JP2009004432A - Electromagnetic wave shielding member and manufacturing method thereof - Google Patents

Electromagnetic wave shielding member and manufacturing method thereof Download PDF

Info

Publication number
JP2009004432A
JP2009004432A JP2007161374A JP2007161374A JP2009004432A JP 2009004432 A JP2009004432 A JP 2009004432A JP 2007161374 A JP2007161374 A JP 2007161374A JP 2007161374 A JP2007161374 A JP 2007161374A JP 2009004432 A JP2009004432 A JP 2009004432A
Authority
JP
Japan
Prior art keywords
fine particles
conductive
shielding member
electromagnetic wave
wave shielding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007161374A
Other languages
Japanese (ja)
Other versions
JP4894649B2 (en
Inventor
Hideki Imamura
秀機 今村
Yuichi Miyazaki
祐一 宮崎
Yusuke Sato
勇輔 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2007161374A priority Critical patent/JP4894649B2/en
Publication of JP2009004432A publication Critical patent/JP2009004432A/en
Application granted granted Critical
Publication of JP4894649B2 publication Critical patent/JP4894649B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an electromagnetic wave shielding member in which a mesh pattern thin film having high conductivity and sufficiently high film strength is formed on a transparent substrate while using a mesh pattern formed by printing a conductive paste as a base, and to provide a manufacturing method thereof. <P>SOLUTION: In the electromagnetic wave shielding member having a conductive material formed in a mesh pattern on a transparent substrate, the conductive material has a structure in which a plating metal couples metal fine particles in a metal fine particle binding body having a porosity of 20-80% formed by binding the metal fine particles via a binder resin and a surface resistance value is 10 Ω/SQARE or low. The manufacturing method of the electromagnetic wave shielding member has a step in which the metal fine particle binding body having a porosity of 20-80% formed by binding the metal fine particles via a binder resin is formed into a mesh pattern using a printing method, and a step in which the resulted product is subjected to plating process. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、各種ディスプレイの前面に配置する電磁波シールド部材及びその製造方法に関する。   The present invention relates to an electromagnetic wave shielding member disposed on the front surface of various displays and a manufacturing method thereof.

PDP(プラズマディスプレイパネル)、CRT(ブラウン管)ディスプレイ等、各種ディスプレイ(画像表示装置)から発生する電磁波をシールドするために、ディスプレイ前面に電磁波シールド部材が配置される。
そのような電磁波シールド部材としては、銀スパッタ薄膜や銅メッシュなどがある。銀スパッタ薄膜はコストが高く、また全面を被覆しているために透明性に劣る(透明性と導電性とが両立し難い)。銅メッシュは、透明性と導電性(即ち電磁波遮蔽性)との両立性は良好なるも、銅箔を透明基材とラミネート後に、フォトリソグラフィー法でエッチングしてメッシュ形状を作製するため、工程が多く非常に煩雑であり、さらに捨てる金属材料が多いことから低コスト化が難しいため、工程の短縮及び簡略化が求められている。また、使用後の腐蝕液等の廃液処理も必要となる。
In order to shield electromagnetic waves generated from various displays (image display devices) such as a PDP (plasma display panel) and a CRT (CRT) display, an electromagnetic shielding member is disposed on the front surface of the display.
Examples of such an electromagnetic shielding member include a silver sputtered thin film and a copper mesh. A silver sputtered thin film is expensive and has poor transparency because it covers the entire surface (transparency and conductivity are difficult to achieve at the same time). Although the copper mesh has good compatibility between transparency and conductivity (ie, electromagnetic wave shielding), the copper foil is laminated with a transparent base material and then etched by a photolithography method to produce a mesh shape. Since many are very complicated and more metal materials are thrown away, it is difficult to reduce the cost. Therefore, there is a demand for shortening and simplifying the process. In addition, waste liquid treatment such as a corrosive liquid after use is also required.

捨てる金属材料を減らした導電性メッシュの製造方法として、金属層をめっき金属で形成する次のような方法が提案されている。
一つは、透明基材上にスパッタ法で厚み最小限の金属薄膜層を形成し、フォトリソグラフィー法でメッシュパターンを作製し、そのメッシュパターンの金属薄膜上に電解めっきにて金属厚膜層を積層する方法(特許文献1)であるが、前記の銅箔エッチング法よりも工程がより複雑になってしまう。
もう一つは、透明基材上に触媒層をパターン状に印刷し、その後無電解めっきによってパターン上に金属層を設ける方法(特許文献2)である。しかしながら無電解めっきの析出速度は電解めっきに比べ遅く、所望の導電性能を得るための金属層を析出させるためには無電解めっき時間を長くする必要がある。また、電解めっきが可能な必要最低限の無電解めっきを行った後、電解めっきをするという方法もあるが、この場合は結果的に工程数が増え、煩雑になってしまう。
As a method for producing a conductive mesh in which the metal material to be discarded is reduced, the following method for forming a metal layer with a plated metal has been proposed.
One is to form a metal thin film layer with a minimum thickness on a transparent substrate by sputtering, create a mesh pattern by photolithography, and apply a metal thick film layer by electrolytic plating on the metal thin film of the mesh pattern. Although it is the method of laminating | stacking (patent document 1), a process will become more complicated than the said copper foil etching method.
The other is a method in which a catalyst layer is printed in a pattern on a transparent substrate, and then a metal layer is provided on the pattern by electroless plating (Patent Document 2). However, the deposition rate of electroless plating is slower than that of electrolytic plating, and it is necessary to lengthen the electroless plating time in order to deposit a metal layer for obtaining desired conductive performance. Further, there is a method of performing electroplating after performing the minimum electroless plating that can be electroplated, but in this case, the number of steps increases as a result, which is complicated.

特許第3502979号公報Japanese Patent No. 3502979 特許第3363083号公報Japanese Patent No. 3363083

本発明は、かかる状況下、導電性ペーストの印刷によって作ったメッシュパターンをベースにして、高導電率で、膜強度が強いメッシュパターン薄膜を透明基材上に形成した電磁波シールド部材を得ること、およびその製造方法を提供することを目的とする。   Under such circumstances, the present invention is based on a mesh pattern made by printing an electrically conductive paste, to obtain an electromagnetic shielding member having a mesh pattern thin film with high conductivity and strong film strength formed on a transparent substrate, And it aims at providing the manufacturing method.

本発明者らは、上記目的達成のための検討を行った結果、透明基材上に金属ペースト等の導電性ペーストをメッシュパターン状に印刷し、溶剤を乾燥して、空隙率20〜80%の多孔質性の導電性微粒子結着体を得、次にこのものをめっき浴に含浸させることで、めっき液が空隙内に入り込み、導電性微粒子表面にめっき金属が析出、成長して、導電性微粒子同士がめっき金属で連結ないしは包絡され、一体化されて、該メッシュパターン全体の巨視的なスケールでの高い導電性が発現され、それによって高い電磁波シールド性を発現し、膜強度が強いメッシュパターン薄膜を透明基材上に形成した電磁波シールド部材が得られることを見出し、本発明を完成した。   As a result of investigations for achieving the above object, the present inventors printed a conductive paste such as a metal paste in a mesh pattern on a transparent substrate, dried the solvent, and had a porosity of 20 to 80%. The porous conductive fine particle binder is obtained, and this is then impregnated in the plating bath, so that the plating solution enters the voids, and the plating metal is deposited and grown on the surface of the conductive fine particles. The conductive fine particles are connected or enveloped by the plated metal, and are integrated so that the entire mesh pattern exhibits high conductivity on a macroscopic scale, thereby exhibiting high electromagnetic shielding properties and strong membrane strength. The inventors have found that an electromagnetic wave shielding member having a patterned thin film formed on a transparent substrate can be obtained, thereby completing the present invention.

すなわち本発明は、
(1)透明基材上に導電性材料をメッシュパターン状に形成した電磁波シールド部材であって、該導電性材料が、導電性微粒子をバインダー樹脂によって結着した空隙率が20〜80%の導電性微粒子結着体において、めっき金属が前記導電性微粒子間を連結しているものであり、その表面抵抗値が10Ω/□以下であることを特徴とする電磁波シールド部材;
(2)導電性微粒子が、金、銀、銅、鉄、ニッケル、又はアルミニウムの金屬微粒子であり、めっき金属が、金、銀、銅、クロム、又はニッケルである上記(1)の電磁波シールド部材;
(3)導電性材料が、導電性微粒子100質量部に対し、バインダー樹脂が1〜50質量部、めっき金属が0.1〜300質量部で構成されている請求項1又は2に記載の電磁波シールド部材;
(4)透明基材上に、印刷法を用いて、導電性微粒子を樹脂バインダーによって結着した空隙率が20〜80%の導電性微粒子結着体をメッシュパターン状に形成し、このものをめっき処理することを特徴とする電磁波シールド部材の製造方法;
(5)印刷法が、透明基材上に、少なくとも導電性微粒子としての金属微粒子100質量部に対し、バインダー樹脂が1〜50質量部とからなる固形分60〜90%の金属ペーストを用いて印刷し、溶剤を乾燥するものである上記(4)の電磁波シールド部材の製造方法;
を提供するものである。
That is, the present invention
(1) An electromagnetic wave shielding member in which a conductive material is formed in a mesh pattern on a transparent substrate, the conductive material having a porosity of 20 to 80% in which conductive fine particles are bound by a binder resin. In the conductive fine particle binder, the plated metal connects the conductive fine particles, and the surface resistance value thereof is 10Ω / □ or less;
(2) The electromagnetic wave shielding member according to the above (1), wherein the conductive fine particles are gold, silver, copper, iron, nickel or aluminum gold fine particles, and the plated metal is gold, silver, copper, chromium or nickel. ;
(3) The electromagnetic wave according to claim 1 or 2, wherein the conductive material comprises 1 to 50 parts by mass of a binder resin and 0.1 to 300 parts by mass of a plated metal with respect to 100 parts by mass of the conductive fine particles. Shielding member;
(4) Using a printing method, a conductive fine particle binder having a porosity of 20 to 80% and having a porosity of 20 to 80% is formed on a transparent substrate in a mesh pattern. A method of producing an electromagnetic wave shielding member, characterized by being plated;
(5) The printing method uses a metal paste having a solid content of 60 to 90% on a transparent substrate, the binder resin being 1 to 50 parts by mass with respect to 100 parts by mass of metal fine particles as conductive particles. The method for producing an electromagnetic wave shielding member according to the above (4), which is printed and the solvent is dried;
Is to provide.

本発明の電磁波シールド部材は、メッシュパターン状に形成されている所定の空隙率の多孔質な導電性微粒子結着体において、めっき金属が該導電性微粒子間を連結、包絡することで導電性微粒子が一体化された構造を有するものであり、高い電磁波シールド性を有する、膜強度が強いメッシュパターン薄膜を透明基材上に形成したものである。
すなわち、本発明の電磁波シールド部材における導電性メッシュは、導電性微粒子結着体において、めっき金属で該導電性微粒子間を連結、包絡するものであるので、その製造工程において、厚いめっき金属層を形成する前記従来法と比較して、少ないめっき金属量、短いめっき時間で所定の導電率に到達することができる。また、本発明はメッシュパターンの導電性の大部分を担う導電性微粒子を、印刷することによってめっきよりも高速に基材の上に形成しておき、その微粒子間を金属析出(めっき)で繋ぐという方法であるため、全体として製造時間を短縮することができる。したがって、本発明によれば、簡略化された工程で高性能の電磁波シールド部材を得ることができる。
また、導電性微粒子層の上にめっき層を形成するのではなく、導電性微粒子間をつなぐため(主に、印刷形成されたメッシュパターン内部の空間内に金属を成長させるため)、メッシュパターンの厚みの増加が少なく、反射防止層(AR層)や防眩層(AG層)などをその上に設けるための粘着層との貼合時において、粘着層が、メッシュ形状を埋めきれずに生じる気泡(空隙)により白濁する現象が起こりやすくなるという不具合も起こりにくい。
The electromagnetic wave shielding member of the present invention is a conductive fine particle formed by connecting and enveloping the conductive fine particles in a porous conductive fine particle binder having a predetermined porosity formed in a mesh pattern. Is a structure in which a mesh pattern thin film having high electromagnetic shielding properties and strong film strength is formed on a transparent substrate.
That is, since the conductive mesh in the electromagnetic wave shielding member of the present invention is a conductive fine particle binder that connects and envelops the conductive fine particles with a plated metal, a thick plated metal layer is formed in the manufacturing process. Compared with the conventional method to be formed, a predetermined conductivity can be reached with a small amount of plating metal and a short plating time. In the present invention, conductive fine particles that bear most of the conductivity of the mesh pattern are formed on a substrate at a higher speed than plating by printing, and the fine particles are connected by metal deposition (plating). Therefore, the manufacturing time can be shortened as a whole. Therefore, according to the present invention, a high-performance electromagnetic shielding member can be obtained by a simplified process.
Also, instead of forming a plating layer on the conductive fine particle layer, it is necessary to connect the conductive fine particles (mainly to grow metal in the space inside the printed mesh pattern). The increase in thickness is small, and the adhesive layer does not fill the mesh shape when bonded to an adhesive layer for providing an antireflection layer (AR layer), an antiglare layer (AG layer) or the like thereon. The problem that white turbidity easily occurs due to air bubbles (voids) is less likely to occur.

本発明の電磁波シールド部材は、透明基材上に導電性材料をメッシュパターン状に形成したものであって、該導電性材料(導電性メッシュ)は、金属等の導電性材料から成る導電性微粒子をバインダー樹脂によって結着した所定の空隙率を有する導電性微粒子結着体において、めっき金属が導電性微粒子間を連結しているものである。また、本発明の電磁波シールド部材は、透明基材上に、導電性ペーストをパターン印刷し、溶剤を乾燥して、所定の空隙率を有する導電性微粒子結着体をメッシュパターンに形成し、このものをめっき処理することにより製造される。
以下、本発明を詳細に説明する。
The electromagnetic wave shielding member of the present invention is obtained by forming a conductive material in a mesh pattern on a transparent substrate, and the conductive material (conductive mesh) is a conductive fine particle made of a conductive material such as metal. In the conductive fine particle binder having a predetermined porosity, which is bonded with a binder resin, the plated metal connects the conductive fine particles. Further, the electromagnetic wave shielding member of the present invention is formed by pattern printing a conductive paste on a transparent substrate, drying a solvent, and forming a conductive fine particle binder having a predetermined porosity in a mesh pattern. Manufactured by plating.
Hereinafter, the present invention will be described in detail.

〔透明基材〕
透明基材としては、少なくとも可視領域で透明な基材が使用可能であり、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル樹脂、ポリメタクリル酸メチル等のアクリル樹脂、ポリプロピレン、シクロオレフィン系樹脂等のポリオレフィン樹脂、ポリカーボネート(PC)、ポリイミド(PI)などの透明樹脂のフィルムや板、或いはソーダ硝子、カリ硝子、硼珪酸硝子等の板などが使用可能である。
また、透明基材は、導電性ペースト塗布側に、適宜、各種機能を付与するための下地層があってもよい。各種機能付与の例としては、コロナ放電処理や易接着プライマー塗工処理などによる密着性改善、耐久性改善、印刷性改善、耐溶剤性改善等が挙げられる。
なお、透明基材の厚さは、用途に応じたものとすればよく、特に制限はないが、透明樹脂フィルムからなる場合は、通常10〜500μm程度であり、透明樹脂板やガラス板である場合は、通常1〜5mm程度が好適である。
(Transparent substrate)
As the transparent substrate, a transparent substrate at least in the visible region can be used. Polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), acrylic resins such as polymethyl methacrylate, polypropylene, cycloolefin A polyolefin resin such as a resin, a transparent resin film or plate such as polycarbonate (PC) or polyimide (PI), or a plate such as soda glass, potassium glass, or borosilicate glass can be used.
Moreover, the transparent base material may have an undercoat layer for imparting various functions as appropriate on the conductive paste application side. Examples of imparting various functions include adhesion improvement, durability improvement, printability improvement, solvent resistance improvement and the like by corona discharge treatment and easy adhesion primer coating treatment.
The thickness of the transparent substrate is not particularly limited as long as it depends on the use, but when it is made of a transparent resin film, it is usually about 10 to 500 μm and is a transparent resin plate or glass plate. In the case, about 1 to 5 mm is usually preferable.

〔導電性メッシュ〕
本発明の電磁波シールド部材を構成する導電性メッシュは、透明基材上に導電性ペーストをメッシュパターン状に印刷し、溶剤を乾燥して得た、導電性微粒子がバインダー樹脂によって結着された所定の空隙率を有する多孔質の導電性微粒子結着体をめっき処理することにより製造される。
ここで、導電性微粒子結着体の空隙率は、20〜80%であることを要し、30〜70%であることが好ましい。空隙率が20%を下回ると導電性微粒子結着体において露出導電性微粒子が少なくなって所定時間のめっき処理後も所望の導電率が得られず、また、結着体内部への金属イオン供給が困難になる。空隙率が80%を超えるとめっき処理後の導電性メッシュも強度が弱く、もろくなる。
本発明の導電性メッシュは、導電性微粒子がバインダー樹脂によって結着された所定の空隙率を有する導電性微粒子結着体において、露出導電性微粒子の表面にめっき金属が析出し成長して、導電性微粒子間を金属によって連結、被覆、包絡して、導電性微粒子が一体化された構造を形成している。そして、本発明の導電性メッシュにおいて、その構成成分である導電性微粒子、バインダー樹脂、めっき金属の構成比率は、導電性微粒子100質量部に対し、バインダー樹脂が1〜50質量部であることが好ましく、3〜30質量部であることがより好ましく、めっき金属が0.1〜300質量部であることがより好ましく、1〜200質量部であることがより好ましい。バインダー樹脂比率が大きすぎると、導電性微粒子結着体において露出導電性微粒子が少なくなって所望のめっき金属連結体が得られず、バインダー樹脂比率が小さすぎると、導電性メッシュの膜強度が弱くなる。また、めっき金属比率が小さすぎると金属微粒子を十分に連結できないため所望の導電率が得られず、めっき金属比率が大きすぎても導電率は飽和して更に大幅な向上はなく、コスト高となる。
[Conductive mesh]
The conductive mesh constituting the electromagnetic wave shielding member of the present invention is obtained by printing a conductive paste on a transparent base material in a mesh pattern and drying the solvent, and the conductive fine particles are bound by a binder resin. It is produced by subjecting a porous conductive fine particle binder having a porosity of 5 to a plating treatment.
Here, the porosity of the conductive fine particle binder is required to be 20 to 80%, and preferably 30 to 70%. When the porosity is less than 20%, the exposed conductive fine particles are reduced in the conductive fine particle binder, and a desired conductivity cannot be obtained even after a predetermined time of plating treatment, and metal ions are supplied into the binder. Becomes difficult. When the porosity exceeds 80%, the conductive mesh after the plating process is weak and brittle.
In the conductive mesh of the present invention, in a conductive fine particle binder having a predetermined porosity in which conductive fine particles are bound by a binder resin, plating metal is deposited on the surface of the exposed conductive fine particles and grows. The conductive fine particles are connected, covered, and enveloped by a metal to form a structure in which the conductive fine particles are integrated. In the conductive mesh of the present invention, the constituent ratio of the conductive fine particles, the binder resin, and the plating metal, which are the constituent components, is 1 to 50 parts by mass of the binder resin with respect to 100 parts by mass of the conductive fine particles. Preferably, the amount is 3 to 30 parts by mass, the plating metal is more preferably 0.1 to 300 parts by mass, and more preferably 1 to 200 parts by mass. If the binder resin ratio is too large, the exposed fine conductive particles are reduced in the conductive fine particle binder and the desired plated metal connector cannot be obtained. If the binder resin ratio is too small, the film strength of the conductive mesh is weak. Become. In addition, if the plating metal ratio is too small, the metal fine particles cannot be sufficiently connected, so that the desired conductivity cannot be obtained, and even if the plating metal ratio is too large, the conductivity is saturated and there is no further significant improvement. Become.

本発明における導電性メッシュのメッシュパターンは、開口部の形状は任意で特に限定されず、例えば、正三角形等の三角形、正方形、長方形、菱形、台形等の四角形、六角形、等の多角形、円形、楕円形などであり、それが格子模様、ハニカム模様、ランダム網目模様などのパターンを形成している。
そして、メッシュの線部の幅は5μm〜50μm、ピッチは100〜500μm、開口率は60〜95%であることが光透過性の点から好ましい。
The mesh pattern of the conductive mesh in the present invention is not particularly limited as the shape of the opening, for example, a triangle such as a regular triangle, a square such as a square, a rectangle, a rhombus, a trapezoid, a polygon such as a hexagon, The shape is a circle or an ellipse, and forms a pattern such as a lattice pattern, a honeycomb pattern, or a random mesh pattern.
And it is preferable from the point of light transmittance that the width | variety of the line part of a mesh is 5 micrometers-50 micrometers, pitch is 100-500 micrometers, and an aperture ratio is 60-95%.

本発明の導電性メッシュの厚みは、所望の導電率と所定の膜強度を確保できる範囲でできるだけ薄い方が、コスト上、さらにはその上への粘着剤貼合時の気泡混入をなくするという観点から好ましい。その厚みは、1〜50μm程度であることが好ましく、1〜20μm程度であることがより好ましい。   The thickness of the conductive mesh of the present invention is as thin as possible within a range that can ensure a desired conductivity and a predetermined film strength, which is costly and eliminates air bubbles at the time of adhesive bonding on the cost. It is preferable from the viewpoint. The thickness is preferably about 1 to 50 μm, and more preferably about 1 to 20 μm.

〔導電性ペースト〕
本発明の導電性メッシュの製造に用いる導電性ペーストは、バインダー樹脂を溶剤に溶解した溶液に導電性微粒子を均一分散させた、以下のようなものである。
導電性微粒子としては、金、銀、白金、銅、鉄、錫、ニッケル、アルミニウムなどの金属粒子や複合金属粒子、又は黒鉛粒子やカーボンブラックなどの炭素粒子、或いは樹脂粒子の表面にこれらの金属や黒鉛を被覆したものなどが使用できる。これらは単独で用いてもよく、混合して用いてもよい。例えばディスプレイのコントラスト改善を目的として、黒い炭素粒子を金属粒子と混合して用いてもよい。ここで、金、銀、ニッケルなどの金属はパターン印刷直後に通電可能な程度の導電性が発現するが、銅、鉄、アルミニウムなど空気中で酸化されやすい金属はパターン印刷後に電気化学処理や薬品処理などを行うことで通電可能な導電性を発現させることができる。特に銅粉の場合は表面の酸化被膜の抵抗が高く、結着体の抵抗も粒子の酸化被膜同士が接触しているため著しく高い。そのため、薬品処理などで表面の酸化被膜を除去することは必須であるが、この酸化被膜は酸性溶液に浸漬することで容易に除去できるため、塩酸、希硫酸等の酸浴あるいは、酸性のめっき浴などを通過させるだけでよい。この場合、金属析出により銅粉同士が結合されてしまえば、空気酸化による再絶縁化は進行しない。
導電性微粒子の粒子サイズは、ペースト化できる程度に小さいのが好ましく、100μm以下の粒径が好ましいが、メッシュパターンの線幅よりは十分に小さいほうが好ましく、通常は10μm以下であることがより好ましい。また形状は球状、回転楕円体状、多面体状、塊状、鱗片状、円盤状、繊維状ないし針状など特に制限はなく、各種形状、粒径などを持った粒子を適宜混合して用いてもよい。尚、粒径は、球以外の形状の場合は、回転楕円体の場合は最大長径、多面体の場合は外接球の直径、或いは最大の対角線長、繊維状ないし針状の場合は長手方向(長軸方向)の長さ等で評価する。
バインダー樹脂としては、導電性微粒子および透明基材に接着性を有し、めっき液に対して安定した塗膜を保てる樹脂であればよく、アクリル樹脂、ポリエステル樹脂、エチレン−酢酸ビニル樹脂、ウレタン樹脂、フェノール樹脂、エポキシ樹脂等を用いることができる。
溶剤としては、バインダー樹脂を溶解するものであって、沸点が100〜250℃程度の有機溶剤を用いることができる。沸点が低すぎると、ペースト作製時あるいはパターン印刷時に溶剤が揮散してペースト性状等が変化して不都合が生じ、沸点が高すぎると、印刷後の乾燥に時間がかかりすぎる。
[Conductive paste]
The conductive paste used for manufacturing the conductive mesh of the present invention is as follows, in which conductive fine particles are uniformly dispersed in a solution in which a binder resin is dissolved in a solvent.
Examples of the conductive fine particles include metal particles such as gold, silver, platinum, copper, iron, tin, nickel, and aluminum, composite metal particles, carbon particles such as graphite particles and carbon black, or these metals on the surface of resin particles. Or those coated with graphite can be used. These may be used alone or in combination. For example, black carbon particles may be mixed with metal particles to improve display contrast. Here, metals such as gold, silver, and nickel exhibit conductivity that can be energized immediately after pattern printing, but metals that are easily oxidized in the air, such as copper, iron, and aluminum, are subjected to electrochemical treatment and chemicals after pattern printing. Conductivity that can be energized can be developed by performing treatment or the like. In particular, in the case of copper powder, the resistance of the oxide film on the surface is high, and the resistance of the binder is extremely high because the oxide films of the particles are in contact with each other. Therefore, it is essential to remove the oxide film on the surface by chemical treatment, etc., but this oxide film can be easily removed by immersing it in an acidic solution. It is only necessary to pass a bath. In this case, if copper powders are bonded by metal deposition, re-insulation by air oxidation does not proceed.
The particle size of the conductive fine particles is preferably small enough to make a paste, and a particle size of 100 μm or less is preferable, but is preferably sufficiently smaller than the line width of the mesh pattern, and more preferably 10 μm or less. . The shape is not particularly limited, such as spherical, spheroid, polyhedral, lump, scale, disk, fiber, or needle shape, and particles having various shapes, particle sizes, and the like may be used by appropriately mixing them. Good. In the case of a shape other than a sphere, the particle diameter is the maximum long diameter in the case of a spheroid, the diameter of a circumscribed sphere in the case of a polyhedron, or the maximum diagonal length, and in the longitudinal direction (long) in the case of a fibrous or needle shape. Axis length) etc. are evaluated.
The binder resin may be any resin that has adhesiveness to the conductive fine particles and the transparent substrate and can maintain a stable coating film against the plating solution, such as an acrylic resin, a polyester resin, an ethylene-vinyl acetate resin, and a urethane resin. A phenol resin, an epoxy resin, or the like can be used.
As the solvent, an organic solvent which dissolves the binder resin and has a boiling point of about 100 to 250 ° C. can be used. If the boiling point is too low, the solvent is volatilized during paste preparation or pattern printing and the paste properties and the like change, resulting in inconvenience. If the boiling point is too high, drying after printing takes too much time.

本発明で用いられる導電性ペーストは、空隙率が20〜80%である導電性微粒子結着体を得るために、少なくとも導電性微粒子100質量部に対し、バインダー樹脂が50質量部とからなる固形分60〜90%の導電性ペーストであることが好ましい。
上記のような本発明で用いられる導電性ペーストとしては、FA−333(藤倉化成(株)製)などの市販の銀ペースト、ACP−051((株)アサヒ化学研究所製)などの市販の銅ペーストを用いることもできるが、導電性微粒子結着体の空隙率調整やペーストの塗工適性調整のため、導電性微粒子の形状や粒径を調整したり、結着材比率を調整したり、固形分を調整して使用することが好ましい。またこれらのペーストには、例えばペーストの塗工適性調整、ペーストの安定性改善、導電性微粒子結着体の強度改善や基材との密着改善、導電性微粒子結着体の空隙調整、導電性微粒子結着体の色味調整などの各種目的に応じて、別途フィラーや添加剤を追加したりしてもよい。
なお、フィラーは球状、塊状、鱗片状、円盤状、繊維状などの各種形状から選ぶことができる。フィラーはめっき時に塗膜中に残っていてもよく、めっき時に溶解(分解)して、空隙を形成するようなものでもよい。
The conductive paste used in the present invention is a solid composed of 50 parts by mass of binder resin with respect to at least 100 parts by mass of conductive fine particles in order to obtain a conductive fine particle binder having a porosity of 20 to 80%. The conductive paste is preferably 60 to 90%.
Examples of the conductive paste used in the present invention as described above include commercially available silver pastes such as FA-333 (manufactured by Fujikura Kasei Co., Ltd.), and commercially available pastes such as ACP-051 (manufactured by Asahi Chemical Research Laboratories). Copper paste can also be used, but to adjust the porosity of the conductive fine particle binder and to adjust the coating suitability of the paste, the shape and particle size of the conductive fine particles can be adjusted, and the binder ratio can be adjusted. The solid content is preferably adjusted for use. In addition, these pastes include, for example, adjustment of paste coating suitability, improvement of paste stability, improvement of strength of conductive fine particle binders and improvement of adhesion to base materials, adjustment of voids of conductive fine particle binders, conductivity A filler or an additive may be added separately according to various purposes such as color adjustment of the fine particle binder.
The filler can be selected from various shapes such as a spherical shape, a block shape, a scale shape, a disk shape, and a fiber shape. The filler may remain in the coating film during plating, or may dissolve (decompose) during plating to form a void.

〔印刷法〕
導電性ペーストを透明基材上にメッシュパターン状に印刷する印刷法は本発明の効果を特に制限するものではなく、導電性ペーストの性状により適宜選択して用いればよい。
ナノメートルサイズの金属微粒子を用いる場合は一般に導電性ペーストの粘度が低く、インクジェット印刷、グラビア印刷、フレキソ印刷などが適しており、サブミクロン〜ミクロン程度の金属微粒子を用いる場合は一般に導電性ペーストの粘度が高く、グラビア印刷、フレキソ印刷、スクリーン印刷やディスペンサーなどが適している。
印刷後、たとえば80〜150℃程度で熱風乾燥して、溶剤を揮散させることで、透明基材上にメッシュパターンに形成された所定の空隙率を有する導電性微粒子結着体を得る。
[Printing method]
The printing method for printing the conductive paste in a mesh pattern on the transparent substrate does not particularly limit the effect of the present invention, and may be appropriately selected and used depending on the properties of the conductive paste.
When using nanometer-sized metal fine particles, the viscosity of the conductive paste is generally low, and ink jet printing, gravure printing, flexographic printing, etc. are suitable. When using metal fine particles of submicron to micron size, the conductive paste is generally Viscosity is high, and gravure printing, flexographic printing, screen printing and dispenser are suitable.
After printing, for example, by drying with hot air at about 80 to 150 ° C. to volatilize the solvent, conductive fine particle binders having a predetermined porosity formed in a mesh pattern on the transparent substrate are obtained.

〔めっき処理〕
上記で得られた、透明基材上にメッシュパターン状に形成された所定の空隙率を有する金属微粒子結着体は、めっき浴に浸漬して、金属を析出させることにより、導電性微粒子がめっき金属により包絡一体化された本発明の導電性メッシュを得ることができる。
めっき浴としては、通常の無電解及び電解めっき浴が使用可能である。使用できるめっき金属としては金、銀、白金、銅、クロム、ニッケルなどが挙げられる。なお、導電性微粒子として金属微粒子を用いる場合、めっき金属と導電性ペースト中の金属微粒子とは、同種の金属であっても、異種の金属であってもよい。
ここで、導電性微粒子結着体の表面への金属析出が優先的に起こってしまうと、結着体内部の空隙へのイオン供給路の入り口が狭くなり、結着体内部で析出するべき金属イオンの供給が不足してしまうため、内部の導電性微粒子同士をつなぐような析出が起こりにくくなる。これを防止するためには、結着体内部での金属析出に消費される金属イオンを、結着体内部に潤沢に供給することが必要であり、めっき液を強く攪拌する、超音波等の刺激を与える、結着体へ新鮮なめっき液を強く吹き付ける、界面活性剤等により結着体内部へのめっき液の浸透性を改善する、結着体の空隙を大きくする、などの方法を例示できる。またこれ以外にも、電解めっきの場合には通電条件を調整することで表面への選択的な析出を抑えることも可能であり、段階的に電流密度を変化させたりする方法や、パルスめっきなどの方法が例示できる。
上記に例示した方法は単独で用いてもよく、組み合わせて用いてもよいが、これらの方法に限定されるものではなく、結果的に結着体内部の導電性微粒子の結合を可能にする方法であればよい。
また、めっきに際しては、必要に応じ、触媒や還元剤による還元性付与処理、活性化処理を施しても良い。これらの処理は、各めっきについて知られている公知の手法に従えばよい。
本発明の無電解めっきの場合、0.1〜5μm程度の厚みの導電性メッシュを得るために、必要なめっき時間は通常5〜150分である。
また、本発明の電解めっきの場合、同じく0.1〜5μm程度の厚みの導電性メッシュを得るために、通常、電流密度は0.1〜5A/dm2、めっき時間は1〜30分である。
めっき処理後、水洗い、乾燥することにより、本発明の電磁波シールド部材が得られる。
なお、めっき後の導電性メッシュパターンが大気中で錆び易い材料を含む場合は、必要に応じて防錆処理を行ってもよい。またディスプレイのコントラスト改善のため、更に着色処理を行ってもよい。
防錆処理としては、例えば、クロメート処理、アクリル樹脂等の酸素や水蒸気に対して適度の遮断性を有する樹脂膜の塗工等公知の材料、及び処理方法が適用できる。
[Plating treatment]
The metal fine particle binder having a predetermined porosity formed in a mesh pattern on the transparent substrate obtained above is immersed in a plating bath to deposit the metal, whereby the conductive fine particles are plated. It is possible to obtain the conductive mesh of the present invention that is enveloped and integrated with a metal.
As the plating bath, ordinary electroless and electrolytic plating baths can be used. Examples of the plating metal that can be used include gold, silver, platinum, copper, chromium, and nickel. When metal fine particles are used as the conductive fine particles, the plating metal and the metal fine particles in the conductive paste may be the same type of metal or different metals.
Here, if metal deposition preferentially occurs on the surface of the conductive fine particle binder, the entrance of the ion supply path to the void inside the binder becomes narrow, and the metal to be deposited inside the binder Since the supply of ions is insufficient, precipitation that connects the conductive fine particles inside hardly occurs. In order to prevent this, it is necessary to supply abundantly metal ions consumed for metal deposition inside the binder, and the plating solution is vigorously stirred. Illustrates methods such as stimulating, spraying fresh plating solution strongly onto the binder, improving the penetration of plating solution into the binder with a surfactant, etc., and increasing the gap in the binder. it can. In addition, in the case of electrolytic plating, it is also possible to suppress selective deposition on the surface by adjusting the energization conditions, such as a method of changing the current density stepwise, pulse plating, etc. This method can be exemplified.
The methods exemplified above may be used alone or in combination. However, the method is not limited to these methods, and as a result, a method that enables bonding of conductive fine particles inside the binder. If it is.
Moreover, in the case of plating, you may perform the reduction | restoration provision process by a catalyst or a reducing agent, and an activation process as needed. These treatments may be performed according to known methods known for each plating.
In the case of the electroless plating of the present invention, the necessary plating time is usually 5 to 150 minutes in order to obtain a conductive mesh having a thickness of about 0.1 to 5 μm.
In the case of the electrolytic plating of the present invention, in order to obtain a conductive mesh having a thickness of about 0.1 to 5 μm, the current density is usually 0.1 to 5 A / dm 2 and the plating time is 1 to 30 minutes. is there.
After the plating treatment, the electromagnetic wave shielding member of the present invention is obtained by washing with water and drying.
In addition, when the electroconductive mesh pattern after plating contains the material which is easy to rust in air | atmosphere, you may perform a rust prevention process as needed. Further, in order to improve the contrast of the display, a coloring process may be further performed.
As the rust prevention treatment, for example, known materials such as chromate treatment, coating of a resin film having an appropriate barrier property against oxygen and water vapor such as acrylic resin, and treatment methods can be applied.

以下、実施例を挙げて、本発明をより具体的に説明する。
実施例1
100μm厚、500mm×500mmの大きさの2軸延伸PET基材上に、シルクスクリーン印刷法にて、バイロン200(東洋紡績(株)製)(ポリエステル系のバインダー樹脂)5質量部をDBE(デュポン社製;二塩基酸エステル)(溶剤)27.5質量部に溶解させた溶液に粒径5μmの銀粉67.5質量部を均一分散させた導電性ペーストを、格子状パターンに印刷した。このものを120℃で熱風乾燥してDBEを揮散させ、PET基材上に、線幅30μm、ピッチ150μm、厚み15μmの格子状パターンで空隙率が41%(水銀ポロシメーター((株)島津製作所製オートポアIV9520)にて測定)の金属微粒子結着体が形成された中間部材を得た。次いで、このものを奥野製薬工業(株)製無電解銅めっき液(ATSアドカッパーIW)中に含浸し、5分間めっきを行った。水洗い、乾燥して得た電磁波シールド部材の導電性メッシュの厚みは15μm、表面抵抗は0.02Ω/□であった。なお、導電性メッシュ中、めっき銅は、銀粉100質量部に対し1.5質量部の割合で存在した。
得られた電磁波シールド部材の導電性メッシュにセロテープ(登録商標)剥離試験(JIS H8504)を行ったところ、導電性メッシュ層の凝集破壊はなかった。
実施例2
バイロン200(バインダー樹脂)9質量部をDBE(溶剤)15質量部に溶解させた溶液に粒径1μmの銀粉76質量部を均一分散させた導電性ペーストを用いたこと以外は実施例1と同様の操作を行って電磁波シールド部材を作製した。ここで、金属微粒子結着体の空隙率は20%であった。また、得られた電磁波シールド部材の導電性メッシュの厚みは15μm、表面抵抗は0.4Ω/□であり、導電性メッシュ中、めっき銅は、銀粉100質量部に対し1.6質量部の割合で存在した。
得られた電磁波シールド部材の導電性メッシュにセロテープ(登録商標)剥離試験を行ったところ、導電性メッシュ層の凝集破壊はなかった。
実施例3
バイロン200(バインダー樹脂)1質量部をDBE(溶剤)22質量部に溶解させた溶液に粒径3μmの銀粉99質量部を均一分散させた導電性ペーストを用いたこと以外は実施例1と同様の操作を行って電磁波シールド部材を作製した。ここで、金属微粒子結着体の空隙率は75%であった。また、得られた電磁波シールド部材の導電性メッシュの厚みは15μm、表面抵抗は5Ω/□であり、導電性メッシュ中、めっき銅は、銀粉100質量部に対し1.1質量部の割合で存在した。
得られた電磁波シールド部材の導電性メッシュにセロテープ(登録商標)剥離試験を行ったところ、導電性メッシュ層の凝集破壊はなかった。
Hereinafter, the present invention will be described more specifically with reference to examples.
Example 1
By a silk screen printing method on a biaxially stretched PET substrate having a thickness of 100 μm and a size of 500 mm × 500 mm, 5 parts by weight of Byron 200 (manufactured by Toyobo Co., Ltd.) (polyester binder resin) is DBE (DuPont). A conductive paste in which 67.5 parts by mass of silver powder having a particle diameter of 5 μm was uniformly dispersed in a solution dissolved in 27.5 parts by mass of a dibasic acid ester (solvent) manufactured by a company was printed in a lattice pattern. This was dried with hot air at 120 ° C. to evaporate DBE, and on a PET substrate, a lattice pattern with a line width of 30 μm, a pitch of 150 μm, and a thickness of 15 μm had a porosity of 41% (mercury porosimeter (manufactured by Shimadzu Corporation). An intermediate member on which a metal fine particle binder as measured in Autopore IV9520) was formed was obtained. Subsequently, this was impregnated in an electroless copper plating solution (ATS Adcopper IW) manufactured by Okuno Pharmaceutical Co., Ltd. and plated for 5 minutes. The thickness of the conductive mesh of the electromagnetic wave shielding member obtained by washing with water and drying was 15 μm, and the surface resistance was 0.02Ω / □. In the conductive mesh, plated copper was present at a ratio of 1.5 parts by mass with respect to 100 parts by mass of silver powder.
When the cellophane (registered trademark) peel test (JIS H8504) was performed on the conductive mesh of the obtained electromagnetic wave shielding member, there was no cohesive failure of the conductive mesh layer.
Example 2
Example 1 except that a conductive paste in which 76 parts by mass of silver powder having a particle size of 1 μm was uniformly dispersed in a solution in which 9 parts by mass of Byron 200 (binder resin) was dissolved in 15 parts by mass of DBE (solvent) was used. Thus, an electromagnetic wave shielding member was produced. Here, the porosity of the metal fine particle binder was 20%. Moreover, the thickness of the conductive mesh of the obtained electromagnetic wave shielding member is 15 μm, the surface resistance is 0.4Ω / □, and the plated copper is a ratio of 1.6 parts by mass with respect to 100 parts by mass of the silver powder in the conductive mesh. Existed.
When the cellophane (registered trademark) peel test was performed on the conductive mesh of the obtained electromagnetic wave shielding member, there was no cohesive failure of the conductive mesh layer.
Example 3
Example 1 except that a conductive paste in which 99 parts by mass of silver powder having a particle size of 3 μm was uniformly dispersed in a solution in which 1 part by mass of Byron 200 (binder resin) was dissolved in 22 parts by mass of DBE (solvent) was used. Thus, an electromagnetic wave shielding member was produced. Here, the porosity of the metal fine particle binder was 75%. Moreover, the thickness of the conductive mesh of the obtained electromagnetic wave shielding member is 15 μm, the surface resistance is 5Ω / □, and the plated copper is present in a proportion of 1.1 parts by mass with respect to 100 parts by mass of the silver powder. did.
When the cellophane (registered trademark) peel test was performed on the conductive mesh of the obtained electromagnetic wave shielding member, there was no cohesive failure of the conductive mesh layer.

比較例1
バイロン200(バインダー樹脂)30質量部をDBE(溶剤)20質量部に溶解させた溶液に粒径1μmの銀粉50質量部を均一分散させた導電性ペーストを用いたこと以外は実施例1と同様の操作を行って電磁波シールド部材を作製した。ここで、金属微粒子結着体の空隙率は4%であった。また、得られた電磁波シールド部材の導電性メッシュの厚みは15μm、表面抵抗は157Ω/□であり、導電性メッシュ中、めっき銅は、銀粉100質量部に対し0.03質量部の割合で存在した。
得られた電磁波シールド部材の導電性メッシュにセロテープ(登録商標)剥離試験を行ったところ、導電性メッシュ層の凝集破壊はなかった。
比較例2
バイロン200(バインダー樹脂)1質量部をDBE(溶剤)200質量部に溶解させた溶液に粒径3μmの銀粉199質量部を均一分散させた導電性ペーストを用いたこと以外は実施例1と同様の操作を行って電磁波シールド部材を作製した。ここで、金属微粒子結着体の空隙率は83%であった。また、得られた電磁波シールド部材の導電性メッシュの厚みは15μm、表面抵抗は83Ω/□であり、導電性メッシュ中、めっき銅は、銀粉100質量部に対し0.5質量部の割合で存在した。
得られた電磁波シールド部材の導電性メッシュにセロテープ(登録商標)剥離試験を行ったところ、導電性メッシュ層の凝集破壊が発生した。
Comparative Example 1
Example 1 except that a conductive paste in which 50 parts by mass of silver powder having a particle diameter of 1 μm was uniformly dispersed in a solution in which 30 parts by mass of Byron 200 (binder resin) was dissolved in 20 parts by mass of DBE (solvent) was used. Thus, an electromagnetic wave shielding member was produced. Here, the porosity of the metal fine particle binder was 4%. Moreover, the thickness of the conductive mesh of the obtained electromagnetic wave shielding member is 15 μm, the surface resistance is 157 Ω / □, and the plated copper is present in a ratio of 0.03 parts by mass with respect to 100 parts by mass of the silver powder. did.
When the cellophane (registered trademark) peel test was performed on the conductive mesh of the obtained electromagnetic wave shielding member, there was no cohesive failure of the conductive mesh layer.
Comparative Example 2
Example 1 except that a conductive paste in which 199 parts by mass of silver powder having a particle size of 3 μm was uniformly dispersed in a solution in which 1 part by mass of Byron 200 (binder resin) was dissolved in 200 parts by mass of DBE (solvent) was used. Thus, an electromagnetic wave shielding member was produced. Here, the porosity of the metal fine particle binder was 83%. Moreover, the thickness of the conductive mesh of the obtained electromagnetic wave shielding member is 15 μm, the surface resistance is 83Ω / □, and the plated copper is present in a proportion of 0.5 parts by mass with respect to 100 parts by mass of the silver powder. did.
When the cellophane (registered trademark) peel test was performed on the conductive mesh of the obtained electromagnetic wave shielding member, cohesive failure of the conductive mesh layer occurred.

Claims (5)

透明基材上に導電性材料をメッシュパターン状に形成した電磁波シールド部材であって、該導電性材料が、導電性微粒子をバインダー樹脂によって結着した空隙率が20〜80%の導電性微粒子結着体において、めっき金属が前記導電性微粒子間を連結しているものであり、その表面抵抗値が10Ω/□以下であることを特徴とする電磁波シールド部材。   An electromagnetic wave shielding member in which a conductive material is formed in a mesh pattern on a transparent substrate, and the conductive material is formed of conductive fine particles having a porosity of 20 to 80% obtained by binding conductive fine particles with a binder resin. An electromagnetic wave shielding member characterized in that, in the adherend, a plated metal connects the conductive fine particles, and a surface resistance value thereof is 10 Ω / □ or less. 導電性微粒子が、金、銀、銅、鉄、ニッケル、又はアルミニウムの金属微粒子であり、めっき金属が、金、銀、銅、クロム、又はニッケルである請求項1に記載の電磁波シールド部材。   The electromagnetic wave shielding member according to claim 1, wherein the conductive fine particles are metal fine particles of gold, silver, copper, iron, nickel, or aluminum, and the plating metal is gold, silver, copper, chromium, or nickel. 導電性材料が、導電性微粒子100質量部に対し、バインダー樹脂が1〜50質量部、めっき金属が0.1〜300質量部で構成されている請求項1又は2に記載の電磁波シールド部材。   The electromagnetic wave shielding member according to claim 1 or 2, wherein the conductive material is composed of 1 to 50 parts by mass of binder resin and 0.1 to 300 parts by mass of plated metal with respect to 100 parts by mass of conductive fine particles. 透明基材上に、印刷法を用いて、導電性微粒子を樹脂バインダーによって結着した空隙率が20〜80%の導電性微粒子結着体をメッシュパターン状に形成し、このものをめっき処理することを特徴とする電磁波シールド部材の製造方法。   On a transparent substrate, a conductive fine particle binder having a porosity of 20 to 80% formed by binding conductive fine particles with a resin binder is formed in a mesh pattern using a printing method, and this is plated. The manufacturing method of the electromagnetic wave shielding member characterized by the above-mentioned. 印刷法が、透明基材上に、少なくとも導電性微粒子としての金属微粒子100質量部に対し、バインダー樹脂が1〜50質量部とからなる固形分60〜90%の金属ペーストを用いて印刷し、溶剤を乾燥するものである請求項4に記載の電磁波シールド部材の製造方法。   The printing method is performed on a transparent substrate using a metal paste having a solid content of 60 to 90% and a binder resin of 1 to 50 parts by mass with respect to at least 100 parts by mass of metal fine particles as conductive fine particles, The method for producing an electromagnetic wave shielding member according to claim 4, wherein the solvent is dried.
JP2007161374A 2007-06-19 2007-06-19 Electromagnetic wave shielding member and manufacturing method thereof Expired - Fee Related JP4894649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007161374A JP4894649B2 (en) 2007-06-19 2007-06-19 Electromagnetic wave shielding member and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007161374A JP4894649B2 (en) 2007-06-19 2007-06-19 Electromagnetic wave shielding member and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009004432A true JP2009004432A (en) 2009-01-08
JP4894649B2 JP4894649B2 (en) 2012-03-14

Family

ID=40320528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007161374A Expired - Fee Related JP4894649B2 (en) 2007-06-19 2007-06-19 Electromagnetic wave shielding member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4894649B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011253850A (en) * 2010-05-31 2011-12-15 Dainippon Printing Co Ltd Transparent conductive material
JP2013028114A (en) * 2011-07-29 2013-02-07 Toda Kogyo Corp Method of manufacturing sheet for thermoforming, sheet for thermoforming, and molded article

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07216575A (en) * 1994-01-26 1995-08-15 Central Glass Co Ltd Water-repellent electrode material impregnated with fluorocarbon resin
JPH10188680A (en) * 1996-12-25 1998-07-21 Mitsubishi Materials Corp Transparent conductive film
JP2000196286A (en) * 1998-12-25 2000-07-14 Sumitomo Rubber Ind Ltd Translucent electromagnetic wave shielding member and manufacture thereof
JP2001196784A (en) * 1998-10-30 2001-07-19 Sumitomo Chem Co Ltd Electromagnetic-shielding plate
JP2003109435A (en) * 2002-08-05 2003-04-11 Sumitomo Osaka Cement Co Ltd Transparent conductive film and its manufacturing method
JP2005109351A (en) * 2003-10-01 2005-04-21 Hitachi Maxell Ltd Electromagnetic shield, manufacturing method thereof, and front plate for display
JP2005150368A (en) * 2003-11-14 2005-06-09 Bridgestone Corp Electromagnetic wave shielding light transmitting window material and its manufacturing method
WO2006129568A1 (en) * 2005-06-03 2006-12-07 Dainippon Ink And Chemicals, Inc. Electromagnetic shielding material and method for producing same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07216575A (en) * 1994-01-26 1995-08-15 Central Glass Co Ltd Water-repellent electrode material impregnated with fluorocarbon resin
JPH10188680A (en) * 1996-12-25 1998-07-21 Mitsubishi Materials Corp Transparent conductive film
JP2001196784A (en) * 1998-10-30 2001-07-19 Sumitomo Chem Co Ltd Electromagnetic-shielding plate
JP2000196286A (en) * 1998-12-25 2000-07-14 Sumitomo Rubber Ind Ltd Translucent electromagnetic wave shielding member and manufacture thereof
JP2003109435A (en) * 2002-08-05 2003-04-11 Sumitomo Osaka Cement Co Ltd Transparent conductive film and its manufacturing method
JP2005109351A (en) * 2003-10-01 2005-04-21 Hitachi Maxell Ltd Electromagnetic shield, manufacturing method thereof, and front plate for display
JP2005150368A (en) * 2003-11-14 2005-06-09 Bridgestone Corp Electromagnetic wave shielding light transmitting window material and its manufacturing method
WO2006129568A1 (en) * 2005-06-03 2006-12-07 Dainippon Ink And Chemicals, Inc. Electromagnetic shielding material and method for producing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011253850A (en) * 2010-05-31 2011-12-15 Dainippon Printing Co Ltd Transparent conductive material
JP2013028114A (en) * 2011-07-29 2013-02-07 Toda Kogyo Corp Method of manufacturing sheet for thermoforming, sheet for thermoforming, and molded article

Also Published As

Publication number Publication date
JP4894649B2 (en) 2012-03-14

Similar Documents

Publication Publication Date Title
JP5227570B2 (en) Method for producing transparent conductive member
JP4273702B2 (en) Manufacturing method of conductive film
JP2007281290A (en) Transparent substrate with electromagnetic wave shielding film, and manufacturing method and manufacturing equipment therefor
JP2000223886A (en) Perspective electromagnetic wave shield material and its manufacture
JP2008085305A (en) Method of manufacturing light transmissive electromagnetic wave shielding material, light transmissive electromagnetic wave shielding material, and filter for display
JPWO2008140007A1 (en) Conductive substrate, electromagnetic wave shielding substrate for plasma display, and method for producing conductive substrate
JP2003304090A (en) Electromagnetic wave shielding material and its manufacturing method
JP2007227906A (en) Conductive substrate and its manufacturing method
WO2000013475A1 (en) Light-transmitting electromagnetic shielding material and method for manufacturing the same
JP4894649B2 (en) Electromagnetic wave shielding member and manufacturing method thereof
JP5261989B2 (en) Transparent substrate with electromagnetic shielding film and method for producing the same
JP5087384B2 (en) Manufacturing method of conductive member and conductive member
JP2008041765A (en) Electromagnetic wave shielding/light transmitting window material, and its production process
JP5119851B2 (en) Electromagnetic shielding member
JP2006024808A (en) Conductive composition producing method, method of interlayer connection and conductive film or conductive image formation method
JP2016119424A (en) Substrate for print circuit board, print circuit board, and manufacturing method of substrate for print circuit board
JP2009004617A (en) Transparent base material with electromagnetic wave shielding film, and manufacturing method therefor
JPH1046382A (en) Production of fine metallic fiber and conductive paint using the fiber
JP2006140346A (en) Electromagnetic wave shielding member and its manufacturing method
JP5267487B2 (en) Printed wiring board substrate and method for manufacturing printed wiring board substrate
JP4415526B2 (en) Conductive film and method for producing conductive film
JP2003165938A (en) Ink composition for printing on glass
JP5585163B2 (en) Method for reducing electrical resistance and method for producing electromagnetic shielding material
JP2004087904A (en) Manufacturing method of electromagnetic wave shield plate
JP7092183B2 (en) Pattern formation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111212

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees