JP2009002235A - 真空ポンプ - Google Patents

真空ポンプ Download PDF

Info

Publication number
JP2009002235A
JP2009002235A JP2007163965A JP2007163965A JP2009002235A JP 2009002235 A JP2009002235 A JP 2009002235A JP 2007163965 A JP2007163965 A JP 2007163965A JP 2007163965 A JP2007163965 A JP 2007163965A JP 2009002235 A JP2009002235 A JP 2009002235A
Authority
JP
Japan
Prior art keywords
pump
stage
vacuum pump
pressure
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007163965A
Other languages
English (en)
Inventor
Tatsunori Koizumi
達則 小泉
Wakao Watanabe
若雄 渡辺
Shingo Funakubo
新伍 舟窪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Canon Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Anelva Corp filed Critical Canon Anelva Corp
Priority to JP2007163965A priority Critical patent/JP2009002235A/ja
Publication of JP2009002235A publication Critical patent/JP2009002235A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

【課題】大気圧にほぼ等しい高圧力領域における排気性能の改善を図る。
【解決手段】真空ポンプの上流端側から少なくとも1段目は、複数のポンプ室が並列に接続されてなる。また、ポンプ室が並列に接続されたポンプ段における下流端側のポンプ室の排気口側の流路から、ポンプ室の複数のポンプ段の少なくとも1段以上を迂回して下流側のポンプ室の排気口側の流路に連通させて設けられたバイパスバルブ機構7を備える。そして、バイパスバルブ機構7は、1段目に位置するポンプ室3a,3bのポンプ吸気口1の圧力が大気圧にほぼ等しい高圧力領域で開かれるバルブ7aを有し、ポンプ室が並列に接続されたポンプ段における下流端側のポンプ室よりも下流側に位置するポンプ室の排気口側の流路に気体を排気するように構成されている。
【選択図】図1

Description

本発明は、ポンプ室に配置されたロータを回転駆動することによって吸気口から排気口に気体を圧送する機械式ポンプであって、複数のポンプ室が接続されてなる多段式の真空ポンプに関する。
単段のポンプ室が複数段(複数のポンプ段)で接続され、これら各ポンプ室を連通させて構成された多段式の真空ポンプが知られている。この多段式の真空ポンプとしては、実用的に大排気流量を実現するために、真空ポンプの上流端側であるポンプ吸気口側から少なくとも1段目が、複数のポンプ室を並列に接続されてなる構成が提案されている(特許文献1参照)。
図11に、従来の多段式の真空ポンプの構成例を示し、図12に多段式の真空ポンプにおける排気速度特性の概略図を示す。図11(A)から図11(D)に、一般的な多段式の真空ポンプの構成例として、代表的な4段のポンプ室の構成を示す。ポンプ室3から6は、図示しないモータにそれぞれ接続されており、同様に図示しない制御回路によって、それぞれが最適に回転数が制御されて連動して回転し、大気圧から排気可能な多段式の真空ポンプを構成している。
この多段式の真空ポンプにおいては、比較的大きな排気流量に対応するために、ポンプ吸気口101側から少なくとも1段目が、複数の単段のポンプ室を並列に接続されてなる構成が提案されている。図11(A)は、ポンプ吸気口から1段目が、2つのポンプ室が並列に接続された構成例を示している。図11(B)は、1段目から2段目までのポンプ段が、2つのポンプ室が並列に接続された構成例を示している。図11(C)は、1段目のポンプ段が、3つのポンプ室が並列に接続された構成を示している。図12は、図11に例示した多段式の真空ポンプに該当する排気速度特性を概略的に示した図である。図12中の曲線Dは、図11(D)に示す基本的な多段式の真空ポンプの排気速度特性を示し、曲線A及び曲線B、Cは、それぞれ図11(A)及び図11(B)、(C)に示す各構成例に対応する概略の排気速度特性を示している。排気速度特性は、厳密には、構成する単段ポンプ室の圧縮性能や相互の回転数のバランス等によって変化するが、図12は代表的な特性例を概略的に示したものである。また、図12には比較参照のために、図11(D)に示す基本的な構成で得られる排気速度特性(S1)をそれぞれ2倍した曲線(2×S1)と、3倍した曲線(3×S1)を破線で併記する。この排気速度特性は、基本的な構成のポンプ(図11(D))をそれぞれ2台及び3台を並行して使用した場合に得られる合計の排気速度特性に相当する。図12に示す結果のように、一般的に真空装置で多く使用されるような減圧領域では、上流端側(ポンプ吸気口側)に複数のポンプ室が並列に接続された多段式の真空ポンプは、2台又は3台の真空ポンプに相当する排気速度特性を容易に実現することができる。このため、このような多段式の真空ポンプは、大排気容量に対応した非常に有効な構成である。
特開平11−93878号公報
しかしながら、図12に示す結果から同時に明らかなように、大気圧にほぼ等しい高圧力領域において、ポンプ吸気口側に複数のポンプ室が並列に接続された多段式の真空ポンプでは、十分に排気速度の改善がなされていない。つまり、1段目のポンプ室の容積を例えば2倍、3倍に大きく設定して大排気容量を確保した場合、大気圧にほぼ等しい高圧力領域では、圧力による圧縮の効果がほとんど無いので、排気される気体の容量は主にポンプ室の容積で決まってしまう。このため、1段目である前段(上流側)のポンプ室で2倍、3倍の容積で排気される気体を、後段(下流側)に接続されている容積が比較的小さいポンプ室では排気しきれない。すなわち、比較的大きな容積のポンプ室の後段に接続されているポンプ室の容積が小さいために、この後段のポンプ室の吸気口で気体が過剰となり、結果として圧力が上昇してしまう。そして、前段のポンプ室で維持できる圧縮率を超える気体については、真空ポンプの上流端側のポンプ吸気口側にまで逆流する結果となり、有効に気体が排気されない。加えて、多段式のドライ真空ポンプで一般的に使用されるポンプ室が有する圧縮性能自体が、動作圧力が高い領域で低下することも、真空ポンプ全体の排気性能が大幅に低下することを招いている。
要するに、ポンプ吸気口に近いポンプ段の位置で、複数のポンプ室を並列に接続することで、排気性能を2倍、3倍に大きくして大排気容量を実現しようとしても、このポンプ段の後段に位置する1つのポンプ室からなるポンプ段での排気可能な気体量が律速となってしまう。その結果、排気気体を真空ポンプにおける下流端側のポンプ排気口に十分に移送できなくなる。
この問題は、真空ポンプに接続され、真空ポンプによって排気される被排気容器の容積が非常に大きい場合に一般的に顕著になる。図示しないが、非常に大きな被排気容積を有した容器を、大気圧から排気可能な多段式の真空ポンプの到達圧力よりも更に低い到達圧力にまで真空排気するような場合、排気性能がより大きな他の方式の真空ポンプを併用することになる。このような場合、例えば、一般に知られる大型のルーツブロアポンプや分子ポンプが主ポンプとして用いられるが、これらの真空ポンプは、大気圧から直接ポンプを動作させることができない。
このため、図11に示す多段式の真空ポンプのように、大気圧から排気可能な真空ポンプで一定の真空圧力状態まで予備排気する必要がある。このとき、実用面から見た場合、所望の圧力にまで到達するのに要する排気時間として、通常、大気圧からの予備排気にほとんどの時間を費やされることが多い。装置全体のタクトタイム等を考慮し、所望の圧力にするのに要する排気時間を短縮する場合、予備排気に用いる真空ポンプの排気速度を大きくして、予備排気時間を短縮することが大きな課題である。
なお、真空における実質的な気体の排気流量は「容積×圧力」で表される。したがって、真空排気が進行してポンプ吸気口の圧力が十分に低くなってくると、ポンプ吸気口に近い1段目のポンプ室の容積が2倍、3倍であっても、各ポンプ室が有する圧縮性能によって、後段に続くポンプ室内部の圧力が、容易に2倍、3倍に圧縮される。このため、実質的に排気される気体量として過剰になることは無く、図12に示した排気特性のように、実質的に基本構成となる多段式のドライ真空ポンプの排気速度の2倍、3倍の排気速度が得られる。
そこで、本発明は、上述した課題を解決することにあり、大気圧にほぼ等しい高圧力領域での排気性能を改善することができる真空ポンプを提供することを目的とする。
上述の目的を達成するため、本発明に係る真空ポンプは、吸気口および排気口が設けられたポンプ容器と、このポンプ容器に配置されたロータとを有しこのロータが回転駆動されることによって吸気口から排気口に気体を圧送する複数のポンプ室を備え、ポンプ室が複数のポンプ段で直列に接続されてなる。また、真空ポンプの上流端側から少なくとも1段目は、複数のポンプ室が並列に接続されてなる。また、この真空ポンプは、ポンプ室が並列に接続されたポンプ段における下流端側のポンプ室の排気口側の流路から、ポンプ室の複数のポンプ段の少なくとも1段以上を迂回して下流側のポンプ室の排気口側の流路に連通させて設けられたバイパスバルブ機構を備える。そして、バイパスバルブ機構は、1段目に位置するポンプ室の吸気口の圧力が大気圧にほぼ等しい高圧力領域で開かれるバルブを有し、ポンプ室が並列に接続されたポンプ段における下流端側のポンプ室よりも下流側に位置するポンプ室の排気口側の流路に気体を排気するように構成されている。
本発明によれば、大気圧にほぼ等しい高圧力領域における排気速度の低下を改善することが可能になり、大容量排気系に適した真空ポンプを比較的少ない追加コストで実現することができる。
以下に、本発明の実施形態について、図面を参照して説明する。なお、各構成及び排気速度特性は、本発明が理解できる程度に代表的な実施形態を概略的に示したものである。したがって、本発明は以下の実施形態に限定されるものではなく、特許請求の範囲の記載に基づいて様々な形態に変更可能である。
図1は、第1の実施形態の、多段式の真空ポンプを示す模式図である。図1に示すように、本実施形態の真空ポンプは、複数のポンプ室(単段ポンプユニット)が並列に接続されたポンプ段の排気口側の流路が、真空ポンプの下流端側に位置するポンプ室の排気口2(以下、ポンプ排気口2と称する。)側の流路にバイパスバルブ機構7の流路を介して接続されて構成されている。
図1(A)に示すように、第1の実施形態の真空ポンプは、真空ポンプの上流端側に位置する1段目が、2つの単段のポンプ室が並列に接続されて構成されている。また、図1(B)に示すように、第1の実施形態の真空ポンプは、他の構成例として、真空ポンプの1段目および2段目がそれぞれ、2つの単段のポンプ室が並列に接続されて構成されている。
各ポンプ室3a、3b、4a、4b、5、6は、図示しないが、吸気口および排気口が設けられたポンプ容器と、このポンプ容器内に配置されたロータとを有しており、ロータが回転駆動されることによって吸気口から排気口に気体を圧送するように構成されている。また、ポンプ室3a、3b、4a、4b、5、6としては、一般的には同じサイズの単段ポンプユニットが用いられるが、適当な分類で容積が異なる単段ポンプユニットを使用することも可能である。本実施形態では、バイパスバルブ機構7は、複数のポンプ室が並列に接続されたポンプ段における排気口側の流路と、真空ポンプのポンプ排気口2側の流路との間に配置されている。
図1に示した構成例の真空ポンプにおける排気速度特性の概略を図2に示す。図1(A)及び図1(B)に示す各構成例にそれぞれ対応する排気速度特性を、図2の曲線A及び曲線Bで示す。図2には、比較参照のために、図11(D)に示した従来の多段式の真空ポンプの基本的な構成で得られる排気速度特性(S1)と、この特性を2倍にした曲線(2×S1)を破線で併記している。また、図2には、図1(A)及び図1(B)に示した各構成例で、バイパスバルブ機構7を備えていない構成における排気速度特性を、曲線A及び曲線Bにそれぞれ合わせて破線で示している。
本実施形態によれば、大気圧にほぼ等しい(大気圧に近い)高圧力領域での排気速度をそれぞれ曲線A及び曲線Bで示すように改善することができる。なお、図1(A)に示した構成例と、図1(B)に示した構成例を比較した場合、排気速度特性としては、図1(B)に示した構成の方が性能改善の度合いが大きい。しかし、図1(A)に示した構成例は、図1(B)に示した構成よりも少ない個数のポンプ室で構成されるので、真空ポンプ全体としてのサイズや製造コストの観点で有利である。
本実施形態は、複数のポンプ室が並列に接続されたポンプ段の排気口側の流路を、ポンプ排気口2側の流路に連通させるバイパスバルブ機構7を備え、ポンプ吸気口2の圧力が高圧力領域でバルブ7aが開かれてバイパスバルブ機構7を介して気体が排気される。この構成によって、複数のポンプ室が並列に接続されたポンプ段で一度に比較的多量に排気される気体が、このポンプ段の後段に接続された単段ポンプ室で律速されて加圧状態になることが抑えられ、気体を真空ポンプ外部に排気することができる。
真空ポンプのポンプ吸気口側に位置するポンプ室の排気口側の流路を、基本的に大気圧状態である真空ポンプのポンプ排気口側の流路に接続することは、真空ポンプが通常の動作状態で到達圧力に達しているような場合にはあり得ないことである。しかし、ポンプ吸気口の圧力が大気圧にほぼ等しい高圧力領域では、複数のポンプ室が並列に接続されたポンプ段の排気口側の流路は、少なくとも単段のポンプ室が大気圧領域で有する圧縮性能に応じた要因で大気圧よりも高い圧力状態を生み出すため、大気圧との差圧に応じて気体を真空ポンプ外部に排気可能である。バイパスバルブ機構の流路の下流側の圧力よりも、バイパスバルブ機構の上流側の圧力が小さくなる前に、バルブを閉じることで、真空ポンプとして問題が生じることは無く、また真空ポンプに接続されている被排気系の真空容器側に悪影響を及ぼすこともない。なお、バイパスバルブ機構の流路の下流側の圧力は、この下流側に位置するポンプ室の排気口がポンプ排気口である場合にはほぼ大気圧となり、後段のポンプ段の吸気口側に迂回させて接続された場合には、そのポンプ段の吸気口の圧力となる。
図3は、第1の実施形態の更に他の構成例を示している。この構成例の真空ポンプでは、上流端側に位置するポンプ吸気口1側の1段目のポンプ段が、3つのポンプ室が並列に接続されてなる構成例である。また、図4に、この構成例の真空ポンプにおける排気速度特性を示す。図4では、図2と同様に、比較参照のため、図11(D)に示した従来の真空ポンプの基本的な構成で得られる排気速度特性(S1)と、この特性を3倍にした曲線(3×S1)を破線で併記している。また、図4には、図3に示した構成例で、上述のバイパスバルブ機構7を備えていない構成における排気速度特性を、曲線Aに合わせて破線で示している。この構成例においても、大気圧にほぼ等しい高圧力領域での排気速度をそれぞれ曲線Aで示すように改善することができる。
図5は、第2の実施形態の多段式の真空ポンプを示している。本実施形態の真空ポンプは、複数のポンプ室が並列に接続されてなる1段目のポンプ室の排気口側の流路から、この1段目に直列に接続された単段のポンプ室で構成されている複数のポンプ段を少なくとも1段以上を迂回して下流側のポンプ室の排気口側の流路に連通させて設けられたバイパスバルブ機構7を備えている。図5(A)及び図5(B)は、1段目が、3つの単段のポンプ室が並列に接続されて構成された真空ポンプをそれぞれ示している。
図5(A)は、バイパスバルブ機構7の流路の下流側が、3段目のポンプ室5と4段目のポンプ室6との流路に間に接続された構成例を示している。図5(B)は、バイパスバルブ機構7の流路の下流側が、2段目のポンプ室4と3段目のポンプ室5との間に接続された構成例を示している。
また、図6に、本実施形態の多段式の真空ポンプにおける排気速度特性を示す。なお、図6には、図2、図4と同様に、比較参照のため、図11(D)に示した従来の多段式の真空ポンプの基本的な構成で得られる排気速度特性(S1)と、この特性を3倍した曲線(3×S1)を破線で併記している。また、図6には、各構成例の効果の違いを示すために、図5に示した構成例と同様に、1段目は3つのポンプ室が並列に接続されて構成され、バイパスバルブ機構7の流路の下流側が真空ポンプのポンプ排気口2に接続された、図3に示した第1の実施形態の構成例の排気速度特性(排気特性は図4に例示)を破線で示している。バイパスバルブ機構7の流路の下流側(ポンプ排気口2により近い側)を接続する位置によって、得られる特性の改善特徴が異なる。したがって、必要とされる排気性能により適した構成を選択することも可能である。また、物理的なスペースや製造コスト等が増えることが許容される場合には、複数のバイパスバルブ機構を備え、これら複数のバイパスバルブ機構を最適に連動させることで、最大の排気特性を得ることも可能である。
図7は、第3の実施形態の多段式の真空ポンプを示している。図7に示すように、本実施形態の真空ポンプは、圧力測定手段としての圧力測定器8を備えている。本実施形態では、圧力測定器8による測定結果に基づいてバイパスバルブ機構7のバルブ7aを制御して開閉動作させることで、ポンプ吸気口1の圧力が大気圧にほぼ等しい高圧力領域で、バルブ7aを自動的に開閉可能に構成されている。
圧力測定器8を真空ポンプ内部に内蔵させる場合、図7(B)に示すように、複数のポンプ室が並列に接続されたポンプ段の排出口側、つまりバイパスバルブ機構7の上流側の流路に圧力測定器8が配置される構成が、制御する上で最も簡単である。基本的には、圧力測定器8での測定圧力がポンプ排気口圧力よりも高い条件範囲で、バイパスバルブ機構7のバルブ7aが開かれるように制御すればよい。
なお、図示しないが、望ましくはポンプ排気口2にも同様な圧力測定器8が設けられ、この圧力測定器8で差圧を測定することで制御を更に確実に行うことができる。ポンプ吸気口1の圧力に対する真空ポンプ内部の圧力、特にバイパスバルブ機構7のバルブ7aに対する上流側の圧力及び下流側の圧力との関係を予め測定しておけば、図7(A)に示すように、ポンプ吸気口1の近傍に圧力測定器8が配置されても良い。また、図7(C)に示すように、真空ポンプに接続される被排気系の真空容器9に設けられた圧力測定器8による測定結果に基づいて、バイパスバルブ機構7のバルブ7aを制御して開閉させる構成でもよい。
図8は、第4の実施形態の多段式の真空ポンプで用いられるバイパスバルブ機構7を示す模式図である。図8に示すように、本実施形態におけるバイパスバルブ機構7は、バルブ7aに対する上流側の圧力と下流側の圧力とが所定の差圧になったときに、バルブ7aを自動的に開閉させるバルブ開閉機構7bを有している。このバルブ開閉機構7bは、ポンプ吸気口1の圧力が大気圧にほぼ等しい高圧力領域で、バルブ7aを制御して自動的に開閉させることが可能に構成されている。
図8(A)に、バルブ7aとしてボール形状のバルブシール10を用いたバルブ開閉機構7bの構成例を示す。図8(A)に示すように、バルブ開閉機構7bは、流路を開閉可能に配置されたバルブシール10と、このバルブシール10を流路に沿って移動可能に支持するバルブピストン12とを有している。また、このバルブ開閉機構7bは、バルブピストン12の移動方向をガイドする一組のバルブガイド13,14と、バルブシール10によって流路が閉じられる方向に付勢するバルブスプリング11と、バルブシール10が圧接されるシール面部15とを有している。
また、図8(B)に、バルブ7aとしてOリング形状のバルブシール16が設けられたバルブピストン12を用いたバルブ開閉機構7bの他の構成を示す。図8(B)に示すように、バルブ開閉機構7bは、流路を開閉可能に配置されたバルブ部12aを有するバルブピストン12と、バルブ部12aに設けられたバルブシール16と、バルブシール16が圧接されるシール面部17とを有している。また、このバルブ開閉機構7bは、バルブピストン12の移動方向をガイドするバルブガイド13と、バルブ部12aによって流路が閉じられる方向に付勢するバルブスプリング11とを有している。
以上の各構成例のバルブ開閉機構7bは、バルブ7aの上流側の圧力が、バルブ7aに対する下流側の圧力にバルブスプリング13の付勢力による圧力を加えた圧力よりも大きいときに、バルブ8aが開かれる。
図9は、第5の実施形態の真空ポンプで用いられるバイパスバルブ機構7を示している。図9に示すように、本実施形態におけるバイパスバルブ機構7は、流路を構成する配管の外周部に、この配管を加熱するための加熱機構17が設けられている。この加熱機構17によれば、凝縮性を有した生成物がバルブ7a付近に堆積することを防止できる。図示しないが、例えば温度測定器等を併用してバルブ7a周辺の温度が制御されるように構成されるのが望ましい。制御温度は、多段式の真空ポンプを使用する外部装置(不図示)からの流入が予想される反応生成物の種類に応じて適正に選定する必要がある。
図10は、第6の実施形態の真空ポンプで用いられるバイパスバルブ機構を示している。図10に示すように、本実施形態におけるバイパスバルブ機構7は、バルブ7aが配置された流路を例えばN2等の不活性気体で希釈パージするパージ手段としてのパージ機構18を有している。このパージ機構18によれば、凝縮性を有した生成物が流路の内壁やバルブ7a付近に堆積することを防止できる。不活性気体は、パージ用配管19の導入口から導入され、流量調節バルブ18a、18bで流量を適正に制御されて、バイパスバルブ機構7のバルブ7a周辺に導入される。なお、バルブ7aが開かれた状態で不活性気体を流通させるか否かについては、多段式の真空ポンプの用途に応じて適宜設定されるべきである。
以上、各実施形態の真空ポンプを説明したが、本発明はこれらの構成に限定されるものではない。例えば、実施形態では、基本的に単段のポンプ室のサイズが全て同じサイズであることを前提に説明したが、容積が異なるポンプ室を組合せた場合でも基本的な考え方は同じである。また、真空ポンプ全体におけるポンプ室の段数としては、上述の実施形態とポンプ室の段数を異ならせ、例えば4段や6段で構成する場合等でも同様の効果が得られる。
また、本実施形態では、1段目だけが複数のポンプ室が並列に接続されて構成されたが、例えば1段目および2段目等の複数段にわたって、各ポンプ段がそれぞれ複数のポンプ室が並列に接続された構成にされてもよい。
第1の本実施形態の多段式の真空ポンプを示す模式図である。 図1に示した第1の実施形態の真空ポンプにおける排気速度特性を示す図である。 第1の実施形態の真空ポンプの他の構成例を示す模式図である。 図3に示した第1の実施形態における排気速度特性を示す図である。 第2の実施形態の多段式の真空ポンプを示す模式図である。 上記第2の実施形態による排気速度特性を示す図である。 第3の実施形態の多段式の真空ポンプを示す模式図である。 第4の実施形態で用いられるバルブ開閉機構の構成例を示す模式図である。 第5の実施形態で用いられる加熱機構の構成例を示す模式図である。 第6の実施形態で用いられるパージ機構の構成例を示す模式図である。 従来の多段式の真空ポンプを示す模式図である。 図11に示した従来の真空ポンプにおける排気速度特性を示す図である。
符号の説明
1 ポンプ吸気口
2 ポンプ排気口
3a、3b、3c 1段目のポンプ室
4a、4b 2段目のポンプ室
5 3段目のポンプ室
6 4段目のポンプ室
7 バイパスバルブ機構
7a バルブ
8 圧力測定器(圧力測定手段)
9 真空容器
17 加熱機構(加熱手段)
18 パージ機構(パージ手段)
18a、18b 流量調節バルブ
19 パージ用配管

Claims (6)

  1. 吸気口および排気口が設けられたポンプ容器と、該ポンプ容器に配置されたロータとを有し該ロータが回転駆動されることによって前記吸気口から前記排気口に気体を圧送する複数のポンプ室を備え、前記ポンプ室が複数のポンプ段で直列に接続されてなる真空ポンプにおいて、
    前記真空ポンプの上流端側から位置する少なくとも1段目は、複数の前記ポンプ室が並列に接続されてなり、
    前記ポンプ室が並列に接続されたポンプ段における下流端側の前記ポンプ室の前記排気口側の流路から、前記ポンプ室の複数のポンプ段の少なくとも1段以上を迂回して下流側の前記ポンプ室の前記排気口側の流路に連通させて設けられたバイパスバルブ機構を備え、
    前記バイパスバルブ機構は、前記1段目に位置する前記ポンプ室の前記吸気口の圧力が大気圧にほぼ等しい高圧力領域で開かれるバルブを有し、前記ポンプ室が並列に接続されたポンプ段における下流端側の前記ポンプ室よりも下流側に位置する前記ポンプ室の前記排気口側の流路に前記気体を排気するように構成されていることを特徴とする真空ポンプ。
  2. 前記バイパスバルブ機構は、前記バルブが配置された流路の下流端側が、前記真空ポンプの下流端側に位置する前記ポンプ室の前記排気口に連通されている、請求項1に記載の真空ポンプ。
  3. 前記気体の圧力を測定する圧力測定手段を備え、
    前記バイパスバルブ機構は、前記圧力測定手段による測定結果に基づいて前記バルブが自動的に開閉可能にされている、請求項1又は2に記載の真空ポンプ。
  4. 前記バイパスバルブ機構は、前記バルブに対する上流側の圧力と下流側の圧力との差圧で前記バルブを自動的に開閉させるバルブ開閉機構を有している、請求項1又は2に記載の真空ポンプ。
  5. 前記バイパスバルブ機構は、前記バルブが配置された流路を加熱する加熱手段を有している、請求項1ないし4のいずれか1項に記載の真空ポンプ。
  6. 前記バイパスバルブ機構は、前記バルブが配置された流路を不活性気体で希釈パージするパージ手段を有している、請求項1ないし5のいずれか1項に記載の真空ポンプ。
JP2007163965A 2007-06-21 2007-06-21 真空ポンプ Pending JP2009002235A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007163965A JP2009002235A (ja) 2007-06-21 2007-06-21 真空ポンプ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007163965A JP2009002235A (ja) 2007-06-21 2007-06-21 真空ポンプ

Publications (1)

Publication Number Publication Date
JP2009002235A true JP2009002235A (ja) 2009-01-08

Family

ID=40318890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007163965A Pending JP2009002235A (ja) 2007-06-21 2007-06-21 真空ポンプ

Country Status (1)

Country Link
JP (1) JP2009002235A (ja)

Similar Documents

Publication Publication Date Title
TWI467092B (zh) 真空排氣裝置
US9869317B2 (en) Pump
US10982662B2 (en) Pumping system
JP5438279B2 (ja) 多段真空ポンプ及びその運転方法
JP2005330967A (ja) 軽量気体用真空ポンプシステム
JP2005155540A (ja) 多段ドライ真空ポンプ
JP5640089B2 (ja) 真空システム
JP4451615B2 (ja) 真空ポンプシステムとその制御方法
US9297381B2 (en) Switchable single-start or multi-start scroll pump
WO2011039812A1 (ja) 容積移送型ドライ真空ポンプ
JP2017520715A (ja) 真空ポンプシステム
JP5102068B2 (ja) 多段真空ポンプ
JP2009002235A (ja) 真空ポンプ
US9297384B2 (en) Scroll pump with overpressure exhaust
JP2009002230A (ja) 真空ポンプ
JP2004144088A (ja) 多段ピストン真空ポンプおよびその運転方法
KR101360799B1 (ko) 2단 터보압축기
JP4045362B2 (ja) 多段式容積移送型ドライ真空ポンプ
JPH048891A (ja) 多段ルーツ型真空ポンプ
TW202319647A (zh) 多級真空泵
JP2010121538A (ja) 真空ポンプ装置
JPS63227976A (ja) 減圧装置
KR20060089444A (ko) 터보 압축기

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090220