JP2009004371A - Olivine type composite oxide for nonaqueous electrolyte secondary battery and its manufacturing method therefor, and secondary battery - Google Patents

Olivine type composite oxide for nonaqueous electrolyte secondary battery and its manufacturing method therefor, and secondary battery Download PDF

Info

Publication number
JP2009004371A
JP2009004371A JP2008132474A JP2008132474A JP2009004371A JP 2009004371 A JP2009004371 A JP 2009004371A JP 2008132474 A JP2008132474 A JP 2008132474A JP 2008132474 A JP2008132474 A JP 2008132474A JP 2009004371 A JP2009004371 A JP 2009004371A
Authority
JP
Japan
Prior art keywords
olivine
composite oxide
type composite
iron
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008132474A
Other languages
Japanese (ja)
Other versions
JP5293936B2 (en
Inventor
Tsutomu Katamoto
勉 片元
Yuji Mishima
祐司 三島
Shingo Honda
晋吾 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2008132474A priority Critical patent/JP5293936B2/en
Publication of JP2009004371A publication Critical patent/JP2009004371A/en
Application granted granted Critical
Publication of JP5293936B2 publication Critical patent/JP5293936B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium iron composite oxide high in the charging/discharging capacities, excelling in filling properties and in storage characteristics. <P>SOLUTION: An olivine type composite oxide for a nonaqueous electrolyte secondary battery has composition represented by Li<SB>x</SB>Fe<SB>1-y</SB>M<SB>y</SB>PO<SB>4</SB>(0.9<x<1.3; 0.001<y<0.3; M: Mg, Zr, Mn, Ti, Ce, Cr, Co, or Ni), contains a sulfate ion of 1,000 ppm or lower, a sodium ion of 1,000 ppm or lower, has an average primary particle size of 0.5 μm or smaller, and an average secondary particle size of 20-50 μm. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

充放電容量が大きく、充填性及び保存特性に優れたリチウム鉄複合酸化物を提供する。   Provided is a lithium iron composite oxide having a large charge / discharge capacity and excellent filling properties and storage characteristics.

近年、AV機器やパソコン等の電子機器のポータブル化、コードレス化が急速に進んでおり、これらの駆動用電源として小型、軽量で高エネルギー密度を有する二次電池への要求が高くなっている。また、近年地球環境への配慮から、電気自動車、ハイブリッド自動車の開発及び実用化がなされ、大型用途として保存特性の優れたリチウムイオン二次電池への要求が高くなっている。このような状況下において、充放電容量が大きく、安全性が高いという長所を有するリチウムイオン二次電池が注目されている。   In recent years, electronic devices such as AV devices and personal computers are rapidly becoming portable and cordless, and there is an increasing demand for secondary batteries having a small size, light weight, and high energy density as power sources for driving these devices. In recent years, in consideration of the global environment, electric vehicles and hybrid vehicles have been developed and put into practical use, and the demand for a lithium ion secondary battery having excellent storage characteristics as a large-scale application is increasing. Under such circumstances, a lithium ion secondary battery having advantages such as a large charge / discharge capacity and high safety has attracted attention.

最近、3.5V級の電圧をもつ高エネルギー型のリチウムイオン二次電池に有用な正極活物質として、オリビン型LiFePOが高い充放電容量を有する電池として注目されてきている。しかし、この材料は、電気抵抗が本質的に大きく、電極としての充填性が悪い為、特性改善が求められている。 Recently, as a positive electrode active material useful for a high energy type lithium ion secondary battery having a voltage of 3.5 V class, olivine type LiFePO 4 has attracted attention as a battery having a high charge / discharge capacity. However, since this material has essentially high electrical resistance and poor filling properties as an electrode, improvement in characteristics is required.

即ち、オリビン型LiFePOは強固なりん酸4面体骨格と酸化還元に寄与する鉄イオンを中心にもつ酸素8面体とリチウムイオンから構成される。この結晶構造ため、充放電反応を繰り返すことによっても結晶構造は安定であり、サイクル特性は劣化しない特長がある。しかしリチウムイオンの移動経路が一次元的であることや自由電子が少ないという欠点が存在する。この課題を解決する為に、オリビン型LiFePOの一部にMn,Mg,Zr,Nb等を添加した材料の研究が行われてきたが、未だにこれらの課題を解決した材料は得られておらず、より電気抵抗の小さなものが求められている。 That is, olivine-type LiFePO 4 is composed of a strong phosphoric acid tetrahedral skeleton, an oxygen octahedron centered on iron ions contributing to redox, and lithium ions. Due to this crystal structure, the crystal structure is stable even when the charge / discharge reaction is repeated, and the cycle characteristics are not deteriorated. However, there are drawbacks in that the movement path of lithium ions is one-dimensional and there are few free electrons. In order to solve this problem, research has been conducted on materials in which Mn, Mg, Zr, Nb, etc. are added to a part of olivine-type LiFePO 4 , but no material that has solved these problems has yet been obtained. However, there is a demand for a material having a smaller electric resistance.

またLiFePOは、粉末を構成する一次粒子径が小さいほど、高レートでの充放電特性がよい特徴があるので、優れた特性のオリビン型LiFePO複合酸化物正極を得るにはそれらが密に凝集した二次粒子で、かつカーボンのような低電気抵抗物質でネットワークを形成するように集合状態を制御する必要がある。しかし、カーボン等と複合化された正極はかさ高く、単位体積当たりに充填できる実質
的なリチウムイオン密度が低くなるといった欠点がある。そこで、単位体積当たりの充放電容量を確保するためには、不純物の少なく電気抵抗の小さなオリビン型LiFePOを得ると共に、小さな結晶子サイズの一次粒子が電気抵抗の小さな導電性補助剤を介して高い密度を持った二次集合体を形成することが必要とされている。
In addition, LiFePO 4 has a characteristic that the smaller the primary particle size constituting the powder, the better the charge / discharge characteristics at a high rate. Therefore, in order to obtain an olivine-type LiFePO 4 composite oxide positive electrode with excellent characteristics, they are densely packed. It is necessary to control the aggregation state so as to form a network with aggregated secondary particles and a low electrical resistance material such as carbon. However, the positive electrode combined with carbon or the like is bulky and has a drawback that a substantial lithium ion density that can be filled per unit volume is lowered. Therefore, in order to secure the charge / discharge capacity per unit volume, olivine-type LiFePO 4 having a small amount of impurities and a small electric resistance is obtained, and primary particles having a small crystallite size are passed through a conductive auxiliary agent having a small electric resistance. There is a need to form secondary assemblies with high density.

また、オリビン型LiFePO複合酸化物の製造方法において、充填性が高く非晶質部分が少なく、小さな一次結晶子を得るためには、固相反応性の高い微粒子で、不純物量を制御した鉄系複合水酸化物粒子を用い、低温で短時間での条件で焼成を行う必要がある。 In addition, in the method for producing an olivine-type LiFePO 4 composite oxide, in order to obtain a small primary crystallite having a high filling property and a small amount of an amorphous part, iron having a controlled solid content and fine particles having high solid phase reactivity. It is necessary to perform firing under low temperature and short time conditions using the system composite hydroxide particles.

即ち、非水電解質二次電池用の正極活物質として充填性が高く不純物結晶相が少なく、電気抵抗の小さなオリビン型LiFePO複合酸化物を環境負荷が小さな工業的な方法で生産することが要求されている。 That is, it is required to produce an olivine-type LiFePO 4 composite oxide having a high filling property, a small impurity crystal phase, and a low electrical resistance as a positive electrode active material for a non-aqueous electrolyte secondary battery by an industrial method with a low environmental load. Has been.

従来、オリビン型LiFePO複合酸化物の諸特性改善のために、種々の改良が行われている。例えば、オリビン型LiFePOのFeサイトに他種金属を添加し、電気抵抗を低減する技術(特許文献1)、オリビン型LiFePOの製造時にタップ密度を向上させ、カーボンとの複合体を形成する技術(特許文献2)、酸化鉄原料を使用して優れた正極活物質を得る技術(特許文献3)、価数3の鉄化合物を凝集させたものを原料とする技術(特許文献4)等が知られている。 Conventionally, various improvements have been made to improve various characteristics of the olivine-type LiFePO 4 composite oxide. For example, a technique (Patent Document 1) for adding other kinds of metals to the Fe site of olivine-type LiFePO 4 to reduce electrical resistance, and improving the tap density during the production of olivine-type LiFePO 4 to form a composite with carbon Technology (Patent Document 2), Technology for obtaining an excellent positive electrode active material using an iron oxide raw material (Patent Document 3), Technology using a material obtained by aggregating a valence 3 iron compound (Patent Document 4), etc. It has been known.

特開2005−514304号公報JP 2005-514304 A 特開2006−032241号公報JP 2006-032241 A 特表2003−520405号公報Special table 2003-520405 gazette 特開2006−347805号公報JP 2006-347805 A

非水電解質二次電池用の正極活物質として前記諸特性を満たすオリビン型LiFePOの複合酸化物粉末の製造方法について、現在最も要求されているところであるが、未だ確立されていない。 As a positive electrode active material for a non-aqueous electrolyte secondary battery, a method for producing a composite oxide powder of olivine-type LiFePO 4 that satisfies the above-mentioned characteristics is currently most demanded, but has not been established yet.

即ち、特許文献1記載の技術は、オリビン型LiFePOの複合酸化物の構造安定化や電気抵抗を提言するために他種金属を添加するという技術であり、電極への充填性や二次集合状態のコントロールについては触れられていない。 In other words, the technique described in Patent Document 1 is a technique in which another metal is added in order to propose structural stabilization and electrical resistance of the olivine-type LiFePO 4 composite oxide. There is no mention of state controls.

また、特許文献2記載の技術は、オリビン型LiFePOの複合酸化物の製造にカーボンとの集合体を形成する技術であるが、一次粒子のサイズコントロールやカーボンとの複合体の集合状態コントロールが難しいという欠点がある。また製造工程が長いために、金属粉末等のコンタミネーションを生じる危険性がある。 The technique described in Patent Document 2 is a technique for forming an aggregate with carbon in the production of an olivine-type LiFePO 4 composite oxide. However, the size control of primary particles and the control of the aggregate state of the composite with carbon are not possible. There is a drawback that it is difficult. Moreover, since the manufacturing process is long, there is a risk of causing contamination such as metal powder.

更に、特許文献3記載の技術は、原料として使用する酸化鉄の固相反応性が十分でないので、微細な一次粒子を合成することが困難である。   Furthermore, the technique described in Patent Document 3 is difficult to synthesize fine primary particles because the solid phase reactivity of iron oxide used as a raw material is not sufficient.

また、特許文献4記載の技術は、汎用で安価な3価の鉄化合物を原料として、粒子形状を保持しながら、合成反応を遂行できる技術であるが、ビーズミルを使用するために無視できないコンタミネーションが発生し、また使用する酸化鉄粒子が大きく固相反応時のイオン拡散効率が低い。   The technique described in Patent Document 4 is a technique that can perform a synthesis reaction using a general-purpose and inexpensive trivalent iron compound as a raw material while maintaining the particle shape. However, contamination that cannot be ignored because a bead mill is used. In addition, the iron oxide particles used are large and the ion diffusion efficiency during the solid phase reaction is low.

そこで、本発明は、充填性が高く不純物結晶相が少ないオリビン型LiFePOの環境負荷が小さな効率的な工業的手法を確立することを技術的課題とする。 Therefore, the present invention has a technical problem to establish an efficient industrial method with a small environmental load of olivine type LiFePO 4 having a high filling property and a small impurity crystal phase.

前記技術的課題は、次の通りの本発明によって達成できる。   The technical problem can be achieved by the present invention as follows.

即ち、本発明は、組成がLiFe1−yPO(0.9<x<1.3、0.001<y<0.3、M:Mg、Zr、Mn、Ti、Ce、Cr、Co、Ni)であるオリビン型複合酸化物において、硫酸イオン含有量が1000ppm以下であってナトリウムイオン含有量が1000ppm以下であり、平均一次粒子径が0.5μm以下であって平均二次粒子径が2.0〜50μmであることを特徴とする非水電解質二次電池用オリビン型複合酸化物である(本発明1)。 That is, the present invention is a composition of Li x Fe 1-y M y PO 4 (0.9 <x <1.3,0.001 <y <0.3, M: Mg, Zr, Mn, Ti, Ce , Cr, Co, Ni), the sulfate ion content is 1000 ppm or less, the sodium ion content is 1000 ppm or less, the average primary particle size is 0.5 μm or less, and the average 2 An olivine-type composite oxide for a non-aqueous electrolyte secondary battery, wherein the secondary particle size is 2.0 to 50 μm (Invention 1).

また、本発明は、前記オリビン型複合酸化物において、平均二次粒子径の粒度分布偏差σ/Mが0.3以下である非水電解質二次電池用オリビン型複合酸化物である(本発明2)。   Further, the present invention is an olivine type composite oxide for a non-aqueous electrolyte secondary battery in which the average secondary particle size particle size distribution deviation σ / M is 0.3 or less in the olivine type composite oxide (the present invention). 2).

また、本発明は、前記オリビン型複合酸化物において、二次粒子内部及び/又は表面に炭素化合物を0.2〜10%含有する非水電解質二次電池用オリビン型複合酸化物である(本発明3)。   The present invention is the olivine-type composite oxide for a non-aqueous electrolyte secondary battery, wherein the olivine-type composite oxide contains 0.2 to 10% of a carbon compound inside and / or on the surface of the secondary particles (this book). Invention 3).

また、本発明は、オリビン型構造を持つLiFe1−yPO(0.9<x<1.3、0.001<y<0.3、M:Mg、Zr、Mn、Ti、Ce、Cr、Co、Ni)である複合酸化物の製造方法であって、鉄原料、リン原料、リチウム原料及び還元性を有する炭素系化合物を70〜160℃の温度範囲で水溶液中反応させた後、乾燥させ、非酸化性雰囲気または還元性雰囲気下で300〜750℃で熱処理することを特徴とする製造方法において、鉄原料としてBET比表面積が30〜400m/gであり、吸油量50ml/100g以上であり、平均二次粒子径2〜50μmである鉄化合物を用いることを特徴とするオリビン型複合酸化物の製造方法である(本発明4)。 The present invention also relates to Li x Fe 1- y My PO 4 (0.9 <x <1.3, 0.001 <y <0.3, M: Mg, Zr, Mn, (Ti, Ce, Cr, Co, Ni) A method for producing a composite oxide comprising an iron raw material, a phosphorus raw material, a lithium raw material, and a reducing carbon compound in an aqueous solution in a temperature range of 70 to 160 ° C. And then drying and heat-treating at 300 to 750 ° C. in a non-oxidizing atmosphere or a reducing atmosphere. The iron raw material has a BET specific surface area of 30 to 400 m 2 / g, An olivine-type composite oxide production method using an iron compound having an amount of 50 ml / 100 g or more and an average secondary particle diameter of 2 to 50 μm (Invention 4).

また、本発明は、本発明4において、鉄化合物がMg、Zr、Mn、Ti、Ce、Cr、Co及びNiから選ばれる一種以上の元素を含むことを特徴とするオリビン型複合酸化物の製造方法である(本発明5)。   Further, the present invention provides the olivine-type composite oxide according to the present invention 4, wherein the iron compound contains one or more elements selected from Mg, Zr, Mn, Ti, Ce, Cr, Co and Ni. This is a method (Invention 5).

また、本発明は、本発明4において、鉄化合物がリチウム化合物粒子を中心部に存在させ、Mg、Zr、Mn、Ti、Ce、Cr、Co及びNiから選ばれる一種以上の元素を含む鉄化合物粒子であるオリビン型複合酸化物の製造方法である(本発明6)。   Further, the present invention is the iron compound according to the present invention 4, wherein the iron compound contains lithium compound particles in the center and contains one or more elements selected from Mg, Zr, Mn, Ti, Ce, Cr, Co and Ni. It is a manufacturing method of olivine type complex oxide which is particles (invention 6).

また、本発明は、前記いずれかに記載のオリビン型複合酸化物を正極活物質またはその一部として用いた非水電解液二次電池である(本発明7)。   Further, the present invention is a non-aqueous electrolyte secondary battery using the olivine-type composite oxide described above as a positive electrode active material or a part thereof (Invention 7).

本発明に係るオリビン型LiFePOの複合酸化物は、残存硫酸イオン含有量が1000ppm以下かつ残存ナトリウムイオン含有量が1000ppm以下であるので、電気抵抗が低く、電極反応時のオリビン型LiFePOの構造が安定である。
また、本発明に係るオリビン型LiFePOの複合酸化物は、構成する一次粒子の結晶子サイズが0.5μm以下、二次凝集粒子サイズが2μm以上50μm以下なので、充放電時のレート特性を向上させることが出来る。
更に、本発明に係るオリビン型LiFePOの複合酸化物は、1t/cmで加圧時の密度が2.30g/cc以上であるので充填性が向上し、体積あたりの電池容量を向上させることができる。
従って、本発明に係るオリビン型LiFePOの複合酸化物は、非水電解質二次電池用の正極活物質として好適である。
Since the composite oxide of olivine type LiFePO 4 according to the present invention has a residual sulfate ion content of 1000 ppm or less and a residual sodium ion content of 1000 ppm or less, the electrical resistance is low, and the structure of the olivine type LiFePO 4 during electrode reaction Is stable.
In addition, the composite oxide of olivine-type LiFePO 4 according to the present invention improves the rate characteristics during charge / discharge because the primary particles have a crystallite size of 0.5 μm or less and a secondary agglomerated particle size of 2 μm to 50 μm. It can be made.
Furthermore, since the olivine-type LiFePO 4 composite oxide according to the present invention has a density of 1.30 g / cc or more at a pressure of 1 t / cm 2 , the filling property is improved and the battery capacity per volume is improved. be able to.
Therefore, the olivine-type LiFePO 4 composite oxide according to the present invention is suitable as a positive electrode active material for a non-aqueous electrolyte secondary battery.

本発明の構成をより詳しく説明すれば次の通りである。   The configuration of the present invention will be described in more detail as follows.

先ず、本発明に係る非水電解質二次電池用オリビン型(LiFePO)複合酸化物について述べる。 First, the olivine type (LiFePO 4 ) composite oxide for a non-aqueous electrolyte secondary battery according to the present invention will be described.

本発明に係るオリビン型複合酸化物の組成は、LiFe1−yPO(0.90<x<1.30、0.001<y<0.3、M:Mg、Zr、Mn、Ti、Ce、Cr、Co、Ni)である。
xが前記範囲外の場合には、高い電池容量のLiFePO複合酸化物を得ることができない。より好ましくは0.98≦x≦1.10である。
yが前記範囲外の場合には、初期充放電容量の低下が著しくなる。置換元素Mは、Mg、Zr、Mn、Ti、Ce、Coがより好ましい。より好ましくは0.001<x≦0.25であり、更により好ましくは0.005≦x≦0.20である。
The composition of the olivine-type composite oxide according to the present invention is Li x Fe 1- y My PO 4 (0.90 <x <1.30, 0.001 <y <0.3, M: Mg, Zr, Mn, Ti, Ce, Cr, Co, Ni).
When x is out of the above range, a LiFePO 4 composite oxide having a high battery capacity cannot be obtained. More preferably, 0.98 ≦ x ≦ 1.10.
When y is outside the above range, the initial charge / discharge capacity is significantly reduced. The substitution element M is more preferably Mg, Zr, Mn, Ti, Ce, or Co. More preferably, 0.001 <x ≦ 0.25, and still more preferably 0.005 ≦ x ≦ 0.20.

本発明に係るオリビン型複合酸化物は、残存硫酸イオン量が1000ppm以下で、非水電解質二次電池において良好な保存特性が得られる。前記残存量が1000ppmを超える場合、オリビン型複合酸化物に硫酸リチウムなどの不純物が混在し、充放電中にそれらの不純物が分解反応を起こして、高温保存時の電解液との反応が促進され保存後の抵抗上昇が激しくなる。好ましくは0〜500ppmである。   The olivine-type composite oxide according to the present invention has a residual sulfate ion amount of 1000 ppm or less, and good storage characteristics can be obtained in a non-aqueous electrolyte secondary battery. When the residual amount exceeds 1000 ppm, impurities such as lithium sulfate are mixed in the olivine-type composite oxide, and these impurities cause a decomposition reaction during charge and discharge, and the reaction with the electrolyte during high-temperature storage is promoted. Increase in resistance after storage becomes severe. Preferably it is 0-500 ppm.

また、残存ナトリウムイオン量が1000ppm以下で、非水電解質二次電池において良好な保存特性が得られる。前記残存量が1000ppmを超える場合、オリビン型複合酸化物に鉄酸ナトリウムなどの不純物が混在し、充放電中にそれらの不純物が分解反応を起こして、高温保存時の電解液との反応が促進され保存後の抵抗上昇が激しくなる。好ましくは0〜500ppmである。   In addition, when the amount of residual sodium ions is 1000 ppm or less, good storage characteristics can be obtained in a nonaqueous electrolyte secondary battery. When the residual amount exceeds 1000 ppm, impurities such as sodium ferrate are mixed in the olivine-type complex oxide, and these impurities cause a decomposition reaction during charge and discharge, which accelerates the reaction with the electrolyte during high-temperature storage. The resistance rises after storage. Preferably it is 0-500 ppm.

本発明に係るオリビン型複合酸化物の一次粒子の平均一次粒子径(結晶子サイズ)は0.50μm以下である。一次粒子の平均粒子径が0.50μmを超える場合には、高充放電レートにおける充放電容量が小さくなる。好ましくは0.02〜0.40μmである。   The average primary particle diameter (crystallite size) of the primary particles of the olivine-type composite oxide according to the present invention is 0.50 μm or less. When the average particle diameter of the primary particles exceeds 0.50 μm, the charge / discharge capacity at a high charge / discharge rate becomes small. Preferably it is 0.02-0.40 micrometer.

本発明に係るオリビン型複合酸化物の二次粒子の平均粒子径は2.0〜50μmである。平均粒子径が2.0μm未満の場合には、充填密度の低下や電解液との反応性が増加するため好ましくない。50μmを超える場合には、工業的に生産することが困難となる。好ましくは3.0〜20.0μmである。   The average particle diameter of the secondary particles of the olivine-type composite oxide according to the present invention is 2.0 to 50 μm. An average particle size of less than 2.0 μm is not preferable because the packing density is lowered and the reactivity with the electrolytic solution is increased. When it exceeds 50 μm, it is difficult to produce industrially. Preferably it is 3.0-20.0 micrometers.

本発明に係るオリビン型複合酸化物の平均二次粒子径の粒度分布偏差σ/Mが0.3以下であることが好ましい(σは標準偏差、Mは平均二次粒子径)。正極活物質の平均二次粒子径の粒度分布偏差σ/Mが0.3より大きい場合には、導電性に関する特性のバラツキが大きくなる。   The particle size distribution deviation σ / M of the average secondary particle diameter of the olivine-type composite oxide according to the present invention is preferably 0.3 or less (σ is a standard deviation, and M is an average secondary particle diameter). When the particle size distribution deviation σ / M of the average secondary particle size of the positive electrode active material is larger than 0.3, the variation in the characteristics relating to conductivity increases.

本発明に係るオリビン型複合酸化物の二次粒子の粒子形状は、球状または扁平状であり鋭角部が少ないことが好ましい。   The particle shape of the secondary particles of the olivine-type composite oxide according to the present invention is preferably spherical or flat and has few acute angles.

本発明に係るオリビン型複合酸化物の炭素含有量は0.2〜10%であり、二次粒子の内部及び/又は表面に存在することが好ましい。炭素含有率が0.2%未満の場合、電気抵抗率が大きくなる。また、10%を超える場合、充填率が小さくなり、体積当たりの初期充放電容量が小さくなる。好ましくは0.5〜8.0%である。   The olivine-type composite oxide according to the present invention has a carbon content of 0.2 to 10%, and is preferably present inside and / or on the surface of the secondary particles. When the carbon content is less than 0.2%, the electrical resistivity increases. Moreover, when it exceeds 10%, a filling rate will become small and the initial stage charge / discharge capacity per volume will become small. Preferably it is 0.5 to 8.0%.

本発明に係るオリビン型複合酸化物のBET比表面積は2〜25m/gが好ましい。BET比表面積値が2m/g未満の場合には、充放電レートが低下する。25m/gを超える場合には充填密度の低下や電解液との反応性が増加するため好ましくない。より好ましくは5〜20m/gである。 The BET specific surface area of the olivine-type composite oxide according to the present invention is preferably 2 to 25 m 2 / g. When the BET specific surface area value is less than 2 m 2 / g, the charge / discharge rate decreases. If it exceeds 25 m 2 / g, the filling density is lowered and the reactivity with the electrolytic solution is increased. More preferably, it is 5-20 m < 2 > / g.

本発明に係るオリビン型複合酸化物の1t/cmで加圧したときの圧縮密度は、2.30g/cc以上であることが好ましい。圧縮密度が2.30g/cc未満の場合、体積あたりの電池容量が少なくなる。より好ましくは2.40g/cc以上であり、真密度に近づけば近づくほど良い。本発明に係るオリビン型複合酸化物は一次粒子が密に集合した構造を取っているので、圧縮密度が高いと考えられる。 The compression density when the olivine-type composite oxide according to the present invention is pressurized at 1 t / cm 2 is preferably 2.30 g / cc or more. When the compression density is less than 2.30 g / cc, the battery capacity per volume decreases. More preferably, it is 2.40 g / cc or more, and the closer to the true density, the better. Since the olivine-type complex oxide according to the present invention has a structure in which primary particles are densely assembled, it is considered that the compression density is high.

次に、本発明に係るオリビン型複合酸化物の製造法について述べる。   Next, a method for producing the olivine type complex oxide according to the present invention will be described.

本発明に係るオリビン型複合酸化物は、鉄系複合水酸化物の粒子の集合体内部に還元性を有する炭素系化合物が溶解したリン酸リチウム化合物溶液を含浸し、得られた混合物を非酸化性または還元性条件下で焼成して得ることができる。   The olivine-type composite oxide according to the present invention impregnates a lithium phosphate compound solution in which a reducing carbon-based compound is dissolved inside an aggregate of iron-based composite hydroxide particles, and the resulting mixture is non-oxidized. Can be obtained by firing under neutral or reducing conditions.

本発明においては鉄原料して鉄系複合水酸化物凝集粒子を用いることができる。該鉄系複合水酸化物凝集粒子は、0.1〜1.8mol/lの硫酸第一鉄と、0.1〜18.5mol/lのアルカリ水溶液、必要により、異種金属硫酸塩を所定のmol比となるように混合した溶液を同時に常に攪拌された反応槽へゆっくり供給し、反応槽のpHが9.3以上になるように保持しながら空気酸化反応を行うことで得ることができる。
また、上記の空気酸化反応において、金属塩混合溶液及びアルカリ溶液の添加前の反応槽に炭酸リチウム粒子やリン酸リチウム等の鉄系複合水酸化物凝集粒子の凝集体の核となる物質を含む懸濁液をあらかじめ装填してもよい。
得られる鉄系複合凝集粒子の比表面積を大きくするためには、空気酸化反応温度は50℃以下、反応pH13.0以下が好ましい。
In the present invention, iron-based composite hydroxide aggregated particles can be used as the iron raw material. The iron-based composite hydroxide aggregated particles are prepared by adding 0.1 to 1.8 mol / l ferrous sulfate, 0.1 to 18.5 mol / l aqueous alkali solution, and if necessary, dissimilar metal sulfate. It can be obtained by slowly supplying a solution mixed so as to have a molar ratio to a reaction tank which is always stirred at the same time, and carrying out an air oxidation reaction while maintaining the pH of the reaction tank at 9.3 or higher.
In the above air oxidation reaction, the reaction tank before the addition of the metal salt mixed solution and the alkali solution contains a substance that becomes the core of the aggregate of iron-based composite hydroxide aggregated particles such as lithium carbonate particles and lithium phosphate. The suspension may be preloaded.
In order to increase the specific surface area of the obtained iron-based composite aggregated particles, the air oxidation reaction temperature is preferably 50 ° C. or lower and the reaction pH is 13.0 or lower.

本発明における鉄系複合水酸化物凝集粒子は、平均粒径が2〜15μm、BET比表面積が10〜150m/gであることが好ましい。また鉄系複合水酸化物凝集粒子の0.1μm以下の細孔容積は0.5cc/g以上が好ましい。 The iron-based composite hydroxide aggregated particles in the present invention preferably have an average particle size of 2 to 15 μm and a BET specific surface area of 10 to 150 m 2 / g. Further, the pore volume of 0.1 μm or less of the iron-based composite hydroxide aggregated particles is preferably 0.5 cc / g or more.

反応で生成した副生成物を除去する為、フィルタープレス、若しくはバキュームフィルター、フィルターシックナー等を用いることができる。   In order to remove by-products generated by the reaction, a filter press, a vacuum filter, a filter thickener, or the like can be used.

洗浄処理をした鉄系複合水酸化物凝集粒子は通風式乾燥機、凍結真空乾燥機、スプレー乾燥機等を用いて余分な水分を除去することができる。   The iron-based composite hydroxide aggregated particles that have been subjected to the washing treatment can remove excess water using a ventilating dryer, a freeze vacuum dryer, a spray dryer, or the like.

乾燥した鉄系複合水酸化物凝集粒子粉末は、ヘンシェルミキサー、らいかい機、ハイスピードミキサー、万能攪拌機、ボールミル等の乾式および湿式混合機を用いて、還元性を有する炭素系化合物を含有するリン酸およびリチウムを含む水溶液と混合する。   The dried iron-based composite hydroxide agglomerated particle powder is obtained by using a Henschel mixer, a rakai machine, a high-speed mixer, a universal stirrer, a ball mill and other dry and wet mixers, and a phosphorus compound containing a reducing carbon compound. Mix with aqueous solution containing acid and lithium.

混合後、70〜160℃の温度範囲で液中反応させる。反応時間は0.2〜12時間が好ましい。
反応終了後、通風式乾燥機、凍結真空乾燥機、スプレー乾燥機等を用いて余分な水分を除去することができる。また水分除去時に鉄系複合水酸化物凝集粒子とリン酸塩およびリチウム塩が分離しやすいので、攪拌しながら水分除去することが好ましい。
After mixing, the reaction is carried out in the liquid at a temperature range of 70 to 160 ° C. The reaction time is preferably 0.2 to 12 hours.
After completion of the reaction, excess water can be removed using a ventilating dryer, a freeze vacuum dryer, a spray dryer or the like. Moreover, since the iron-based composite hydroxide aggregated particles and the phosphate and lithium salt are easily separated at the time of removing water, it is preferable to remove the water while stirring.

リン酸塩およびリチウム塩の添加量は、鉄系複合水酸化物凝集粒子に含まれる鉄イオンと異種金属イオンの総和に対して、それぞれモルパーセント換算で95〜105、90〜120の範囲が好ましい。
リン酸塩としては、オルトリン酸、五酸化リン等が使用できる。リチウム塩としては、炭酸リチウム、水酸化リチウム等が使用できる。またリン酸2水素リチウム、リン酸水素アンモニウム等も使用できる。
リン酸およびリチウム塩溶液に共存させることができる還元性を有する炭素系化合物としては、ショ糖、クエン酸、アスコルビン酸、でんぷん、マンナン、トレハロース等が挙げられる。
The addition amount of phosphate and lithium salt is preferably in the range of 95 to 105 and 90 to 120 in terms of mole percent with respect to the sum of iron ions and different metal ions contained in the iron-based composite hydroxide aggregated particles, respectively. .
As the phosphate, orthophosphoric acid, phosphorus pentoxide and the like can be used. As the lithium salt, lithium carbonate, lithium hydroxide or the like can be used. Further, lithium dihydrogen phosphate, ammonium hydrogen phosphate and the like can be used.
Examples of the carbon-based compound having reducibility that can coexist in the phosphoric acid and lithium salt solution include sucrose, citric acid, ascorbic acid, starch, mannan, trehalose and the like.

混合したリン酸塩およびリチウム塩のそれぞれの平均粒子径は2μm以下が好ましい。粒子サイズが2μmを超えると加熱処理時の固相反応が低温で起きにくくなる。また鉄系複合水酸化物凝集粒子とリン酸塩およびリチウム塩混合物において、お互いが分離した状態は好ましくない。   The average particle diameter of each of the mixed phosphate and lithium salt is preferably 2 μm or less. When the particle size exceeds 2 μm, the solid phase reaction during the heat treatment hardly occurs at a low temperature. Further, it is not preferable that the iron-based composite hydroxide aggregated particles and the phosphate and lithium salt mixture are separated from each other.

鉄系複合水酸化物凝集粒子とリン酸塩およびリチウム塩混合物の平均粒径は2〜50μm、BET比表面積が0.2〜15.0m/gであることが好ましい。 The average particle diameter of the iron-based composite hydroxide aggregated particles and the phosphate and lithium salt mixture is preferably 2 to 50 μm and the BET specific surface area is preferably 0.2 to 15.0 m 2 / g.

鉄系複合水酸化物凝集粒子とリン酸塩およびリチウム塩混合物は、ガス流通式箱型マッフル炉、ガス流通式回転炉、流動熱処理炉等で熱処理することができる。   The iron-based composite hydroxide aggregated particles and the phosphate and lithium salt mixture can be heat-treated in a gas flow box muffle furnace, a gas flow rotary furnace, a fluidized heat treatment furnace, or the like.

加熱焼成温度は、400℃〜700℃が好ましい。400℃未満の場合には固相反応および鉄イオンの還元反応が十分に進まず、オリビン型(LiFePO)複合酸化物の他の結晶相が残存し、700℃を超える場合には生成粒子の一次結晶子サイズが0.5μm以上となるので好ましくない。焼成時の雰囲気は非酸化性または還元ガス雰囲気が好ましい。焼成時間は2〜20時間が好ましい。 The baking temperature is preferably 400 ° C to 700 ° C. When the temperature is lower than 400 ° C., the solid phase reaction and the reduction reaction of iron ions do not proceed sufficiently, and other crystal phases of the olivine type (LiFePO 4 ) composite oxide remain. Since the primary crystallite size is 0.5 μm or more, it is not preferable. The atmosphere during firing is preferably a non-oxidizing or reducing gas atmosphere. The firing time is preferably 2 to 20 hours.

次に、本発明に係るオリビン型(LiFePO)複合酸化物からなる正極活物質を用いた正極について述べる。 Next, a positive electrode using a positive electrode active material made of an olivine type (LiFePO 4 ) composite oxide according to the present invention will be described.

本発明に係るオリビン型複合酸化物を用いて正極を製造する場合には、常法に従って、導電剤と結着剤とを添加混合する。導電剤としてはアセチレンブラック、カーボンブラック、黒鉛等が好ましく、結着剤としてはポリテトラフルオロエチレン、ポリフッ化ビニリデン等が好ましい。   When manufacturing a positive electrode using the olivine type complex oxide according to the present invention, a conductive agent and a binder are added and mixed according to a conventional method. As the conductive agent, acetylene black, carbon black, graphite and the like are preferable, and as the binder, polytetrafluoroethylene, polyvinylidene fluoride and the like are preferable.

本発明に係るオリビン型複合酸化物を用いて製造される二次電池は、前記正極、負極及び電解質から構成される。   The secondary battery manufactured using the olivine-type complex oxide according to the present invention includes the positive electrode, the negative electrode, and the electrolyte.

負極活物質としては、リチウム金属、リチウム/アルミニウム合金、リチウム/スズ合金、グラファイトや黒鉛等を用いることができる。   As the negative electrode active material, lithium metal, lithium / aluminum alloy, lithium / tin alloy, graphite, graphite, or the like can be used.

また、電解液の溶媒としては、炭酸エチレンと炭酸ジエチルの組み合わせ以外に、炭酸プロピレン、炭酸ジメチル等のカーボネート類や、ジメトキシエタン等のエーテル類の少なくとも1種類を含む有機溶媒を用いることができる。   In addition to the combination of ethylene carbonate and diethyl carbonate, an organic solvent containing at least one of carbonates such as propylene carbonate and dimethyl carbonate and ethers such as dimethoxyethane can be used as the solvent for the electrolytic solution.

さらに、電解質としては、六フッ化リン酸リチウム以外に、過塩素酸リチウム、四フッ化ホウ酸リチウム等のリチウム塩の少なくとも1種類を上記溶媒に溶解して用いることができる。   Further, as the electrolyte, in addition to lithium hexafluorophosphate, at least one lithium salt such as lithium perchlorate and lithium tetrafluoroborate can be dissolved in the above solvent and used.

本発明に係るオリビン型複合酸化物を用いて製造した二次電池は、C/20の充放電レートで、初期放電容量が140〜160mAh/g、5Cの充放電レートで、初期放電容量が70〜110mAh/g程度である。   The secondary battery manufactured using the olivine-type composite oxide according to the present invention has a C / 20 charge / discharge rate, an initial discharge capacity of 140 to 160 mAh / g, a charge / discharge rate of 5C, and an initial discharge capacity of 70. It is about -110 mAh / g.

<作用>
本発明に係るオリビン型(LiFePO)複合酸化物が前記特性を有するのは、残存硫酸イオン含有量が1000ppm以下かつナトリウムイオン1000ppm以下であり、平均一次粒子サイズが0.5μ以下、平均二次粒子径2〜50μm、形状が球状であることで電気化学的に活性な微細オリビン型複合酸化物の一次粒子が緻密な平均二次粒子径2〜50μmの集合体になったために、高充填性、高充放電特性、および高いレート特性を持つと本発明者は推定している。
<Action>
The olivine type (LiFePO 4 ) composite oxide according to the present invention has the above-mentioned properties because the residual sulfate ion content is 1000 ppm or less and the sodium ion is 1000 ppm or less, the average primary particle size is 0.5 μ or less, and the average secondary Since the primary particles of the fine olivine-type composite oxide that is electrochemically active due to the particle diameter of 2 to 50 μm and the spherical shape have become a dense aggregate with an average secondary particle diameter of 2 to 50 μm, high filling properties The present inventors have estimated that the battery has high charge / discharge characteristics and high rate characteristics.

本発明の代表的な実施の形態は次の通りである。 A typical embodiment of the present invention is as follows.

平均二次粒子径(M)は日立製S−4800型 走査型電子顕微鏡を用いて測定した1000個の粒子の個数平均粒子径である。σは前記測定データから算出した。
平均一次粒子径は、前記と同様に、日立製S−4800型 走査型電子顕微鏡査型を用いて測定した。
比表面積は試料を窒素ガス下で120℃、45分間乾燥脱気した後、MONOSORB[ユアサアイオニックス(株)製]を用いてBET1点連続法により求めた比表面積である。
加圧時の密度は1t/cmの圧力を掛けたときの密度である。
硫酸イオン量は試料を炭素、硫黄測定装置EMIA−820[(株)ホリバ製作所製]を用いて試料を燃焼炉で酸素気流中にて燃焼させ、測定された硫黄分の量から換算した硫酸イオン量である。
炭素含有量は炭素、硫黄測定装置EMIA−820[(株)ホリバ製作所製]を用いて測定した。
異種金属元素、残存ナトリウムイオン量は、発光プラズマ分析装置ICAP−6500[サーモフィッシャーサイエンティフィク社製]を用いて測定した。
X線回折は、X線回折装置RINT−2500[(株)リガク製]を用いて、Cu−Kα、50kV,200mAにより行った。
The average secondary particle size (M) is the number average particle size of 1000 particles measured using Hitachi S-4800 scanning electron microscope. σ was calculated from the measurement data.
The average primary particle size was measured using a Hitachi S-4800 scanning electron microscope as described above.
The specific surface area is a specific surface area determined by the BET one-point continuous method using MONOSORB [manufactured by Yuasa Ionics Co., Ltd.] after drying and deaeration of the sample under nitrogen gas at 120 ° C. for 45 minutes.
The density at the time of pressurization is a density when a pressure of 1 t / cm 2 is applied.
The amount of sulfate ion was determined by burning the sample with carbon and sulfur measuring device EMIA-820 [manufactured by Horiba Ltd.] in a combustion furnace in an oxygen stream and converting the measured sulfur content. Amount.
The carbon content was measured using a carbon and sulfur measuring device EMIA-820 [manufactured by Horiba Ltd.].
The amount of different metal elements and residual sodium ions were measured using an emission plasma analyzer ICAP-6500 [manufactured by Thermo Fisher Scientific Co.].
X-ray diffraction was performed with Cu-Kα, 50 kV, 200 mA using an X-ray diffractometer RINT-2500 [manufactured by Rigaku Corporation].

オリビン型複合酸化物を用いてコインセルによる初期充放電特性及び高温保存特性評価を行った。
まず、正極活物質としてオリビン型複合酸化物を90重量%、導電材としてアセチレンブラックを3重量%及びグラファイトKS−16を3重量%、バインダーとしてN−メチルピロリドンに溶解したポリフッ化ビニリデン4重量%とを混合した後、Al金属箔に塗布し150℃にて乾燥した。このシートを16cmφに打ち抜いた後、5t/cmで圧着し、電極厚みを50μmとした物を正極に用いた。負極は16cmφに打ち抜いた金属リチウムとし、電解液は1mol/lのLiPFを溶解したECとDMCを体積比1:2で混合した溶液を用いてCR2032型コインセルを作成した。
初期充放電特性は、室温で充電は4.5Vまで0.2mA/cmにて行った後、放電を2.0Vまで0.2mA/cmにて行い、その時の初期充電容量、初期放電容量及び初期効率を測定した。
The initial charge / discharge characteristics and high-temperature storage characteristics of the coin cell were evaluated using olivine type complex oxide.
First, 90% by weight of olivine type composite oxide as a positive electrode active material, 3% by weight of acetylene black as a conductive material and 3% by weight of graphite KS-16, 4% by weight of polyvinylidene fluoride dissolved in N-methylpyrrolidone as a binder And then applied to an Al metal foil and dried at 150 ° C. This sheet was punched to 16 cmφ, and then pressure-bonded at 5 t / cm 2 , and an electrode having a thickness of 50 μm was used for the positive electrode. A CR2032-type coin cell was prepared by using metallic lithium punched to 16 cmφ as a negative electrode and a solution obtained by mixing EC and DMC in which 1 mol / l LiPF 6 was dissolved at a volume ratio of 1: 2 as an electrolytic solution.
The initial charge / discharge characteristics are as follows: at room temperature, the charge is performed at 0.2 mA / cm 2 up to 4.5 V, and then the discharge is performed at 0.2 mA / cm 2 up to 2.0 V. Capacity and initial efficiency were measured.

[実施例1]
あらかじめ100Lの容積になるようにイオン交換水を反応槽に装填した後、1.6mol/lの硫酸第一鉄、硫酸マグネシウムをFe:Mg=99:1になるように混合した水溶液と9.0mol/l水酸化ナトリウム水溶液を、同時にpH=11±0.5となるように反応槽内に8時間かけてゆっくり供給した。
反応槽は羽根型攪拌機で常に攪拌と空気酸化を行い、液温度を40℃に保持した。反応溶液の金属塩濃度が0.6mol/lになった時点で、硫酸第一鉄と硫酸マグネシウムの混合溶液及び水酸化ナトリウム水溶液の供給を停止した。つぎに反応液中の鉄イオンがすべて3価になるまで4時間空気酸化反応を行った。
[Example 1]
8. An ion exchange water is charged into the reaction tank in advance so as to have a volume of 100 L, and then 1.6 mol / l ferrous sulfate and magnesium sulfate are mixed so that Fe: Mg = 99: 1. A 0 mol / l sodium hydroxide aqueous solution was slowly fed into the reaction vessel over 8 hours so that the pH was simultaneously 11 ± 0.5.
The reaction tank was always stirred and air oxidized with a blade-type stirrer, and the liquid temperature was kept at 40 ° C. When the metal salt concentration of the reaction solution reached 0.6 mol / l, the supply of the mixed solution of ferrous sulfate and magnesium sulfate and the aqueous sodium hydroxide solution was stopped. Next, an air oxidation reaction was performed for 4 hours until all the iron ions in the reaction solution became trivalent.

反応後、取り出したスラリー液を、フィルタープレスを用いて5倍量の水で水洗を行った後、14時間通風式乾燥機で乾燥処理を行った。
得られた粉末の組成を発光プラズマ分析装置で測定した結果、Fe:Mg=99.1:0.9、硫酸イオン(SO)含有量150ppm、ナトリウムイオン含有量75ppmであることがわかった。BET比表面積が83m/g、吸油量が68ml/100gであることがわかった。そして走査型顕微鏡で観察した結果、凝集粒子の平均径は3.3μmであることがわかった。またX線回折測定の結果、凝集粉末の結晶構造は、αFeOOH型であることがわかった。
After the reaction, the removed slurry was washed with 5 times the amount of water using a filter press and then dried with a ventilated dryer for 14 hours.
As a result of measuring the composition of the obtained powder with a light emission plasma analyzer, it was found that Fe: Mg = 99.1: 0.9, sulfate ion (SO 4 ) content 150 ppm, and sodium ion content 75 ppm. It was found that the BET specific surface area was 83 m 2 / g and the oil absorption was 68 ml / 100 g. As a result of observation with a scanning microscope, it was found that the average diameter of the aggregated particles was 3.3 μm. As a result of X-ray diffraction measurement, it was found that the crystal structure of the aggregated powder was αFeOOH type.

得られた凝集含水酸化鉄粒子のSEM写真を図1に示す。いがぐり状の凝集構造をしていることがわかる。   An SEM photograph of the obtained aggregated hydrous iron oxide particles is shown in FIG. It can be seen that it has an agglomerate aggregate structure.

鉄系複合水酸化物凝集粒子1000gを内容積20Lの加熱式混合攪拌機に入れ、攪拌しながら95℃に加熱した。その後攪拌しながら3wt%のショ糖と32wt%リン酸二水素リチウム含有溶液3645gを30分かけて添加した。添加終了後、混合攪拌機内の温度を95℃に保持させ状態で、360分反応させた。その後、混合攪拌機内の温度を120℃に昇温させ、反応乾燥粉末1775gを得た。そして走査型顕微鏡で観察した結果、混合複合粉末の平均径は4.2μmであることがわかった。またX線回折測定の結果、凝集粉末の結晶構造は、Tavorite型であることがわかった。   1000 g of iron-based composite hydroxide aggregated particles were put into a heating type mixing stirrer with an internal volume of 20 L, and heated to 95 ° C. while stirring. Thereafter, 3645 g of 3 wt% sucrose and 32 wt% lithium dihydrogen phosphate-containing solution were added over 30 minutes while stirring. After completion of the addition, the reaction was carried out for 360 minutes while maintaining the temperature in the mixing stirrer at 95 ° C. Thereafter, the temperature in the mixing stirrer was raised to 120 ° C. to obtain 1775 g of a dry reaction powder. As a result of observation with a scanning microscope, it was found that the average diameter of the mixed composite powder was 4.2 μm. As a result of X-ray diffraction measurement, it was found that the crystal structure of the aggregated powder was a Tavorite type.

得られたリンイオン、りん酸イオン、鉄イオンを含む複合凝集粉末のSEM写真を図2に示す。   FIG. 2 shows an SEM photograph of the obtained composite aggregated powder containing phosphorus ions, phosphate ions, and iron ions.

この混合物を窒素ガス雰囲気下、550℃にて4時間焼成し、解砕した。
得られた焼成物の化学組成はLi1.02Fe0.99Mg0.01POであり、炭素含有量0.56wt%,硫酸イオン(SO)含有量180ppm、ナトリウム含有量170ppm、平均一次粒子径は0.3μmであり、集合体の形状は球形で、平均二次粒子径は4.0μm、圧縮密度は2.35g/ccであった。またX線回折測定の結果、結晶構造はオリビン型であることがわかった。得られたオリビン型複合酸化物の電子顕微鏡写真を図3に示す。
This mixture was fired at 550 ° C. for 4 hours in a nitrogen gas atmosphere and crushed.
The obtained fired product has a chemical composition of Li 1.02 Fe 0.99 Mg 0.01 PO 4 , a carbon content of 0.56 wt%, a sulfate ion (SO 4 ) content of 180 ppm, a sodium content of 170 ppm, an average The primary particle diameter was 0.3 μm, the shape of the aggregate was spherical, the average secondary particle diameter was 4.0 μm, and the compression density was 2.35 g / cc. As a result of X-ray diffraction measurement, the crystal structure was found to be olivine type. An electron micrograph of the obtained olivine-type composite oxide is shown in FIG.

[実施例2]
金属塩の溶液組成を硫酸第一鉄と硫酸マグネシウムおよび硫酸第二セリウムをFe:Mg:Ce=98.5:1:0.5になるように混合した水溶液に連続供給した以外は実施例1と同様に行って、化学組成がFe0.99Mg0.01OOH,0.05Ce(OH)である鉄系複合水酸化物凝集粒子を得た。以降は、実施例1と同様に行って化学組成がLi1.02Fe0.985Mg0.01Ce0.005POであるオリビン型(LiFePO)複合酸化物を得た。
[Example 2]
Example 1 except that the solution composition of the metal salt was continuously supplied to an aqueous solution in which ferrous sulfate, magnesium sulfate, and ceric sulfate were mixed so that Fe: Mg: Ce = 98.5: 1: 0.5. In the same manner as above, iron-based composite hydroxide aggregated particles having a chemical composition of Fe 0.99 Mg 0.01 OOH, 0.05Ce (OH) 4 were obtained. Thereafter, an olivine type (LiFePO 4 ) composite oxide having a chemical composition of Li 1.02 Fe 0.985 Mg 0.01 Ce 0.005 PO 4 was obtained in the same manner as in Example 1.

[実施例3]
あらかじめ100Lの容積になるように炭酸リチウム1110g添加イオン交換水を反応槽に装填した後、1.5mol/lの硫酸第一鉄と硫酸マンガンをFe:Mn=95:5になるように混合した水溶液と9.0mol/l水酸化ナトリウム水溶液を、同時にpH=12±0.2となるように反応槽内に12時間かけてゆっくり供給した。
反応槽は羽根型攪拌機で常に攪拌と空気酸化を行い、液温度を30℃に保持した。反応溶液の金属塩濃度が0.6mol/lになった時点で、硫酸第一鉄と硫酸マンガンの混合溶液及び水酸化ナトリウム水溶液の供給を停止した。つぎに反応液中の鉄イオンがすべて3価になるまで4時間空気酸化反応を行った。
反応後、取り出したスラリー液を、フィルタープレスを用いて20倍量の水で水洗を行った後、14時間通風式乾燥機で乾燥処理を行った。
得られた粉末の組成を発光プラズマ分析装置で測定した結果、Fe:Mn=95.1:4.9、硫酸イオン(SO)含有量130ppm、ナトリウムイオン含有量85ppm、リチウムイオン含有量890ppmであることがわかった。BET比表面積は103m/g、吸油量は64ml/100gであることがわかった。そして走査型顕微鏡で観察した結果、凝集粒子の平均径は10.2μmであることがわかった。またX線回折測定の結果、凝集粉末の結晶構造は、αFeOOH型であることがわかった。
得られた鉄系複合水酸化物凝集粒子1000gと、3wt%のアスコルビン酸と32wt%リン酸二水素リチウムを含む溶液3640gとを内容積20Lのオートクレーブに入れ、攪拌しながら120℃まで昇温して、1時間保持した。つぎにオートクレーブの温度を60℃まで冷却して内容物を取り出した。その後、この内容物を混合攪拌機内に移し変えて、攪拌しながら温度を120℃に上昇させて、60分攪拌乾燥を行い、反応混合粉末1760gを得た。そして走査型顕微鏡で観察した結果、反応混合複合粉末の平均径は10.9μmであることがわかった。またX線回折測定の結果、凝集粉末の結晶構造は、Tavorite型であることがわかった。
つぎに、この混合物を水素ガス雰囲気下、550℃にて4時間焼成し、解砕した。
得られた焼成物の化学組成はLi1.01Fe0.95Mn0.05POであり、炭素含有量0.59wt%,硫酸イオン(SO)含有量250ppm、ナトリウム含有量205ppmであり、平均一次粒子径0.09μmであり、集合体の形状は球形で、平均二次粒子径は11.3μm、圧縮密度は2.50g/ccであった。またX線回折測定の結果、結晶構造はオリビン型であることがわかった。
[Example 3]
After adding 1110 g of lithium carbonate-added ion exchange water in advance to a volume of 100 L to the reaction vessel, 1.5 mol / l of ferrous sulfate and manganese sulfate were mixed so that Fe: Mn = 95: 5. The aqueous solution and 9.0 mol / l sodium hydroxide aqueous solution were slowly fed into the reaction vessel over 12 hours so that the pH was 12 ± 0.2 at the same time.
The reaction tank was always stirred and air-oxidized with a blade-type stirrer, and the liquid temperature was kept at 30 ° C. When the metal salt concentration of the reaction solution reached 0.6 mol / l, the supply of the mixed solution of ferrous sulfate and manganese sulfate and the aqueous sodium hydroxide solution were stopped. Next, an air oxidation reaction was performed for 4 hours until all the iron ions in the reaction solution became trivalent.
After the reaction, the removed slurry was washed with 20 times the amount of water using a filter press, and then dried with a ventilated dryer for 14 hours.
As a result of measuring the composition of the obtained powder with a light emission plasma analyzer, Fe: Mn = 95.1: 4.9, sulfate ion (SO 4 ) content 130 ppm, sodium ion content 85 ppm, lithium ion content 890 ppm I found out. It was found that the BET specific surface area was 103 m 2 / g and the oil absorption was 64 ml / 100 g. As a result of observation with a scanning microscope, it was found that the average diameter of the aggregated particles was 10.2 μm. As a result of X-ray diffraction measurement, it was found that the crystal structure of the agglomerated powder was αFeOOH type.
1000 g of the obtained iron-based composite hydroxide aggregated particles and 3640 g of a solution containing 3 wt% ascorbic acid and 32 wt% lithium dihydrogen phosphate were placed in an autoclave with an internal volume of 20 L, and the temperature was raised to 120 ° C. while stirring. And held for 1 hour. Next, the temperature of the autoclave was cooled to 60 ° C., and the contents were taken out. Thereafter, the contents were transferred into a mixing stirrer, the temperature was raised to 120 ° C. while stirring, and stirring and drying was performed for 60 minutes to obtain 1760 g of a reaction mixed powder. As a result of observation with a scanning microscope, it was found that the average diameter of the reaction mixed composite powder was 10.9 μm. As a result of X-ray diffraction measurement, it was found that the crystal structure of the aggregated powder was a Tavorite type.
Next, this mixture was baked at 550 ° C. for 4 hours in a hydrogen gas atmosphere and crushed.
The resulting fired product has a chemical composition of Li 1.01 Fe 0.95 Mn 0.05 PO 4 , a carbon content of 0.59 wt%, a sulfate ion (SO 4 ) content of 250 ppm, and a sodium content of 205 ppm. The average primary particle size was 0.09 μm, the shape of the aggregate was spherical, the average secondary particle size was 11.3 μm, and the compression density was 2.50 g / cc. As a result of X-ray diffraction measurement, the crystal structure was found to be olivine type.

[実施例4]
金属塩の溶液組成を硫酸第一鉄と四塩化チタニウムをFe:Ti=98.0:2になるように混合した水溶液に連続供給した以外は実施例1と同様に行って、鉄系複合水酸化物凝集粒子を得た。得られた鉄系複合水酸化物凝集粒子、りん、およびリチウムを含む混合物を水素ガス雰囲気下、450℃にて5時間焼成し、解砕した。
得られた焼成物の化学組成はLi1.02Fe0.98Ti0.02POであり、炭素含有量0.89wt%,硫酸イオン(SO)含有量240ppm、ナトリウム含有量160ppm、平均一次粒子径0.08μmであり、集合体の形状は球形で、平均二次粒子径は5.9μm,圧縮密度は2.45g/ccであった。またX線回折測定の結果、結晶構造はオリビン型であることがわかった。
[Example 4]
An iron-based composite water was prepared in the same manner as in Example 1 except that the solution composition of the metal salt was continuously supplied to an aqueous solution in which ferrous sulfate and titanium tetrachloride were mixed so that Fe: Ti = 98.0: 2. Oxide aggregated particles were obtained. The obtained mixture containing iron-based composite hydroxide aggregated particles, phosphorus and lithium was calcined at 450 ° C. for 5 hours in a hydrogen gas atmosphere and crushed.
The obtained fired product has a chemical composition of Li 1.02 Fe 0.98 Ti 0.02 PO 4 , a carbon content of 0.89 wt%, a sulfate ion (SO 4 ) content of 240 ppm, a sodium content of 160 ppm, an average The primary particle size was 0.08 μm, the aggregate shape was spherical, the average secondary particle size was 5.9 μm, and the compression density was 2.45 g / cc. As a result of X-ray diffraction measurement, the crystal structure was found to be olivine type.

[実施例5]
金属塩の溶液組成を硫酸第一鉄とオキシ塩化ジルコニウムをFe:Ti=99.0:1になるように混合した水溶液に連続供給した以外は実施例1と同様にして鉄系複合水酸化物凝集粒子を得た。得られた鉄系複合水酸化物凝集粒子1000gとイオン交換水2Lを内容積10Lのステンレス製容器に入れ、攪拌しながら90℃に加熱した。その後攪拌しながら60gのマンナン粉末と60gのショ糖を10分かけて添加した。その後32wt%リン酸二水素リチウム含有溶液3645gを10分かけて添加した。添加終了後、60分攪拌を行い、ペースト状混合物を得た。そして得られたペースト状混合物をステンレス製バットに入れ、通風式乾燥機で24時間乾燥した。
得られた乾燥粉末を走査型顕微鏡で観察した結果、混合複合粉末の平均径は7.3μmであることがわかった。
この混合物を水素ガス雰囲気下、500℃にて4時間焼成し、解砕した。
得られた焼成物の化学組成はLi1.02Fe0.99Zr0.01POであり、炭素含有量1.23wt%,硫酸イオン(SO)含有量260ppm、ナトリウム含有量120ppmであり、平均一次粒子径0.07μmで、集合体の形状は球形で、平均二次粒子径は7.2μm,圧縮密度は2.60であった。またX線回折測定の結果、結晶構造はオリビン型であることがわかった。
[Example 5]
An iron-based composite hydroxide was prepared in the same manner as in Example 1 except that the metal salt solution composition was continuously supplied to an aqueous solution in which ferrous sulfate and zirconium oxychloride were mixed so that Fe: Ti = 99.0: 1. Agglomerated particles were obtained. 1000 g of the obtained iron-based composite hydroxide aggregated particles and 2 L of ion-exchanged water were put into a stainless steel container having an internal volume of 10 L, and heated to 90 ° C. with stirring. Thereafter, 60 g of mannan powder and 60 g of sucrose were added over 10 minutes while stirring. Thereafter, 3645 g of a 32 wt% lithium dihydrogen phosphate-containing solution was added over 10 minutes. After completion of the addition, stirring was performed for 60 minutes to obtain a paste-like mixture. The obtained paste-like mixture was placed in a stainless steel vat and dried for 24 hours with a ventilating dryer.
As a result of observing the obtained dry powder with a scanning microscope, it was found that the average diameter of the mixed composite powder was 7.3 μm.
This mixture was calcined at 500 ° C. for 4 hours in a hydrogen gas atmosphere and crushed.
The obtained fired product has a chemical composition of Li 1.02 Fe 0.99 Zr 0.01 PO 4 , a carbon content of 1.23 wt%, a sulfate ion (SO 4 ) content of 260 ppm, and a sodium content of 120 ppm. The average primary particle size was 0.07 μm, the shape of the aggregate was spherical, the average secondary particle size was 7.2 μm, and the compression density was 2.60. As a result of X-ray diffraction measurement, the crystal structure was found to be olivine type.

[比較例1]
あらかじめ50Lの容積になるように3.0mol/l水酸化ナトリウム水溶液を反応槽に装填した後、1.0mol/lの硫酸第一鉄と硫酸マグネシウムをFe:Mg=99:1になるように混合した水溶液20lを、5分で反応槽に供給した。反応槽は羽根型攪拌機で常に攪拌と空気酸化を行い、液温度を55℃に保持した。つぎに反応液中の鉄イオンがすべて3価になるまで12時間空気酸化反応を行った。反応後、取り出したスラリー液を、フィルタープレスを用いて5倍量の水で水洗を行った後、14時間通風式乾燥機で乾燥処理を行った。得られた粉末の組成を発光プラズマ分析装置で測定した結果、Fe:Mg=99.1:0.9、硫酸イオン(SO)含有量180ppm、ナトリウムイオン含有量92ppmであることがわかった。BET比表面積は17m/g、吸油量は42ml/100gであることがわかった。そして走査型顕微鏡で観察した結果、一次粒子は平均長軸径0.8μm、平均短軸径0.05μmの針状であって、凝集粒子を形成していないことがわかった。またX線回折測定の結果、粉末の結晶構造は、αFeOOH型であることがわかった。
以降は、実施例1と同様に行って化学組成がLi1.02Fe0.99Mg0.01POであるオリビン型複合酸化物を得た。
[Comparative Example 1]
A 3.0 mol / l sodium hydroxide aqueous solution was charged in the reaction vessel in advance so as to have a volume of 50 L, and then 1.0 mol / l of ferrous sulfate and magnesium sulfate was adjusted to Fe: Mg = 99: 1. 20 l of the mixed aqueous solution was supplied to the reaction vessel in 5 minutes. The reaction tank was always stirred and air-oxidized with a blade-type stirrer, and the liquid temperature was maintained at 55 ° C. Next, an air oxidation reaction was performed for 12 hours until all the iron ions in the reaction solution became trivalent. After the reaction, the removed slurry was washed with 5 times the amount of water using a filter press and then dried with a ventilated dryer for 14 hours. As a result of measuring the composition of the obtained powder with a light emission plasma analyzer, it was found that Fe: Mg = 99.1: 0.9, the sulfate ion (SO 4 ) content was 180 ppm, and the sodium ion content was 92 ppm. It was found that the BET specific surface area was 17 m 2 / g and the oil absorption was 42 ml / 100 g. As a result of observation with a scanning microscope, it was found that the primary particles were needle-like having an average major axis diameter of 0.8 μm and an average minor axis diameter of 0.05 μm, and no agglomerated particles were formed. As a result of X-ray diffraction measurement, it was found that the crystal structure of the powder was αFeOOH type.
Thereafter, an olivine type composite oxide having a chemical composition of Li 1.02 Fe 0.99 Mg 0.01 PO 4 was obtained in the same manner as in Example 1.

[比較例2]
あらかじめ50Lの容積になるように1.36mol/l水酸化ナトリウム水溶液を反応槽に装填した後、1.7mol/lの硫酸第一鉄と硫酸マグネシウムをFe:Mg=99:1になるように混合した水溶液20lを、5分で反応槽に供給した。反応槽は羽根型攪拌機で常に攪拌と空気酸化を行い、液温度を90℃に保持した。つぎに反応液中の溶存2価鉄イオンがすべてなくなるまで6時間空気酸化反応を行った。反応後、取り出したスラリー液を、フィルタープレスを用いて5倍量の水で水洗を行った後、14時間通風式乾燥機で乾燥処理を行った。
得られた粉末の組成を発光プラズマ分析装置で測定した結果、Fe:Mg=99.1:0.9、硫酸イオン(SO)含有量4580ppm、ナトリウムイオン含有量392ppmであることがわかった。BET比表面積は4.3m/g、吸油量は28ml/100gであることがわかった。そして走査型顕微鏡で観察した結果、一次粒子の平均粒子径は0.3μmの多面体状で、凝集粒子を形成していないことがわかった。またX線回折測定の結果、粉末の結晶構造は、Fe型であることがわかった。以降は、実施例1と同様に行って化学組成がLi1.02Fe0.99Mg0.01POであるオリビン型複合酸化物を得た。
[Comparative Example 2]
A 1.36 mol / l sodium hydroxide aqueous solution was charged in the reaction vessel in advance so as to have a volume of 50 L, and 1.7 mol / l of ferrous sulfate and magnesium sulfate were adjusted to Fe: Mg = 99: 1. 20 l of the mixed aqueous solution was supplied to the reaction vessel in 5 minutes. The reaction tank was always stirred and air oxidized with a blade-type stirrer, and the liquid temperature was kept at 90 ° C. Next, an air oxidation reaction was performed for 6 hours until all the dissolved divalent iron ions in the reaction solution disappeared. After the reaction, the removed slurry was washed with 5 times the amount of water using a filter press and then dried with a ventilated dryer for 14 hours.
As a result of measuring the composition of the obtained powder with an emission plasma analyzer, it was found that Fe: Mg = 99.1: 0.9, the sulfate ion (SO 4 ) content was 4580 ppm, and the sodium ion content was 392 ppm. It was found that the BET specific surface area was 4.3 m 2 / g and the oil absorption was 28 ml / 100 g. As a result of observation with a scanning microscope, it was found that the average particle diameter of the primary particles was a polyhedron having a particle size of 0.3 μm and no aggregated particles were formed. Further, as a result of X-ray diffraction measurement, it was found that the crystal structure of the powder was Fe 3 O 4 type. Thereafter, an olivine type composite oxide having a chemical composition of Li 1.02 Fe 0.99 Mg 0.01 PO 4 was obtained in the same manner as in Example 1.

実施例1〜5および比較例1,2で得られた鉄系化合物の組成、結晶相、平均粒径、BET比表面積、吸油量、凝集粒子サイズを表1に示す。   Table 1 shows the composition, crystal phase, average particle diameter, BET specific surface area, oil absorption, and aggregate particle size of the iron-based compounds obtained in Examples 1 to 5 and Comparative Examples 1 and 2.

実施例1〜5および比較例1、2で得られた反応混合物平均粒子サイズ、熱処理条件、組成、熱処理後の平均粒径、圧縮密度を表2に示す。
なお、比較例のものは、一次粒子の状態から粗大な凝集粒子(2次粒子)まで存在し、分布が広いものであった。
Table 2 shows the reaction mixture average particle size, heat treatment conditions, composition, average particle diameter after heat treatment, and compression density obtained in Examples 1 to 5 and Comparative Examples 1 and 2.
In addition, the thing of a comparative example exists from the state of a primary particle to the coarse aggregated particle (secondary particle), and was a thing with wide distribution.

次に、実施例1〜5と比較例1,2で得られたオリビン型(LiFePO)複合酸化物を用いてコインセルによる初期充放電特性評価を行った結果を表3に示す。 Next, Table 3 shows the results of initial charge / discharge characteristics evaluation using coin cells using the olivine type (LiFePO 4 ) composite oxide obtained in Examples 1 to 5 and Comparative Examples 1 and 2.

以上の結果から、本発明に係るオリビン型(LiFePO)複合酸化物は充放電容量が大きく、充填性及び充放電時のレート特性に優れ、非水電解液電池用活物質として有効であることが確認された。 From the above results, the olivine type (LiFePO 4 ) composite oxide according to the present invention has a large charge / discharge capacity, excellent filling properties and rate characteristics during charge / discharge, and is effective as an active material for non-aqueous electrolyte batteries. Was confirmed.

本発明に係る残存硫酸イオン含有量が1000ppm以下かつ残存ナトリウムイオン含有量が1000ppm以下であるオリビン型複合酸化物正極活物質を用いることで、充放電容量が大きく、充填性及び保存特性に優れ、非水電解液電池を得ることができる。   By using an olivine-type composite oxide positive electrode active material having a residual sulfate ion content of 1000 ppm or less and a residual sodium ion content of 1000 ppm or less according to the present invention, the charge / discharge capacity is large, and the chargeability and storage characteristics are excellent. A nonaqueous electrolyte battery can be obtained.

実施例1で得られた鉄系複合水酸化物凝集粒子SEM写真である。2 is a SEM photograph of iron-based composite hydroxide aggregated particles obtained in Example 1. 実施例1で得られたリチウム、リン、鉄系複合水酸化物凝集粒子のSEM写真である。4 is a SEM photograph of lithium, phosphorus, and iron-based composite hydroxide aggregated particles obtained in Example 1. 実施例1で得られたオリビン型複合酸化物である。3 is an olivine-type composite oxide obtained in Example 1.

Claims (7)

組成がLiFe1−yPO(0.9<x<1.3、0.001<y<0.3、M:Mg、Zr、Mn、Ti、Ce、Cr、Co、Ni)であるオリビン型複合酸化物において、硫酸イオン含有量が1000ppm以下であってナトリウムイオン含有量が1000ppm以下であり、平均一次粒子径が0.5μm以下であって平均二次粒子径が2.0〜50μmであることを特徴とする非水電解質二次電池用オリビン型複合酸化物。 Composition of Li x Fe 1-y M y PO 4 (0.9 <x <1.3,0.001 <y <0.3, M: Mg, Zr, Mn, Ti, Ce, Cr, Co, Ni ), The sulfate ion content is 1000 ppm or less, the sodium ion content is 1000 ppm or less, the average primary particle size is 0.5 μm or less, and the average secondary particle size is 2. An olivine-type composite oxide for a nonaqueous electrolyte secondary battery, characterized by having a thickness of 0 to 50 μm. 請求項1記載のオリビン型複合酸化物において、平均二次粒子径の粒度分布偏差σ/Mが0.3以下である非水電解質二次電池用オリビン型複合酸化物。 2. The olivine-type composite oxide according to claim 1, wherein the average secondary particle size particle size distribution deviation σ / M is 0.3 or less. 請求項1又は2記載のオリビン型複合酸化物において、二次粒子内部及び/又は表面に炭素化合物を0.2〜10%含有する非水電解質二次電池用オリビン型複合酸化物。 The olivine-type composite oxide according to claim 1 or 2, wherein the olivine-type composite oxide for a non-aqueous electrolyte secondary battery contains 0.2 to 10% of a carbon compound inside and / or on the surface of the secondary particles. オリビン型構造を持つLiFe1−yPO(0.9<x<1.3、0.001<y<0.3、M:Mg、Zr、Mn、Ti、Ce、Cr、Co、Ni)である複合酸化物の製造方法であって、鉄原料、リン原料、リチウム原料及び還元性を有する炭素系化合物を70〜160℃の温度範囲で水溶液中反応させた後、乾燥させ、非酸化性雰囲気または還元性雰囲気下で300〜750℃で熱処理することを特徴とする製造方法において、鉄原料としてBET比表面積が30〜400m/gであり、吸油量50ml/100g以上であり、平均二次粒子径2〜50μmである鉄化合物を用いることを特徴とするオリビン型複合酸化物の製造方法。 Li x Fe 1-y M y PO 4 (0.9 <x <1.3,0.001 <y <0.3 having an olivine type structure, M: Mg, Zr, Mn , Ti, Ce, Cr, Co, Ni) is a method for producing a composite oxide, wherein an iron raw material, a phosphorus raw material, a lithium raw material, and a reducing carbon-based compound are reacted in an aqueous solution in a temperature range of 70 to 160 ° C. and then dried. In the production method characterized by heat treatment at 300 to 750 ° C. in a non-oxidizing atmosphere or a reducing atmosphere, the iron raw material has a BET specific surface area of 30 to 400 m 2 / g and an oil absorption of 50 ml / 100 g or more. A method for producing an olivine-type composite oxide comprising using an iron compound having an average secondary particle diameter of 2 to 50 μm. 請求項4において、鉄化合物がMg、Zr、Mn、Ti、Ce、Cr、Co及びNiから選ばれる一種以上の元素を含むことを特徴とするオリビン型複合酸化物の製造方法。 5. The method for producing an olivine-type composite oxide according to claim 4, wherein the iron compound contains one or more elements selected from Mg, Zr, Mn, Ti, Ce, Cr, Co, and Ni. 請求項4において、鉄化合物がリチウム化合物粒子を中心部に存在させ、Mg、Zr、Mn、Ti、Ce、Cr、Co及びNiから選ばれる一種以上の元素を含む鉄化合物粒子であるオリビン型複合酸化物の製造方法。 5. The olivine-type composite according to claim 4, wherein the iron compound is an iron compound particle containing at least one element selected from Mg, Zr, Mn, Ti, Ce, Cr, Co, and Ni, with lithium compound particles existing in the center. Production method of oxide. 請求項1〜3のいずれかに記載のオリビン型複合酸化物を正極活物質またはその一部として用いた非水電解液二次電池。
A non-aqueous electrolyte secondary battery using the olivine-type composite oxide according to claim 1 as a positive electrode active material or a part thereof.
JP2008132474A 2007-05-21 2008-05-20 Non-aqueous electrolyte secondary battery olivine-type composite oxide, method for producing the same, and secondary battery Active JP5293936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008132474A JP5293936B2 (en) 2007-05-21 2008-05-20 Non-aqueous electrolyte secondary battery olivine-type composite oxide, method for producing the same, and secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007134793 2007-05-21
JP2007134793 2007-05-21
JP2008132474A JP5293936B2 (en) 2007-05-21 2008-05-20 Non-aqueous electrolyte secondary battery olivine-type composite oxide, method for producing the same, and secondary battery

Publications (2)

Publication Number Publication Date
JP2009004371A true JP2009004371A (en) 2009-01-08
JP5293936B2 JP5293936B2 (en) 2013-09-18

Family

ID=40320490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008132474A Active JP5293936B2 (en) 2007-05-21 2008-05-20 Non-aqueous electrolyte secondary battery olivine-type composite oxide, method for producing the same, and secondary battery

Country Status (1)

Country Link
JP (1) JP5293936B2 (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009029670A (en) * 2007-07-27 2009-02-12 Kanto Denka Kogyo Co Ltd Olivine-type lithium iron phosphate compound and method for producing the same, positive electrode active substance, and non-aqueous electrolyte battery using olivine-type lithium iron phosphate compound
WO2010073634A1 (en) * 2008-12-26 2010-07-01 戸田工業株式会社 Polyanionic positive electrode active material for non-aqueous electrolyte secondary battery, process for producing same, and non-aqueous electrolyte secondary battery
WO2010107039A1 (en) * 2009-03-17 2010-09-23 日本化学工業株式会社 Lithium phosphorus complex oxide-carbon composite, method for producing same, positive electrode active material for lithium secondary battery, and lithium secondary battery
JP2010232091A (en) * 2009-03-27 2010-10-14 Sumitomo Osaka Cement Co Ltd Method for manufacturing positive active material for lithium ion battery, positive active material for lithium ion battery, electrode for lithium ion battery, and lithium ion battery
JP2011077030A (en) * 2009-09-02 2011-04-14 Sharp Corp Positive electrode active material, positive electrode, and nonaqueous secondary battery
JP2011517653A (en) * 2008-04-17 2011-06-16 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing crystalline material containing lithium, iron and phosphoric acid
JP2011519806A (en) * 2008-04-17 2011-07-14 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing crystalline material containing lithium, iron and phosphoric acid
WO2011152455A1 (en) * 2010-06-02 2011-12-08 シャープ株式会社 Method for producing lithium-containing complex oxide
JP2012012262A (en) * 2010-07-02 2012-01-19 Nichia Corp Olivine type lithium transition metal compound oxide and method for producing the same
CN102340003A (en) * 2011-09-30 2012-02-01 淄博惠业铝品电气有限责任公司 Defect-sensitized lithium ferrous phosphate cathode material and preparation method thereof
JP2012506362A (en) * 2008-10-22 2012-03-15 エルジー・ケム・リミテッド Lithium iron phosphate having olivine structure and method for producing the same
JP2012229147A (en) * 2011-04-27 2012-11-22 Nichia Corp Olivine-type lithium transition metal oxide, and method of producing the same
JP2013032257A (en) * 2011-06-28 2013-02-14 Nichia Corp Olivine type lithium transition metal oxide and method for producing the same
WO2014034696A1 (en) * 2012-09-03 2014-03-06 日本ケミコン株式会社 Process for producing composite material of metal oxide with conductive carbon
US8715525B2 (en) 2010-06-30 2014-05-06 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of electrode material
JP2014135254A (en) * 2013-01-11 2014-07-24 Gs Yuasa Corp Positive electrode active material and electricity storage element
KR101464369B1 (en) 2012-09-26 2014-11-21 주식회사 포스코이에스엠 Method for the preparation of a lithium iron phosphate of olivine crystal structure and carbon-coated lithium iron phosphate of olivine crystal structure prepared thereby, including carbon inside
US9017876B2 (en) 2010-10-19 2015-04-28 Sharp Kabushiki Kaisha Positive electrode active material, production method thereof and its use
JP2015122327A (en) * 2010-04-21 2015-07-02 エルジー・ケム・リミテッド Carbon-coated lithium iron phosphate having olivine crystalline structure, and lithium secondary battery arranged by use thereof
US9090470B2 (en) 2011-04-18 2015-07-28 Sharp Kabushiki Kaisha Method for producing positive electrode active substance, and use of said active substance
US9109286B2 (en) 2010-06-18 2015-08-18 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing power storage device
EP2498323B1 (en) * 2011-03-09 2015-10-07 Samsung SDI Co., Ltd. Positive active material, and electrode and lithium battery containing the material
JP2015195172A (en) * 2014-03-24 2015-11-05 株式会社デンソー lithium ion secondary battery
JP2015230746A (en) * 2014-06-03 2015-12-21 シャープ株式会社 Positive electrode active material, positive electrode, and nonaqueous electrolyte secondary battery
JP2016071980A (en) * 2014-09-29 2016-05-09 住友大阪セメント株式会社 Positive electrode material, method for manufacturing positive electrode material, positive electrode and lithium ion battery
US9825296B2 (en) 2013-03-12 2017-11-21 Sony Corporation Secondary battery-use active material, secondary battery-use electrode, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
EP3301740A1 (en) 2016-09-30 2018-04-04 Sumitomo Osaka Cement Co., Ltd Cathode material for lithium-ion secondary battery, cathode for lithium-ion secondary battery, and lithium-ion secondary battery
EP3301741A1 (en) 2016-09-30 2018-04-04 Sumitomo Osaka Cement Co., Ltd Cathode material for lithium-ion secondary battery, cathode for lithium-ion secondary battery, and lithium-ion secondary battery
JP6332539B1 (en) * 2017-09-29 2018-05-30 住友大阪セメント株式会社 Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, lithium ion secondary battery
JP6332540B1 (en) * 2017-09-29 2018-05-30 住友大阪セメント株式会社 Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, lithium ion secondary battery
EP3379616A1 (en) 2017-03-24 2018-09-26 Sumitomo Osaka Cement Co., Ltd. Cathode material for lithium-ion secondary battery, cathode for lithium-ion secondary battery, and lithium-ion secondary battery
JP6424934B1 (en) * 2017-09-28 2018-11-21 住友大阪セメント株式会社 Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, lithium ion secondary battery
US10290856B2 (en) 2014-10-20 2019-05-14 Sumitomo Osaka Cement Co., Ltd. Cathode material and lithium ion battery
US10566622B2 (en) 2017-09-28 2020-02-18 Sumitomo Osaka Cement Co., Ltd. Cathode material for lithium-ion secondary battery and method for manufacturing the same, cathode for lithium-ion secondary battery, and lithium-ion secondary battery
US10693138B2 (en) 2017-04-24 2020-06-23 Sumitomo Osaka Cement Co., Ltd. Cathode material for lithium-ion secondary battery, cathode for lithium-ion secondary battery, and lithium-ion secondary battery
EP3799158A1 (en) 2019-09-26 2021-03-31 Sumitomo Osaka Cement Co., Ltd. Positive electrode material for lithium ion polymer battery, positive electrode for lithium ion polymer battery, and lithium ion polymer battery
US12027700B2 (en) 2019-02-13 2024-07-02 Lg Energy Solution, Ltd. Positive electrode comprising goethite for lithium secondary battery and lithium secondary battery comprising same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7009200B2 (en) 2017-12-20 2022-01-25 三菱パワー株式会社 Spray pipe, desulfurization device equipped with it and its inspection method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003292309A (en) * 2002-01-31 2003-10-15 Nippon Chem Ind Co Ltd Carbon composite of lithium/iron/phosphorus-based complex oxide, production method therefor, positive pole activating material for lithium secondary battery, and lithium secondary battery
JP2004525059A (en) * 2001-04-10 2004-08-19 ツェントゥルム フューア ゾンネンエネルギー−ウント ヴァッサーシュトッフ−フォルシュング バーデン−ヴァルテムベルク ゲマインニュッツィヒ シュティフトゥング Binary, ternary and quaternary lithium phosphates, their preparation and use
JP2005123107A (en) * 2003-10-20 2005-05-12 Hitachi Maxell Ltd Active material for electrochemical element, its manufacturing method, and the electrochemical element using the same
JP2007511458A (en) * 2003-11-14 2007-05-10 ジュート−ヒェミー アクチェンゲゼルシャフト Lithium iron phosphate, its production process and its use as electrode agent
JP2008546629A (en) * 2005-06-29 2008-12-25 ユミコア Crystalline nanometer LiFePO4

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004525059A (en) * 2001-04-10 2004-08-19 ツェントゥルム フューア ゾンネンエネルギー−ウント ヴァッサーシュトッフ−フォルシュング バーデン−ヴァルテムベルク ゲマインニュッツィヒ シュティフトゥング Binary, ternary and quaternary lithium phosphates, their preparation and use
JP2003292309A (en) * 2002-01-31 2003-10-15 Nippon Chem Ind Co Ltd Carbon composite of lithium/iron/phosphorus-based complex oxide, production method therefor, positive pole activating material for lithium secondary battery, and lithium secondary battery
JP2005123107A (en) * 2003-10-20 2005-05-12 Hitachi Maxell Ltd Active material for electrochemical element, its manufacturing method, and the electrochemical element using the same
JP2007511458A (en) * 2003-11-14 2007-05-10 ジュート−ヒェミー アクチェンゲゼルシャフト Lithium iron phosphate, its production process and its use as electrode agent
JP2008546629A (en) * 2005-06-29 2008-12-25 ユミコア Crystalline nanometer LiFePO4

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009029670A (en) * 2007-07-27 2009-02-12 Kanto Denka Kogyo Co Ltd Olivine-type lithium iron phosphate compound and method for producing the same, positive electrode active substance, and non-aqueous electrolyte battery using olivine-type lithium iron phosphate compound
US9147877B2 (en) 2008-04-17 2015-09-29 Basf Se Process for the preparation of crystalline lithium-, iron- and phosphate-comprising materials
JP2011517653A (en) * 2008-04-17 2011-06-16 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing crystalline material containing lithium, iron and phosphoric acid
JP2011519806A (en) * 2008-04-17 2011-07-14 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing crystalline material containing lithium, iron and phosphoric acid
JP2012506362A (en) * 2008-10-22 2012-03-15 エルジー・ケム・リミテッド Lithium iron phosphate having olivine structure and method for producing the same
JP2016128371A (en) * 2008-10-22 2016-07-14 エルジー・ケム・リミテッド Manufacturing method of iron lithium phosphate having olivine structure, manufacturing method of cathode mixture, manufacturing method of cathode and manufacturing method of lithium secondary battery
US9458016B2 (en) 2008-10-22 2016-10-04 Lg Chem, Ltd. Lithium iron phosphate having olivine structure and method for preparing the same
WO2010073634A1 (en) * 2008-12-26 2010-07-01 戸田工業株式会社 Polyanionic positive electrode active material for non-aqueous electrolyte secondary battery, process for producing same, and non-aqueous electrolyte secondary battery
WO2010107039A1 (en) * 2009-03-17 2010-09-23 日本化学工業株式会社 Lithium phosphorus complex oxide-carbon composite, method for producing same, positive electrode active material for lithium secondary battery, and lithium secondary battery
JP2010218884A (en) * 2009-03-17 2010-09-30 Nippon Chem Ind Co Ltd Lithium phosphorous complex oxide-carbon composite and method of manufacturing the same, positive electrode active material for lithium secondary battery, and lithium secondary battery
CN102356489A (en) * 2009-03-17 2012-02-15 日本化学工业株式会社 Lithium phosphorus complex oxide-carbon composite, method for producing same, positive electrode active material for lithium secondary battery, and lithium secondary batter
JP2010232091A (en) * 2009-03-27 2010-10-14 Sumitomo Osaka Cement Co Ltd Method for manufacturing positive active material for lithium ion battery, positive active material for lithium ion battery, electrode for lithium ion battery, and lithium ion battery
JP2011077030A (en) * 2009-09-02 2011-04-14 Sharp Corp Positive electrode active material, positive electrode, and nonaqueous secondary battery
JP2015122327A (en) * 2010-04-21 2015-07-02 エルジー・ケム・リミテッド Carbon-coated lithium iron phosphate having olivine crystalline structure, and lithium secondary battery arranged by use thereof
WO2011152455A1 (en) * 2010-06-02 2011-12-08 シャープ株式会社 Method for producing lithium-containing complex oxide
US8968936B2 (en) 2010-06-02 2015-03-03 Sharp Kabushiki Kaisha Method for producing lithium-containing composite oxide
US9109286B2 (en) 2010-06-18 2015-08-18 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing power storage device
US8715525B2 (en) 2010-06-30 2014-05-06 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of electrode material
JP2012012262A (en) * 2010-07-02 2012-01-19 Nichia Corp Olivine type lithium transition metal compound oxide and method for producing the same
US9017876B2 (en) 2010-10-19 2015-04-28 Sharp Kabushiki Kaisha Positive electrode active material, production method thereof and its use
EP2498323B1 (en) * 2011-03-09 2015-10-07 Samsung SDI Co., Ltd. Positive active material, and electrode and lithium battery containing the material
US9090470B2 (en) 2011-04-18 2015-07-28 Sharp Kabushiki Kaisha Method for producing positive electrode active substance, and use of said active substance
JP2012229147A (en) * 2011-04-27 2012-11-22 Nichia Corp Olivine-type lithium transition metal oxide, and method of producing the same
JP2013032257A (en) * 2011-06-28 2013-02-14 Nichia Corp Olivine type lithium transition metal oxide and method for producing the same
CN102340003B (en) * 2011-09-30 2014-09-24 淄博惠业铝品电气有限责任公司 Defect-sensitized lithium ferrous phosphate cathode material and preparation method thereof
CN102340003A (en) * 2011-09-30 2012-02-01 淄博惠业铝品电气有限责任公司 Defect-sensitized lithium ferrous phosphate cathode material and preparation method thereof
JP2014049395A (en) * 2012-09-03 2014-03-17 Nippon Chemicon Corp Manufacturing method of compound material of metal oxide and conductive carbon
WO2014034696A1 (en) * 2012-09-03 2014-03-06 日本ケミコン株式会社 Process for producing composite material of metal oxide with conductive carbon
US9859035B2 (en) 2012-09-03 2018-01-02 Nippon Chemi-Con Corporation Process for producing composite material of metal oxide with conductive carbon
KR101464369B1 (en) 2012-09-26 2014-11-21 주식회사 포스코이에스엠 Method for the preparation of a lithium iron phosphate of olivine crystal structure and carbon-coated lithium iron phosphate of olivine crystal structure prepared thereby, including carbon inside
JP2014135254A (en) * 2013-01-11 2014-07-24 Gs Yuasa Corp Positive electrode active material and electricity storage element
US9825296B2 (en) 2013-03-12 2017-11-21 Sony Corporation Secondary battery-use active material, secondary battery-use electrode, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
JP2015195172A (en) * 2014-03-24 2015-11-05 株式会社デンソー lithium ion secondary battery
JP2015230746A (en) * 2014-06-03 2015-12-21 シャープ株式会社 Positive electrode active material, positive electrode, and nonaqueous electrolyte secondary battery
JP2016071980A (en) * 2014-09-29 2016-05-09 住友大阪セメント株式会社 Positive electrode material, method for manufacturing positive electrode material, positive electrode and lithium ion battery
US10193155B2 (en) 2014-09-29 2019-01-29 Sumitomo Osaka Cement Co., Ltd. Manufacturing cathode material, cathode, and lithium ion battery
US10290856B2 (en) 2014-10-20 2019-05-14 Sumitomo Osaka Cement Co., Ltd. Cathode material and lithium ion battery
EP3301740A1 (en) 2016-09-30 2018-04-04 Sumitomo Osaka Cement Co., Ltd Cathode material for lithium-ion secondary battery, cathode for lithium-ion secondary battery, and lithium-ion secondary battery
EP3301741A1 (en) 2016-09-30 2018-04-04 Sumitomo Osaka Cement Co., Ltd Cathode material for lithium-ion secondary battery, cathode for lithium-ion secondary battery, and lithium-ion secondary battery
US10818923B2 (en) 2016-09-30 2020-10-27 Sumitomo Osaka Cement Co., Ltd. Cathode material for lithium-ion secondary battery, cathode for lithium-ion secondary battery, and lithium-ion secondary battery
US10109861B2 (en) 2016-09-30 2018-10-23 Sumitomo Osaka Cement Co., Ltd. Cathode material for lithium-ion secondary battery, cathode for lithium-ion secondary battery, and lithium-ion secondary battery
US10897044B2 (en) 2017-03-24 2021-01-19 Sumitomo Osaka Cement Co., Ltd. Cathode material for lithium-ion secondary battery, cathode for lithium-ion secondary battery, and lithium-ion secondary battery
EP3379616A1 (en) 2017-03-24 2018-09-26 Sumitomo Osaka Cement Co., Ltd. Cathode material for lithium-ion secondary battery, cathode for lithium-ion secondary battery, and lithium-ion secondary battery
US10693138B2 (en) 2017-04-24 2020-06-23 Sumitomo Osaka Cement Co., Ltd. Cathode material for lithium-ion secondary battery, cathode for lithium-ion secondary battery, and lithium-ion secondary battery
KR20190037060A (en) 2017-09-28 2019-04-05 스미토모 오사카 세멘토 가부시키가이샤 Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, lithium ion secondary battery
US10593939B2 (en) 2017-09-28 2020-03-17 Sumitomo Osaka Cement Co., Ltd. Cathode material for lithium-ion secondary battery, cathode for lithium-ion secondary battery, and lithium-ion secondary battery
US20190097214A1 (en) * 2017-09-28 2019-03-28 Sumitomo Osaka Cement Co., Ltd. Cathode material for lithium-ion secondary battery, cathode for lithium-ion secondary battery, and lithium-ion secondary battery
JP2019061932A (en) * 2017-09-28 2019-04-18 住友大阪セメント株式会社 Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6424934B1 (en) * 2017-09-28 2018-11-21 住友大阪セメント株式会社 Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, lithium ion secondary battery
CN109004184A (en) * 2017-09-28 2018-12-14 住友大阪水泥股份有限公司 Lithium ion secondary battery anode material, lithium ion secondary battery anode, lithium ion secondary battery
US10566622B2 (en) 2017-09-28 2020-02-18 Sumitomo Osaka Cement Co., Ltd. Cathode material for lithium-ion secondary battery and method for manufacturing the same, cathode for lithium-ion secondary battery, and lithium-ion secondary battery
EP3462522A1 (en) 2017-09-28 2019-04-03 Sumitomo Osaka Cement Co., Ltd. Cathode material for lithium-ion secondary battery, cathode for lithium-ion secondary battery, and lithium-ion secondary battery
US10629908B2 (en) 2017-09-29 2020-04-21 Sumitomo Osaka Cement Co., Ltd. Cathode material for lithium-ion secondary battery, cathode for lithium-ion secondary battery, and lithium-ion secondary battery
US10573890B2 (en) 2017-09-29 2020-02-25 Sumitomo Osaka Cement Co., Ltd. Cathode material for lithium-ion secondary battery, cathode for lithium-ion secondary battery, and lithium-ion secondary battery
JP2019067541A (en) * 2017-09-29 2019-04-25 住友大阪セメント株式会社 Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP6332540B1 (en) * 2017-09-29 2018-05-30 住友大阪セメント株式会社 Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, lithium ion secondary battery
JP6332539B1 (en) * 2017-09-29 2018-05-30 住友大阪セメント株式会社 Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, lithium ion secondary battery
US12027700B2 (en) 2019-02-13 2024-07-02 Lg Energy Solution, Ltd. Positive electrode comprising goethite for lithium secondary battery and lithium secondary battery comprising same
EP3799158A1 (en) 2019-09-26 2021-03-31 Sumitomo Osaka Cement Co., Ltd. Positive electrode material for lithium ion polymer battery, positive electrode for lithium ion polymer battery, and lithium ion polymer battery
KR20210036777A (en) 2019-09-26 2021-04-05 스미토모 오사카 세멘토 가부시키가이샤 Positive electrode material for lithium-ion polymer battery, positive electrode for lithium-ion polymer battery and lithium-ion polymer battery
US11245110B2 (en) 2019-09-26 2022-02-08 Sumitomo Osaka Cement Co., Ltd. Positive electrode material for lithium ion polymer battery, positive electrode for lithium ion polymer battery, and lithium ion polymer battery

Also Published As

Publication number Publication date
JP5293936B2 (en) 2013-09-18

Similar Documents

Publication Publication Date Title
JP5293936B2 (en) Non-aqueous electrolyte secondary battery olivine-type composite oxide, method for producing the same, and secondary battery
JP5517032B2 (en) Non-aqueous electrolyte secondary battery olivine-type composite oxide particle powder, method for producing the same, and secondary battery
Myung et al. Nanostructured cathode materials for rechargeable lithium batteries
JP5187520B2 (en) Li-Ni composite oxide particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP5817963B2 (en) Method for producing lithium manganese iron phosphate particle powder, lithium manganese iron phosphate particle powder, and nonaqueous electrolyte secondary battery using the particle powder
JP5464322B2 (en) Method for producing lithium iron phosphate particle powder, lithium iron phosphate particle powder having olivine structure, positive electrode material sheet using the lithium iron phosphate particle powder, and nonaqueous solvent secondary battery
JP6107832B2 (en) Li-Ni composite oxide particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP5835540B2 (en) A method for producing ferric phosphate hydrate particles, a method for producing olivine-type lithium iron phosphate particles, and a method for producing a nonaqueous electrolyte secondary battery.
JP4462451B2 (en) Li-Ni composite oxide particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP4829557B2 (en) Method for producing lithium iron composite oxide
JP5505608B2 (en) Li-Ni composite oxide particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP6112118B2 (en) Li-Ni composite oxide particle powder and non-aqueous electrolyte secondary battery
JP5656012B2 (en) Positive electrode active material powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
WO2011065423A1 (en) Li-ni composite oxide particle powder for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
WO2008068905A1 (en) Li-Ni COMPOSITE OXIDE PARTICLE POWDER FOR RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE, PROCESS FOR PRODUCING THE Li-Ni COMPOSITE OXIDE PARTICLE POWDER, AND RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE
JP6172288B2 (en) Positive electrode active material for sodium battery and sodium battery
JP2014221690A (en) Method for producing lithium-containing acid salt compound
JP6303279B2 (en) Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
WO2012164751A1 (en) Positive electrode material for secondary cell and secondary cell using same
JP2011132095A (en) Method for producing olivine-type compound particle powder, and nonaqueous electrolyte secondary battery
CN103493263B (en) Active material, the manufacture method of active material, electrode, lithium rechargeable battery
JP5505868B2 (en) Precursor of positive electrode active material for lithium secondary battery and method for producing the same
JP2010232091A (en) Method for manufacturing positive active material for lithium ion battery, positive active material for lithium ion battery, electrode for lithium ion battery, and lithium ion battery
JP2014082219A (en) Positive electrode active material for lithium secondary batteries and manufacturing method thereof, and lithium secondary battery arranged by use of such positive electrode active material
JP2017204340A (en) Method for manufacturing positive electrode active material for lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130528

R150 Certificate of patent or registration of utility model

Ref document number: 5293936

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250