JP2009001505A - Method for producing antibacterial agent microparticle, antibacterial coating and antibacterial heat exchanger - Google Patents

Method for producing antibacterial agent microparticle, antibacterial coating and antibacterial heat exchanger Download PDF

Info

Publication number
JP2009001505A
JP2009001505A JP2007161422A JP2007161422A JP2009001505A JP 2009001505 A JP2009001505 A JP 2009001505A JP 2007161422 A JP2007161422 A JP 2007161422A JP 2007161422 A JP2007161422 A JP 2007161422A JP 2009001505 A JP2009001505 A JP 2009001505A
Authority
JP
Japan
Prior art keywords
silver
solution
antibacterial
particles
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007161422A
Other languages
Japanese (ja)
Other versions
JP5189320B2 (en
Inventor
Hiroki Arakawa
宏樹 荒川
Hideto Takahashi
秀人 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP2007161422A priority Critical patent/JP5189320B2/en
Publication of JP2009001505A publication Critical patent/JP2009001505A/en
Application granted granted Critical
Publication of JP5189320B2 publication Critical patent/JP5189320B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Paints Or Removers (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for simply and stably producing silver carbonate microparticles having ≤5 μm particle diameter with a high silver content and to further provide a technique for developing antibacterial properties over a long period of time with the resultant silver carbonate microparticles. <P>SOLUTION: A solution A containing silver ions is mixed with a solution B containing carbonate ions in the presence of colloidal particles under specific conditions to further form a resin coating comprising the resultant silver carbonate microparticles. A heat exchanger is provided by applying the resin coating to a heat exchange part. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、粒径5μm以下で銀含有率が少なくとも15質量%以上の抗菌剤微粒子を製造する方法、発生する凝縮水中に銀イオンを50ppb以上溶出させることができる抗菌性塗料、及び長期に渡りフィン表面に繁殖するカビの発生を防止することができる抗菌熱交換器に関する。   The present invention relates to a method for producing antibacterial fine particles having a particle size of 5 μm or less and a silver content of at least 15% by mass, an antibacterial paint capable of eluting silver ions of 50 ppb or more in the generated condensed water, and for a long period of time. The present invention relates to an antibacterial heat exchanger capable of preventing the occurrence of mold that propagates on the fin surface.

銀を用いた抗菌剤(銀系抗菌剤)は、微粒子粉体として塗料中に分散したり、あるいは樹脂中に混練することによって、抗菌機能を付与させたい塗料や樹脂製品中に添加して使用されている。この際の塗料や樹脂については、塗装の表面や樹脂の表面の滑らかさを確保するために、あるいは塗布又は樹脂コーティングされる製品の伝熱特性等の特性を低下させないように、塗布膜又はコーティング膜を数μm以下の薄膜とすることが望まれている。このため、このような塗料や樹脂に用いられる銀系抗菌剤粒子は、その粒子径が数μm以下の微粒子であることが要望される。   Antibacterial agents using silver (silver-based antibacterial agents) are added to paints and resin products that want to give antibacterial functions by dispersing in the paint as fine particle powders or kneading them into the resin. Has been. In this case, the coating film or resin should be coated or coated to ensure the smoothness of the painted surface or resin surface, or not to deteriorate the heat transfer characteristics of the product to be coated or resin coated. It is desired that the film be a thin film of several μm or less. For this reason, the silver antibacterial agent particles used in such paints and resins are required to be fine particles having a particle diameter of several μm or less.

銀系抗菌剤粒子には、通常は、ゼオライト、シリカゲル、アルミナ、あるいはリン酸塩等の、粒子径が数μm以下の粒子を担体として、それらの粉体粒子に銀化合物を担持させた粒子が知られている(例えば、特許文献1〜5参照。)。銀系抗菌剤の抗菌作用は銀によるものであるが、従来の銀系抗菌剤粒子の銀含有率は、担体の存在ゆえに高めることが困難であり、通常は10質量%以下に留まっている。   Silver antibacterial particles usually include particles having a particle diameter of several μm or less, such as zeolite, silica gel, alumina, or phosphate, with a silver compound supported on those powder particles. It is known (for example, refer to Patent Documents 1 to 5). Although the antibacterial action of the silver antibacterial agent is due to silver, it is difficult to increase the silver content of the conventional silver antibacterial agent particles due to the presence of the carrier, and usually remains at 10% by mass or less.

このため、担体に銀化合物が担持されてなる銀系抗菌剤粒子の製造では、所定の期間抗菌作用を持続させるために、銀系抗菌剤の製品への添加量として、本来必要とされる銀の量に対して、質量基準で10倍以上の量が通常は必要とされる。   For this reason, in the production of silver-based antibacterial agent particles in which a silver compound is supported on a carrier, in order to maintain the antibacterial action for a predetermined period, the amount of silver-based antibacterial agent originally added to the product is required. An amount of 10 times or more on a mass basis is usually required.

このように、従来の銀系抗菌剤においては、銀を担体に担持しているために、この担体の存在が抗菌効果をより長期に持続させること、すなわち製品中の銀密度を上げること、に対して大きな制約となっていた。また、逆に銀含有率100質量%の金属銀粒子を抗菌剤粒子として用いることは、銀の溶解度が極めて低く十分な抗菌効果を得るのは困難である。このためこのような抗菌剤粒子は実用されていない。   Thus, in the conventional silver-based antibacterial agent, since silver is supported on a carrier, the presence of this carrier maintains the antibacterial effect for a longer period, that is, increases the silver density in the product. It was a big restriction. Conversely, using metallic silver particles having a silver content of 100% by mass as antibacterial agent particles makes it difficult to obtain a sufficient antibacterial effect because the solubility of silver is extremely low. For this reason, such antibacterial agent particles have not been put to practical use.

一方、炭酸銀は銀化合物の中で銀の溶解度が低い方ではあるが、金属銀に比べれば銀の溶解度が高く、抗菌剤としての機能を有する。また、炭酸銀の銀含有率は78質量%であり、炭酸銀自体を微粒子化すれば従来に比べて銀含有率の非常に高い銀系抗菌剤粒子となる。炭酸銀は多くの銀化合物と同様に、光の存在下で感光し、変色する性質があるため、変色が問題になる用途を除けば、微粒子化することにより持続性の高い銀系抗菌剤粒子としての利用が期待できる。   On the other hand, silver carbonate is a silver compound having a lower solubility in silver, but has a higher silver solubility than metal silver and has a function as an antibacterial agent. Moreover, the silver content rate of silver carbonate is 78 mass%, and if silver carbonate itself is made into fine particles, silver-based antibacterial agent particles having a much higher silver content than conventional ones are obtained. Silver carbonate, like many silver compounds, is sensitive and discolors in the presence of light. Except for applications where discoloration is a problem, it is highly durable silver-based antibacterial particles. It can be expected to be used as

炭酸銀はジェットミルやボールミル等の機械的粉砕法で粒径5μm以下に微粒子化することが知られている。しかしながらこの方法は、炭酸銀の硬度が低いために収率が低く、生産効率やコストの観点から検討の余地が残されている。   It is known that silver carbonate is finely divided to a particle size of 5 μm or less by a mechanical grinding method such as a jet mill or a ball mill. However, this method has a low yield due to the low hardness of silver carbonate, and there remains room for study from the viewpoint of production efficiency and cost.

また炭酸銀を含有する抗菌剤には、銀イオン、銀イオンと難水溶性銀塩を生成する対イオン、コア、及び溶媒から難水溶性銀塩を析出させる製造方法が知られている(例えば、特許文献6参照。)。しかしながらこの方法は、抗菌剤中の銀イオンの含有量や抗菌剤の粒径の制御の観点から検討の余地が残されている。   In addition, for antibacterial agents containing silver carbonate, a production method is known in which a sparingly water-soluble silver salt is precipitated from silver ions, a counter ion that produces silver ions and a sparingly water-soluble silver salt, a core, and a solvent (for example, , See Patent Document 6). However, this method still has room for study from the viewpoint of controlling the silver ion content in the antibacterial agent and the particle size of the antibacterial agent.

さらに、抗菌剤の用途については、例えば特許文献5には、樹脂材料の中へ金属系抗菌剤を混練して調製した塗料を空調設備機器表面へ塗布する方法が記載されている。このような方法において、樹脂材料としてエポキシ樹脂のように有機系樹脂材料を使用する場合、塗料調製や空調設備機器への塗布工程において作業環境への配慮する必要があり、換気設備に対する投資が必要である。このように前記の方法は、作業環境への配慮の観点から検討の余地が残されている。   Furthermore, regarding the use of the antibacterial agent, for example, Patent Document 5 describes a method of applying a paint prepared by kneading a metal antibacterial agent into a resin material to the surface of an air conditioner equipment. In such a method, when an organic resin material such as an epoxy resin is used as the resin material, it is necessary to consider the work environment in the paint preparation and application process to the air conditioning equipment, and an investment in ventilation equipment is required. It is. Thus, the above method still has room for study from the viewpoint of consideration of the work environment.

また、空調機器内部の抗菌方法としては、熱交換器上部に銀系抗菌剤を用いて作製した棒状の特殊板をフィン部に挟み込み、凝縮水と共に銀イオンを溶出させ、熱交換器、水受け皿、ドレンホースの流水経路全体を抗菌する方法が知られている(例えば、特許文献7参照)。棒状にすることで総銀イオン量を増やせるため、抗菌効果の持続性を確保することが可能であるが、フィン内に棒状の板を設置することは、気流を妨害・遮蔽することとなり、機器内部の圧力損失を増加させてしまうため、空調機器の運転効率への影響の観点から検討の余地が残されている。
特開平6−24921号公報 特開平8−67835号公報 特開平8−157750号公報 特開2004−137241号公報 特開2004−161632号公報 特開2005−139113号公報 特開2001−343196号公報
In addition, as an antibacterial method inside the air conditioner, a bar-shaped special plate made using a silver-based antibacterial agent is sandwiched between the fins at the top of the heat exchanger, and silver ions are eluted together with the condensed water. A method for antibacterial the entire flowing water path of the drain hose is known (see, for example, Patent Document 7). It is possible to increase the total silver ion amount by making it into a rod shape, so it is possible to ensure the durability of the antibacterial effect, but installing a rod-shaped plate inside the fin will obstruct and shield the airflow, and equipment In order to increase the internal pressure loss, there remains room for consideration from the viewpoint of the effect on the operating efficiency of the air conditioning equipment.
JP-A-6-24921 JP-A-8-67835 JP-A-8-157750 JP 2004-137241 A JP 2004-161632 A JP 2005-139113 A JP 2001-343196 A

本発明は、このような粉体への銀化合物の担持による方法や機械的粉砕法では困難であった、粒径が5μm以下であり、かつ高い銀含有率の炭酸銀微粒子を簡便にかつ安定的に製造する方法を提供することを目的とする。   In the present invention, silver carbonate fine particles having a particle size of 5 μm or less and having a high silver content can be easily and stably obtained, which has been difficult by such a method of supporting a silver compound on a powder or mechanical grinding. It is an object of the present invention to provide a manufacturing method.

さらに、本銀系抗菌剤微粒子を用い、薄塗膜で長期間銀イオンが50ppb以上溶出可能な抗菌性の膜と、その用途とを提供することを目的とする。   It is another object of the present invention to provide an antibacterial film which can use silver fine antibacterial agent fine particles and can elute silver ions of 50 ppb or more for a long time with a thin coating film, and its use.

本発明は、銀イオンを含有する溶液をAとし、炭酸イオンを含有する溶液をBとし、溶液Aと溶液Bとをコロイド粒子の存在下で混合し炭酸銀微粒子を得る方法において、コロイド粒子の粒子数及び濃度やコロイド粒子と銀との量的条件等の条件を調整することにより、粒径5μm以下の炭酸銀微粒子を得る方法を提供する。   The present invention relates to a method for obtaining silver carbonate fine particles by mixing a solution containing silver ions as A, a solution containing carbonate ions as B, and mixing solution A and solution B in the presence of colloidal particles. Provided is a method for obtaining silver carbonate fine particles having a particle size of 5 μm or less by adjusting conditions such as the number and concentration of particles and quantitative conditions of colloidal particles and silver.

すなわち本発明は、銀イオンを含有する溶液Aと炭酸イオンを含有する溶液Bとをコロイド粒子の存在下で混合して炭酸銀微粒子を製造する方法において、コロイド粒子の粒子径をx[nm]とし、溶液A及び溶液Bを混合した混合溶液におけるコロイド粒子の溶媒質量に対する粒子数濃度をy[個/g]とし、前記混合溶液におけるコロイド粒子の粒子数に対する銀原子の数の比をzとしたときに、コロイド粒子の粒子数濃度yが下記式1で求められる値以上でありかつ下記式2で求められる値以下となり、かつ銀原子の数の比zが下記式3で求められる値未満となるように、溶液A及びBをコロイド粒子存在下で混合する方法を提供する。
式1) y=1.16×1017×(1/x)1.9
式2) y=9.23×1019×(1/x)3.0
式3) z=k×(175.3x2+2196.3x+2793)
(式3中、kは1である。)
That is, the present invention relates to a method for producing silver carbonate fine particles by mixing a solution A containing silver ions and a solution B containing carbonate ions in the presence of colloidal particles. The particle number concentration with respect to the solvent mass of the colloidal particles in the mixed solution obtained by mixing the solution A and the solution B is y [number / g], and the ratio of the number of silver atoms to the number of colloidal particles in the mixed solution is z. When the particle number concentration y of the colloidal particles is not less than the value obtained by the following formula 1 and not more than the value obtained by the following formula 2, the ratio z of the number of silver atoms is less than the value obtained by the following formula 3. A method for mixing solutions A and B in the presence of colloidal particles is provided.
Formula 1) y = 1.16 × 10 17 × (1 / x) 1.9
Formula 2) y = 9.23 × 10 19 × (1 / x) 3.0
Formula 3) z = k * (175.3x < 2 > + 2196.3x + 2793)
(In Formula 3, k is 1.)

また本発明は、粒径が5μm以下であり銀含有率が15質量%以上である炭酸銀微粒子と樹脂とを含有する抗菌性樹脂膜用の塗料であって、前記炭酸銀微粒子の含有量が、前記抗菌性樹脂膜中において14〜88質量%である抗菌性樹脂膜用塗料を提供する。   The present invention also provides a coating material for an antibacterial resin film containing silver carbonate fine particles having a particle size of 5 μm or less and a silver content of 15% by mass or more, and a resin, wherein the content of the silver carbonate fine particles is The antibacterial resin film coating is 14 to 88% by mass in the antibacterial resin film.

さらに本発明は、流体を加熱又は冷却するための熱交換部と、この熱交換部の表面に形成されている抗菌性樹脂膜とを有し、熱交換時に熱交換部の表面に水が存在する熱交換器において、前記抗菌性樹脂膜は、前記本発明の抗菌性樹脂膜用塗料を塗布して形成される抗菌性樹脂膜である抗菌熱交換器を提供する。   Furthermore, the present invention has a heat exchange part for heating or cooling a fluid and an antibacterial resin film formed on the surface of the heat exchange part, and water is present on the surface of the heat exchange part during heat exchange. In the heat exchanger, the antibacterial resin film provides an antibacterial heat exchanger which is an antibacterial resin film formed by applying the antibacterial resin film paint of the present invention.

本発明によれば、銀含有率が15質量%以上であり、従来に比べて銀含有率が高い銀系抗菌剤微粒子として、粒径5μm以下の炭酸銀微粒子を、簡便にかつ安定的に製造することができる。   According to the present invention, silver carbonate fine particles having a particle size of 5 μm or less are easily and stably produced as silver antibacterial fine particles having a silver content of 15% by mass or more and a higher silver content than conventional. can do.

また、本発明によれば、水の存在下で長期間銀イオンを50ppb以上溶出する薄膜を形成できる抗菌用の塗料、及び炭酸銀微粒子による抗菌作用を有する熱交換器を提供することができる。   In addition, according to the present invention, it is possible to provide an antibacterial coating material capable of forming a thin film that elutes silver ions of 50 ppb or more for a long time in the presence of water, and a heat exchanger having an antibacterial action due to silver carbonate fine particles.

本発明における炭酸銀微粒子を製造する方法では、銀イオンを含有する溶液Aと炭酸イオンを含有する溶液Bとをコロイド粒子の存在下で混合して炭酸銀微粒子を製造する方法において、コロイド粒子の粒子径をx[nm]とし、溶液A及び溶液Bを混合した混合溶液におけるコロイド粒子の溶媒質量に対する粒子数濃度をy[個/g]とし、前記混合溶液におけるコロイド粒子の粒子数に対する銀原子の数の比をzとしたときに、コロイド粒子の粒子数濃度yが下記式1で求められる値以上でありかつ下記式2で求められる値以下となり、かつ銀原子の数の比zが下記式3で求められる値未満となるように、溶液A及びBをコロイド粒子存在下で混合する。なお、下記式3中、kは1である。
式1) y=1.16×1017×(1/x)1.9
式2) y=9.23×1019×(1/x)3.0
式3) z=k×(175.3x2+2196.3x+2793)
In the method for producing silver carbonate fine particles in the present invention, the solution A containing silver ions and the solution B containing carbonate ions are mixed in the presence of colloidal particles to produce silver carbonate fine particles. The particle diameter is x [nm], the particle number concentration with respect to the solvent mass of the colloidal particles in the mixed solution in which the solution A and the solution B are mixed is y [particles / g], and the silver atoms with respect to the number of colloidal particles in the mixed solution The number ratio y of colloidal particles is not less than the value obtained by the following formula 1 and not more than the value obtained by the following formula 2, and the ratio z of the number of silver atoms is z The solutions A and B are mixed in the presence of colloidal particles so as to be less than the value obtained by Equation 3. In the following formula 3, k is 1.
Formula 1) y = 1.16 × 10 17 × (1 / x) 1.9
Formula 2) y = 9.23 × 10 19 × (1 / x) 3.0
Formula 3) z = k * (175.3x < 2 > + 2196.3x + 2793)

コロイド粒子の粒子径xは、用いられるコロイド粒子の大きさを代表する値であり、コロイド粒子の粒子径xには例えば平均粒子径が挙げられる。本発明では、コロイド粒子には市販の粒子や市販のコロイド水溶液(ゾル)を利用することができ、コロイド粒子の粒子径xは、このような市販品におけるメーカーの公称値(カタログ値)であってもよい。   The particle diameter x of the colloidal particles is a value representative of the size of the colloidal particles used. Examples of the particle diameter x of the colloidal particles include an average particle diameter. In the present invention, commercially available particles or commercially available colloidal aqueous solutions (sols) can be used for the colloidal particles, and the particle diameter x of the colloidal particles is the manufacturer's nominal value (catalog value) for such commercially available products. May be.

コロイド粒子の粒子径xは、通常は1〜500nmであり、特に限定されない。しかしながら、コロイド粒子は、同じ質量濃度においては粒子径が小さいものほどコロイド粒子の粒子数の濃度は高くなる。このため、式1の値以上式2の値以下の条件を満たしつつ炭酸銀微粒子を量産する観点から、コロイド粒子には粒子径の小さな粒子を用いることが好ましい。実用的にはコロイド粒子の粒子径は50nm未満であることがより好ましく、5〜50nmであることがより一層好ましく、5〜30nmであることがさらに好ましい。   The particle diameter x of the colloidal particles is usually 1 to 500 nm and is not particularly limited. However, for colloidal particles, the smaller the particle diameter at the same mass concentration, the higher the concentration of the number of colloidal particles. For this reason, from the viewpoint of mass-producing silver carbonate fine particles while satisfying the condition of the value of the formula 1 or more and the value of the formula 2 or less, it is preferable to use particles having a small particle diameter as the colloid particles. Practically, the colloidal particle diameter is more preferably less than 50 nm, even more preferably 5 to 50 nm, and even more preferably 5 to 30 nm.

コロイド粒子の粒子数濃度yは、溶液A及び溶液Bを混合した混合溶液において、液体媒体(すなわち溶媒、例えば水)の質量[g]に対するコロイド粒子の粒子数[個数]である。前記混合溶液中におけるコロイド粒子の粒子数は、コロイド粒子に市販のコロイド溶液を利用する場合では、市販のコロイド溶液中のコロイド粒子の粒子径x、市販のコロイド溶液の比重、及び市販のコロイド溶液中のコロイド粒子の質量濃度から求めることができ、この市販のコロイド溶液を質量既知の水で希釈することにより、調整することができる。   The particle number concentration y of the colloidal particles is the number [number] of colloidal particles with respect to the mass [g] of the liquid medium (that is, solvent, for example, water) in the mixed solution obtained by mixing the solution A and the solution B. The number of colloidal particles in the mixed solution is as follows. When a commercially available colloidal solution is used for the colloidal particles, the particle diameter x of the colloidal particles in the commercially available colloidal solution, the specific gravity of the commercially available colloidal solution, and the commercially available colloidal solution. It can obtain | require from the mass density | concentration of the colloid particle in this, and can adjust by diluting this commercial colloid solution with water of known mass.

コロイド粒子の粒子数濃度yが小さい場合では、得られる炭酸銀微粒子の粒径が大きくなる。炭酸銀微粒子は、背景技術において前述したように膜中に分散させて使用される場合には、粒径が数μm以下であることが望まれている。コロイド粒子の粒子数濃度yが前記式1で求められる値以上であることにより、5μm以下の粒径の炭酸銀微粒子が得られる。また、コロイド粒子の粒子数濃度yが前記式2で求められる値以下であることにより、前記混合溶液のゲル化(固化)が防止される。   When the particle number concentration y of the colloidal particles is small, the particle size of the obtained silver carbonate fine particles is large. As described above in the background art, the silver carbonate fine particles are desired to have a particle size of several μm or less when dispersed in a film. When the particle number concentration y of the colloidal particles is not less than the value obtained by the above formula 1, silver carbonate fine particles having a particle diameter of 5 μm or less are obtained. Further, when the particle number concentration y of the colloidal particles is equal to or less than the value obtained by Equation 2, gelation (solidification) of the mixed solution is prevented.

前記混合溶液におけるコロイド粒子の粒子数に対する銀原子の数の比zが式3の値未満であることにより、炭酸銀微粒子の巨大化が防止される。また前記混合溶液におけるコロイド粒子の粒子数に対する銀原子の数の比zは、式3の係数kが0.6であるときの式3の値以上でkが1であるときの式3の値未満であることが好ましく、kが0.8であるときの式3の値以上でkが1であるときの式3の値未満であることがより好ましく、kが1であるときの式3の値未満であることがさらに好ましい。   When the ratio z of the number of silver atoms to the number of colloidal particles in the mixed solution is less than the value of Formula 3, enlargement of the silver carbonate fine particles is prevented. The ratio z of the number of silver atoms to the number of colloidal particles in the mixed solution is equal to or greater than the value of Equation 3 when the coefficient k of Equation 3 is 0.6 and the value of Equation 3 when k is 1. Preferably less than the value of Equation 3 when k is 0.8 and more preferably less than the value of Equation 3 when k is 1, and Equation 3 when k is 1. More preferably, it is less than this value.

本発明の方法による炭酸銀微粒子の生成機構は、前記混合溶液において、コロイド粒子を核として、その表面に炭酸銀が析出し、この原粒子が成長し、炭酸銀微粒子を生成する機構であると考えられる。前記混合溶液におけるコロイド粒子の粒子数に対する銀原子の数の比zが大きすぎると、コロイド粒子の表面における炭酸銀の析出と原粒子の成長が進み過ぎ、炭酸銀微粒子が巨大化することがある。コロイド粒子の粒子数に対する銀原子の数の比zは、コロイド粒子の粒子径xにもよるが、一般的には、105程度かそれ以下であることが、生成する炭酸銀微粒子の粒径の制御と炭酸銀微粒子の量産性との観点から好ましい。 The production mechanism of silver carbonate fine particles by the method of the present invention is a mechanism in which, in the mixed solution, silver carbonate is deposited on the surface of the colloidal particles as nuclei, and the original particles grow to produce silver carbonate fine particles. Conceivable. If the ratio z of the number of silver atoms to the number of colloidal particles in the mixed solution is too large, the precipitation of silver carbonate and the growth of the original particles on the surface of the colloidal particles may proceed excessively, and the silver carbonate fine particles may become enormous. . The ratio z of the number of silver atoms to the number of colloidal particles depends on the particle diameter x of the colloidal particles, but is generally about 10 5 or less. From the viewpoints of control of mass production and mass productivity of silver carbonate fine particles.

前記銀原子の数は、前記混合溶液中における銀イオンの数とイオンになっていない銀原子の数との合計である。前記混合溶液中の銀原子の数は、溶液A及び溶液B中の銀原子の数の総和である。以下、銀原子の数、コロイド粒子の粒子数、及び前記混合溶液におけるコロイド粒子数濃度の算出方法をそれぞれ説明する。   The number of silver atoms is the sum of the number of silver ions in the mixed solution and the number of silver atoms that are not ions. The number of silver atoms in the mixed solution is the sum of the number of silver atoms in solution A and solution B. Hereinafter, calculation methods of the number of silver atoms, the number of colloidal particles, and the concentration of colloidal particles in the mixed solution will be described.

銀原子の数は、例えば溶液B中に銀化合物が含まれない場合では、下記式4によって求めることができる。
式4) Nag=mac×Wac×NA/Mac
For example, when the silver compound is not contained in the solution B, the number of silver atoms can be obtained by the following formula 4.
Formula 4) Nag = mac × Wac × NA / Mac

式4中、Nagは混合溶液中の銀原子の数[個]であり、macは溶液Aの作製に用いた銀化合物の1分子中の銀原子の数であり、Wacは溶液Aの作製に用いた銀化合物の質量[g]であり、NAはアボガドロ数(6.02×1023[個])であり、Macは溶液Aの作製に用いた銀化合物の分子量である。 In Formula 4, Nag is the number of silver atoms in the mixed solution [mac], mac is the number of silver atoms in one molecule of the silver compound used in the preparation of solution A, and Wac is in the preparation of solution A. It is the mass [g] of the silver compound used, NA is the Avogadro number (6.02 × 10 23 [pieces]), and Mac is the molecular weight of the silver compound used in the preparation of the solution A.

コロイド粒子の粒子数は、例えば、溶液A及びBのそれぞれにコロイド粒子を含有させて、これらの溶液A、Bを混合して前記混合溶液を得る場合では、下記式5により求めることができる。
式5) Np=Np(A)+Np(B)
For example, when the colloidal particles are contained in each of the solutions A and B and the solutions A and B are mixed to obtain the mixed solution, the number of colloidal particles can be obtained by the following formula 5.
Formula 5) Np = Np (A) + Np (B)

式5中、Npは混合溶液中のコロイド粒子数[個]であり、Np(A)は溶液A中のコロイド粒子数[個]であり、Np(B)は溶液B中のコロイド粒子数[個]である。   In Formula 5, Np is the number of colloidal particles [number] in the mixed solution, Np (A) is the number of colloidal particles in solution A [number], and Np (B) is the number of colloidal particles in solution B [number]. Pieces].

Np(A)及びNp(B)は下記式6及び7により求めることができる。
式6) Np(A)=Wp(A)/{ρp(A)×4/3×π×(dp(A)/2)3
式7) Np(B)=Wp(B)/{ρp(B)×4/3×π×(dp(B)/2)3
Np (A) and Np (B) can be obtained by the following equations 6 and 7.
Formula 6) Np (A) = Wp (A) / {ρp (A) × 4/3 × π × (dp (A) / 2) 3 }
Expression 7) Np (B) = Wp (B) / {ρp (B) × 4/3 × π × (dp (B) / 2) 3 }

式6中、Wp(A)は溶液A中のコロイド粒子の質量[g]であり、ρp(A)は溶液Aに使用した市販のコロイド溶液のコロイド粒子の密度[g/cm3]であり、dp(A)は溶液Aに使用した市販のコロイド溶液のコロイド粒子の粒子径[cm]である。また式7中、Wp(B)は溶液B中のコロイド粒子の質量[g]であり、ρp(B)は溶液Bに使用した市販のコロイド溶液のコロイド粒子の密度[g/cm3]であり、dp(B)は溶液Bに使用した市販のコロイド溶液のコロイド粒子の粒子径[cm]である。 In Equation 6, Wp (A) is the mass [g] of the colloidal particles in the solution A, and ρp (A) is the density [g / cm 3 ] of the colloidal particles in the commercially available colloidal solution used in the solution A. , Dp (A) is the particle size [cm] of the colloidal particles of the commercially available colloidal solution used for solution A. In Formula 7, Wp (B) is the mass [g] of the colloidal particles in the solution B, and ρp (B) is the density [g / cm 3 ] of the colloidal particles in the commercially available colloidal solution used for the solution B. Dp (B) is the particle diameter [cm] of the colloidal particles of the commercially available colloidal solution used for the solution B.

Wp(A)及びWp(B)は下記式8及び9により求めることができ、ρp(A)及びρp(B)は下記式10及び11により求めることができる。
式8) Wp(A)=Csol(A)×Wsol(A)/100
式9) Wp(B)=Csol(B)×Wsol(B)/100
式10) ρp(A)=Csol(A)×ρsol(A)/(1−ρsol(A)+ρsol(A)×Csol(A))
式11) ρp(B)=Csol(B)×ρsol(B)/(1−ρsol(B)+ρsol(B)×Csol(B))
Wp (A) and Wp (B) can be obtained from the following equations 8 and 9, and ρp (A) and ρp (B) can be obtained from the following equations 10 and 11.
Formula 8) Wp (A) = Csol (A) × Wsol (A) / 100
Formula 9) Wp (B) = Csol (B) × Wsol (B) / 100
Formula 10) ρp (A) = Csol (A) × ρsol (A) / (1−ρsol (A) + ρsol (A) × Csol (A))
Formula 11) ρp (B) = Csol (B) × ρsol (B) / (1−ρsol (B) + ρsol (B) × Csol (B))

式8及び10中、Csol(A)は溶液Aに使用した市販のコロイド溶液のコロイド質量濃度[質量%]であり、式9及び11中、Csol(B)は溶液Bに使用した市販のコロイド溶液のコロイド質量濃度[質量%]である。また式8中、Wsol(A)は溶液A中の市販のコロイド溶液の質量[g]であり、式9中、Wsol(B)は溶液B中の市販のコロイド溶液の質量[g]である。また式10中、ρsol(A)は溶液Aに使用した市販のコロイド溶液の比重[g/cm3]であり、式11中、ρsol(B)は溶液Bに使用した市販のコロイド溶液の比重[g/cm3]である。ρsol(A)及びρsol(B)は、市販品に添付の物性値をそのまま採用し、又は前記物性値から算出し、又は市販のコロイド溶液若しくは市販のコロイド溶液を希釈したコロイド溶液の体積当たりの質量を測定することによって求めることができる。 In Formulas 8 and 10, Csol (A) is the colloid mass concentration [% by mass] of the commercially available colloidal solution used in Solution A. In Formulas 9 and 11, Csol (B) is the commercially available colloid used in Solution B. It is the colloid mass concentration [% by mass] of the solution. In Formula 8, Wsol (A) is the mass [g] of the commercially available colloidal solution in solution A, and in Formula 9, Wsol (B) is the mass [g] of the commercially available colloidal solution in solution B. . In Formula 10, ρsol (A) is the specific gravity [g / cm 3 ] of the commercially available colloidal solution used in Solution A, and in Formula 11, ρsol (B) is the specific gravity of the commercially available colloidal solution used in Solution B. [G / cm 3 ]. For ρsol (A) and ρsol (B), the physical property values attached to the commercial products are used as they are, or calculated from the physical property values, or the volume per volume of the colloidal solution obtained by diluting the commercial colloidal solution or the commercial colloidal solution. It can be determined by measuring the mass.

混合溶液中のコロイド粒子の溶媒質量に対するコロイドの粒子数濃度は、下記式12により求めることができる。
式12) Cp=Np/Wm
The concentration of colloidal particles with respect to the solvent mass of colloidal particles in the mixed solution can be obtained by the following formula 12.
Formula 12) Cp = Np / Wm

式12中、Cpは混合溶液中のコロイド粒子の溶媒(水)質量に対するコロイドの粒子数濃度[個/g]であり、Wmは混合溶液の水(溶媒)の質量[g]である。   In Formula 12, Cp is the particle number concentration [number / g] of colloid with respect to the mass of solvent (water) of colloidal particles in the mixed solution, and Wm is the mass [g] of water (solvent) of the mixed solution.

Wmは下記式13により求めることができる。
式13) Wm=Ww(A)+Wdw(A)+Ww(B)+Wdw(B)
Wm can be obtained by the following equation (13).
Formula 13) Wm = Ww (A) + Wdw (A) + Ww (B) + Wdw (B)

式13中、Ww(A)は溶液Aに使用した市販のコロイド溶液中の溶媒(水)の質量[g]であり、Wdw(A)は溶液A作製時に市販のコロイド溶液の希釈に用いた溶媒(水)の質量[g]であり、Ww(B)は溶液Bに使用した市販のコロイド溶液中の溶媒(水)の質量[g]であり、Wdw(B)は溶液B作製時に市販のコロイド溶液の希釈に用いた溶媒(水)の質量[g]である。   In Formula 13, Ww (A) is the mass [g] of the solvent (water) in the commercially available colloidal solution used for Solution A, and Wdw (A) was used for diluting the commercially available colloidal solution when preparing Solution A. Solvent (water) mass [g], Ww (B) is the mass (g) of solvent (water) in the commercially available colloidal solution used for solution B, and Wdw (B) is commercially available when preparing solution B It is the mass [g] of the solvent (water) used for dilution of the colloidal solution.

Wdw(A)及びWdw(B)は下記式14及び15により求めることができる。
式14) Ww(A)=(1−Csol(A))×Wsol(A)
式15) Ww(B)=(1−Csol(B))×Wsol(B)
Wdw (A) and Wdw (B) can be obtained by the following equations 14 and 15.
Formula 14) Ww (A) = (1-Csol (A)) × Wsol (A)
Formula 15) Ww (B) = (1-Csol (B)) × Wsol (B)

また、市販のコロイド溶液を希釈した溶液A又は溶液Bのコロイド質量濃度は、下記式16及び17により求めることができる。ただし式16中、Cdsol(A)は市販のコロイド溶液を希釈した溶液Aのコロイド質量濃度[質量%]であり、式17中、Cdsol(B)は市販のコロイド溶液を希釈した溶液Bのコロイド質量濃度[質量%]である。
式16) Cdsol(A)=Wp(A)/(Wdw(A)+Wp(A))×100
式17) Cdsol(B)=Wp(B)/(Wdw(B)+Wp(B))×100
Moreover, the colloid mass concentration of the solution A or the solution B which diluted the commercially available colloid solution can be calculated | required by following formula 16 and 17. However, in Formula 16, Cdsol (A) is the colloid mass concentration [mass%] of the solution A which diluted the commercially available colloid solution, and in Formula 17, Cdsol (B) is the colloid of the solution B which diluted the commercially available colloid solution. Mass concentration [mass%].
Expression 16) Cdsol (A) = Wp (A) / (Wdw (A) + Wp (A)) × 100
Expression 17) Cdsol (B) = Wp (B) / (Wdw (B) + Wp (B)) × 100

本発明における溶液A、B、及びコロイド粒子の混合は、コロイド粒子が存在している状態で溶液A中の銀イオンと溶液B中の炭酸イオンとを混合することができれば、特に限定されない。本発明では、市販のコロイド溶液又はそれを希釈したコロイド溶液に溶液A及び溶液Bを混合しても良いし、溶液A及びBのいずれか一方とコロイド溶液との混合液と、溶液A及びBのいずれか他方とを混合しても良いし、溶液A及びコロイド溶液の混合液と溶液B及びコロイド溶液の混合液とを混合しても良い。   The mixing of the solutions A and B and the colloidal particles in the present invention is not particularly limited as long as the silver ions in the solution A and the carbonate ions in the solution B can be mixed in the presence of the colloidal particles. In the present invention, the solution A and the solution B may be mixed with a commercially available colloidal solution or a colloidal solution obtained by diluting it, or a mixed solution of one of the solutions A and B and the colloidal solution, and the solutions A and B. Any one of the above may be mixed, or a mixed solution of the solution A and the colloidal solution may be mixed with a mixed solution of the solution B and the colloidal solution.

溶液A及び溶液Bのコロイド粒子の存在下での混合は、コロイド粒子の粒子径に応じて、例えばコロイド粒子の量、コロイド溶液の質量濃度、溶液Aの水の量、溶液A中の銀イオンの量、溶液Aに溶解させる水溶性銀化合物の量、溶液Bの水の量等を調整することによって、前記式1〜3に基づく前記の混合条件に調整することができる。しかしながら、前記混合条件を実現する方法はこれらに限定されない。   The mixing of the solution A and the solution B in the presence of colloidal particles depends on the particle size of the colloidal particles, for example, the amount of colloidal particles, the mass concentration of the colloidal solution, the amount of water in the solution A, the silver ions in the solution A By adjusting the amount of water, the amount of the water-soluble silver compound dissolved in the solution A, the amount of water in the solution B, etc., the mixing conditions based on the above formulas 1 to 3 can be adjusted. However, the method for realizing the mixing condition is not limited to these.

本発明では、混合溶液におけるコロイド粒子の質量濃度が低くなるように溶液A及びBをコロイド粒子の存在下で混合することが、生成する炭酸銀微粒子の銀含有率を高める観点から好ましい。より具体的には、混合溶液におけるコロイド粒子の質量濃度が10質量%未満以下であることが、銀含有率が15質量%以上である炭酸銀微粒子を製造する観点から好ましく、5質量%未満であることがより好ましく、2質量%以下であることがさらに好ましい。   In the present invention, it is preferable that the solutions A and B are mixed in the presence of the colloidal particles so that the mass concentration of the colloidal particles in the mixed solution is low from the viewpoint of increasing the silver content of the silver carbonate fine particles to be generated. More specifically, the mass concentration of colloidal particles in the mixed solution is preferably less than 10% by mass from the viewpoint of producing silver carbonate fine particles having a silver content of 15% by mass or more, and less than 5% by mass. More preferably, it is more preferably 2% by mass or less.

前記コロイド粒子には、水中にコロイド状態で存在する固体粒子が特に限定されずに用いられる。前記固体粒子は、密度が小さいほど質量基準の銀含有率の高い炭酸銀微粒子を製造する観点から好ましい。前記固体粒子には、粒子径及び密度が明らかな市販の固体粒子、及びその市販のコロイド溶液を用いることができる。   As the colloidal particles, solid particles existing in a colloidal state in water are used without particular limitation. The solid particles are preferable from the viewpoint of producing silver carbonate fine particles having a high mass-based silver content as the density is small. As the solid particles, commercially available solid particles having a clear particle diameter and density, and commercially available colloidal solutions thereof can be used.

このような固体粒子には例えば金属酸化物の粒子が挙げられる。前記金属酸化物の粒子には、ケイ素酸化物、アルミニウム酸化物、亜鉛酸化物、チタン酸化物、ジルコニウム酸化物、タングステン酸化物、タンタル酸化物、バナジウム酸化物、スズ酸化物、銅酸化物、銀酸化物、カルシウム酸化物、マグネシウム酸化物、ストロンチウム酸化物、バリウム酸化物、ホウ素酸化物、ガリウム酸化物、イットリウム酸化物、ゲルマニウム酸化物、アンチモン酸化物等の粒子が挙げられる。前記固体粒子は一種類の化合物の粒子であっても良いし、二種以上の化合物の粒子の混合物であっても良い。   Examples of such solid particles include metal oxide particles. The metal oxide particles include silicon oxide, aluminum oxide, zinc oxide, titanium oxide, zirconium oxide, tungsten oxide, tantalum oxide, vanadium oxide, tin oxide, copper oxide, silver Examples thereof include particles of oxide, calcium oxide, magnesium oxide, strontium oxide, barium oxide, boron oxide, gallium oxide, yttrium oxide, germanium oxide, antimony oxide, and the like. The solid particles may be one kind of compound particles or a mixture of two or more kinds of compound particles.

特に前記コロイド粒子はケイ素酸化物であることが、安価に入手可能であることから好ましい。   In particular, the colloidal particles are preferably silicon oxide because they are available at low cost.

コロイド粒子の存在下における溶液A及び溶液Bの混合では、溶液Aの銀イオンに対する溶液Bの炭酸イオンが1当量未満であることが、生成する炭酸銀微粒子が凝集して巨大化することを防止する観点から好ましい。溶液Aの銀イオン数に対する溶液B中の炭酸イオン数は、生成する炭酸銀微粒子の粒径の制御と炭酸銀微粒子の量産性との観点から、0.60〜0.99倍(溶液Aの銀イオンに対する溶液Bの炭酸イオンが0.60〜0.99当量)であることがより好ましく、0.80〜0.99倍であることがさらに好ましい。   When mixing solution A and solution B in the presence of colloidal particles, the amount of carbonate ions in solution B relative to the silver ions in solution A is less than one equivalent, preventing the resulting silver carbonate fine particles from agglomerating and enlarging. From the viewpoint of The number of carbonate ions in the solution B relative to the number of silver ions in the solution A is 0.60 to 0.99 times (from the viewpoint of the control of the particle size of the silver carbonate fine particles to be produced and the mass productivity of the silver carbonate fine particles) The carbonate ion of the solution B with respect to silver ions is more preferably 0.60 to 0.99 equivalent), and further preferably 0.80 to 0.99 times.

前記溶液Aは、銀イオンと水とを含有する。溶液Aは、銀イオンが含有されるのであれば、他のイオンや界面活性剤のような水溶性の有機成分等の他の成分をさらに含有していても良い。溶液Aは、水溶性の銀化合物を、前記他の成分を含有していても良い水に溶かすことによって得られる。溶液Aは、前記混合溶液において炭酸銀を生成するのに十分な
量の銀イオンを含有していれば良いが、銀の含有率を高め、また粒径が5μm以下の炭酸銀微粒子を得る観点から、溶液Aにおける銀イオンの濃度は5.0×10-4mol/L以上であることが好ましい。銀イオンの濃度は溶液Aに溶解している銀化合物の濃度から求められる。また、溶液Aにおける銀イオン濃度は前記式3で求められる値未満において、溶液Aの銀イオン濃度をできるだけ高い濃度とすることが、炭酸銀微粒子の量産の観点からより一層好ましい。
The solution A contains silver ions and water. The solution A may further contain other components such as other ions and water-soluble organic components such as a surfactant as long as silver ions are contained. The solution A is obtained by dissolving a water-soluble silver compound in water that may contain the other components. The solution A only needs to contain a sufficient amount of silver ions to produce silver carbonate in the mixed solution, but the viewpoint of increasing the silver content and obtaining silver carbonate fine particles having a particle size of 5 μm or less. Therefore, the concentration of silver ions in the solution A is preferably 5.0 × 10 −4 mol / L or more. The concentration of silver ions is determined from the concentration of the silver compound dissolved in the solution A. Further, it is more preferable from the viewpoint of mass production of silver carbonate fine particles that the silver ion concentration in the solution A is less than the value obtained by the above Equation 3 and the silver ion concentration in the solution A is as high as possible.

溶液Aで使用される銀化合物は水溶性であれば良いが、炭酸銀微粒子の量産性を考慮すると溶解度の高い銀化合物が好ましい。このような銀化合物には、例えば硝酸銀、及びフッ化銀等が挙げられる。中でも、コストが低いことから、前記銀化合物は硝酸銀であることが好ましい。   The silver compound used in the solution A may be water-soluble, but a silver compound having high solubility is preferable in view of mass productivity of silver carbonate fine particles. Examples of such a silver compound include silver nitrate and silver fluoride. Especially, since the cost is low, the silver compound is preferably silver nitrate.

前記溶液Bは炭酸塩と水とを含有する。溶液Bも溶液Aと同様に、炭酸イオンが含有されるのであれば、他のイオンや界面活性剤のような水溶性の有機成分等の他の成分をさらに含有していても良い。溶液Bは、水溶性の炭酸塩を、前記他の成分を含有していても良い水に溶かすことによって得られる。溶液Bは、前記混合溶液において炭酸銀を生成するのに十分な量の炭酸イオンを含有していれば良いが、銀の含有率を高め、また粒径が5μm以下の炭酸銀微粒子を得る観点から、溶液Bにおける炭酸イオンの濃度は2.5×10-4mol/L以上であることが好ましい。炭酸イオンの濃度は溶液Bに溶解している炭酸塩の濃度から求められる。 The solution B contains carbonate and water. Similarly to the solution A, the solution B may further contain other components such as other ions and water-soluble organic components such as a surfactant as long as carbonate ions are contained. Solution B is obtained by dissolving a water-soluble carbonate in water that may contain the other components. The solution B only needs to contain a sufficient amount of carbonate ions to produce silver carbonate in the mixed solution, but the viewpoint of increasing the silver content and obtaining silver carbonate fine particles having a particle size of 5 μm or less. Therefore, the concentration of carbonate ions in the solution B is preferably 2.5 × 10 −4 mol / L or more. The concentration of carbonate ions is determined from the concentration of carbonate dissolved in the solution B.

溶液Bで使用される炭酸塩は水溶性であれば良いが、炭酸銀微粒子の量産性を考慮すると溶解度の高い化合物が好ましい。また、前記炭酸塩は、溶液Aと溶液Bとを混合したときに、溶液A中の銀イオンの対イオン(例えば硝酸銀の場合は硝酸イオン)と溶液B中の炭酸イオンの対イオン(例えば炭酸ナトリウムではナトリウムイオン)とが不溶性の塩又は溶解度の低い塩を生成しない化合物であることが好ましい。このような炭酸塩には、例えばアンモニウムと炭酸との塩、アルカリ金属と炭酸との塩、及びアルカリ土類金属と炭酸との塩等が挙げられる。前記炭酸塩は炭酸水素ナトリウム又は炭酸ナトリウムであることが、炭酸銀微粒子の量産性の観点から好ましい。   The carbonate used in the solution B may be water-soluble, but a compound having high solubility is preferable in view of mass productivity of silver carbonate fine particles. In addition, when the solution A and the solution B are mixed, the carbonate is a counter ion of silver ions in the solution A (for example, nitrate ions in the case of silver nitrate) and a counter ion of carbonate ions in the solution B (for example, carbonic acid). The sodium ion is preferably a compound that does not form an insoluble salt or a salt with low solubility. Examples of such a carbonate include a salt of ammonium and carbonic acid, a salt of alkali metal and carbonic acid, and a salt of alkaline earth metal and carbonic acid. The carbonate is preferably sodium hydrogen carbonate or sodium carbonate from the viewpoint of mass productivity of silver carbonate fine particles.

より具体的には、溶液Aの原料として水溶性の銀化合物、例えば硝酸銀、を使用し、この硝酸銀を市販のコロイド溶液又はその希釈品に加え、銀イオンが混合したコロイド水溶液を溶液Aとして得る。また、溶液Bの原料として炭酸塩、例えば炭酸水素ナトリウム、を使用し、この炭酸塩を市販のコロイド溶液又はその希釈品に加え、炭酸イオンが混合したコロイド水溶液を溶液Bとして得る。そして得られた溶液Aと溶液Bとを混合することにより、粒径5μm以下の炭酸銀微粒子を得ることができる。   More specifically, a water-soluble silver compound such as silver nitrate is used as a raw material of the solution A, and this silver nitrate is added to a commercially available colloidal solution or a diluted product thereof to obtain a colloidal aqueous solution in which silver ions are mixed as the solution A. . Further, a carbonate such as sodium hydrogen carbonate is used as a raw material of the solution B, and this carbonate is added to a commercially available colloidal solution or a diluted product thereof to obtain a colloidal aqueous solution in which carbonate ions are mixed as the solution B. Then, by mixing the obtained solution A and solution B, silver carbonate fine particles having a particle size of 5 μm or less can be obtained.

溶液A及びBのコロイド粒子の存在下における混合によって生成した炭酸銀微粒子は、公知の手段を用いて溶液から精製された状態で得ることができる。例えば前記混合による生成物を遠心分離等の公知の手段により溶液から分離し、分離した生成物を再度水中に分散した後遠心分離等によって回収する工程を一回〜複数回行うことにより、炭酸銀微粒子を得ることができる。   Silver carbonate fine particles produced by mixing the solutions A and B in the presence of colloidal particles can be obtained in a state purified from the solution using a known means. For example, by separating the product obtained by the mixing from the solution by a known means such as centrifugation, and dispersing the separated product in water again and collecting it by centrifugation or the like once or more times, silver carbonate is obtained. Fine particles can be obtained.

前述した本発明の方法によれば、粒径が5μm以下で銀含有率が15質量%以上の炭酸微粒子を製造することができる。本発明の方法では、例えば溶液A中の銀イオン、溶液B中の炭酸イオン、及びコロイド粒子の相対的な混合量を、溶液A及びBの混合溶液におけるコロイド粒子の質量濃度やコロイド粒子の粒子径に基づいて調整して混合する。これにより、混合工程における量的制御は行われるが、混合過程におけるpHの調整や混合後の養生のための温度制御や静置等の煩雑な作業を特に必要としないので、粒径が5μm以下で銀含有率が15質量%以上という、銀含有率が高く、水が存在する系に適用される抗菌
剤微粒子として好適な炭酸銀微粒子を簡易に安定して製造することができる。
According to the method of the present invention described above, fine carbonic acid particles having a particle size of 5 μm or less and a silver content of 15% by mass or more can be produced. In the method of the present invention, for example, the relative mixing amount of the silver ions in the solution A, the carbonate ions in the solution B, and the colloidal particles is used to determine the mass concentration of the colloidal particles in the mixed solution of the solutions A and B and the particles of the colloidal particles. Adjust and mix based on diameter. As a result, quantitative control in the mixing step is performed, but no complicated work such as temperature control or standing for curing after mixing and curing is required, so the particle size is 5 μm or less. Thus, silver carbonate fine particles suitable for antibacterial fine particles applied to a system having a high silver content of 15% by mass or more and having water can be easily and stably produced.

なお、得られた炭酸銀微粒子の粒径は、液体媒体中の粒子又は粒子そのものの体積平均粒径を測定する装置や方法によって測定することができ、例えばレーザー回析・散乱式粒度分布測定器(LMS−30、セイシン企業)によって測定することができる。また得られた炭酸銀微粒子は、必要に応じて分級し、5μm以下の所望の粒径にそろえても良いし、分級品の二種以上を新たに混合しても良い。また、得られた炭酸銀微粒子の銀含有量は、X線光電子分光法によって測定することができる。   The particle diameter of the obtained silver carbonate fine particles can be measured by an apparatus or method for measuring the volume average particle diameter of the particles in the liquid medium or the particles themselves. For example, a laser diffraction / scattering particle size distribution analyzer (LMS-30, Seishin company). Moreover, the obtained silver carbonate fine particles may be classified as necessary, and may be adjusted to a desired particle diameter of 5 μm or less, or two or more kinds of classified products may be newly mixed. Moreover, the silver content of the obtained silver carbonate fine particles can be measured by X-ray photoelectron spectroscopy.

本発明によれば、生成しようとする炭酸銀微粒子の種類に応じて、本発明で規定する条件の範囲内で適宜調整することにより、粒径が5μm以下で銀含有率が15質量%以上の炭酸銀微粒子を製造することができる。   According to the present invention, the particle size is 5 μm or less and the silver content is 15% by mass or more by appropriately adjusting within the range of conditions defined in the present invention according to the type of silver carbonate fine particles to be generated. Silver carbonate fine particles can be produced.

本発明では、コロイド粒子には、固体での密度が2.5g/cm3以下で粒子径が5〜25nm程度のケイ素酸化物又はその市販のコロイド溶液を用い、炭酸銀微粒子として炭酸銀含有率が44〜88質量%の炭酸銀を製造することが、炭酸銀微粒子の製造における実用性や抗菌剤微粒子としての有用性の観点から特に好ましい。 In the present invention, as the colloidal particles, silicon oxide having a solid density of 2.5 g / cm 3 or less and a particle size of about 5 to 25 nm or a commercially available colloidal solution thereof is used. Is particularly preferable from the viewpoint of practicality in the production of silver carbonate fine particles and usefulness as antibacterial agent fine particles.

本発明の抗菌性樹脂膜用塗料は、粒径が5μm以下であり銀含有率が15質量%以上である炭酸銀微粒子と樹脂とを含有する。前記炭酸銀微粒子には、前述の本発明の方法で製造された炭酸銀微粒子を用いることができる。本発明の抗菌性樹脂膜用塗料は、前記の本発明の方法で製造された炭酸銀微粒子を、樹脂に分散させる通常の抗菌性塗料の製造方法に従って使用することによって、製造することができる。   The antibacterial resin film coating material of the present invention contains silver carbonate fine particles having a particle size of 5 μm or less and a silver content of 15% by mass or more and a resin. As the silver carbonate fine particles, the silver carbonate fine particles produced by the method of the present invention described above can be used. The antibacterial resin film paint of the present invention can be produced by using the silver carbonate fine particles produced by the above-described method of the present invention in accordance with an ordinary antibacterial paint production method in which the resin is dispersed.

前記炭酸銀微粒子の含有量は、前記塗料による抗菌性樹脂膜において14〜88質量%(膜の銀含有率で10〜61質量%)である。このような含有量において、本発明の塗料は、水が存在する表面に適用されたときに十分な強度の膜を形成し、かつ抗菌性を長期にわたって発揮する。このような含有量の前記塗料は、例えば炭酸銀微粒子及び樹脂のみからなる塗料において、本発明における炭酸銀微粒子を樹脂に対して0.16〜7.33倍の質量で混合、調製することにより得られる。本発明の塗料において、前記炭酸銀微粒子の含有量が前記抗菌性樹脂膜中において51.0〜77.5質量%(膜の銀含有率で29〜54質量%)であることが、水が存在する表面に本発明の塗料が適用されたときに十分な強度の膜を形成し、かつ抗菌性を長期にわたって発揮する観点からより好ましい。なお、前記膜中の炭酸銀微粒子の含有量は、本発明の塗料中の前記樹脂及び炭酸銀微粒子の総重量に対する炭酸銀微粒子の含有量として求めることができる。   Content of the said silver carbonate microparticles | fine-particles is 14-88 mass% (10-61 mass% in the silver content rate of a film | membrane) in the antibacterial resin film by the said coating material. With such a content, the coating material of the present invention forms a sufficiently strong film when applied to a surface where water is present, and exhibits antibacterial properties over a long period of time. The paint having such a content is prepared by, for example, mixing and preparing the silver carbonate fine particles in the present invention at a mass of 0.16 to 7.33 times that of the resin in a paint composed of only silver carbonate fine particles and a resin. can get. In the paint of the present invention, the content of the silver carbonate fine particles in the antibacterial resin film is 51.0 to 77.5% by mass (29 to 54% by mass in terms of silver content of the film). It is more preferable from the viewpoint of forming a sufficiently strong film when the paint of the present invention is applied to the existing surface and exhibiting antibacterial properties over a long period of time. In addition, content of the silver carbonate fine particle in the said film | membrane can be calculated | required as content of the silver carbonate fine particle with respect to the total weight of the said resin and silver carbonate fine particle in the coating material of this invention.

前記樹脂には、無機抗菌性微粒子を含有する抗菌性塗料に用いられる樹脂を用いることができる。このような樹脂には、熱可塑性樹脂及び熱硬化性樹脂が挙げられる。前記熱可塑性樹脂には、例えばアクリル酸エステル、メタクリル酸エステル、ポリエチレン、ポリプロピレン、ポリアミド、ポリメタクリル酸メチル、アクリロニトリル−ブタジエン−スチレン樹脂、及びポリエステル等が挙げられる。前記熱硬化性樹脂には、エポキシ樹脂、フェノール樹脂、メラミン樹脂、及び不飽和ポリエステル樹脂等が挙げられる。   As the resin, a resin used for an antibacterial paint containing inorganic antibacterial fine particles can be used. Such resins include thermoplastic resins and thermosetting resins. Examples of the thermoplastic resin include acrylic acid ester, methacrylic acid ester, polyethylene, polypropylene, polyamide, polymethyl methacrylate, acrylonitrile-butadiene-styrene resin, and polyester. Examples of the thermosetting resin include an epoxy resin, a phenol resin, a melamine resin, and an unsaturated polyester resin.

前記樹脂は、前記のような樹脂を単独で、又は二種類以上を組み合わせたポリマーブレンドとして使用することができる。前記樹脂が水性エポキシ変性アルキド樹脂のような水性樹脂であることは、本発明の塗料の塗布時における作業環境への配慮(例えば作業環境の整備やそのためのコスト)を軽減させることができる観点から好ましい。   The resin can be used alone or as a polymer blend in which two or more kinds are combined. That the resin is an aqueous resin such as an aqueous epoxy-modified alkyd resin from the viewpoint of reducing consideration for the work environment (for example, maintenance of the work environment and cost for the work) when applying the paint of the present invention. preferable.

本発明の塗料には、炭酸銀微粒子による抗菌作用に影響を及ぼさない範囲において、前述した炭酸銀微粒子及び樹脂以外の他の成分を配合することができる。このような他の成
分には、前述した炭酸銀微粒子以外の他の抗菌剤、及び溶剤等が挙げられる。
In the paint of the present invention, other components than the above-mentioned silver carbonate fine particles and resin can be blended within a range that does not affect the antibacterial action of the silver carbonate fine particles. Examples of such other components include antibacterial agents other than the above-described silver carbonate fine particles, and solvents.

本発明の塗料は、水が存在する(より好ましくは水が流れる)部材の表面に用いることができる。前述したように炭酸銀は感光して変色する特性を有することから、このような外観の変化が問題にならない部分へ本発明の塗料を適用することが好ましい。   The paint of the present invention can be used on the surface of a member in which water is present (more preferably, water flows). As described above, since silver carbonate has the property of being discolored by exposure to light, it is preferable to apply the coating material of the present invention to a portion where such a change in appearance does not cause a problem.

本発明の抗菌熱交換器は、流体を加熱又は冷却するための熱交換部と、この熱交換部の表面に形成されている抗菌性樹脂膜とを有し、熱交換時に熱交換部の表面に水が存在する熱交換器である。前記抗菌性樹脂膜は、前述の本発明の塗料を塗布して形成される抗菌性樹脂膜である。   The antibacterial heat exchanger of the present invention has a heat exchange part for heating or cooling a fluid and an antibacterial resin film formed on the surface of the heat exchange part, and the surface of the heat exchange part during heat exchange This is a heat exchanger in which water is present. The antibacterial resin film is an antibacterial resin film formed by applying the above-described paint of the present invention.

前記抗菌性樹脂膜は、その厚さが2μm以上であることが、長期にわたって抗菌性を発揮する観点から好ましく、10μm以下であることが、熱交換部においてより高い伝熱効率を実現する観点から好ましく、さらに5μm以下であることが、コストの観点から好ましい。   The antibacterial resin film preferably has a thickness of 2 μm or more from the viewpoint of exhibiting antibacterial properties over a long period of time, and preferably 10 μm or less from the viewpoint of realizing higher heat transfer efficiency in the heat exchange section. Further, it is preferably 5 μm or less from the viewpoint of cost.

前記熱交換部は特に限定されないが、表面積が大きいことが好ましく、このような熱交換部には例えばプレートフィンが挙げられる。   The heat exchange part is not particularly limited, but preferably has a large surface area. Examples of such a heat exchange part include plate fins.

本発明の抗菌熱交換器は、熱交換部の表面に水が存在する状態で抗菌作用を呈する。本発明の抗菌熱交換器は、流体としての水を加熱、冷却する態様や、外気のような、水分を含んだ気体を冷却する態様を含む態様で用いられる。本発明の抗菌熱交換器は、空調用の熱交換器、より具体的には空気調和機の室内機に用いられる熱交換器に好適に用いられる。   The antibacterial heat exchanger of the present invention exhibits an antibacterial action in a state where water is present on the surface of the heat exchange part. The antibacterial heat exchanger of the present invention is used in a mode including a mode for heating and cooling water as a fluid and a mode for cooling a gas containing moisture such as outside air. The antibacterial heat exchanger of the present invention is suitably used for a heat exchanger for air conditioning, more specifically, a heat exchanger used for an indoor unit of an air conditioner.

本発明では、熱交換器から発生する凝縮水量等の、熱交換部に接する水の量が既知であれば、塗料中の抗菌性炭酸銀微粒子含有率と膜厚を調製することで、例えば通常の加速試験の試験結果に基づいて抗菌性能寿命を設計することが可能である。   In the present invention, if the amount of water in contact with the heat exchanging part, such as the amount of condensed water generated from the heat exchanger, is known, by adjusting the antibacterial silver carbonate fine particle content and film thickness in the paint, for example, It is possible to design the antibacterial performance lifetime based on the test results of the accelerated test.

<実施例1> 炭酸銀微粒子の生成
コロイドとして粒子径16nm、密度2.65g/cm3のケイ素酸化物2を含有する、密度1.21g/cm3のケイ素酸化物ゾル(商品名:CATALOID S−30H、触媒化成工業株式会社製)を0.3質量%で水に含むコロイド水溶液を調製した。得られたコロイド水溶液1Lに硝酸銀24gを加え、溶液Aを作製した。また、前記コロイド水溶液1Lに炭酸水素ナトリウム11.5g(溶液Aの銀に対して約0.97当量)を加え、溶液Bを作製した。次に、溶液Aと溶液Bとを混合攪拌し、AB混合溶液中において炭酸銀微粒子を生成した。なお、AB混合溶液中のコロイド粒子数に対する、銀イオンの数とイオンになっていない銀原子の数の合計である銀原子の数の比は、7.0×104となる。得られた炭酸銀微粒子を顕微鏡で観察したところ、粒径5μm以下の炭酸銀微粒子であった。この時、炭酸銀微粒子中の銀含有率は56%である。
<Example 1> Formation of silver carbonate fine particles A silicon oxide sol having a density of 1.21 g / cm 3 and containing silicon oxide 2 having a particle diameter of 16 nm and a density of 2.65 g / cm 3 as a colloid (trade name: CATALOID S A colloidal aqueous solution containing 0.3 mass% of -30H, manufactured by Catalyst Chemical Industry Co., Ltd. in water was prepared. 24 g of silver nitrate was added to 1 L of the obtained colloidal aqueous solution to prepare a solution A. Further, 11.5 g of sodium hydrogen carbonate (about 0.97 equivalent to silver of the solution A) was added to 1 L of the aqueous colloidal solution to prepare a solution B. Next, the solution A and the solution B were mixed and stirred to produce silver carbonate fine particles in the AB mixed solution. In addition, the ratio of the number of silver atoms, which is the sum of the number of silver ions and the number of silver atoms that are not ions, to the number of colloidal particles in the AB mixed solution is 7.0 × 10 4 . When the obtained silver carbonate fine particles were observed with a microscope, they were silver carbonate fine particles having a particle size of 5 μm or less. At this time, the silver content in the silver carbonate fine particles is 56%.

<実施例2> 炭酸銀微粒子
次に、コロイドの粒子径、コロイド水溶液に含有されるケイ素酸化物ゾルの質量濃度、コロイド粒子数に対する銀原子の数の比、及び炭酸塩の種類を変えて、実施例1と同様の要領で溶液AとBを作製、混合し、AB混合溶液を得て炭酸銀微粒子を生成した。生成した炭酸銀微粒子の状態又は溶液A、Bの状態を表1に、また、そのときのAB混合溶液におけるコロイド粒子数に対する銀原子の数の比を表2に、またAB混合溶液におけるコロイド粒子数濃度を表3に、それぞれ示す。なお、表中のケイ素酸化物1、3、4では、これらのケイ素酸化物(いずれのケイ素酸化物も密度は2.65g/cm3)を含有するケ
イ素酸化物ゾルを用いた。ケイ素酸化物1では「FINE CATALOID F−120」、ケイ素酸化物3では「CATALOID SI−50」、ケイ素酸化物4では「CATALOID SI−45P」(それぞれ商品名、触媒化成工業株式会社製)を用いた。
<Example 2> Silver carbonate fine particles Next, by changing the particle size of the colloid, the mass concentration of the silicon oxide sol contained in the aqueous colloid solution, the ratio of the number of silver atoms to the number of colloid particles, and the type of carbonate, Solutions A and B were prepared and mixed in the same manner as in Example 1, and an AB mixed solution was obtained to produce silver carbonate fine particles. The state of the fine silver carbonate particles or the states of the solutions A and B are shown in Table 1, the ratio of the number of silver atoms to the number of colloidal particles in the AB mixed solution at that time is shown in Table 2, and the colloidal particles in the AB mixed solution The number concentrations are shown in Table 3, respectively. For silicon oxides 1, 3, and 4 in the table, silicon oxide sols containing these silicon oxides (both silicon oxides had a density of 2.65 g / cm 3 ) were used. For silicon oxide 1, use “FINE CATALOID F-120”; for silicon oxide 3, use “CATALOID SI-50”; and for silicon oxide 4, use “CATALOID SI-45P” (trade names, manufactured by Catalyst Kasei Kogyo Co., Ltd.) It was.

表1において、○は粒径5μm以下の炭酸銀微粒子が良好に生成したことを示し、×は炭酸銀が巨大粒子として生成し粒径5μm以下とならなかったことを示し、××は、溶液A又は溶液Bがゲル化、固化して炭酸銀微粒子が得られなかったことを示す。前記実施例1の結果は、表1において、ケイ素酸化物2におけるNaHCO3の行、コロイド粒子の質量濃度0.3質量%の列の交差するマス内に示されている。 In Table 1, ○ indicates that silver carbonate fine particles having a particle size of 5 μm or less were formed satisfactorily, × indicates that silver carbonate was formed as giant particles and did not have a particle size of 5 μm or less, and xx indicates a solution. It shows that A or solution B was gelled and solidified and silver carbonate fine particles were not obtained. The results of Example 1 are shown in Table 1 in the intersecting mass of rows of NaHCO 3 in silicon oxide 2 and columns of colloidal particle mass concentration of 0.3% by mass.

Figure 2009001505
Figure 2009001505

Figure 2009001505
Figure 2009001505

Figure 2009001505
Figure 2009001505

粒子径45nm以下のコロイド粒子を含有するコロイド溶液を用いて溶液A及びBを作製し、溶液A、B混合後のAB混合溶液中において、コロイド粒子の質量濃度10質量%以下の範囲で、かつAB混合溶液におけるコロイド粒子の粒子数に対する銀原子の数(AB混合溶液における銀イオンの数とイオンになっていない銀原子の数との合計)の比が、2.7×105以下の範囲において、粒径5μm以下の炭酸銀微粒子が良好に生成したことを確認した。また、コロイド粒子の質量濃度及びコロイド粒子数に対する銀原子の数の比が上記の範囲外では、粒径5μm以下の炭酸銀微粒子が良好に得られなかったことを確認した。 Solutions A and B are prepared using a colloidal solution containing colloidal particles having a particle diameter of 45 nm or less, and in the AB mixed solution after mixing of solutions A and B, the colloidal particles have a mass concentration of 10% by mass or less, and The ratio of the number of silver atoms to the number of colloidal particles in the AB mixed solution (the sum of the number of silver ions and the number of non-ionized silver atoms in the AB mixed solution) is 2.7 × 10 5 or less. It was confirmed that silver carbonate fine particles having a particle size of 5 μm or less were produced satisfactorily. Further, it was confirmed that silver carbonate fine particles having a particle diameter of 5 μm or less could not be obtained well when the mass concentration of colloidal particles and the ratio of the number of silver atoms to the number of colloidal particles were out of the above ranges.

さらに、表3における粒径5μm以下の炭酸銀微粒子が得られた範囲の下限と上限とのそれぞれについて、コロイド粒子の粒子径xの逆数(1/x)と、そのときのAB混合溶液中のコロイド粒子数濃度との関係を、累乗近似式によって表した。下限値又は上限値の四点が得られた累乗近似式に当てはまらない場合には、溶液A及びBのコロイド粒子の質量濃度が0.1〜1.0質量%の範囲の2〜3点を選出して累乗近似式を求めた。   Further, for each of the lower limit and the upper limit of the range in which silver carbonate fine particles having a particle diameter of 5 μm or less in Table 3 were obtained, the reciprocal (1 / x) of the particle diameter x of the colloid particles and the AB mixed solution at that time The relationship with the colloidal particle number concentration was expressed by a power approximation formula. If the lower limit value or the upper limit value of four points is not applied to the obtained power approximation formula, the solution A and B colloidal particle mass concentration is in the range of 0.1 to 1.0% by mass, 2 to 3 points. A power approximation formula was selected.

より具体的には、表3における前記範囲の下限値の四点、すなわち、xが6におけるコロイド粒子数濃度が3.9×1015(溶液A及びBのコロイド粒子の質量濃度が0.1質量%)である点1、xが16におけるコロイド粒子数濃度が6.1×1014(溶液A及びBのコロイド粒子の質量濃度が0.3質量%)である点2、xが26におけるコロイド粒子数濃度が3.3×1014(溶液A及びBのコロイド粒子の質量濃度が0.7質量%)である点3、及びxが45におけるコロイド粒子数濃度が1.9×1014(溶液A及びBのコロイド粒子の質量濃度が2質量%)である点4、の四点から累乗近似式を求めたところ、前記四点のうち、得られた累乗近似式から外れる点3及び点4の二点を除く点1及び点2の二点から累乗近似式をさらに求め、前記式1)を得た。 More specifically, four points of the lower limit value of the above range in Table 3, that is, the number concentration of colloidal particles when x is 6 is 3.9 × 10 15 (the mass concentration of colloidal particles of solutions A and B is 0.1). Point 1 where x is 16 and the number concentration of colloidal particles at 16 is 6.1 × 10 14 (the mass concentration of colloidal particles of solutions A and B is 0.3% by mass). The colloidal particle number concentration is 3.3 × 10 14 (the mass concentration of the colloidal particles in solutions A and B is 0.7% by mass), and the colloidal particle number concentration when x is 45 is 1.9 × 10 14. The power approximation formula was determined from the four points of point 4, which is (the mass concentration of the colloidal particles of the solutions A and B is 2% by mass). Among the four points, the point 3 deviating from the obtained power approximation formula and The power approximation formula is further calculated from the two points 1 and 2, excluding the two points 4. Determined, the formula 1) was obtained.

また、表3における前記範囲の上限値の四点、すなわち、xが6におけるコロイド粒子数濃度が4.3×1017である点5、xが16におけるコロイド粒子数濃度が2.3×1016である点6、xが26におけるコロイド粒子数濃度が5.3×1015である点7、及びxが45におけるコロイド粒子数濃度が1.0×1015である点8(いずれも溶液A及びBのコロイド粒子の質量濃度が10質量%)、の四点から累乗近似式を求め、前記式2)を得た。 Further, four points of the upper limit value in the above range in Table 3, that is, the point 5 where the colloidal particle number concentration is 4.3 × 10 17 when x is 6, and the colloidal particle number concentration when x is 16 is 2.3 × 10. Point 6, which is 16 ; point 7 where the colloidal particle number concentration is 5.3 × 10 15 when x is 26; and point 8 where the colloidal particle number concentration when x is 45 is 1.0 × 10 15 (both solutions) The power approximation formula was obtained from the four points of the mass concentration of colloidal particles A and B of 10% by mass, and the above formula 2) was obtained.

さらに、表2における粒径5μm以下の炭酸銀微粒子が得られた範囲の下限について、コロイド粒子の粒子径xと、そのときのAB混合溶液中のコロイド粒子数に対する銀原子の数の比との関係を、多項近似式によって表した。より詳しくは、表2において、前記範囲の下限値よりも小さくかつこの下限値に最も近い値の四点、すなわち、xが6におけるAB混合溶液中のコロイド粒子数に対する銀原子の数が2.2×104(溶液A及びBのコロイド粒子の質量濃度が0.05質量%)である点9、xが16におけるAB混合溶液中のコロイド粒子数に対する銀原子の数が2.1×105(溶液A及びBのコロイド粒子の質量濃度が0.1質量%)である点10、xが26におけるAB混合溶液中のコロイド粒子数に対する銀原子の数が1.8×105(溶液A及びBのコロイド粒子の質量濃度が0.5質量%)である点11、及びxが45におけるAB混合溶液中のコロイド粒子数に対する銀原子の数が4.6×105(溶液A及びBのコロイド粒子の質量濃度が1.0質量%)である点12、の四点から多項近似式を求めたところ、前記四点のうち、得られた多項近似式から外れる点10の一点を除く点9、点11及び点12の三点から多項近似式をさらに求め、前記式3)を得た。 Furthermore, regarding the lower limit of the range in which silver carbonate fine particles having a particle size of 5 μm or less in Table 2 were obtained, the particle diameter x of the colloidal particles and the ratio of the number of silver atoms to the number of colloidal particles in the AB mixed solution at that time The relationship was expressed by a polynomial approximation. More specifically, in Table 2, the number of silver atoms with respect to the number of colloidal particles in the AB mixed solution in which four points are smaller than the lower limit value of the range and closest to the lower limit value, that is, x is 6 is 2. The number of silver atoms with respect to the number of colloidal particles in the AB mixed solution at point 9 where x is 16 is 2 × 10 4 (the mass concentration of colloidal particles in solutions A and B is 0.05 mass%) is 2.1 × 10 5 (the mass concentration of colloidal particles in solutions A and B is 0.1% by mass), the number of silver atoms is 1.8 × 10 5 (solution) with respect to the number of colloidal particles in the AB mixed solution in which x is 26 and x is 26 The number of silver atoms with respect to the number of colloidal particles in the AB mixed solution at point 11 where the mass concentration of colloidal particles of A and B is 0.5% by mass, and x is 45 is 4.6 × 10 5 (solution A and The mass concentration of B colloidal particles is 1 When the polynomial approximate expression is obtained from the four points of the point 12, which is 0 mass%), among the four points, the points 9, 11 and 12 except for one point 10 deviating from the obtained polynomial approximate expression are obtained. A polynomial approximate expression was further obtained from the three points to obtain the above expression 3).

<実施例3> 炭酸銀抗菌性塗料及び熱交換器
樹脂材料であるエポキシ変性アルキド樹脂と実施例1で作製した炭酸銀微粒子とを、樹脂材料の固形分重量1に対し、炭酸銀微粒子の固形分重量1.2の割合で混練して、炭酸
銀抗菌性塗料を作製した。
<Example 3> Silver carbonate antibacterial paint and heat exchanger The epoxy-modified alkyd resin as a resin material and the silver carbonate fine particles prepared in Example 1 were solidified with silver carbonate fine particles based on the solid content weight 1 of the resin material. A silver carbonate antibacterial paint was prepared by kneading at a weight ratio of 1.2.

この塗料を熱交換器のプレートフィン材の表裏面にロールコーターにより3μmの厚さで均一に塗布し、抗菌熱交換器を製作した。この時、塗膜中の炭酸銀含有率は54.6質量%(銀含有率:30.6質量%)である。   This paint was uniformly applied to the front and back surfaces of the plate fin material of the heat exchanger with a thickness of 3 μm by a roll coater to produce an antibacterial heat exchanger. At this time, the silver carbonate content in the coating film is 54.6% by mass (silver content: 30.6% by mass).

この抗菌熱交換器を使用したファンコイルユニットと、比較試験としてフィン表面にアクリル樹脂が塗布された通常熱交換器を備えた市販のファンコイルユニットを用いて、外気を加湿しながら吸い込み、除湿運転を1年間行った。一定期間ごとに凝縮水中の銀イオン溶出濃度と、熱交換器のプレートフィン表面の付着菌数を測定した。試験結果を表4に示す。   Using a fan coil unit using this antibacterial heat exchanger and a commercially available fan coil unit with a normal heat exchanger with acrylic resin applied to the fin surface as a comparative test, sucking in outside air while humidifying it, dehumidifying operation For 1 year. The elution concentration of silver ions in the condensed water and the number of adherent bacteria on the surface of the plate fin of the heat exchanger were measured at regular intervals. The test results are shown in Table 4.

Figure 2009001505
Figure 2009001505

抗菌熱交換器の凝縮水中の銀イオン濃度は、本試験期間を通じて常に50ppb以上であり、表面付着菌数も通常熱交換器に比べて常に1/100以下であった。本抗菌熱交換器の抗菌効果が確認された。   The silver ion concentration in the condensed water of the antibacterial heat exchanger was always 50 ppb or more throughout the test period, and the number of surface-attached bacteria was always 1/100 or less compared to the normal heat exchanger. The antibacterial effect of this antibacterial heat exchanger was confirmed.

次に、本炭酸銀抗菌性塗料を塗布したプレートフィン1枚(表面積228cm2)を用い、以下の方法にて銀溶出量確認の加速試験を行った。 Next, using one plate fin (surface area 228 cm 2 ) coated with the silver carbonate antibacterial paint, an accelerated test for confirming the silver elution amount was performed by the following method.

常にプレートフィン表面に高温水(約80℃)が流速25mL/minで流れる状態として銀イオンの溶出における加速劣化確認試験を250日間行った。この時の加速係数は、通常の凝縮水温度15℃の場合と比較して約11倍である。この試験期間は、凝縮水が1日24時間、1年の内に6ヶ月発生すると仮定して、約15年半の期間に相当する。一定期間毎に高温水をサンプリングして、銀イオン溶出濃度を測定した。溶出加速試験結果を表5に示す。   An accelerated deterioration confirmation test for elution of silver ions was conducted for 250 days under the condition that high-temperature water (about 80 ° C.) always flows on the plate fin surface at a flow rate of 25 mL / min. The acceleration coefficient at this time is about 11 times that in the case of a normal condensed water temperature of 15 ° C. This test period corresponds to a period of about 15 and a half years, assuming that condensed water occurs 24 hours a day, 6 months within a year. High temperature water was sampled at regular intervals, and the silver ion elution concentration was measured. Table 5 shows the results of the dissolution acceleration test.

Figure 2009001505
Figure 2009001505

加速試験の間、プレートフィンから50ppb以上で銀イオンが溶出されることを確認した。このことから、抗菌熱交換器を凝縮水発生期間が6ヶ月とした通常の条件で運転した場合、約15年半の期間、50ppb以上の銀イオンが凝縮水に溶出されることが推定される。   During the acceleration test, it was confirmed that silver ions were eluted from the plate fin at 50 ppb or more. From this, when the antibacterial heat exchanger is operated under normal conditions with a condensed water generation period of 6 months, it is estimated that silver ions of 50 ppb or more are eluted into the condensed water for a period of about 15 years and a half. .

Claims (18)

銀イオンを含有する溶液Aと炭酸イオンを含有する溶液Bとをコロイド粒子の存在下で混合して炭酸銀微粒子を製造する方法において、
コロイド粒子の粒子径をx[nm]とし、溶液A及び溶液Bを混合した混合溶液におけるコロイド粒子の溶媒質量に対する粒子数濃度をy[個/g]とし、前記混合溶液におけるコロイド粒子の粒子数に対する銀原子の数の比をzとしたときに、コロイド粒子の粒子数濃度yが下記式1で求められる値以上でありかつ下記式2で求められる値以下となり、かつ銀原子の数の比zが下記式3で求められる値未満となるように、溶液A及びBをコロイド粒子存在下で混合することを特徴とする方法。
式1) y=1.16×1017×(1/x)1.9
式2) y=9.23×1019×(1/x)3.0
式3) z=k×(175.3x2+2196.3x+2793)
(式3中、kは1である。)
In a method for producing silver carbonate fine particles by mixing a solution A containing silver ions and a solution B containing carbonate ions in the presence of colloidal particles,
The particle diameter of the colloidal particles is x [nm], the particle number concentration with respect to the solvent mass of the colloidal particles in the mixed solution in which the solution A and the solution B are mixed is y [number / g], and the number of colloidal particles in the mixed solution. When the ratio of the number of silver atoms to z is z, the particle number concentration y of the colloidal particles is not less than the value obtained by the following formula 1 and not more than the value obtained by the following formula 2, and the ratio of the number of silver atoms A method comprising mixing solutions A and B in the presence of colloidal particles so that z is less than a value obtained by the following formula 3.
Formula 1) y = 1.16 × 10 17 × (1 / x) 1.9
Formula 2) y = 9.23 × 10 19 × (1 / x) 3.0
Formula 3) z = k * (175.3x < 2 > + 2196.3x + 2793)
(In Formula 3, k is 1.)
前記混合溶液におけるコロイド粒子の質量濃度が5質量%未満であることを特徴とする請求項1記載の方法。   The method according to claim 1, wherein the mass concentration of colloidal particles in the mixed solution is less than 5 mass%. 前記コロイド粒子の粒子径は50nm未満であることを特徴とする請求項1又は2に記載の方法。   The method according to claim 1 or 2, wherein the colloidal particles have a particle diameter of less than 50 nm. 前記コロイド粒子はケイ素酸化物であることを特徴とする請求項1〜3のいずれか一項に記載の方法。   The method according to claim 1, wherein the colloidal particles are silicon oxide. 前記溶液Aの銀イオンに対する前記溶液Bの炭酸イオンが1当量未満であることを特徴とする請求項1〜4のいずれか一項に記載の方法。   The method according to claim 1, wherein the carbonate ion of the solution B with respect to silver ions of the solution A is less than 1 equivalent. 前記溶液Aは硝酸銀の水溶液であることを特徴とする請求項1〜5のいずれか一項に記載の方法。   The method according to claim 1, wherein the solution A is an aqueous solution of silver nitrate. 前記溶液Bは炭酸水素ナトリウム又は炭酸ナトリウムの水溶液であることを特徴とする請求項1〜6のいずれか一項に記載の方法。   The method according to any one of claims 1 to 6, wherein the solution B is an aqueous solution of sodium hydrogen carbonate or sodium carbonate. 粒径が5μm以下であり銀含有率が15質量%以上である炭酸銀微粒子と樹脂とを含有する抗菌性樹脂膜用の塗料であって、前記炭酸銀微粒子の含有量が、前記抗菌性樹脂膜中において14〜88質量%である抗菌性樹脂膜用塗料。   A coating material for an antibacterial resin film containing silver carbonate fine particles having a particle size of 5 μm or less and a silver content of 15% by mass or more, and a resin, wherein the content of the silver carbonate fine particles is the antibacterial resin The coating material for antibacterial resin films which is 14-88 mass% in a film | membrane. 前記炭酸銀微粒子は、請求項1〜7のいずれかの方法で製造されたことを特徴とする請求項8記載の抗菌性樹脂膜用塗料。   The antibacterial resin film paint according to claim 8, wherein the silver carbonate fine particles are produced by the method according to claim 1. 抗菌性樹脂膜における炭酸銀微粒子の含有率が51.0〜77.5質量%であることを特徴とする請求項8又は9に記載の抗菌性樹脂膜用塗料。   The antibacterial resin film paint according to claim 8 or 9, wherein the content of silver carbonate fine particles in the antibacterial resin film is 51.0 to 77.5 mass%. 前記樹脂が、熱可塑性樹脂又は熱硬化性樹脂であること特徴とする請求項8〜10のいずれか一項に記載の抗菌性樹脂膜用塗料。   The said resin is a thermoplastic resin or a thermosetting resin, The coating material for antibacterial resin films as described in any one of Claims 8-10 characterized by the above-mentioned. 前記熱可塑性樹脂が、アクリル酸エステル、メタクリル酸エステル、ポリエチレン、ポリプロピレン、ポリアミド、ポリメタクリル酸メチル、アクリロニトリル−ブタジエン−スチレン樹脂、及びポリエステルからなる群から選ばれる一種又は二種以上であることを特徴とする請求項11記載の抗菌性樹脂膜用塗料。   The thermoplastic resin is one or more selected from the group consisting of acrylic acid ester, methacrylic acid ester, polyethylene, polypropylene, polyamide, polymethyl methacrylate, acrylonitrile-butadiene-styrene resin, and polyester. The antibacterial resin film paint according to claim 11. 前記熱硬化性樹脂が、エポキシ樹脂、フェノール樹脂、メラミン樹脂、及び不飽和ポリエステル樹脂からなる群から選ばれる一種又は二種以上であることを特徴とする請求項11記載の抗菌性樹脂膜用塗料。   12. The antibacterial resin film paint according to claim 11, wherein the thermosetting resin is one or more selected from the group consisting of an epoxy resin, a phenol resin, a melamine resin, and an unsaturated polyester resin. . 前記樹脂が水性エポキシ変性アルキド樹脂であることを特徴とする請求項13記載の抗菌性樹脂膜用塗料。   The antibacterial resin film paint according to claim 13, wherein the resin is an aqueous epoxy-modified alkyd resin. 流体を加熱又は冷却するための熱交換部と、この熱交換部の表面に形成されている抗菌性樹脂膜とを有し、熱交換時に熱交換部の表面に水が存在する熱交換器において、
前記抗菌性樹脂膜は、請求項8〜14のいずれか一項に記載の抗菌性樹脂膜用塗料を塗布して形成される抗菌性樹脂膜であることを特徴とする抗菌熱交換器。
In a heat exchanger having a heat exchange part for heating or cooling a fluid and an antibacterial resin film formed on the surface of the heat exchange part, and water is present on the surface of the heat exchange part during heat exchange ,
The antibacterial resin film is an antibacterial resin film formed by applying the antibacterial resin film paint according to any one of claims 8 to 14.
前記抗菌性樹脂膜の厚さが10μm以下であることを特徴とする請求項15記載の抗菌熱交換器。   The antibacterial heat exchanger according to claim 15, wherein the antibacterial resin film has a thickness of 10 μm or less. 前記抗菌性樹脂膜の厚さが5μm以下であることを特徴とする請求項16記載の抗菌熱交換器。   The antibacterial heat exchanger according to claim 16, wherein the antibacterial resin film has a thickness of 5 μm or less. 前記熱交換部が気体を冷却するためのプレートフィンであることを特徴とする請求項15〜17のいずれか一項に記載の抗菌熱交換器。   The antibacterial heat exchanger according to any one of claims 15 to 17, wherein the heat exchange part is a plate fin for cooling a gas.
JP2007161422A 2007-06-19 2007-06-19 Antimicrobial fine particle production method, antibacterial paint and antibacterial heat exchanger Active JP5189320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007161422A JP5189320B2 (en) 2007-06-19 2007-06-19 Antimicrobial fine particle production method, antibacterial paint and antibacterial heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007161422A JP5189320B2 (en) 2007-06-19 2007-06-19 Antimicrobial fine particle production method, antibacterial paint and antibacterial heat exchanger

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012176004A Division JP5486053B2 (en) 2012-08-08 2012-08-08 Antibacterial paint and antibacterial heat exchanger

Publications (2)

Publication Number Publication Date
JP2009001505A true JP2009001505A (en) 2009-01-08
JP5189320B2 JP5189320B2 (en) 2013-04-24

Family

ID=40318312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007161422A Active JP5189320B2 (en) 2007-06-19 2007-06-19 Antimicrobial fine particle production method, antibacterial paint and antibacterial heat exchanger

Country Status (1)

Country Link
JP (1) JP5189320B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020055713A (en) * 2018-10-03 2020-04-09 浜松ホトニクス株式会社 Method for producing silver carbonate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01258792A (en) * 1988-04-09 1989-10-16 Kenji Ichikawa Antibacterial agent, antibacterial base material and antibacterial water tank
JPH0733617A (en) * 1993-07-19 1995-02-03 Kenji Nakamura Antimicrobial granule and production thereof
JPH1066861A (en) * 1996-08-28 1998-03-10 Mitsui Mining & Smelting Co Ltd Silver colloid solution, its production, coating material for transparent conductive film and transparent conductive film
JPH1085759A (en) * 1996-09-13 1998-04-07 Ichiro Arai Preparation of purifying agent for sterilization
JP2003185387A (en) * 2001-12-18 2003-07-03 Hitachi Ltd Indoor heat exchanger and air conditioner using it
JP2007161649A (en) * 2005-12-14 2007-06-28 Takasago Thermal Eng Co Ltd Method for producing antimicrobial agent micro-particle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01258792A (en) * 1988-04-09 1989-10-16 Kenji Ichikawa Antibacterial agent, antibacterial base material and antibacterial water tank
JPH0733617A (en) * 1993-07-19 1995-02-03 Kenji Nakamura Antimicrobial granule and production thereof
JPH1066861A (en) * 1996-08-28 1998-03-10 Mitsui Mining & Smelting Co Ltd Silver colloid solution, its production, coating material for transparent conductive film and transparent conductive film
JPH1085759A (en) * 1996-09-13 1998-04-07 Ichiro Arai Preparation of purifying agent for sterilization
JP2003185387A (en) * 2001-12-18 2003-07-03 Hitachi Ltd Indoor heat exchanger and air conditioner using it
JP2007161649A (en) * 2005-12-14 2007-06-28 Takasago Thermal Eng Co Ltd Method for producing antimicrobial agent micro-particle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020055713A (en) * 2018-10-03 2020-04-09 浜松ホトニクス株式会社 Method for producing silver carbonate
JP7265851B2 (en) 2018-10-03 2023-04-27 浜松ホトニクス株式会社 Silver carbonate manufacturing method

Also Published As

Publication number Publication date
JP5189320B2 (en) 2013-04-24

Similar Documents

Publication Publication Date Title
US5906679A (en) Coating compositions employing zinc antimonate anhydride particles
US8877861B2 (en) One-pot synthetic method for synthesizing silver-containing waterborne polyurethane
WO2014126075A1 (en) Rod-like magnesium hydroxide particle and rod-like magnesium oxide particle each having high specific surface area, and methods respectively for producing said particles
CN106001552A (en) Preparation method of silver @ metallic oxide composite nanometer line
CN108975378A (en) A kind of dysprosia raw powder&#39;s production technology
JP5486053B2 (en) Antibacterial paint and antibacterial heat exchanger
JP5189320B2 (en) Antimicrobial fine particle production method, antibacterial paint and antibacterial heat exchanger
JP4959186B2 (en) Method for producing antibacterial fine particles
JP6059577B2 (en) Magnesium hydroxide particles and resin composition containing the same
JP4745713B2 (en) Magnesium hydroxide particles, method for producing the same, and resin composition containing the same
JP2006306658A (en) Magnesium hydroxide particle, method for producing the same, and resin composition containing the same
US10221318B2 (en) Hydrophilization treatment agent for aluminum-containing metal material
US20220373276A1 (en) Heat exchanger, coating for coating heat exchanger, and heat management system
JPH08133918A (en) Inorganic antimicrobial agent
JP2013063878A (en) Spherical magnesium hydroxide particles and magnesium oxide particles having large specific surface area, and method for producing them
JP2009143754A (en) Conductive, fibrous, hollow silica particulate dispersoid and method for producing the same
Palza et al. Polypropylene in the melt state as a medium for in situ synthesis of copper nanoparticles
TWI468240B (en) Silver fine particles, method for manufacturing silver fine particles, and apparatus for manufacturing silver fine particles
JP2006001852A (en) Antibacterial antifungal resin shaped article and air conditioner using the same
Martinez-Rubio et al. A Synthetic Method for the Production of a Range of Particle Sizes for Y 2 O 3: Eu Phosphors Using a Copolymer Microgel of NIPAM and AMPS
JPH0545090A (en) Cooling tower
JP6031177B2 (en) Spherical magnesium hydroxide particles having a high specific surface area and method for producing the same
TWI392697B (en) The silver particle-containing aqueous polyurethane
JP2003128977A (en) Hydrophilic coating
JPH08113729A (en) Antimicrobial composition and production thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5189320

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150