JP2009005117A - Surface-mounting type piezoelectric vibration device - Google Patents

Surface-mounting type piezoelectric vibration device Download PDF

Info

Publication number
JP2009005117A
JP2009005117A JP2007164473A JP2007164473A JP2009005117A JP 2009005117 A JP2009005117 A JP 2009005117A JP 2007164473 A JP2007164473 A JP 2007164473A JP 2007164473 A JP2007164473 A JP 2007164473A JP 2009005117 A JP2009005117 A JP 2009005117A
Authority
JP
Japan
Prior art keywords
container
heater
lid
heat transfer
vibration device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007164473A
Other languages
Japanese (ja)
Other versions
JP5070954B2 (en
Inventor
Hiroyuki Arimura
有村  博之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daishinku Corp
Original Assignee
Daishinku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daishinku Corp filed Critical Daishinku Corp
Priority to JP2007164473A priority Critical patent/JP5070954B2/en
Publication of JP2009005117A publication Critical patent/JP2009005117A/en
Application granted granted Critical
Publication of JP5070954B2 publication Critical patent/JP5070954B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Oscillators With Electromechanical Resonators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact surface-mounting type piezoelectric vibration device having more stable temperature characteristics and higher reliability. <P>SOLUTION: The surface-mounting type piezoelectric vibration device housing a piezoelectric diaphragm 2 with an exciting electrode in a container of a rectangular shape in plane view, configured by covering a ceramic package 1 with a cover 5, comprises: a heater 3 for heating the piezoelectric diaphragm in the container; and a sensor 4 for detecting the temperature inside the container. Wherein, the heater is formed in the ceramic package and one or more heat conduction parts 12, 13 thermally connected with the heater for heating the piezoelectric diaphragm in the container are formed at each of side walls corresponding to sides of the container. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、恒温槽付の表面実装型圧電振動デバイスに関するものである。   The present invention relates to a surface-mount type piezoelectric vibration device with a thermostatic chamber.

特許文献1、2に示すように、外部の温度変化に影響することなく、圧電振動子を恒温槽内で温度制御することにより周波数の高安定化を行った恒温槽付圧電振動デバイスが従来から存在している。このような恒温槽付圧電振動デバイスでは周波数安定度として1×10-7〜1×10-10程度の圧電振動子で得られる最高水準の周波数安定度を得ることができるため、無線基地局や伝送ラインなどの基準周波数として利用されている。このような恒温槽付圧電振動デバイスは、単体で気密封止された圧電振動子に対して加熱手段やセンサを取り付けて恒温槽を構成するとともに、当該恒温槽とその他の回路部品を別個に回路基板に搭載して蓋を被せることで最終的な容器が得られるため、他の圧電振動デバイスに比べて大型化してしまうという問題点があった。大型の容器では温度を保持しようとする温度マスも低下するので、結果として加熱に要する消費電力も増加することも懸念されていた。   As shown in Patent Documents 1 and 2, a piezoelectric vibration device with a thermostatic chamber has been conventionally used in which the frequency is stabilized by controlling the temperature of the piezoelectric vibrator in the thermostatic chamber without affecting external temperature changes. Existing. In such a piezoelectric vibrating device with a thermostatic chamber, the highest frequency stability obtained with a piezoelectric vibrator of about 1 × 10 −7 to 1 × 10 −10 can be obtained as the frequency stability. Used as a reference frequency for transmission lines. Such a piezoelectric vibrating device with a thermostatic chamber constitutes a thermostatic chamber by attaching a heating means and a sensor to a piezoelectric vibrator hermetically sealed as a single unit, and separates the thermostatic chamber from other circuit components. Since the final container is obtained by mounting on the substrate and covering the lid, there is a problem that the size is increased as compared with other piezoelectric vibrating devices. In a large container, since the temperature mass for maintaining the temperature also decreases, there is a concern that the power consumption required for heating will increase as a result.

このような恒温槽付圧電振動デバイスの分野でもさらなる小型化が求められているのが現状であり、特許文献3に示すような、圧電振動デバイスが提案されている。すなわち、セラミック積層基板からなる容器に対してセラミックヒータなどの加熱手段を一体形成し、このように構成された容器に対して圧電振動板などの圧電部品と発振回路部品を収納することで飛躍的な小型化を実現した構成のものが提案されている。
特開平2−305004号 特開2002−223122号 特開2003−224422号
Even in the field of the piezoelectric vibration device with a thermostat, there is a demand for further miniaturization, and a piezoelectric vibration device as shown in Patent Document 3 has been proposed. That is, a heating means such as a ceramic heater is integrally formed on a container made of a ceramic laminated substrate, and a piezoelectric component such as a piezoelectric diaphragm and an oscillation circuit component are accommodated in the container configured in this manner. A configuration having a small size has been proposed.
JP-A-2-305004 JP 2002-223122 A JP 2003-224422 A

しかしながら、上記特許文献3に開示する圧電振動デバイスでは容器内部の温度分布にバラツキが生じやすくなり、結果として恒温制御する際の精度にもバラツキが生じて周波数安定度に影響することが懸念される。すなわち、容器内部のうちセラミックヒータの存在する容器の底面側のみが加熱されるので、容器内部に配置される圧電部品、センサ、あるいは他の発振回路部品の間でも温度差が生じるだけでなく、セラミックヒータから最も離れた容器の上面側では外部環境温度の影響を受けやすくなる。つまり、容器内部の温度分布ばらつきが生じ、容器内部の温度勾配が周囲温度によって変化することがあった。特に、セラミック積層基板の容器では、素材自体の熱伝導効率と熱追従性が従来からの金属容器に比べて悪いので上述のような問題点がより顕著に現れやすくなる。結果として恒温槽付圧電振動デバイスの温度特性のさらなる高精度化を阻害するといった問題点があった。   However, in the piezoelectric vibration device disclosed in Patent Document 3, the temperature distribution inside the container is likely to vary, and as a result, there is a concern that the accuracy during the constant temperature control also varies and affects the frequency stability. . That is, only the bottom surface side of the container where the ceramic heater is present is heated inside the container, so that not only a temperature difference occurs between the piezoelectric parts, sensors, or other oscillation circuit parts arranged inside the container, On the upper surface side of the container farthest from the ceramic heater, it is easily affected by the external environmental temperature. In other words, the temperature distribution inside the container varies, and the temperature gradient inside the container may change depending on the ambient temperature. In particular, in the case of a ceramic laminated substrate container, the heat conduction efficiency and heat followability of the material itself are poor compared to conventional metal containers, and thus the above-described problems are more likely to appear. As a result, there has been a problem in that the accuracy of the temperature characteristics of the piezoelectric vibrating device with a thermostatic chamber is hindered.

本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、小型化を実現するだけでなく、より安定した温度特性が得られ、より信頼性の高い表面実装型圧電振動デバイスを提供することにある。   The present invention has been made in view of the above points, and an object of the present invention is not only to realize downsizing, but also to obtain a more stable temperature characteristic and a more reliable surface mount type piezoelectric vibration. To provide a device.

上記の目的を達成するために、本発明は次の構成により実現をすることができる。   In order to achieve the above object, the present invention can be realized by the following configuration.

すなわち請求項1に示すように、セラミックパッケージに蓋を被せてなる平面視矩形状の容器の内部に励振電極が形成された圧電振動板を収納された表面実装型圧電振動デバイスであって、前記容器内部の圧電振動板を加熱するヒータと、容器の内部温度を検知するセンサとを具備し、前記セラミックパッケージにヒータを形成し、当該ヒータと熱的に接続され容器内部の圧電振動板を加熱する伝熱部が容器の各辺に対応する側壁に各々1つ以上形成されたことを特徴とする。   That is, as shown in claim 1, there is provided a surface mount type piezoelectric vibration device in which a piezoelectric diaphragm having an excitation electrode formed therein is accommodated in a rectangular container in plan view formed by covering a ceramic package with a lid, A heater for heating the piezoelectric diaphragm inside the container and a sensor for detecting the internal temperature of the container are formed. The heater is formed in the ceramic package, and is thermally connected to the heater to heat the piezoelectric diaphragm inside the container. One or more heat transfer portions are formed on each side wall corresponding to each side of the container.

請求項1により、前記容器内部の圧電振動板を加熱するヒータと、容器の内部温度を検知するセンサとを具備し、前記セラミックパッケージにヒータを形成し、当該ヒータと熱的に接続され容器内部の圧電振動板を加熱する伝熱部が容器の各辺に対応する側壁に各々1つ以上形成されているので、セラミックパッケージに蓋を被せてなる容器を用いて飛躍的な小型化・低背化が実現されるとともに、恒温槽の機能が加味された表面実装型圧電振動デバイスが得られる。加えて、ヒータの熱が伝熱部により容器内部全体に伝播し加熱するため、外部環境温度の影響を受けることなく、容器内部の温度分布にバラツキを与えることなく、恒温制御する際の温度精度も高めることができる。また、セラミックパッケージ側壁に伝熱部があることでセラミックパッケージ側壁からの熱放射を抑制でき、容器内部恒温制御が容易になる。結果として、小型化を実現するだけでなく、より安定した温度特性が得られる、より信頼性の高い表面実装型圧電振動デバイスを提供するができる。   According to claim 1, a heater for heating the piezoelectric diaphragm inside the container and a sensor for detecting the internal temperature of the container are provided, the heater is formed in the ceramic package, and the container is thermally connected to the heater. Since one or more heat transfer parts for heating the piezoelectric diaphragm are formed on the side walls corresponding to the sides of the container, a drastic downsizing and low profile can be achieved using a container with a lid on a ceramic package. Thus, a surface mount type piezoelectric vibration device in which the function of the thermostatic bath is added can be obtained. In addition, since the heat of the heater is propagated and heated throughout the interior of the container by the heat transfer section, it is not affected by the temperature of the external environment, and the temperature accuracy when controlling the temperature without affecting the temperature distribution inside the container Can also be increased. Further, since the heat transfer part is provided on the side wall of the ceramic package, heat radiation from the side wall of the ceramic package can be suppressed, and the constant temperature control inside the container becomes easy. As a result, it is possible to provide a more reliable surface-mount type piezoelectric vibration device that not only achieves miniaturization but also provides more stable temperature characteristics.

また請求項2に示すように、前記伝熱部と熱的に接続された熱伝導性の高い蓋、または前記伝熱部と熱的に接続された熱伝導膜が形成された蓋を具備することを特徴とする。   According to a second aspect of the present invention, there is provided a lid having a high thermal conductivity thermally connected to the heat transfer section, or a lid formed with a heat conductive film thermally connected to the heat transfer section. It is characterized by that.

請求項2により、上述の作用効果に加え、蓋に補助ヒータとしての加熱機能を具備させることができる。つまり、ヒータの熱が伝熱部と蓋によって容器内全体をより均一に伝播し加熱することができるので、外部環境温度の影響をより一層受けることなく、容器内部の温度分布にバラツキを与えることなく、恒温制御する際の温度精度も飛躍的に高めることができる。前記熱伝導性の高い蓋として金属部材などを用いることで、加熱効率の高い安価な補助ヒータが得られる。前記熱伝導性の低い蓋ではメタライズ技術や厚膜印刷技術などにより熱伝導膜を構成することで、設計自由度の高い安価な補助ヒータが得られる。特に、これらの金属部材の蓋と伝熱部、あるいは蓋の熱伝導膜と伝熱部とは溶接やろう接などによりお互いに金属間接合させることで、熱伝播に損失を生じることがなくなりより好ましい。   According to the second aspect, in addition to the above-described effects, the lid can be provided with a heating function as an auxiliary heater. In other words, the heat inside the container can be more uniformly propagated and heated by the heat transfer section and the lid so that the temperature distribution inside the container is not affected by the external environment temperature. In addition, the temperature accuracy during the constant temperature control can be dramatically improved. By using a metal member or the like as the lid having high thermal conductivity, an inexpensive auxiliary heater with high heating efficiency can be obtained. In the case of the lid having low thermal conductivity, an inexpensive auxiliary heater having a high degree of design freedom can be obtained by forming a thermal conductive film by metallization technology or thick film printing technology. In particular, the lid and heat transfer part of these metal members, or the heat conductive film and heat transfer part of the lid are joined to each other by welding or brazing so that no loss in heat propagation occurs. preferable.

上述の各構成において、前記蓋が多層部材からなり外表面側の部材層が内表面側の部材層より熱伝導性が低い材質により構成してもよい。これにより、熱伝導性の低い外表面側の部材層で容器外部への放熱を遮断あるいは抑制しながら、熱伝導性の高い内表面側の部材層で容器内部への加熱を促進することができるので、加熱効率を高め省電力化が実現できる。例えば、蓋を金属部材で構成する場合、コバール部材(19.7W/m・K程度、室温)の内側に銅部材(403W/m・K程度、0℃)が積層されたクラッド部材を用いるとよい。蓋をセラミック部材(12W/m・K程度、室温)で構成する場合、当該セラミックパッケージに対してタングステン(177W/m・K程度、0℃)やモリブデン(139W/m・K程度、0℃)・Auメッキ(319W/m・K程度、0℃)等のメタライズ部材を形成するだけでもよく、より好ましくはメタライズ部材の上面に熱伝導性の高い金属膜を形成するとよい。また、セラミックパッケージやガラスパッケージ(0.55〜0.75W/m・K程度、室温)に対して銅の厚膜印刷部材(403W/m・K程度、0℃)を形成してもよい。   In each configuration described above, the lid may be formed of a multilayer member, and the outer surface side member layer may be made of a material having lower thermal conductivity than the inner surface side member layer. Thereby, heating to the inside of the container can be promoted by the member layer on the inner surface side having high heat conductivity while blocking or suppressing heat radiation to the outside of the container by the member layer on the outer surface side having low heat conductivity. Therefore, heating efficiency can be increased and power saving can be realized. For example, when the lid is made of a metal member, a clad member in which a copper member (about 403 W / m · K, 0 ° C.) is laminated inside a kovar member (about 19.7 W / m · K, room temperature) is used. Good. When the lid is composed of a ceramic member (about 12 W / m · K, room temperature), tungsten (about 177 W / m · K, 0 ° C) or molybdenum (about 139 W / m · K, 0 ° C) against the ceramic package It is sufficient to form a metallized member such as Au plating (about 319 W / m · K, 0 ° C.), and more preferably, a metal film having high thermal conductivity is formed on the upper surface of the metallized member. Moreover, you may form a copper thick film printing member (about 403 W / m * K, 0 degreeC) with respect to a ceramic package or a glass package (about 0.55-0.75 W / m * K, room temperature).

また請求項3に示すように、上述の構成に加え、前記ヒータが膜抵抗体からなることを特徴とする。   According to a third aspect of the present invention, in addition to the above-described configuration, the heater is made of a film resistor.

請求項3により、上述の作用効果に加え、前記ヒータが膜抵抗体からなることで、メタライズ技術を活用してセラミックパッケージに対するヒータの取り付けの自由度と低背化が飛躍的に向上する。また、セラミックヒータのようにヒータ線を引き回す必要がないため、より薄くかつ容易に配線することができる。   According to the third aspect, in addition to the above-described effects, the heater is made of a film resistor, so that the degree of freedom in mounting the heater on the ceramic package and the reduction in height are dramatically improved by utilizing the metallization technique. Further, since there is no need to route the heater wire unlike a ceramic heater, the wiring can be made thinner and easier.

また請求項4に示すように、上述の構成に加え、前記圧電振動板を発振子として圧電発振回路を構成する集積回路素子がセラミックパッケージに収納されており、当該集積回路素子にヒータが一体で構成されたことを特徴とする。   According to a fourth aspect of the present invention, in addition to the above-described configuration, an integrated circuit element constituting a piezoelectric oscillation circuit using the piezoelectric diaphragm as an oscillator is housed in a ceramic package, and a heater is integrated with the integrated circuit element. It is structured.

請求項4により、上述の作用効果に加え、集積回路素子にヒータを一体形成することで、部品点数を減らし、小型化、低背化の実現と省電力が可能となる。特に、通電されて発振している際の集積回路素子は単体で高温に発熱することが知られており、集積回路素子自体の発熱と当該集積回路素子に組み込まれたヒータの発熱を同時に利用することで、加熱効率が飛躍的に高まり、より短時間かつ省電力での加熱が可能となる。加えて、前記集積回路素子が加熱開始領域として容器の一箇所のみに配置されることになるので、集積回路素子とヒータとが容器の別位置に配置される構成に比べて加熱要素が分散することがなく、容器内部の温度勾配の変動を低減させることができる。結果として、温度特性の調整が行いやすくなり、より安定した温度特性が得られる。また、集積回路素子の温度を一定温度に保つことができるので、より安定した温度特性が得られる。   According to the fourth aspect, in addition to the above-described effects, the integrated circuit element is integrally formed with the heater, thereby reducing the number of parts, realizing a reduction in size and height, and saving power. In particular, it is known that an integrated circuit element when it is energized and oscillates alone generates heat to a high temperature, and simultaneously uses the heat generated by the integrated circuit element itself and the heat generated by the heater incorporated in the integrated circuit element. As a result, the heating efficiency is dramatically increased, and heating can be performed in a shorter time and with less power consumption. In addition, since the integrated circuit element is disposed in only one place of the container as the heating start region, the heating elements are dispersed as compared with the configuration in which the integrated circuit element and the heater are disposed in different positions of the container. In this way, fluctuations in the temperature gradient inside the container can be reduced. As a result, the temperature characteristics can be easily adjusted, and more stable temperature characteristics can be obtained. In addition, since the temperature of the integrated circuit element can be maintained at a constant temperature, more stable temperature characteristics can be obtained.

上述の特許請求項4の構成に加えて、前記集積回路素子に容器の内部温度を検知するセンサも一体で構成してもよい。これにより、部品点数を減らし、さらなる小型化、低背化の実現と省電力化が可能となる。   In addition to the structure of the above-mentioned claim 4, a sensor for detecting the internal temperature of the container may be integrated with the integrated circuit element. As a result, the number of parts can be reduced, and further miniaturization and height reduction and power saving can be realized.

また請求項5に示すように、上記構成に加え、前記セラミックパッケージの上面には前記圧電振動板を支持する搭載部が形成されており、当該搭載部の真下にセンサを配置してなることを特徴とする。   According to a fifth aspect of the present invention, in addition to the above configuration, a mounting portion that supports the piezoelectric diaphragm is formed on the upper surface of the ceramic package, and a sensor is disposed directly below the mounting portion. Features.

請求項5により、上述の作用効果に加え、前記セラミックパッケージの上面には前記圧電振動板を支持する搭載部が形成されており、当該搭載部の真下にセンサを配置してなることで、圧電振動板の振動を阻害することなく圧電振動板に最も近接した状態で温度管理が行えるので、恒温制御する際の温度精度もより高めることができる。   According to the fifth aspect, in addition to the above-described effects, a mounting portion that supports the piezoelectric diaphragm is formed on the upper surface of the ceramic package, and a sensor is disposed directly below the mounting portion, thereby Since the temperature management can be performed in the state closest to the piezoelectric diaphragm without hindering the vibration of the diaphragm, the temperature accuracy during the constant temperature control can be further increased.

上述の各構成において、セラミックパッケージまたは蓋の側壁に設けられた伝熱部をスルーホール、もしくはキャスタレーションの内部に形成されたメタライズ部材で構成してもよい。これにより、セラミックの積層技術とメタライズ技術を用いて極めて容易かつ安価に伝熱部を構成することができる。   In each of the above-described configurations, the heat transfer portion provided on the ceramic package or the side wall of the lid may be configured by a metallized member formed inside a through hole or castellation. Thereby, a heat transfer part can be comprised very easily and cheaply using the ceramic lamination | stacking technique and metallization technique.

上述の各構成において、セラミックパッケージまたは蓋の側壁に設けられた伝熱部をスルーホール、もしくはキャスタレーションの内部に形成された銅またはアルミからなるバルク部材で構成してもよい。これにより、極めて伝熱性が高くかつ加熱効率の高い伝熱部を構成することができる。   In each configuration described above, the heat transfer portion provided on the side wall of the ceramic package or the lid may be configured by a through hole or a bulk member made of copper or aluminum formed inside the castellation. Thereby, a heat-transfer part with very high heat conductivity and high heating efficiency can be comprised.

本発明により、小型化を実現するだけでなく、より安定した温度特性が得られるより信頼性の高い表面実装型圧電振動デバイスを提供することができる。   According to the present invention, it is possible to provide a more reliable surface-mount type piezoelectric vibration device that not only achieves downsizing but also provides more stable temperature characteristics.

以下、本発明による好ましい実施の形態について図面に基づいて説明する。本発明による第1の実施形態につき表面実装型圧電振動子を例にとり図1、図2とともに説明する。図1は本発明の第1実施の形態を示す断面図である。図2(a)は図1の平面図を示し、図2(b)と図2(c)は図2(a)の変形例を示す平面図である。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. A first embodiment of the present invention will be described with reference to FIGS. 1 and 2 by taking a surface-mount piezoelectric vibrator as an example. FIG. 1 is a sectional view showing a first embodiment of the present invention. FIG. 2A is a plan view of FIG. 1, and FIG. 2B and FIG. 2C are plan views showing a modification of FIG.

表面実装型圧電振動子は、上部が開口した凹部を有するセラミック基板(セラミックパッケージ)1と、当該セラミック基板の中に収納される圧電振動板2と、前記圧電振動板を加熱するヒータ3と、当該ヒータの温度を検知するセンサ4と、前記セラミック基板の開口部に接合される蓋5とからなる。   The surface-mount piezoelectric vibrator includes a ceramic substrate (ceramic package) 1 having a recess with an upper opening, a piezoelectric diaphragm 2 housed in the ceramic substrate, a heater 3 for heating the piezoelectric diaphragm, It comprises a sensor 4 that detects the temperature of the heater and a lid 5 that is joined to the opening of the ceramic substrate.

セラミック基板1は全体として直方体で、アルミナ等のセラミックとタングステンやモリブデン等の導電材料を適宜積層した構成であり、断面でみて凹形の収納部10を有する構成である。収納部周囲には堤部11が形成されており、堤部11の上面は平坦であり、当該堤部上に図示しない封止部材や金属層が形成されている。本形態では、例えば、金属層としてタングステンやモリブデン等によるメタライズ層の上面にニッケルメッキ層、金メッキ層の各層が形成された構成である。   The ceramic substrate 1 is a rectangular parallelepiped as a whole, and has a configuration in which a ceramic such as alumina and a conductive material such as tungsten or molybdenum are appropriately laminated, and has a concave storage portion 10 when viewed in cross section. A bank 11 is formed around the storage section, and the upper surface of the bank 11 is flat, and a sealing member and a metal layer (not shown) are formed on the bank. In this embodiment, for example, each of a nickel plating layer and a gold plating layer is formed on the upper surface of a metallized layer made of tungsten, molybdenum or the like as a metal layer.

セラミック基板1内部において、後述する圧電振動板2の端部を保持する保持台10aと、保持台10aの上面には圧電振動板と接続される図示しない配線パターンが形成されている。当該配線パターンは図示しない導電ビアやキャスタレーションにより反対面にあるセラミック基板下面に形成された図示しない外部接続端子電極にそれぞれ入出力端子として引き出される。このような構成のセラミック基板は周知のセラミック積層技術やメタライズ技術を用いて形成され、配線パターンはタングステンやモリブデン等によるメタライズ層の上面にニッケルメッキ層、金メッキ層の各層が形成された構成である。   Inside the ceramic substrate 1, a holding base 10a for holding an end portion of a piezoelectric diaphragm 2 described later, and a wiring pattern (not shown) connected to the piezoelectric diaphragm are formed on the upper surface of the holding base 10a. The wiring patterns are respectively drawn out as input / output terminals to external connection terminal electrodes (not shown) formed on the lower surface of the ceramic substrate on the opposite surface by conductive vias or castellation (not shown). The ceramic substrate having such a structure is formed by using a known ceramic lamination technique or metallization technique, and the wiring pattern is a structure in which a nickel plating layer and a gold plating layer are formed on the upper surface of the metallization layer made of tungsten, molybdenum, or the like. .

前記配線パターンの上方には圧電振動板2が搭載される。圧電振動板2は、図示しない励振電極と引出電極が形成されたATカットやSCカットなどの水晶振動板であり、これら各電極は真空蒸着法やスパッタリング法等の薄膜形成手段により形成することができる。圧電振動板2とセラミック基板1との接合は、図示しない金属バンプやろう材・接着剤などの導電性接合材を介在させて前記配線パターンと電気的機械的に接合される。   A piezoelectric diaphragm 2 is mounted above the wiring pattern. The piezoelectric diaphragm 2 is a quartz diaphragm such as an AT cut or an SC cut in which an excitation electrode and an extraction electrode (not shown) are formed. These electrodes can be formed by a thin film forming means such as a vacuum deposition method or a sputtering method. it can. The piezoelectric diaphragm 2 and the ceramic substrate 1 are joined to the wiring pattern electrically and mechanically through a conductive bonding material such as a metal bump, a brazing material, or an adhesive (not shown).

セラミック基板を気密封止する蓋5は、金属部材やセラミック部材・ガラス部材や水晶部材などからなり、封止構造に応じて材料が使い分けられる。本形態では、例えば、コバール等からなるコア材に金属ろう材等の封止材が形成された金属部材の構成のものを用いた。より詳しくは、例えば上面からニッケル層、コバールコア材、銅層、金メッキ層の順の多層構成であり、金メッキ層がセラミック基板の前記金属層と接合される構成となる。蓋5の平面視外形はセラミック基板1の当該外形とほぼ同じであるか、若干小さい構成となっている。なお、金属部材の場合、金メッキに限らず他の封止用ろう材で構成してもよい。   The lid 5 that hermetically seals the ceramic substrate is made of a metal member, a ceramic member, a glass member, a crystal member, or the like, and materials are properly used depending on the sealing structure. In the present embodiment, for example, a metal member having a sealing material such as a metal brazing material formed on a core material made of Kovar or the like is used. More specifically, for example, it is a multilayer structure in the order of a nickel layer, a kovar core material, a copper layer, and a gold plating layer from the upper surface, and the gold plating layer is bonded to the metal layer of the ceramic substrate. The outline of the lid 5 in plan view is substantially the same as or slightly smaller than the outline of the ceramic substrate 1. In addition, in the case of a metal member, you may comprise not only gold plating but other sealing brazing materials.

セラミック基板1の収納部10に圧電振動板2を格納し、前記蓋5にて被覆して気密封止を行う。本実施の形態においては、セラミック基板1の堤部上面の金メッキ層と蓋5の金メッキ層とを熱拡散接合することで気密封止しているので、ろう材等の溶融ガスが発生することのないより高安定で高精度な圧電振動デバイスの気密封止を実現している。なお、金属部材からなる蓋の封止形態として、金の熱拡散接合に限ることなく、シーム溶接、レーザや電子ビームなどのビーム溶接による封止や、金錫などのろう材封止による雰囲気加熱封止であってもよい。但し、高安定で高精度向けの圧電振動デバイスの気密封止では溶融ガス抜きを実施することが好ましい。   The piezoelectric diaphragm 2 is stored in the storage portion 10 of the ceramic substrate 1 and covered with the lid 5 for hermetic sealing. In the present embodiment, since the gold plating layer on the upper surface of the bank portion of the ceramic substrate 1 and the gold plating layer of the lid 5 are hermetically sealed by thermal diffusion bonding, molten gas such as brazing material is generated. It realizes hermetic sealing of piezoelectric vibration devices with no higher stability and accuracy. In addition, the sealing form of the lid made of a metal member is not limited to gold thermal diffusion bonding, but is sealed by seam welding, sealing by beam welding such as laser or electron beam, or atmosphere heating by sealing a brazing filler metal such as gold tin. It may be sealed. However, in the hermetic sealing of the piezoelectric vibration device for high stability and high accuracy, it is preferable to perform the degassing.

本発明では上述のようなセラミック基板1と蓋5とからなる容器内部の圧電振動板2を加熱するヒータ3と、容器の内部温度を検知するセンサ4とを具備しており、前記セラミック基板1にヒータ3を形成し、当該ヒータ3と熱的に接続され容器内部の圧電振動板2を加熱する第1の伝熱部12が、セラミック基板の底面、内部表面、またはセラミック基板の積層間のいずれかにおいて形成されているとともに、当該第1の伝熱部12と熱的に接続され容器内部の圧電振動板2を加熱する第2の伝熱部13が容器の各辺に対応する側壁に各々1つ以上形成していることが特徴的な構成となっている。以下、本発明の特徴点を中心に図面とともに説明する。   In the present invention, a heater 3 for heating the piezoelectric diaphragm 2 inside the container composed of the ceramic substrate 1 and the lid 5 as described above and a sensor 4 for detecting the internal temperature of the container are provided. The first heat transfer section 12 that forms a heater 3 and is thermally connected to the heater 3 and heats the piezoelectric diaphragm 2 inside the container is provided between the bottom surface of the ceramic substrate, the internal surface, and the stack of ceramic substrates. The second heat transfer section 13 that is formed in any of the above and is thermally connected to the first heat transfer section 12 and heats the piezoelectric diaphragm 2 inside the container is provided on the side wall corresponding to each side of the container. A characteristic configuration is that one or more of each is formed. Hereinafter, the features of the present invention will be described with reference to the drawings.

図1に示すようにヒータ3は厚膜印刷抵抗などの膜抵抗体を印刷形成しており、メタライズ部材などからなる第1の伝熱部12とともに前記セラミック基板1の積層間に形成されている。この膜抵抗体によるヒータ3と第1の伝熱部12は前記セラミック基板1の積層間に限ることなく、セラミック基板の底面、内部表面(収納部の上面)のいずれかに形成することができる。前記第1の伝熱部12は各4辺の堤部11の領域まで引き出されており、各辺の堤部に1つ以上形成されメタライズ部材などからなる第2の伝熱部13に熱的に接続されている。本形態の第2の伝熱部13は、例えば、図2(a)に示すように各辺の堤部内部を上下に貫通する複数のビアにより構成している。堤部内部に第2の伝熱部を構成することで、容器外部への熱的な損失が抑えられ、かつ容器内部の各種配線パターンの設計を妨げないものとできる。   As shown in FIG. 1, the heater 3 is formed by printing a film resistor such as a thick film printing resistor, and is formed between the ceramic substrates 1 together with the first heat transfer portion 12 made of a metallized member or the like. . The heater 3 and the first heat transfer section 12 by this film resistor can be formed on either the bottom surface of the ceramic substrate or the internal surface (the top surface of the storage portion), without being limited to the lamination of the ceramic substrates 1. . The first heat transfer section 12 is drawn out to the area of the four sides of the bank 11, and one or more of the first heat transfer sections 12 are formed on the bank of each side and are thermally applied to the second heat transfer section 13 made of a metallized member or the like. It is connected to the. For example, the second heat transfer section 13 of the present embodiment is configured by a plurality of vias penetrating vertically inside the bank portion of each side as shown in FIG. By configuring the second heat transfer section inside the bank portion, thermal loss to the outside of the container can be suppressed, and design of various wiring patterns inside the container can be prevented.

なお、第2の伝熱部13は、図2(b)に示すように各辺の堤部の外端部を上下方向に伸長する複数のキャスタレーションの表面に構成したり、図2(c)に示すように各辺の堤部の内端部を上下方向に伸長する幅広の1つのキャスタレーションの表面に構成してもよい。さらに堤部の内部と外端・内端のいずれか2つ以上を組み合わせて構成してもよい。第2の伝熱部はできるだけ表面積を大きくし、且つ容器の内側に配置した方がより熱放射を少なくすることができる点で望ましい。特に、図2(c)では各辺の堤部の内端部に幅広の第2の伝熱部を構成しているので、容器外部への熱的な損失が抑えられ、かつ容器内部への加熱効率が最も高くすることができる。   In addition, the 2nd heat-transfer part 13 is comprised on the surface of the several castellation which extends the outer end part of the bank part of each side to an up-down direction as shown in FIG.2 (b), or FIG.2 (c). ), The inner end of the bank portion on each side may be formed on the surface of one wide castellation that extends in the vertical direction. Furthermore, you may comprise combining any two or more of the inside of an embankment part, an outer end, and an inner end. It is desirable that the second heat transfer section has a surface area as large as possible and is arranged inside the container because heat radiation can be reduced. In particular, in FIG. 2 (c), since the wide second heat transfer portion is formed at the inner end of the bank portion on each side, thermal loss to the outside of the container can be suppressed, and Heating efficiency can be maximized.

前記第1の伝熱部12や第2の伝熱部13は、例えばタングステンやモリブデンなどのメタライズ部材で構成しており、厚膜印刷技術やセラミック積層技術を活用したメタライズ技術により形成することができる。なお、各伝熱部のメタライズ材料は銅や金等の伝熱効果の高い材料に変更したり、アルミや銀等の伝熱性の高い材料を含有させてもよい、さらに第1の伝熱部の上面には金や銅等の伝熱効果の高い金属膜を積層してもよい。   The first heat transfer section 12 and the second heat transfer section 13 are made of a metallized member such as tungsten or molybdenum, and can be formed by a metallization technique utilizing a thick film printing technique or a ceramic lamination technique. it can. In addition, the metallized material of each heat transfer part may be changed to a material having a high heat transfer effect such as copper or gold, or may contain a material having a high heat transfer characteristic such as aluminum or silver. A metal film having a high heat transfer effect, such as gold or copper, may be laminated on the upper surface.

センサ4は例えばチップ型のサーミスタからなり、前記セラミック基板1の底面側の凹部14に密着配置しており、伝熱性の高いシリコーン系樹脂やエポキシ系樹脂などの熱伝導性樹脂Nにより当該センサ4の周囲と凹部14の一部を被膜形成している。このため、周辺環境温度の変動の影響を抑制することができ、容器内部の温度差をなくしたより正確な温度検知が行える。なお、センサ4は、図3に示すように、前記セラミック基板の保持台10a(前記圧電振動板を支持する搭載部)の真下に配置するとより好ましい。圧電振動板2の振動を阻害することなく圧電振動板2に最も近接した状態で温度管理が行えるので、恒温制御する際の温度精度もより高めることができる。   The sensor 4 is composed of, for example, a chip-type thermistor, and is closely attached to the concave portion 14 on the bottom surface side of the ceramic substrate 1. The sensor 4 is made of the heat conductive resin N such as silicone resin or epoxy resin having high heat conductivity. And a part of the recess 14 are formed as a film. For this reason, the influence of the fluctuation | variation of ambient environment temperature can be suppressed and the more accurate temperature detection which eliminated the temperature difference inside a container can be performed. In addition, as shown in FIG. 3, it is more preferable that the sensor 4 is disposed directly below the ceramic substrate holding base 10a (the mounting portion that supports the piezoelectric diaphragm). Since the temperature management can be performed in the state closest to the piezoelectric diaphragm 2 without hindering the vibration of the piezoelectric diaphragm 2, the temperature accuracy during the constant temperature control can be further increased.

本発明の実施形態では、これらの構成に加えて前記堤11の上面に第2の伝熱部13が露出しており、気密封止の際に銀ろう材が溶融接合されることで金属部材よりなる蓋5とお互いに金属間接合しており熱的に接続されている。つまり、前記第2の伝熱部13の熱が前記熱伝導性の高い金属部材の蓋5に伝わることで容器内部の圧電振動板2を加熱することができる。また本形態では、前記金属部材の蓋5が多層部材からなり、例えば、コバール等からなるコア材の容器内側に銅層を構成している。すなわち、外表面側のコバール部材層(19.7W/m・K程度、室温)が内表面側の銅部材層(403W/m・K程度、0℃)より熱伝導性が低い材質により構成されているため、熱伝導性の低い外表面側のコバール部材層で容器外部への放熱を遮断あるいは抑制しながら、熱伝導性の高い内表面側の銅部材層で容器内部への加熱を促進することができる。結果として、加熱効率を高め省電力化が実現できる。以上により、本形態による表面実装型圧電振動子(表面実装型圧電振動デバイス)の完成となる。   In the embodiment of the present invention, in addition to these configurations, the second heat transfer section 13 is exposed on the upper surface of the bank 11, and the silver brazing material is melt-bonded at the time of hermetic sealing so that the metal member The lid 5 is made of metal-to-metal bonding and thermally connected. In other words, the piezoelectric diaphragm 2 inside the container can be heated by transferring the heat of the second heat transfer section 13 to the metal member lid 5 having high thermal conductivity. In this embodiment, the lid 5 of the metal member is made of a multilayer member, and a copper layer is formed inside the container of the core material made of, for example, Kovar. That is, the Kovar member layer on the outer surface side (about 19.7 W / m · K, room temperature) is made of a material having lower thermal conductivity than the copper member layer on the inner surface side (about 403 W / m · K, 0 ° C.). As a result, while the Kovar member layer on the outer surface side with low thermal conductivity blocks or suppresses heat radiation to the outside of the container, heating to the inside of the container is promoted with the copper member layer on the inner surface side with high thermal conductivity. be able to. As a result, heating efficiency can be increased and power saving can be realized. As described above, the surface mount type piezoelectric vibrator (surface mount type piezoelectric vibration device) according to the present embodiment is completed.

本発明の第1の実施形態により、収納部を有するセラミック基板1に蓋5を被せてなる容器を用いて飛躍的な小型化・低背化が実現されるとともに恒温槽の機能が加味された表面実装型圧電振動デバイスが得られる。加えて、ヒータ3の熱が第1の伝熱部12と第2の伝熱部13・蓋5によって容器内全体を均一に伝播し加熱することができるので、外部環境温度の影響を受けることなく、容器内部の温度分布にバラツキを与えることなく、恒温制御する際の温度精度も飛躍的に高めることができる。加えて、前記ヒータ3が膜抵抗体からなることで、セラミック基板1に対するヒータ3の取り付けの自由度と低背化が飛躍的に向上する。   According to the first embodiment of the present invention, a drastic reduction in size and height is realized using a container in which a ceramic substrate 1 having a storage portion is covered with a lid 5, and the function of a thermostatic bath is added. A surface-mount type piezoelectric vibration device is obtained. In addition, since the heat of the heater 3 can be uniformly propagated and heated throughout the container by the first heat transfer section 12, the second heat transfer section 13, and the lid 5, it is affected by the external environment temperature. In addition, the temperature accuracy during the constant temperature control can be drastically increased without giving variation to the temperature distribution inside the container. In addition, since the heater 3 is made of a membrane resistor, the degree of freedom in mounting the heater 3 on the ceramic substrate 1 and the reduction in height are dramatically improved.

図4は本発明の実施形態の変形例を示している。この変形例では、ヒータとして膜抵抗体を用いたものに限ることとなく、チップ抵抗体からなるヒータ3を用いている。前記セラミック基板1の底面側の凹部14にチップ抵抗体からなるヒータ3が密着配置しており、伝熱性の高いシリコーン系樹脂やエポキシ系樹脂などの熱伝導性樹脂Nにより当該ヒータ3の周囲と凹部14の一部を被膜形成している。このため、周辺環境温度の変動の影響を抑制することができ、より広範囲かつ均一な加熱が実現でき、容器内部の温度勾配の変動を低減させることができる。   FIG. 4 shows a modification of the embodiment of the present invention. In this modification, the heater 3 made of a chip resistor is used without being limited to a heater using a film resistor. A heater 3 made of a chip resistor is disposed in close contact with the concave portion 14 on the bottom surface side of the ceramic substrate 1, and is surrounded by the heat conductive resin N such as silicone resin or epoxy resin having high heat conductivity. A film is formed on a part of the recess 14. For this reason, the influence of the fluctuation | variation of ambient environment temperature can be suppressed, a more extensive and uniform heating can be implement | achieved, and the fluctuation | variation of the temperature gradient inside a container can be reduced.

加えて、図4の変形例では、セラミック基板を気密封止する蓋5は、セラミック部材・ガラス部材などの熱伝導性の低い蓋からなり、例えば容器内面側にメタライズ技術や厚膜印刷技術などにより熱伝導膜51を構成している。例えば、蓋5をセラミック部材(12W/m・K程度、室温)で構成する場合、当該セラミック基板の蓋に対してタングステン(177W/m・K程度、0℃)やモリブデン(139W/m・K程度、0℃)等のメタライズ部材を形成するだけでもよく、より好ましくはメタライズ部材の上面にAu、等の熱伝導性の高い金属膜を形成してもよい。また、セラミック基板やガラス基板(0.55〜0.75W/m・K程度、室温)に対して銅の厚膜印刷部材(403W/m・K程度、0℃)を形成してもよい。   In addition, in the modification of FIG. 4, the lid 5 for hermetically sealing the ceramic substrate is made of a lid with low thermal conductivity such as a ceramic member or a glass member. Thus, the heat conductive film 51 is configured. For example, when the lid 5 is formed of a ceramic member (about 12 W / m · K, room temperature), tungsten (about 177 W / m · K, 0 ° C.) or molybdenum (139 W / m · K) with respect to the lid of the ceramic substrate. A metallized member such as Au or the like may be formed. More preferably, a metal film having high thermal conductivity such as Au may be formed on the upper surface of the metallized member. Moreover, you may form a copper thick film printing member (about 403 W / m * K, 0 degreeC) with respect to a ceramic substrate or a glass substrate (about 0.55-0.75 W / m * K, room temperature).

次に、本発明による第2の実施形態につき表面実装型圧電発振器を例にとり図5とともに説明する。図5は本発明の第2の実施形態を示す断面図である。なお、上記第1の実施形態と同様の部分は同番号を付すとともに説明の一部を割愛する。   Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 5 is a sectional view showing a second embodiment of the present invention. In addition, the same part as the said 1st Embodiment attaches | subjects the same number, and omits a part of description.

表面実装型圧電発振器、上部が開口した凹部を有するセラミック基板(セラミックパッケージ)1と、当該セラミック基板の中に収納される集積回路素子6と、同じく当該セラミック基板中の上部に収納される圧電振動板2と、前記圧電振動板を加熱するヒータ3と、当該ヒータの温度を検知するセンサ4と、前記セラミック基板の開口部に接合される蓋5とからなる。   Surface-mount type piezoelectric oscillator, ceramic substrate (ceramic package) 1 having a recess with an opening at the top, integrated circuit element 6 housed in the ceramic substrate, and piezoelectric vibration housed in the top of the ceramic substrate It consists of a plate 2, a heater 3 for heating the piezoelectric diaphragm, a sensor 4 for detecting the temperature of the heater, and a lid 5 bonded to the opening of the ceramic substrate.

セラミック基板1は全体として直方体で、アルミナ等のセラミックとタングステンやモリブデン等の導電材料を適宜積層した構成であり、断面でみて凹形の収納部10を有する構成である。収納部10は下部側に第1の収納部10bと上部側に第2の収納部10cが形成されている。堤部11の上面は平坦であり、当該堤部上に図示しない封止部材や金属層が形成されている。   The ceramic substrate 1 is a rectangular parallelepiped as a whole, and has a configuration in which a ceramic such as alumina and a conductive material such as tungsten or molybdenum are appropriately laminated, and has a concave storage portion 10 when viewed in cross section. The storage unit 10 is formed with a first storage unit 10b on the lower side and a second storage unit 10c on the upper side. The upper surface of the bank 11 is flat, and a sealing member and a metal layer (not shown) are formed on the bank.

セラミック基板1内部において、下方面には前述のとおり集積回路素子6を収納する第1の収納部10bと、後述する圧電振動板の一端を保持する保持台10aが形成されており、前記第1の収納部10bの上方には、保持台10aに搭載された圧電振動板2を収納する第2の収納部10cが形成されている。   Inside the ceramic substrate 1, as described above, the first storage portion 10 b that stores the integrated circuit element 6 and the holding base 10 a that holds one end of a piezoelectric diaphragm described later are formed on the lower surface. A second storage portion 10c for storing the piezoelectric diaphragm 2 mounted on the holding base 10a is formed above the storage portion 10b.

セラミック基板1内部において、前記保持台10aの上面には圧電振動板2と接続される図示しない配線パターンが形成され、前記第1の収納部10bの上面部分には、後述する集積回路素子6と接続される図示しない配線パターンと第1の伝熱部12が形成されている。前記第1の伝熱部12は各4辺の堤部11の領域まで引き出されており、各辺の堤部に1つ以上形成されメタライズ部材などからなる第2の伝熱部13に熱的に接続されている。本形態の第2の伝熱部13は、例えば、各辺の堤部内部を上下に貫通する1つ以上のビアにより構成することで得られる。前記各配線パターンは図示しない導電ビアやキャスタレーションにより必要な接続がなされ反対面にあるセラミック基板下面に形成された図示しない外部接続端子電極にそれぞれ入出力端子として引き出される。これらの配線パターン、前記第1の伝熱部12、および第2の伝熱部13は、例えばタングステンやモリブデンなどのメタライズ部材で構成しており、厚膜印刷技術やセラミック積層技術を活用したメタライズ技術により形成することができる。なお、配線パターンはメタライズ層の上面にニッケルメッキ層、金メッキ層の各層が形成された構成であり、各伝熱部はメタライズ材料に銅や金等の伝熱効果の高い材料に変更したり、アルミや銀等の伝熱性の高い材料を含有させてもよい、さらに第1の伝熱部の上面には金や銅等の伝熱効果の高い金属膜を積層してもよい。   Inside the ceramic substrate 1, a wiring pattern (not shown) connected to the piezoelectric diaphragm 2 is formed on the upper surface of the holding table 10a, and an integrated circuit element 6 and a later-described integrated circuit element 6 are formed on the upper surface portion of the first storage portion 10b. A wiring pattern (not shown) to be connected and the first heat transfer section 12 are formed. The first heat transfer section 12 is drawn out to the area of the four sides of the bank 11, and one or more of the first heat transfer sections 12 are formed on the bank of each side and are thermally applied to the second heat transfer section 13 made of a metallized member or the like. It is connected to the. The second heat transfer section 13 of the present embodiment can be obtained, for example, by configuring it with one or more vias that vertically penetrate the inside of each bank. The wiring patterns are connected as necessary by conductive vias or castellation (not shown), and are led out as input / output terminals to external connection terminal electrodes (not shown) formed on the lower surface of the ceramic substrate. These wiring patterns, the first heat transfer section 12 and the second heat transfer section 13 are made of a metallized member such as tungsten or molybdenum, for example, and metallization utilizing a thick film printing technique or a ceramic lamination technique. It can be formed by technology. In addition, the wiring pattern is a structure in which each layer of a nickel plating layer and a gold plating layer is formed on the upper surface of the metallized layer, and each heat transfer part is changed to a metallized material with a high heat transfer effect material such as copper or gold, A material having a high heat transfer property such as aluminum or silver may be contained, and a metal film having a high heat transfer effect such as gold or copper may be laminated on the upper surface of the first heat transfer portion.

前記下部収納部に搭載される集積回路素子6は、圧電振動板2とともに発振回路を構成する1チップ集積回路素子であり、全体として直方体形状である。その下側の能動回路面には図示しない接続端子が複数形成されている。ヒータ3は薄膜印刷抵抗などの膜抵抗体からなり必要な配線パターン(図示せず)とともにICの非能動面側に形成されている。センサ4はサーミスタなどからなりICの一部に形成されている。前記セラミック基板1の複数の配線パターンと集積回路素子6の接続端子との接合は、周知のフェイスダウンボンディング技術により電気的機械的な接合が行われるが、必要に応じて集積回路素子6と第1の収納部10bの底面間には、絶縁性樹脂材によるアンダーフィルを形成してもよい。アンダーフィルの形成により集積回路素子6の機械的接合強度を向上させることができる。   The integrated circuit element 6 mounted in the lower housing part is a one-chip integrated circuit element that constitutes an oscillation circuit together with the piezoelectric diaphragm 2 and has a rectangular parallelepiped shape as a whole. A plurality of connection terminals (not shown) are formed on the lower active circuit surface. The heater 3 is made of a film resistor such as a thin film printing resistor and is formed on the inactive surface side of the IC together with a necessary wiring pattern (not shown). The sensor 4 is formed of a thermistor or the like and is formed in a part of the IC. The plurality of wiring patterns of the ceramic substrate 1 and the connection terminals of the integrated circuit element 6 are joined by electromechanical joining by a well-known face-down bonding technique. An underfill made of an insulating resin material may be formed between the bottom surfaces of the one storage portion 10b. By forming the underfill, the mechanical joint strength of the integrated circuit element 6 can be improved.

前記集積回路素子6の上方には所定の間隔を持って圧電振動板2が前記保持台10aに搭載される。   Above the integrated circuit element 6, the piezoelectric diaphragm 2 is mounted on the holding table 10a with a predetermined interval.

セラミック基板を気密封止する蓋5は、金属部材やセラミック部材・ガラス部材などのからなり、封止構造に応じて材料が使い分けられる。本形態では、例えば、コバール等からなるコア材に金属ろう材等の封止材が形成された金属部材の構成のものを用いた。より詳しくは、例えば上面からニッケル層、コバールコア材、銅層、銀ろう層の順の多層構成であり、銀ろう層がセラミック基板の前記金属層と接合される構成となる。   The lid 5 for hermetically sealing the ceramic substrate is made of a metal member, a ceramic member, a glass member, or the like, and the material is properly used depending on the sealing structure. In the present embodiment, for example, a metal member having a sealing material such as a metal brazing material formed on a core material made of Kovar or the like is used. More specifically, for example, it is a multilayer structure in the order of a nickel layer, a kovar core material, a copper layer, and a silver brazing layer from the upper surface, and the silver brazing layer is joined to the metal layer of the ceramic substrate.

セラミック基板1の収納部10に集積回路素子6と圧電振動板2を格納し、前記蓋5にて被覆し、蓋の封止材を溶融硬化させ、気密封止を行う。本実施の形態においては、封止用の金属リングを用いないシーム溶接による気密封止を行っており、前記金属蓋の長辺と短辺の稜部に沿ってシームローラを走行させることで、蓋に形成された銀ろうとセラミック基板の金属層を溶接させ、気密封止が行われる。なお、金属部材からなる蓋の封止形態として、シーム溶接に限ることなく、レーザや電子ビームなどのビーム溶接による封止や、金錫などのろう材封止による雰囲気加熱封止であってもよい。   The integrated circuit element 6 and the piezoelectric diaphragm 2 are housed in the storage portion 10 of the ceramic substrate 1 and covered with the lid 5, and the sealing material of the lid is melt-cured to perform hermetic sealing. In the present embodiment, airtight sealing is performed by seam welding without using a metal ring for sealing, and the seam roller runs along the ridges of the long side and the short side of the metal lid, The silver brazing formed on the metal plate and the metal layer of the ceramic substrate are welded to perform hermetic sealing. In addition, the sealing form of the lid made of a metal member is not limited to seam welding, but may be sealing by beam welding such as laser or electron beam or atmosphere heating sealing by sealing a brazing material such as gold tin. Good.

本発明の実施形態では、これらの構成に加えて前記堤の上面に伝熱部13を露出しており、気密封止の際に銀ろう材が溶融接合されることで金属部材よりなる蓋5とお互いに金属間接合しており熱的に接続されている。つまり、前記第2の伝熱部13の熱が前記熱伝導性の高い金属部材の蓋5伝わることで容器内部の圧電振動板2を加熱することができる。また本形態では、前記金属部材の蓋5が多層部材からなり、例えば、コバール等からなるコア材の容器内側に銅層を構成している。すなわち、外表面側のコバール部材層(19.7W/m・K程度、室温)が内表面側の銅部材層(403W/m・K程度、0℃)より熱伝導性が低い材質により構成されているため、熱伝導性の低い外表面側のコバール部材層で容器外部への放熱を遮断あるいは抑制しながら、熱伝導性の高い内表面側の銅部材層で容器内部への加熱を促進することができる。結果として、加熱効率を高め省電力化が実現できる。以上により、本形態による表面実装型圧電発振器(表面実装型圧電振動デバイス)の完成となる。   In the embodiment of the present invention, in addition to these configurations, the heat transfer portion 13 is exposed on the upper surface of the bank, and the lid 5 made of a metal member is obtained by melting and joining the silver brazing material during hermetic sealing. Are joined to each other and thermally connected. That is, the piezoelectric diaphragm 2 inside the container can be heated by the heat of the second heat transfer section 13 being transferred to the lid 5 of the metal member having high thermal conductivity. In this embodiment, the lid 5 of the metal member is made of a multilayer member, and a copper layer is formed inside the container of the core material made of, for example, Kovar. That is, the Kovar member layer on the outer surface side (about 19.7 W / m · K, room temperature) is made of a material having lower thermal conductivity than the copper member layer on the inner surface side (about 403 W / m · K, 0 ° C.). As a result, while the Kovar member layer on the outer surface side with low thermal conductivity blocks or suppresses heat radiation to the outside of the container, heating to the inside of the container is promoted with the copper member layer on the inner surface side with high thermal conductivity. be able to. As a result, heating efficiency can be increased and power saving can be realized. As described above, the surface-mounted piezoelectric oscillator (surface-mounted piezoelectric vibrating device) according to the present embodiment is completed.

なお、上記第2の実施形態では、ICにヒータ3とセンサ4を内蔵したものを説明しているが、センサについてはセラミック基板に別途取り付けてもよい。例えば、セラミック基板の底部、またはセラミック基板の内部に別途取り付けてもよい。   In the second embodiment, the IC having the heater 3 and the sensor 4 incorporated therein is described. However, the sensor may be separately attached to the ceramic substrate. For example, you may attach separately to the bottom part of a ceramic substrate, or the inside of a ceramic substrate.

本発明の第2の実施形態により、セラミック基板1に蓋5を被せてなる容器を用いて飛躍的な小型化・低背化が実現されるとともに恒温槽の機能が加味された表面実装型圧電振動デバイスが得られる。加えて、ヒータ3の熱が第1の伝熱部12と第2の伝熱部13・蓋5によって容器内全体を均一に伝播し加熱することができるので、外部環境温度の影響を受けることなく、容器内部の温度分布にバラツキを与えることなく、恒温制御する際の温度精度も飛躍的に高めることができる。加えて、前記ヒータ3が膜抵抗体からなることで、セラミック基板1に対するヒータ3の取り付けの自由度と低背化が飛躍的に向上する。加えて、集積回路素子6に膜抵抗体を組み込みヒータ3として機能させることで、部品点数を減らし、小型化の実現と省電力が可能となる。特に、通電されて発振している際の集積回路素子は単体で高温に発熱することが知られており、集積回路素子自体の発熱と当該集積回路素子に組み込まれた膜抵抗体の発熱を同時に利用することで、加熱効率が飛躍的に高まり、より短時間かつ省電力での加熱が可能となる。加えて、前記集積回路素子6が加熱開始領域として容器の一箇所のみに配置されることになるので、集積回路素子6とヒータ3とが容器の別位置に配置される構成に比べて加熱要素が分散することがなく、容器内部の温度勾配の変動を低減させることができる。結果として温度特性の調整が行いやすくなり、より安定した温度特性が得られる。さらに、前記集積回路素子6に容器の内部温度を検知するセンサ4も一体で構成しているので、部品点数を減らし、さらなる小型化の実現と省電力化が可能となる。   According to the second embodiment of the present invention, a surface mount type piezoelectric device in which a drastic downsizing and low profile is realized by using a container having a lid 5 on a ceramic substrate 1 and the function of a thermostatic chamber is added. A vibrating device is obtained. In addition, since the heat of the heater 3 can be uniformly propagated and heated throughout the container by the first heat transfer section 12, the second heat transfer section 13, and the lid 5, it is affected by the external environment temperature. In addition, the temperature accuracy during the constant temperature control can be drastically increased without giving variation to the temperature distribution inside the container. In addition, since the heater 3 is made of a membrane resistor, the degree of freedom in mounting the heater 3 on the ceramic substrate 1 and the reduction in height are dramatically improved. In addition, by incorporating a film resistor into the integrated circuit element 6 and functioning as the heater 3, the number of components can be reduced, and miniaturization and power saving can be realized. In particular, it is known that an integrated circuit element, when energized and oscillated, alone generates heat to a high temperature, and the integrated circuit element itself and the film resistor incorporated in the integrated circuit element simultaneously generate heat. By using it, the heating efficiency is remarkably increased, and heating with shorter time and power saving becomes possible. In addition, since the integrated circuit element 6 is disposed at only one location of the container as a heating start region, the heating element is compared with a configuration in which the integrated circuit element 6 and the heater 3 are disposed at different positions of the container. Is not dispersed, and fluctuations in the temperature gradient inside the container can be reduced. As a result, the temperature characteristics can be easily adjusted, and more stable temperature characteristics can be obtained. Furthermore, since the sensor 4 for detecting the internal temperature of the container is also integrated with the integrated circuit element 6, the number of parts can be reduced, and further miniaturization and power saving can be realized.

上記実施形態では、蓋5にもヒータ3の熱が伝わり容器内部の圧電振動板2を加熱するように構成しているが、必ずしも蓋5に加熱機能を具備させる必要はない。加えて、ヒータ3の熱が伝わり蓋自身あるいは蓋に形成された熱伝導膜に伝わり容器内部の圧電振動板2を加熱するように構成しているが、蓋5にヒータ3を加味構成したものであってもよい。また、前記第2の伝熱部13としてメタライズで形成したものを説明したが、セラミック基板1または蓋5の側壁に設けられたスルーホール、もしくはキャスタレーションの内部に銅またはアルミからなるバルク部材を埋設して構成してもよい。この構成では極めて伝熱性が高くかつ加熱効率の高い伝熱部を得ることができる。前記第1の伝熱部12としてメタライズで形成したものを説明したが、銅やアルミなどの熱伝導性の高い厚膜を印刷形成してもよい。   In the embodiment described above, the heat of the heater 3 is also transmitted to the lid 5 to heat the piezoelectric diaphragm 2 inside the container, but the lid 5 does not necessarily have to have a heating function. In addition, the heat of the heater 3 is transmitted to the lid itself or the heat conduction film formed on the lid to heat the piezoelectric diaphragm 2 inside the container, but the heater 5 is added to the lid 5 It may be. Moreover, although what formed by metallization as said 2nd heat-transfer part 13 was demonstrated, the bulk member which consists of a through hole provided in the side wall of the ceramic substrate 1 or the lid | cover 5, or a copper or aluminum inside a castellation is demonstrated. You may embed and constitute. With this configuration, it is possible to obtain a heat transfer section with extremely high heat transfer and high heating efficiency. Although the first heat transfer portion 12 formed by metallization has been described, a thick film having high thermal conductivity such as copper or aluminum may be printed.

本発明は、その精神または主要な特徴から逸脱することなく、他のいろいろな形で実施できるので、限定的に解釈してはならない。本発明の範囲は特許請求範囲によって示すものであって、明細書本文に拘束されるものではない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。   The present invention can be implemented in various other forms without departing from the spirit or main features thereof, and should not be interpreted in a limited manner. The scope of the present invention is indicated by the claims, and is not limited by the text of the specification. Further, all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.

本発明の第1の実施形態を示す断面図である。It is sectional drawing which shows the 1st Embodiment of this invention. 図1の平面図とその変形例を示す平面図である。It is a top view which shows the top view of FIG. 1, and its modification. 本発明の第1の実施形態の変形例を示す断面図である。It is sectional drawing which shows the modification of the 1st Embodiment of this invention. 本発明の第1の実施形態の変形例を示す断面図である。It is sectional drawing which shows the modification of the 1st Embodiment of this invention. 本発明の第2の実施形態を示す断面図である。It is sectional drawing which shows the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1 セラミック基板
2 圧電振動板
3 ヒータ
4 センサ
5 蓋
6 集積回路素子
DESCRIPTION OF SYMBOLS 1 Ceramic substrate 2 Piezoelectric diaphragm 3 Heater 4 Sensor 5 Lid 6 Integrated circuit element

Claims (5)

セラミックパッケージに蓋を被せてなる平面視矩形状の容器の内部に励振電極が形成された圧電振動板を収納された表面実装型圧電振動デバイスであって、
前記容器内部の圧電振動板を加熱するヒータと、容器の内部温度を検知するセンサとを具備し、
前記セラミックパッケージにヒータを形成し、当該ヒータと熱的に接続され容器内部の圧電振動板を加熱する伝熱部が容器の各辺に対応する側壁に各々1つ以上形成されたことを特徴とする表面実装型圧電振動デバイス。
A surface-mount type piezoelectric vibration device in which a piezoelectric vibration plate in which an excitation electrode is formed is contained in a rectangular container in plan view formed by covering a ceramic package with a lid,
A heater for heating the piezoelectric diaphragm inside the container, and a sensor for detecting the internal temperature of the container;
A heater is formed in the ceramic package, and one or more heat transfer portions that are thermally connected to the heater and heat the piezoelectric diaphragm inside the container are formed on each side wall corresponding to each side of the container. Surface mount type piezoelectric vibration device.
前記伝熱部と熱的に接続された熱伝導性の高い蓋、または前記伝熱部と熱的に接続された熱伝導膜が形成された蓋を具備することを特徴とする特許請求項1記載の表面実装型圧電振動デバイス。 2. A lid having a high thermal conductivity thermally connected to the heat transfer section, or a lid formed with a heat conductive film thermally connected to the heat transfer section. The surface-mounted piezoelectric vibration device described. 前記ヒータが膜抵抗体からなることを特徴とする特許請求項1または特許請求項2記載の表面実装型圧電振動デバイス。 3. The surface-mount type piezoelectric vibration device according to claim 1, wherein the heater is made of a film resistor. 前記圧電振動板を発振子として圧電発振回路を構成する集積回路素子がセラミックパッケージに収納されており、当該集積回路素子にヒータが一体で構成されたことを特徴とする特許請求項1または特許請求項2記載の表面実装型圧電振動デバイス。 An integrated circuit element constituting a piezoelectric oscillation circuit using the piezoelectric diaphragm as an oscillator is housed in a ceramic package, and a heater is integrally formed with the integrated circuit element. Item 3. The surface-mount type piezoelectric vibration device according to Item 2. 前記セラミックパッケージの上面には前記圧電振動板を支持する搭載部が形成されており、当該搭載部の真下に前記センサを配置してなることを特徴とする特許請求項1乃至4記載の表面実装型圧電振動デバイス。 5. The surface mounting according to claim 1, wherein a mounting portion for supporting the piezoelectric diaphragm is formed on an upper surface of the ceramic package, and the sensor is disposed directly below the mounting portion. Type piezoelectric vibration device.
JP2007164473A 2007-06-22 2007-06-22 Surface mount type piezoelectric vibration device Expired - Fee Related JP5070954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007164473A JP5070954B2 (en) 2007-06-22 2007-06-22 Surface mount type piezoelectric vibration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007164473A JP5070954B2 (en) 2007-06-22 2007-06-22 Surface mount type piezoelectric vibration device

Publications (2)

Publication Number Publication Date
JP2009005117A true JP2009005117A (en) 2009-01-08
JP5070954B2 JP5070954B2 (en) 2012-11-14

Family

ID=40321015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007164473A Expired - Fee Related JP5070954B2 (en) 2007-06-22 2007-06-22 Surface mount type piezoelectric vibration device

Country Status (1)

Country Link
JP (1) JP5070954B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010213280A (en) * 2009-03-09 2010-09-24 Micro Crystal Ag Oscillator device comprising thermally-controlled piezoelectric resonator
JP2010288249A (en) * 2009-05-14 2010-12-24 Seiko Epson Corp Piezoelectric device
JP2012060556A (en) * 2010-09-13 2012-03-22 Fujitsu Ltd Vibrator generation method, mask for vibrator generation and vibrator package
JP2012080250A (en) * 2010-09-30 2012-04-19 Kyocera Kinseki Corp Piezoelectric device
JP2012119911A (en) * 2010-11-30 2012-06-21 Kyocera Kinseki Corp Piezoelectric device
JP2012142683A (en) * 2010-12-28 2012-07-26 Kyocera Crystal Device Corp Piezoelectric device
JP2012191484A (en) * 2011-03-11 2012-10-04 Seiko Epson Corp Piezoelectric device and electronic apparatus
JP2012249265A (en) * 2011-05-31 2012-12-13 Kyocera Crystal Device Corp Piezoelectric device
JP2014030128A (en) * 2012-07-31 2014-02-13 Kyocera Crystal Device Corp Piezoelectric device
JP2014143360A (en) * 2013-01-25 2014-08-07 Kyocera Corp Electronic component mounting board
JP2014165684A (en) * 2013-02-26 2014-09-08 Kyocera Crystal Device Corp Crystal oscillator
JP2014168250A (en) * 2014-04-16 2014-09-11 Seiko Epson Corp Piezoelectric device and electronic apparatus
JP2014236452A (en) * 2013-06-05 2014-12-15 日本電波工業株式会社 Quartz device
JP2015005882A (en) * 2013-06-21 2015-01-08 日本電波工業株式会社 Crystal device
JP2015005883A (en) * 2013-06-21 2015-01-08 日本電波工業株式会社 Crystal device
CN104852728A (en) * 2015-03-27 2015-08-19 台湾晶技股份有限公司 Oven controlled crystal oscillator packaged by embedded heating device
JP2016123114A (en) * 2016-02-09 2016-07-07 セイコーエプソン株式会社 Piezoelectric device and electronic apparatus
CN107221396A (en) * 2016-03-22 2017-09-29 三星电机株式会社 Piezoelectric element thermistor and the piezoelectric element packaging part including this
JP2018019446A (en) * 2017-11-07 2018-02-01 セイコーエプソン株式会社 Electronic apparatus
US10009006B2 (en) 2013-12-25 2018-06-26 Seiko Epson Corporation Resonator device, electronic apparatus, and moving object
JP2018170793A (en) * 2018-07-06 2018-11-01 セイコーエプソン株式会社 Vibration device and electronic equipment
JP2019040850A (en) * 2017-08-28 2019-03-14 京セラ株式会社 Heating container
JP2020123608A (en) * 2019-01-29 2020-08-13 株式会社大真空 Thin film thermistor and piezoelectric device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60160685A (en) * 1984-01-31 1985-08-22 ソニー株式会社 Heater board
JPH03153111A (en) * 1989-11-09 1991-07-01 Murata Mfg Co Ltd Acoustic surface wave oscillator
JP2002076775A (en) * 2000-08-25 2002-03-15 Nippon Dempa Kogyo Co Ltd Crystal oscillator for surface mounting
JP2003224422A (en) * 2002-01-31 2003-08-08 Kinseki Ltd Piezoelectric vibrator with function of retaining temperature and piezoelectric oscillator with the same function
JP2003229507A (en) * 2002-01-31 2003-08-15 Kinseki Ltd Electronic part container
JP2004207870A (en) * 2002-12-24 2004-07-22 Kyocera Corp Package for piezoelectric vibrator, and constant temperature oscillator employing the same
JP2004343339A (en) * 2003-05-14 2004-12-02 Tokyo Denpa Co Ltd Quartz resonator
JP2005286892A (en) * 2004-03-30 2005-10-13 Kyocera Kinseki Corp Piezoelectric vibrator with built-in temperature sensor and piezoelectric oscillator using the same
JP2007097036A (en) * 2005-09-30 2007-04-12 Kyocera Kinseki Corp Piezoelectric oscillator

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60160685A (en) * 1984-01-31 1985-08-22 ソニー株式会社 Heater board
JPH03153111A (en) * 1989-11-09 1991-07-01 Murata Mfg Co Ltd Acoustic surface wave oscillator
JP2002076775A (en) * 2000-08-25 2002-03-15 Nippon Dempa Kogyo Co Ltd Crystal oscillator for surface mounting
JP2003224422A (en) * 2002-01-31 2003-08-08 Kinseki Ltd Piezoelectric vibrator with function of retaining temperature and piezoelectric oscillator with the same function
JP2003229507A (en) * 2002-01-31 2003-08-15 Kinseki Ltd Electronic part container
JP2004207870A (en) * 2002-12-24 2004-07-22 Kyocera Corp Package for piezoelectric vibrator, and constant temperature oscillator employing the same
JP2004343339A (en) * 2003-05-14 2004-12-02 Tokyo Denpa Co Ltd Quartz resonator
JP2005286892A (en) * 2004-03-30 2005-10-13 Kyocera Kinseki Corp Piezoelectric vibrator with built-in temperature sensor and piezoelectric oscillator using the same
JP2007097036A (en) * 2005-09-30 2007-04-12 Kyocera Kinseki Corp Piezoelectric oscillator

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010213280A (en) * 2009-03-09 2010-09-24 Micro Crystal Ag Oscillator device comprising thermally-controlled piezoelectric resonator
JP2014003677A (en) * 2009-05-14 2014-01-09 Seiko Epson Corp Piezoelectric device
JP2010288249A (en) * 2009-05-14 2010-12-24 Seiko Epson Corp Piezoelectric device
JP2012060556A (en) * 2010-09-13 2012-03-22 Fujitsu Ltd Vibrator generation method, mask for vibrator generation and vibrator package
JP2012080250A (en) * 2010-09-30 2012-04-19 Kyocera Kinseki Corp Piezoelectric device
JP2012119911A (en) * 2010-11-30 2012-06-21 Kyocera Kinseki Corp Piezoelectric device
JP2012142683A (en) * 2010-12-28 2012-07-26 Kyocera Crystal Device Corp Piezoelectric device
JP2012191484A (en) * 2011-03-11 2012-10-04 Seiko Epson Corp Piezoelectric device and electronic apparatus
US10715058B2 (en) 2011-03-11 2020-07-14 Seiko Epson Corporation Piezoelectric device and electronic apparatus
US9160254B2 (en) 2011-03-11 2015-10-13 Seiko Epson Corporation Piezoelectric device and electronic apparatus
US9685889B2 (en) 2011-03-11 2017-06-20 Seiko Epson Corporation Piezoelectric device and electronic apparatus
US9054604B2 (en) 2011-03-11 2015-06-09 Seiko Epson Corporation Piezoelectric device and electronic apparatus
JP2012249265A (en) * 2011-05-31 2012-12-13 Kyocera Crystal Device Corp Piezoelectric device
JP2014030128A (en) * 2012-07-31 2014-02-13 Kyocera Crystal Device Corp Piezoelectric device
JP2014143360A (en) * 2013-01-25 2014-08-07 Kyocera Corp Electronic component mounting board
JP2014165684A (en) * 2013-02-26 2014-09-08 Kyocera Crystal Device Corp Crystal oscillator
JP2014236452A (en) * 2013-06-05 2014-12-15 日本電波工業株式会社 Quartz device
JP2015005882A (en) * 2013-06-21 2015-01-08 日本電波工業株式会社 Crystal device
JP2015005883A (en) * 2013-06-21 2015-01-08 日本電波工業株式会社 Crystal device
US10009006B2 (en) 2013-12-25 2018-06-26 Seiko Epson Corporation Resonator device, electronic apparatus, and moving object
JP2014168250A (en) * 2014-04-16 2014-09-11 Seiko Epson Corp Piezoelectric device and electronic apparatus
CN104852728A (en) * 2015-03-27 2015-08-19 台湾晶技股份有限公司 Oven controlled crystal oscillator packaged by embedded heating device
JP2016123114A (en) * 2016-02-09 2016-07-07 セイコーエプソン株式会社 Piezoelectric device and electronic apparatus
CN107221396A (en) * 2016-03-22 2017-09-29 三星电机株式会社 Piezoelectric element thermistor and the piezoelectric element packaging part including this
CN107221396B (en) * 2016-03-22 2020-09-04 三星电机株式会社 Thermistor for piezoelectric element and piezoelectric element package including the same
JP2019040850A (en) * 2017-08-28 2019-03-14 京セラ株式会社 Heating container
JP2018019446A (en) * 2017-11-07 2018-02-01 セイコーエプソン株式会社 Electronic apparatus
JP2018170793A (en) * 2018-07-06 2018-11-01 セイコーエプソン株式会社 Vibration device and electronic equipment
JP2020123608A (en) * 2019-01-29 2020-08-13 株式会社大真空 Thin film thermistor and piezoelectric device

Also Published As

Publication number Publication date
JP5070954B2 (en) 2012-11-14

Similar Documents

Publication Publication Date Title
JP5070954B2 (en) Surface mount type piezoelectric vibration device
JP3285847B2 (en) Surface mount type crystal oscillator
JP5078512B2 (en) Crystal device
JP2010166346A (en) Temperature-controlled piezoelectric oscillator
WO2022025227A1 (en) Thermostatic bath-type piezoelectric oscillator
JP7505564B2 (en) Thermostatic oven type piezoelectric oscillator
JP2010278712A (en) Piezoelectric oscillator
JP2007235289A (en) Piezoelectric oscillator
JP2010220152A (en) Surface-mounted crystal device
JP2010135995A (en) Surface mount crystal oscillator
JP2009239475A (en) Surface mounting piezoelectric oscillator
JP2005268257A (en) Package for storing electronic component and electronic device
JP2022026266A (en) Oscillator
JP5468240B2 (en) Temperature compensated crystal oscillator for surface mounting
JP7420225B2 (en) Constant temperature oven type piezoelectric oscillator
WO2022149541A1 (en) Piezoelectric oscillation device
TWI804210B (en) Thermostatic Bath Type Piezoelectric Oscillator
JP2010154279A (en) Surface mount crystal oscillator
JP2007158455A (en) Piezoelectric oscillator and manufacturing method thereof
CN117063391A (en) Constant temperature bath type piezoelectric oscillator
JP2022036480A (en) Oscillator
JP2021158644A (en) Constant temperature bath type piezoelectric oscillator
JP2015106792A (en) Crystal device
JP2021158585A (en) Piezoelectric oscillator
JP5302733B2 (en) Piezoelectric vibrator and piezoelectric oscillator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120806

R150 Certificate of patent or registration of utility model

Ref document number: 5070954

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees