC-TCXO 88 generates an oscillation frequency accurately associated with the modulation signal by superimposing the modulation signal from the modulation signal generation circuit 91 on the control voltage input terminal 22 to eliminate the influence of temperature. To do.

図9は電圧制御温度補償水晶発振器100のブロック図である。電圧制御温度補償水晶発振器100は、少なくとも制御電圧入力端子101、水晶発振回路102、発振信号出力端子103、定電圧回路104、温度補償回路105及び定電圧出力端子106を備える。電圧制御温度補償水晶発振器100の具体例は前述のVC−TCXO10(図1),60(図4),65(図5),72(図6),82(図7)である。   FIG. 9 is a block diagram of the voltage controlled temperature compensated crystal oscillator 100. The voltage control temperature compensation crystal oscillator 100 includes at least a control voltage input terminal 101, a crystal oscillation circuit 102, an oscillation signal output terminal 103, a constant voltage circuit 104, a temperature compensation circuit 105, and a constant voltage output terminal 106. Specific examples of the voltage controlled temperature compensating crystal oscillator 100 are the VC-TCXO 10 (FIG. 1), 60 (FIG. 4), 65 (FIG. 5), 72 (FIG. 6), and 82 (FIG. 7).

水晶発振回路102は、該制御電圧入力端子101に印加された制御電圧に基づく周波数で発振する。発振信号出力端子103は、該水晶発振回路102の発振信号を外部へ導出する。定電圧回路104は、該水晶発振回路102へ供給する一定値の給電用電圧を生成する。温度補償回路105は、水晶発振回路102の出力について温度補償する。定電圧出力端子106は、定電圧回路104の給電用電圧に係る定電圧を外部へ導出する。   The crystal oscillation circuit 102 oscillates at a frequency based on the control voltage applied to the control voltage input terminal 101. The oscillation signal output terminal 103 leads the oscillation signal of the crystal oscillation circuit 102 to the outside. The constant voltage circuit 104 generates a constant power supply voltage to be supplied to the crystal oscillation circuit 102. The temperature compensation circuit 105 performs temperature compensation on the output of the crystal oscillation circuit 102. The constant voltage output terminal 106 derives a constant voltage related to the power supply voltage of the constant voltage circuit 104 to the outside.

制御電圧入力端子101、水晶発振回路102、発振信号出力端子103、定電圧回路104、温度補償回路105及び定電圧出力端子106は、例えばVC−TCXO10では、それぞれ制御電圧入力端子22、水晶発振回路14、発振信号出力端子23、定電圧回路11、温度補償回路12及び定電圧出力端子20に対応している。定電圧出力端子106において、定電圧回路104の給電用電圧に係る定電圧とは、定電圧回路104の給電用電圧自体も含むものとする。   The control voltage input terminal 101, the crystal oscillation circuit 102, the oscillation signal output terminal 103, the constant voltage circuit 104, the temperature compensation circuit 105, and the constant voltage output terminal 106 are, for example, the control voltage input terminal 22 and the crystal oscillation circuit in the VC-TCXO 10, respectively. 14, the oscillation signal output terminal 23, the constant voltage circuit 11, the temperature compensation circuit 12, and the constant voltage output terminal 20. In the constant voltage output terminal 106, the constant voltage related to the power supply voltage of the constant voltage circuit 104 includes the power supply voltage itself of the constant voltage circuit 104.

電圧制御温度補償水晶発振器100の温度−発振周波数特性調整時及び実機への電圧制御温度補償水晶発振器100の実装時には、制御電圧入力端子101に基準電圧を印加する必要がある。定電圧出力端子106が電圧制御温度補償水晶発振器100に装備される結果、定電圧回路104の給電用電圧に係る定電圧を、調整時及び実装時に共通に、該基準電圧として使用することができるので、実装時の温度変化に対する発振周波数のぶれを抑制して、発振周波数の精度を高めることができる。   It is necessary to apply a reference voltage to the control voltage input terminal 101 when adjusting the temperature-oscillation frequency characteristics of the voltage controlled temperature compensated crystal oscillator 100 and when mounting the voltage controlled temperature compensated crystal oscillator 100 on an actual device. As a result of the constant voltage output terminal 106 being provided in the voltage controlled temperature compensation crystal oscillator 100, the constant voltage related to the power supply voltage of the constant voltage circuit 104 can be used as the reference voltage in common during adjustment and mounting. Therefore, it is possible to suppress the fluctuation of the oscillation frequency with respect to the temperature change at the time of mounting and improve the accuracy of the oscillation frequency.

電圧制御温度補償水晶発振器100は、その一例において、分圧回路115を備える。分圧回路115は、定電圧回路104の給電用電圧の分圧を、定電圧回路104の給電用電圧に係る定電圧として生成する。分圧回路115の具体例は分圧器66(図5)である。分圧回路115により、定電圧回路104が生成する定電圧と、制御電圧入力端子101の基準電圧とが相違する場合にも、適切に対処することができる。   In one example, the voltage controlled temperature compensation crystal oscillator 100 includes a voltage dividing circuit 115. The voltage dividing circuit 115 generates the divided voltage of the power supply voltage of the constant voltage circuit 104 as a constant voltage related to the power supply voltage of the constant voltage circuit 104. A specific example of the voltage dividing circuit 115 is a voltage divider 66 (FIG. 5). Even when the constant voltage generated by the constant voltage circuit 104 is different from the reference voltage of the control voltage input terminal 101 by the voltage dividing circuit 115, it is possible to appropriately cope with it.

定電圧出力端子106は、発振信号出力端子103が兼ねることができる。発振信号出力端子103を兼ねる定電圧出力端子106の具体例はVC−TCXO72(図6)の発振信号出力端子23である。また、温度補償回路調整端子116が定電圧出力端子106を兼ねてもよい。温度補償回路調整端子116は、温度補償回路105にその温度制御データを設定する設定信号を外部から供給するためのものである。発振信号出力端子103を兼ねる温度補償回路調整端子116の具体例はVC−TCXO82(図7)の温度補償回路調整端子21である。なお、電圧制御温度補償水晶発振器100は、定電圧出力端子106を兼ねた発振信号出力端子103と、定電圧出力端子106を兼ねた温度補償回路調整端子116との両方を装備してもよい。   The constant voltage output terminal 106 can also serve as the oscillation signal output terminal 103. A specific example of the constant voltage output terminal 106 also serving as the oscillation signal output terminal 103 is the oscillation signal output terminal 23 of the VC-TCXO 72 (FIG. 6). The temperature compensation circuit adjustment terminal 116 may also serve as the constant voltage output terminal 106. The temperature compensation circuit adjustment terminal 116 is for supplying a setting signal for setting temperature control data to the temperature compensation circuit 105 from the outside. A specific example of the temperature compensation circuit adjustment terminal 116 that also serves as the oscillation signal output terminal 103 is the temperature compensation circuit adjustment terminal 21 of the VC-TCXO 82 (FIG. 7). The voltage-controlled temperature compensation crystal oscillator 100 may include both the oscillation signal output terminal 103 that also serves as the constant voltage output terminal 106 and the temperature compensation circuit adjustment terminal 116 that also serves as the constant voltage output terminal 106.

図10は電圧制御温度補償水晶発振器120のブロック図である。電圧制御温度補償水晶発振器120の素子の内、図9の電圧制御温度補償水晶発振器100の素子と同一のものについては、電圧制御温度補償水晶発振器100の素子に付した符号を付して、説明を省略して、相違点について述べる。水晶発振回路102は、制御電圧に基づく周波数で発振する。制御電圧供給回路121は、定電圧回路104の給電用電圧に係る定電圧を制御電圧として水晶発振回路102へ供給する。   FIG. 10 is a block diagram of the voltage controlled temperature compensated crystal oscillator 120. Among the elements of the voltage-controlled temperature-compensated crystal oscillator 120, the same elements as those of the voltage-controlled temperature-compensated crystal oscillator 100 of FIG. The differences are described below. The crystal oscillation circuit 102 oscillates at a frequency based on the control voltage. The control voltage supply circuit 121 supplies a constant voltage related to the power supply voltage of the constant voltage circuit 104 to the crystal oscillation circuit 102 as a control voltage.

電圧制御温度補償水晶発振器120の具体例はVC−TCXO88(図8)である。電圧制御温度補償水晶発振器100(図9)では、定電圧出力端子106が必要となるが、電圧制御温度補償水晶発振器120では、定電圧出力端子106を省略することができる。また、電圧制御温度補償水晶発振器120に対して後述の温度−発振周波数特性調整方法130を実施する場合には、温度−発振周波数特性調整時や実装時に、電圧制御温度補償水晶発振器100において必要とされる制御電圧入力端子101−定電圧出力端子106間の接続回路を省略することができる。   A specific example of the voltage controlled temperature compensating crystal oscillator 120 is a VC-TCXO 88 (FIG. 8). In the voltage controlled temperature compensated crystal oscillator 100 (FIG. 9), the constant voltage output terminal 106 is required, but in the voltage controlled temperature compensated crystal oscillator 120, the constant voltage output terminal 106 can be omitted. Further, when the temperature-oscillation frequency characteristic adjusting method 130 described later is performed on the voltage-controlled temperature-compensated crystal oscillator 120, it is necessary in the voltage-controlled temperature-compensated crystal oscillator 100 when adjusting the temperature-oscillation frequency characteristic or mounting. The connection circuit between the control voltage input terminal 101 and the constant voltage output terminal 106 can be omitted.

電圧制御温度補償水晶発振器120では、制御電圧供給回路121は、定電圧回路の給電用電圧の分圧を制御電圧として生成する分圧回路とすることができる。   In the voltage controlled temperature compensated crystal oscillator 120, the control voltage supply circuit 121 can be a voltage dividing circuit that generates the divided voltage of the power supply voltage of the constant voltage circuit as the control voltage.

図11は温度−発振周波数特性調整方法130のフローチャートである。温度−発振周波数特性調整方法130は電圧制御温度補償水晶発振器100,120に適用される。   FIG. 11 is a flowchart of the temperature-oscillation frequency characteristic adjusting method 130. The temperature-oscillation frequency characteristic adjustment method 130 is applied to the voltage controlled temperature compensated crystal oscillators 100 and 120.

S131では、その水晶発振回路102の入力側基準電圧が定電圧回路の生成電圧に係る電圧となるような接続を施して、恒温槽へ収容する。なお、該接続について、電圧制御温度補償水晶発振器100については、図2の接続線38のようなものであるが、電圧制御温度補償水晶発振器120については、その内部に接続がなされているので、外部における接続は不要である。   In S131, connection is performed so that the input-side reference voltage of the crystal oscillation circuit 102 becomes a voltage related to the generated voltage of the constant voltage circuit, and the crystal oscillation circuit 102 is accommodated in the thermostatic chamber. Regarding the connection, the voltage controlled temperature compensated crystal oscillator 100 is like the connection line 38 in FIG. 2, but the voltage controlled temperature compensated crystal oscillator 120 is connected to the inside thereof. No external connection is required.

S132では、恒温槽内の温度を所定範囲にわたり変化させる。S133では、水晶発振回路102の発振周波数が恒温槽内の各温度において公称値に維持されるように、電圧制御温度補償水晶発振器100,120内の発振周波数制御因子を設定する。   In S132, the temperature in the thermostat is changed over a predetermined range. In S133, the oscillation frequency control factor in the voltage controlled temperature compensation crystal oscillators 100 and 120 is set so that the oscillation frequency of the crystal oscillation circuit 102 is maintained at a nominal value at each temperature in the thermostat.

電圧制御温度補償水晶発振器100の具体例のVC−TCXO10では、恒温槽30における温度−発振周波数特性調整時では、ジグ32から温度補償回路調整端子21を介して温度補償回路12へデータを送って、温度補償回路12の記憶装置における温度制御データを設定していたが、電圧制御温度補償水晶発振器100,120内の発振周波数制御因子は、温度補償回路105以外の素子値であってもよいとする。   In the VC-TCXO 10 as a specific example of the voltage controlled temperature compensation crystal oscillator 100, when adjusting the temperature-oscillation frequency characteristics in the thermostat 30, data is sent from the jig 32 to the temperature compensation circuit 12 via the temperature compensation circuit adjustment terminal 21. Although the temperature control data in the storage device of the temperature compensation circuit 12 is set, the oscillation frequency control factor in the voltage controlled temperature compensation crystal oscillators 100 and 120 may be an element value other than the temperature compensation circuit 105. To do.

本明細書は様々な発明を開示している。それら発明には、本明細書における発明の最良の形態等において、独立の作用、効果を奏する1つ又は複数の素子を抽出したものや、1つ又は複数の素子を自明の範囲で変更したものや、1つ又は複数の素子の組合せを自明の範囲で発明の形態間で入れ換えたものを含む。   This specification discloses various inventions. In these inventions, in the best mode of the invention in the present specification, one or a plurality of elements exhibiting independent actions and effects are extracted, or one or a plurality of elements are changed within the obvious range In addition, a combination of one or a plurality of elements is interchanged between modes of the invention within the obvious range.

VC−TCXOの構成図である。It is a block diagram of VC-TCXO. VC−TCXOのメーカにおいて各VC−TCXOについて行う温度−発振周波数特性調整時の接続状況図である。It is a connection condition figure at the time of the temperature-oscillation frequency characteristic adjustment performed about each VC-TCXO in the manufacturer of VC-TCXO. VC−TCXOが携帯型無線機に装備されたときの接続図である。It is a connection diagram when VC-TCXO is equipped in a portable radio. 定電圧回路の生成電圧と制御電圧入力端子の基準電圧とが相違する場合に、VC−TCXOに分圧器を外付けすることより対処する回路図である。FIG. 5 is a circuit diagram for dealing with a case where a voltage divider is externally attached to VC-TCXO when a generated voltage of a constant voltage circuit is different from a reference voltage of a control voltage input terminal. 定電圧回路の生成電圧と制御電圧入力端子の基準電圧とが相違する場合に、分圧器を内蔵することより対処するVC−TCXOの回路図である。It is a circuit diagram of VC-TCXO which copes with the case where the generated voltage of the constant voltage circuit is different from the reference voltage of the control voltage input terminal by incorporating a voltage divider. 発振信号出力端子が定電圧回路の定電圧を導出する端子を兼ねるVC−TCXOの回路図である。It is a circuit diagram of VC-TCXO in which an oscillation signal output terminal also serves as a terminal for deriving a constant voltage of a constant voltage circuit. 温度補償回路調整端子が定電圧回路の定電圧を導出する端子を兼ねるVC−TCXOの回路図である。It is a circuit diagram of VC-TCXO in which a temperature compensation circuit adjustment terminal also serves as a terminal for deriving a constant voltage of a constant voltage circuit.

FM等の信号発生に利用されているVC−TCXO及びその接続図を示す図である。It is a figure which shows VC-TCXO currently utilized for signal generation, such as FM, and its connection diagram. 電圧制御温度補償水晶発振器のブロック図である。It is a block diagram of a voltage control temperature compensation crystal oscillator. 別の電圧制御温度補償水晶発振器のブロック図である。It is a block diagram of another voltage control temperature compensation crystal oscillator. 温度−発振周波数特性調整方法のフローチャートである。It is a flowchart of the temperature-oscillation frequency characteristic adjustment method. 従来のVC−TCXOの構成図である。It is a block diagram of conventional VC-TCXO. メーカ出荷前の従来のVC−TCXOの調整時の接続状況図である。It is a connection condition figure at the time of adjustment of the conventional VC-TCXO before maker shipment. 携帯型無線機における従来のVC−TCXOの接続状態を示す図である。It is a figure which shows the connection state of the conventional VC-TCXO in a portable radio | wireless machine.

符号の説明Explanation of symbols

100:電圧制御温度補償水晶発振器、101:制御電圧入力端子、102:水晶発振回路、103:発振信号出力端子、104:定電圧回路、105:温度補償回路、106:定電圧出力端子、115:分圧回路、116:温度補償回路調整端子、120:電圧制御温度補償水晶発振器、121:制御電圧供給回路、130:温度−発振周波数特性調整方法。 100: Voltage control temperature compensation crystal oscillator 101: Control voltage input terminal 102: Crystal oscillation circuit 103: Oscillation signal output terminal 104: Constant voltage circuit 105: Temperature compensation circuit 106: Constant voltage output terminal 115: Voltage divider circuit 116: Temperature compensation circuit adjustment terminal 120: Voltage control temperature compensation crystal oscillator 121: Control voltage supply circuit 130: Temperature-oscillation frequency characteristic adjustment method

Claims (7)

制御電圧入力端子、
該制御電圧入力端子に印加された制御電圧に基づく周波数で発振する水晶発振回路、
該水晶発振回路の発振信号を外部へ導出する発振信号出力端子、
該水晶発振回路へ供給する一定値の給電用電圧を生成する定電圧回路、
前記水晶発振回路の出力について温度補償する温度補償回路、及び
前記定電圧回路の給電用電圧に係る定電圧を外部へ導出する定電圧出力端子、
を備えることを特徴とする電圧制御温度補償水晶発振器。
Control voltage input terminal,
A crystal oscillation circuit that oscillates at a frequency based on a control voltage applied to the control voltage input terminal;
An oscillation signal output terminal for deriving the oscillation signal of the crystal oscillation circuit to the outside;
A constant voltage circuit for generating a constant voltage supply voltage to be supplied to the crystal oscillation circuit;
A temperature compensation circuit for temperature compensation of the output of the crystal oscillation circuit, and a constant voltage output terminal for deriving a constant voltage related to a power supply voltage of the constant voltage circuit to the outside,
A voltage-controlled temperature-compensated crystal oscillator comprising:
前記定電圧回路の給電用電圧の分圧を、前記定電圧回路の給電用電圧に係る定電圧として生成する分圧回路、
を備えることを特徴とする請求項1記載の電圧制御温度補償水晶発振器。
A voltage dividing circuit for generating a divided voltage of the power supply voltage of the constant voltage circuit as a constant voltage related to the power supply voltage of the constant voltage circuit;
The voltage controlled temperature compensated crystal oscillator according to claim 1, further comprising:
前記発振信号出力端子が前記定電圧出力端子を兼ねていることを特徴とする請求項1又は2記載の電圧制御温度補償水晶発振器。   3. The voltage controlled temperature compensated crystal oscillator according to claim 1, wherein the oscillation signal output terminal also serves as the constant voltage output terminal. 前記温度補償回路にその温度制御データを設定する設定信号を外部から供給される温度補償回路調整端子が、前記定電圧出力端子を兼ねていることを特徴とする請求項1〜3のいずれかに記載の電圧制御温度補償水晶発振器。   The temperature compensation circuit adjustment terminal supplied from outside with a setting signal for setting temperature control data to the temperature compensation circuit also serves as the constant voltage output terminal. The voltage-controlled temperature-compensated crystal oscillator described. 制御電圧に基づく周波数で発振する水晶発振回路、
該水晶発振回路の発振信号を外部へ導出する発振信号出力端子、
該水晶発振回路へ供給する一定値の給電用電圧を生成する定電圧回路、
前記水晶発振回路の出力について温度補償する温度補償回路、及び
前記定電圧回路の給電用電圧に係る定電圧を前記制御電圧として前記水晶発振回路へ供給する制御電圧供給回路、
を備えることを特徴とする電圧制御温度補償水晶発振器。
A crystal oscillation circuit that oscillates at a frequency based on the control voltage,
An oscillation signal output terminal for deriving the oscillation signal of the crystal oscillation circuit to the outside;
A constant voltage circuit for generating a constant voltage supply voltage to be supplied to the crystal oscillation circuit;
A temperature compensation circuit that compensates the temperature of the output of the crystal oscillation circuit, and a control voltage supply circuit that supplies, as the control voltage, a constant voltage related to a power supply voltage of the constant voltage circuit to the crystal oscillation circuit;
A voltage-controlled temperature-compensated crystal oscillator comprising:
前記制御電圧供給回路は、定電圧回路の給電用電圧の分圧を前記制御電圧として生成する分圧回路であることを特徴とする請求項5記載の電圧制御温度補償水晶発振器。   6. The voltage-controlled temperature-compensated crystal oscillator according to claim 5, wherein the control voltage supply circuit is a voltage dividing circuit that generates a divided voltage of a power supply voltage of a constant voltage circuit as the control voltage. 請求項1〜6のいずれかに記載の電圧制御温度補償水晶発振器を、その水晶発振回路の入力側基準電圧が前記定電圧回路の生成電圧に係る電圧となるような接続を施して、恒温槽へ収容するステップ、
前記恒温槽内の温度を所定範囲にわたり変化させるステップ、及び
前記水晶発振回路の発振周波数が前記恒温槽内の各温度において公称値に維持されるように、前記電圧制御温度補償水晶発振器内の発振周波数制御因子を設定するステップ、
を備えることを特徴とする温度−発振周波数特性調整方法。
A temperature controlled temperature controlled crystal oscillator according to any one of claims 1 to 6, wherein a connection is made so that an input side reference voltage of the crystal oscillation circuit becomes a voltage related to a generated voltage of the constant voltage circuit, Step to house,
Changing the temperature in the thermostat over a predetermined range; and oscillation in the voltage controlled temperature compensated crystal oscillator so that the oscillation frequency of the crystal oscillator circuit is maintained at a nominal value at each temperature in the thermostat. Setting a frequency control factor;
A temperature-oscillation frequency characteristic adjustment method comprising:
JP2007165381A 2007-06-22 2007-06-22 Voltage controlled temperature compensated crystal oscillator and temperature-oscillation frequency characteristic adjusting method Active JP5125250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007165381A JP5125250B2 (en) 2007-06-22 2007-06-22 Voltage controlled temperature compensated crystal oscillator and temperature-oscillation frequency characteristic adjusting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007165381A JP5125250B2 (en) 2007-06-22 2007-06-22 Voltage controlled temperature compensated crystal oscillator and temperature-oscillation frequency characteristic adjusting method

Publications (2)

Publication Number Publication Date
JP2009005182A true JP2009005182A (en) 2009-01-08
JP5125250B2 JP5125250B2 (en) 2013-01-23

Family

ID=40321064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007165381A Active JP5125250B2 (en) 2007-06-22 2007-06-22 Voltage controlled temperature compensated crystal oscillator and temperature-oscillation frequency characteristic adjusting method

Country Status (1)

Country Link
JP (1) JP5125250B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016187161A (en) * 2015-03-27 2016-10-27 セイコーエプソン株式会社 Oscillator, electronic device, and mobile body

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02214313A (en) * 1989-02-15 1990-08-27 Matsushita Electric Ind Co Ltd Frequency adjusting circuit
JPH08340214A (en) * 1995-06-14 1996-12-24 Meidensha Corp Crystal oscillator circuit
JPH09162641A (en) * 1995-12-05 1997-06-20 Alps Electric Co Ltd Voltage control oscillator
JPH1197932A (en) * 1997-09-17 1999-04-09 Citizen Watch Co Ltd Crystal oscillator
JP2000196359A (en) * 1998-12-25 2000-07-14 Nippon Dempa Kogyo Co Ltd Voltage controlled crystal oscillator
JP2000299608A (en) * 1999-04-14 2000-10-24 Alps Electric Co Ltd Oscillator circuit
JP2001230630A (en) * 1999-12-06 2001-08-24 Seiko Epson Corp Temperature-compensated oscillator, control method for the same and radio communications equipment
JP2002076773A (en) * 2000-09-01 2002-03-15 Murata Mfg Co Ltd Temperature compensated oscillator and electronic equipment using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02214313A (en) * 1989-02-15 1990-08-27 Matsushita Electric Ind Co Ltd Frequency adjusting circuit
JPH08340214A (en) * 1995-06-14 1996-12-24 Meidensha Corp Crystal oscillator circuit
JPH09162641A (en) * 1995-12-05 1997-06-20 Alps Electric Co Ltd Voltage control oscillator
JPH1197932A (en) * 1997-09-17 1999-04-09 Citizen Watch Co Ltd Crystal oscillator
JP2000196359A (en) * 1998-12-25 2000-07-14 Nippon Dempa Kogyo Co Ltd Voltage controlled crystal oscillator
JP2000299608A (en) * 1999-04-14 2000-10-24 Alps Electric Co Ltd Oscillator circuit
JP2001230630A (en) * 1999-12-06 2001-08-24 Seiko Epson Corp Temperature-compensated oscillator, control method for the same and radio communications equipment
JP2002076773A (en) * 2000-09-01 2002-03-15 Murata Mfg Co Ltd Temperature compensated oscillator and electronic equipment using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016187161A (en) * 2015-03-27 2016-10-27 セイコーエプソン株式会社 Oscillator, electronic device, and mobile body

Also Published As

Publication number Publication date
JP5125250B2 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
US7728676B2 (en) Voltage-controlled oscillator with control range limiter
JP4625494B2 (en) Oscillation frequency control circuit
US20100244968A1 (en) Voltage-controlled oscillator, and pll circuit, fll circuit, and wireless communication device using the same
EP2062361A2 (en) Apparatus and method for temperature compensation of crystal oscillators
JP4374463B2 (en) Oscillation frequency control circuit
JPWO2003021765A1 (en) Oscillator and communication equipment
KR20000057646A (en) Temperature compensation circuit for a crystal oscillator
CN110048713A (en) The temperature-compensating of quartz oscillator
JP2017010297A (en) Clock signal generation circuit, semiconductor integrated circuit device, and electronic apparatus
JP5125250B2 (en) Voltage controlled temperature compensated crystal oscillator and temperature-oscillation frequency characteristic adjusting method
JP5727961B2 (en) Semiconductor device and variation information acquisition program
JP5145398B2 (en) Oscillation frequency control circuit
EP1514343B1 (en) An arrangement for low power clock generation
JP5311545B2 (en) Oscillator
JP2000183648A (en) Piezo-oscillator having frequency correcting function
JP2009260598A (en) Radio apparatus
JP2008219719A (en) Wireless communication apparatus
JP5063833B2 (en) High-frequency signal generator based on the time base of the clock
JP2005277776A (en) Frequency-compensated voltage controlled oscillator
CA2758362C (en) Temperature compensated frequency adjustment in a meter reading endpoint
JP2002026658A (en) Quartz oscillator circuit
JP2010206432A (en) Crystal oscillator
JP2009290380A (en) Oscillator
GB2442278A (en) Phase locked loop with digital compensation of environmental effects
KR950002440B1 (en) Ascilation frequency compensating method of the vcd

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110516

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20111012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121015

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5125250

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3