JP2007161649A - Method for producing antimicrobial agent micro-particle - Google Patents

Method for producing antimicrobial agent micro-particle Download PDF

Info

Publication number
JP2007161649A
JP2007161649A JP2005360484A JP2005360484A JP2007161649A JP 2007161649 A JP2007161649 A JP 2007161649A JP 2005360484 A JP2005360484 A JP 2005360484A JP 2005360484 A JP2005360484 A JP 2005360484A JP 2007161649 A JP2007161649 A JP 2007161649A
Authority
JP
Japan
Prior art keywords
solution
silver
particles
colloidal
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005360484A
Other languages
Japanese (ja)
Other versions
JP4959186B2 (en
Inventor
Hideto Takahashi
秀人 高橋
Hiroki Arakawa
宏樹 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP2005360484A priority Critical patent/JP4959186B2/en
Publication of JP2007161649A publication Critical patent/JP2007161649A/en
Application granted granted Critical
Publication of JP4959186B2 publication Critical patent/JP4959186B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for simply and stably producing antimicrobial agent micro-particles having ≤5 μm particle diameter with a high silver content. <P>SOLUTION: The silver halide micro-particles having ≤5 μm particle diameter with the high silver content are obtained as follows. A solution containing silver ions as A is mixed with a solution containing a halide ion in an amount of <1 equivalent to silver in the solution A as B in the presence of colloidal particles at a specific concentration of number of particles of the colloidal particles. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、粒径5μm以下で銀含有率が少なくとも15質量%以上の抗菌剤微粒子を製造することができる方法に関する。   The present invention relates to a method capable of producing antibacterial fine particles having a particle size of 5 μm or less and a silver content of at least 15% by mass or more.

銀を用いた抗菌剤(銀系抗菌剤)は、微粒子粉体として塗料中に分散したり、あるいは樹脂中に混練することによって、抗菌機能を付与させたい塗料や樹脂製品中に添加して使用されている。この際の塗料や樹脂については、塗装の表面や樹脂の表面の滑らかさを確保するために、あるいは塗布又は樹脂コーティングされる製品の伝熱特性等の特性を低下させないように、塗布膜又はコーティング膜を数μm以下の薄膜とすることが望まれている。このため、このような塗料や樹脂に用いられる銀系抗菌剤粒子は、その粒子径が数μm以下の微粒子であることが要望される。   Antibacterial agents using silver (silver-based antibacterial agents) are added to paints and resin products that want to give antibacterial functions by dispersing in the paint as fine particle powders or kneading them into the resin. Has been. In this case, the coating film or resin should be coated or coated to ensure the smoothness of the painted surface or resin surface, or not to deteriorate the heat transfer characteristics of the product to be coated or resin coated. It is desired that the film be a thin film of several μm or less. For this reason, the silver antibacterial agent particles used in such paints and resins are required to be fine particles having a particle diameter of several μm or less.

銀系抗菌剤粒子には、通常は、ゼオライト、シリカゲル、アルミナ、あるいはリン酸塩等の、粒子径が数μm以下の粒子を担体として、それらの粉体粒子に銀化合物を担持させた粒子が知られている(例えば、特許文献1〜5参照。)。銀系抗菌剤の抗菌作用は銀によるものであるが、従来の銀系抗菌剤粒子の銀含有率は、担体の存在ゆえに高めることが困難であり、通常は10質量%以下に留まっている。   Silver antibacterial particles usually include particles having a particle diameter of several μm or less, such as zeolite, silica gel, alumina, or phosphate, with a silver compound supported on those powder particles. It is known (for example, refer to Patent Documents 1 to 5). Although the antibacterial action of the silver antibacterial agent is due to silver, it is difficult to increase the silver content of the conventional silver antibacterial agent particles due to the presence of the carrier, and usually remains at 10% by mass or less.

このため、担体に銀化合物が担持されてなる銀系抗菌剤粒子の製造では、所定の期間抗菌作用を持続させるために、銀系抗菌剤の製品への添加量として、本来必要とされる銀の量に対して、質量基準で10倍以上の量が通常は必要とされる。   For this reason, in the production of silver-based antibacterial agent particles in which a silver compound is supported on a carrier, in order to maintain the antibacterial action for a predetermined period, the amount of silver-based antibacterial agent originally added to the product is required. An amount of 10 times or more on a mass basis is usually required.

このように、従来の銀系抗菌剤においては、銀を担体に担持しているために、この担体の存在が抗菌効果をより長期に持続させること、すなわち製品中の銀密度を上げること、に対して大きな制約となっていた。また、逆に銀含有率100質量%の金属銀担体を抗菌剤粒子として用いることは、銀の溶解度が極めて低く十分な抗菌効果を得るのは困難である。このためこのような抗菌剤粒子は実用されていない。   Thus, in the conventional silver-based antibacterial agent, since silver is supported on a carrier, the presence of this carrier maintains the antibacterial effect for a longer period, that is, increases the silver density in the product. It was a big restriction. Conversely, using a metallic silver carrier having a silver content of 100% by mass as antibacterial agent particles makes it difficult to obtain a sufficient antibacterial effect because the solubility of silver is extremely low. For this reason, such antibacterial agent particles have not been put to practical use.

一方、ハロゲン化銀化合物は、一般に水に対して不溶性の化合物であるが、金属銀に比べれば銀の溶解度が高く、抗菌剤としての機能を有する。また、ハロゲン化銀化合物の銀含有率は、塩化銀で75質量%、臭化銀で57質量%、ヨウ化銀で45質量%であり、これらの化合物自体を微粒子化すれば、従来に比べて銀含有率が非常に高い銀系抗菌剤粒子となる。   On the other hand, silver halide compounds are generally insoluble in water, but have higher silver solubility than metal silver and have a function as an antibacterial agent. The silver content of the silver halide compound is 75% by mass for silver chloride, 57% by mass for silver bromide, and 45% by mass for silver iodide. Thus, silver antibacterial particles having a very high silver content are obtained.

ハロゲン化銀は光の存在下で黒色化する性質を有する、このため変色が問題になる用途を除けば、微粒子化することによって持続性の高い銀系抗菌剤粒子としての利用が期待できる。   Silver halide has the property of being blackened in the presence of light. Therefore, it can be expected to be used as a highly durable silver-based antibacterial agent particle by making it fine, except for applications where discoloration is a problem.

ハロゲン化銀化合物の微粒子を製造する方法としては、ジェットミルやボールミル等の機械的な粉砕機でハロゲン化銀を5μm以下に微粒子化することが知られている。しかしながらこの方法は、ハロゲン化銀の硬度が低いために収率が低く、生産効率やコストの観点から検討の余地が残されている。   As a method for producing fine particles of a silver halide compound, it is known to make fine particles of silver halide to 5 μm or less with a mechanical pulverizer such as a jet mill or a ball mill. However, this method has a low yield due to the low hardness of silver halide, and there remains room for study from the viewpoint of production efficiency and cost.

また、ハロゲン化銀化合物の微粒子を製造する方法としては、銀イオンを含有する溶液とハロゲン化物のイオンを含有する溶液とをコロイド粒子の存在下で混合してハロゲン化銀の粒子を製造する方法が知られている(例えば、特許文献1及び4参照。)。しかしな
がらこの方法は、生成するハロゲン化銀化合物の粒径の製造条件による制御との観点から検討の余地が残されている。
特開平6−24921号公報 特開平8−67835号公報 特開平8−157750号公報 特開2004−137241号公報 特開2004−161632号公報
Further, as a method for producing fine particles of a silver halide compound, a method of producing silver halide grains by mixing a solution containing silver ions and a solution containing halide ions in the presence of colloidal particles. Is known (for example, see Patent Documents 1 and 4). However, this method still has room for study from the viewpoint of controlling the grain size of the silver halide compound to be produced according to the production conditions.
JP-A-6-24921 JP-A-8-67835 JP-A-8-157750 JP 2004-137241 A JP 2004-161632 A

本発明は、このような粉体への銀化合物の担持による方法や機械的粉砕法では困難であった、粒径が5μm以下であり、かつ高い銀含有率の銀系抗菌剤微粒子を簡便に且つ安定的に製造する方法を提供する。   In the present invention, silver antibacterial fine particles having a particle size of 5 μm or less and a high silver content can be easily obtained, which has been difficult to achieve by such a method of supporting a silver compound on a powder or a mechanical pulverization method. And the method of manufacturing stably is provided.

本発明は、銀イオンを含有する溶液をAとし、ハロゲン化物イオンを含有する溶液をBとし、溶液Aと溶液Bとをコロイド粒子の存在下で混合してハロゲン化銀微粒子を得る方法において、コロイド粒子の粒子数及び濃度やコロイド粒子と銀との量的条件等の条件を調整することにより、粒径5μm以下のハロゲン化銀微粒子を得る方法を提供する。   In the method of obtaining silver halide fine particles by mixing a solution containing silver ions as A, a solution containing halide ions as B, and mixing solution A and solution B in the presence of colloidal particles. Provided is a method for obtaining silver halide fine particles having a particle size of 5 μm or less by adjusting conditions such as the number and concentration of colloidal particles and quantitative conditions of colloidal particles and silver.

本発明によれば、銀イオンを含有する溶液Aと、塩化物、臭化物及びヨウ化物の少なくともいずれかのハロゲン化物のイオンを含有する溶液Bとをコロイド粒子の存在下で混合してハロゲン化銀微粒子である抗菌剤微粒子を製造する方法において、コロイド粒子の粒子径をx(nm)とし、溶液A及び溶液Bを混合した混合溶液におけるコロイド粒子の溶媒質量に対する粒子数濃度をy(個/g)とし、前記混合溶液におけるコロイド粒子の粒子数に対する銀元素数の比をzとしたときに、コロイド粒子の粒子数濃度yが下記式1で求められる値以上でありかつ下記式2で求められる値以下となり、かつ銀元素数の比が下記式3で求められる値(ただしkは1である)未満となるように、溶液A及びBをコロイド粒子存在下で混合することによって、担体としての粉体への銀化合物の担持による方法や機械的粉砕法では困難であった、粒径が5μm以下であり、かつ高い銀含有率の銀系抗菌剤微粒子を簡便に且つ安定的に製造することができる。
式1) y=1.16×1017×(1/x)1.9
式2) y=9.23×1019×(1/x)3.0
式3) z=k×(175.3x2+2196.3x+2793)
According to the present invention, silver halide is prepared by mixing solution A containing silver ions and solution B containing halide ions of at least one of chloride, bromide and iodide in the presence of colloidal particles. In the method for producing antibacterial fine particles, which are fine particles, the particle diameter of the colloidal particles is x (nm), and the concentration of the number of particles with respect to the solvent mass of the colloidal particles in the mixed solution obtained by mixing the solution A and the solution B is y (number / g ), And the ratio of the number of silver elements to the number of colloid particles in the mixed solution is z, the particle number concentration y of the colloid particles is not less than the value obtained by the following formula 1 and is obtained by the following formula 2. The solutions A and B are mixed in the presence of colloidal particles so that the ratio of the number of silver elements is less than the value and less than the value obtained by the following formula 3 (where k is 1). Thus, silver antibacterial fine particles having a particle size of 5 μm or less and a high silver content can be easily and easily obtained by a method of supporting a silver compound on a powder as a carrier or a mechanical pulverization method. It can be manufactured stably.
Formula 1) y = 1.16 × 10 17 × (1 / x) 1.9
Formula 2) y = 9.23 × 10 19 × (1 / x) 3.0
Formula 3) z = k × (175.3 × 2 + 2196.3 × + 2793)

塩化銀等のハロゲン化銀は一般的に難溶性の塩であるので、全く溶解しないのではなくわずかに溶解する。したがって、本発明で製造されるハロゲン化銀微粒子は、水の存在する雰囲気において、ハロゲン化銀を水に少しずつ溶解させるので、抗菌作用を有する銀イオンを低濃度で長期に溶出する。したがって、本発明で製造されるハロゲン化銀微粒子は、微生物の養分が少ない系では低濃度の溶出銀イオンで十分な抗菌性が得られると考えられるので、フィンやドレンパン等の空調ドレン系に好適な抗菌剤として期待される。   Since silver halides such as silver chloride are generally sparingly soluble salts, they do not dissolve at all but dissolve slightly. Therefore, the silver halide fine particles produced by the present invention dissolve silver halide in water little by little in an atmosphere in which water exists, so that silver ions having antibacterial action are eluted at a low concentration for a long time. Therefore, the silver halide fine particles produced in the present invention are considered suitable for air-conditioning drain systems such as fins and drain pans because it is considered that sufficient antibacterial properties can be obtained with a low concentration of eluted silver ions in a system with little microbial nutrients. Expected to be an antibacterial agent.

本発明では、混合溶液におけるコロイド粒子の質量濃度が5質量%未満であることが、銀含有率が15質量%以上のハロゲン化銀微粒子を製造する観点から好ましい。粒径が5μm以下であり、かつ銀含有率が15質量%以上であるハロゲン化銀微粒子は、水が存在する雰囲気中の抗菌対象箇所の表面を形成する塗料や樹脂等の表面形成用組成物に分散させて用いる観点、及び抗菌作用を安定して長期に発現させる観点から優れている。   In the present invention, the mass concentration of the colloidal particles in the mixed solution is preferably less than 5% by mass from the viewpoint of producing silver halide fine particles having a silver content of 15% by mass or more. A silver halide fine particle having a particle size of 5 μm or less and a silver content of 15% by mass or more is a surface-forming composition such as a paint or a resin that forms the surface of an antibacterial target site in an atmosphere containing water It is excellent from the viewpoint of being dispersed and used, and from the viewpoint of stably exhibiting an antibacterial action for a long time.

本発明では、前記コロイド粒子の粒子径は50nm未満であり、又は前記溶液Bは前記
溶液Aの銀イオンに対する溶液Bのハロゲンイオンが1当量未満となる量のハロゲン化物のイオンを含有し、又は前記コロイド粒子は金属酸化物であり、又は前記コロイド粒子はケイ素酸化物であり、又は前記ハロゲン化物は塩化物であり、又は前記塩化物は塩化ナトリウム又は塩化アンモニウムであり、又は前記溶液Aは硝酸銀の水溶液であると、粒径が5μm以下であり、かつ高い銀含有率の銀系抗菌剤微粒子を簡便に且つ安定的に製造する観点からより一層効果的である。
In the present invention, the particle diameter of the colloidal particles is less than 50 nm, or the solution B contains halide ions in an amount such that the halogen ions in the solution B are less than 1 equivalent to the silver ions in the solution A, or The colloidal particles are metal oxides, or the colloidal particles are silicon oxides, or the halide is chloride, or the chloride is sodium chloride or ammonium chloride, or the solution A is silver nitrate This aqueous solution is more effective from the viewpoint of easily and stably producing silver-based antibacterial fine particles having a particle size of 5 μm or less and a high silver content.

本発明の方法では、銀イオンを含有する溶液Aと、塩化物、臭化物及びヨウ化物の少なくともいずれかのハロゲン化物のイオンを含有する溶液Bとをコロイド粒子の存在下で混合してハロゲン化銀微粒子を製造する。   In the method of the present invention, a silver halide is prepared by mixing a solution A containing silver ions and a solution B containing ions of halides of at least one of chloride, bromide and iodide in the presence of colloidal particles. Produces fine particles.

本発明における溶液及びコロイド粒子との混合は、コロイド粒子が存在している状態で銀イオンとハロゲン化物のイオンとを混合することができれば、特に限定されない。本発明では、コロイド溶液(ゾル)に溶液A及び溶液Bを混合しても良いし、溶液A又はBとコロイド粒子との混合液と溶液B又はAとを混合しても良いし、溶液A及びコロイド粒子の混合液と溶液B及びコロイド粒子の混合液とを混合しても良い。   The mixing of the solution and colloidal particles in the present invention is not particularly limited as long as silver ions and halide ions can be mixed in the presence of the colloidal particles. In the present invention, the solution A and the solution B may be mixed in the colloidal solution (sol), the mixed solution of the solution A or B and the colloidal particles and the solution B or A may be mixed, or the solution A Alternatively, the mixed solution of colloidal particles and the mixed solution of solution B and colloidal particles may be mixed.

より具体的には、溶液Aの原料として水溶性の銀化合物、例えば硝酸銀、を使用し、この硝酸銀を、コロイド粒子を含有する水溶液に加え、銀イオンが混合したコロイド水溶液を調製する。また、溶液Bの原料としてハロゲン化物、例えば塩化アンモニウム、を使用し、このハロゲン化物塩を、コロイド粒子を含有する水溶液に加え、ハロゲン化物イオンが混合したコロイド水溶液を得る。そして溶液Aと溶液Bとを混合することにより、粒径5μm以下のハロゲン化銀微粒子を得ることができる。   More specifically, a water-soluble silver compound such as silver nitrate is used as a raw material for the solution A, and this silver nitrate is added to an aqueous solution containing colloidal particles to prepare a colloidal aqueous solution in which silver ions are mixed. Further, a halide such as ammonium chloride is used as a raw material of the solution B, and this halide salt is added to an aqueous solution containing colloidal particles to obtain a colloidal aqueous solution in which halide ions are mixed. Then, by mixing the solution A and the solution B, silver halide fine particles having a particle size of 5 μm or less can be obtained.

本発明では、溶液A及び溶液Bのコロイド粒子の存在下での混合は、少なくとも以下の条件を含む所定の混合条件の下で行われる。   In the present invention, the mixing of the solution A and the solution B in the presence of colloidal particles is performed under predetermined mixing conditions including at least the following conditions.

前記混合条件は、コロイド粒子の粒子径をx(nm)とし、溶液A及び溶液Bを混合した混合溶液におけるコロイド粒子の溶媒質量に対する粒子数濃度をy(個/g)としたときに、コロイド粒子の粒子数濃度yが下記式1で求められる値以上でありかつ下記式2で求められる値以下となる条件である。
式1) y=1.16×1017×(1/x)1.9
式2) y=9.23×1019×(1/x)3.0
The mixing condition is that when the particle size of the colloidal particles is x (nm) and the concentration of the number of particles with respect to the solvent mass of the colloidal particles in the mixed solution in which the solution A and the solution B are mixed is y (number / g). This is a condition that the particle number concentration y of the particles is not less than the value obtained by the following formula 1 and not more than the value obtained by the following formula 2.
Formula 1) y = 1.16 × 10 17 × (1 / x) 1.9
Formula 2) y = 9.23 × 10 19 × (1 / x) 3.0

本発明において、コロイド粒子の粒子数濃度は、溶液A及びBの液体媒体(すなわち溶媒、例えば水)の質量に対するコロイド粒子の粒子数の百分率である。コロイド粒子の粒子数濃度が小さい場合では、得られるハロゲン化銀微粒子の粒径が大きくなる。ハロゲン化銀微粒子は、前述したように膜中に分散させて使用される場合には、粒径が数μm以下であることが望まれている。コロイド粒子の粒子数濃度が前記式1で求められる値よりも小さいと、得られるハロゲン化銀微粒子の粒径が5μmよりも大きくなることがある。また、コロイド粒子の粒子数濃度が前記式2で求められる値よりも大きいと、コロイド溶液に水溶性銀化合物又はハロゲン化物を溶解する際に、コロイド溶液が容易にゲル化し固化することがある。   In the present invention, the particle number concentration of colloidal particles is the percentage of the number of colloidal particles relative to the mass of the liquid medium (ie, solvent, eg water) of solutions A and B. When the concentration of colloidal particles is small, the resulting silver halide fine particles have a large particle size. As described above, the silver halide fine particles are desired to have a particle size of several μm or less when dispersed in a film. When the particle number concentration of the colloidal particles is smaller than the value obtained by the above formula 1, the particle size of the obtained silver halide fine particles may be larger than 5 μm. On the other hand, when the particle number concentration of the colloidal particles is larger than the value obtained by the formula 2, the colloidal solution may easily gel and solidify when the water-soluble silver compound or halide is dissolved in the colloidal solution.

溶液A及び溶液Bのコロイド粒子の存在下での混合は、コロイド粒子の粒子径に応じて、例えばコロイド粒子の量、コロイドの質量濃度、溶液Aの水の量、溶液Bの水の量等を調整することによって、前記混合条件に調整することができる。しかしながら、前記混合条件を実現する方法はこれらに限定されない。   The mixing of the solution A and the solution B in the presence of colloidal particles is performed according to the particle size of the colloidal particles, for example, the amount of colloidal particles, the mass concentration of the colloid, the amount of water in the solution A, the amount of water in the solution B, etc. It is possible to adjust to the mixing conditions by adjusting. However, the method for realizing the mixing condition is not limited to these.

コロイド粒子の粒子径は、コロイド粒子の平均粒子径である。本発明では、粒子径が明らかな市販のコロイド分散質となる粒子をコロイド粒子に用いることができる。   The particle size of the colloidal particles is the average particle size of the colloidal particles. In the present invention, a commercially available colloidal dispersoid having a clear particle diameter can be used as the colloidal particle.

前記の混合条件には以下に示すさらなる混合条件が含まれる。前記さらなる混合条件は、前記溶液A及びBを混合した混合溶液におけるコロイド粒子の粒子数に対する銀元素数の比が、コロイド粒子の粒子径をx(nm)とし、銀元素数の比をzとしたときに下記式3で求められる値未満となる条件である。ただし式3中、kは1である。
式3) z=k×(175.3x2+2196.3x+2793)
The above mixing conditions include the following additional mixing conditions. The further mixing condition is that the ratio of the number of silver elements to the number of colloidal particles in the mixed solution in which the solutions A and B are mixed is such that the particle diameter of the colloidal particles is x (nm) and the ratio of the number of silver elements is z. This is a condition that is less than the value obtained by the following formula 3. However, in Formula 3, k is 1.
Formula 3) z = k × (175.3 × 2 + 2196.3 × + 2793)

銀元素数は前記混合溶液中における銀イオン数と銀原子数との合計である。前記混合液中の銀元素数は、溶液A及び溶液B中の銀元素数の総和であり、例えば溶液B中に銀化合物が含まれない場合では、下記式4によって求めることができる。
式4) Nag=mac×Wac×NA/Mac
The number of silver elements is the sum of the number of silver ions and the number of silver atoms in the mixed solution. The number of silver elements in the mixed solution is the total number of silver elements in the solution A and the solution B. For example, when the silver compound is not contained in the solution B, it can be obtained by the following formula 4.
Formula 4) Nag = mac × Wac × NA / Mac

式4中、Nagは混合溶液中の銀元素数[個]であり、macは溶液Aの作製に用いた銀化合物の1分子中の銀元素数であり、Wacは溶液Aの作製に用いた銀化合物の質量[g]であり、NAはアボガドロ数(6.02×1023[個])であり、Macは溶液Aの作製に用いた銀化合物の分子量である。 In Formula 4, Nag is the number of silver elements [number] in the mixed solution, mac is the number of silver elements in one molecule of the silver compound used in the preparation of the solution A, and Wac is used in the preparation of the solution A. It is the mass [g] of the silver compound, NA is the Avogadro number (6.02 × 10 23 [pieces]), and Mac is the molecular weight of the silver compound used to prepare the solution A.

また、前記混合溶液中におけるコロイド粒子の粒子数は、コロイド粒子の平均粒子径、質量濃度および比重が明らかな市販のコロイド溶液を用い、質量既知の水で希釈することにより、調整することができる。例えば、溶液A及びBについてそれぞれ所定の粒子数に調整する場合では、下記式5により求められる混合溶液中のコロイド粒子の粒子数に基づいて調整することができる。
式5) Np=Np(A)+Np(B)
The number of colloidal particles in the mixed solution can be adjusted by using a commercially available colloidal solution in which the average particle diameter, mass concentration and specific gravity of the colloidal particles are clear and diluting with water of known mass. . For example, when adjusting to the predetermined number of particles for each of the solutions A and B, the adjustment can be made based on the number of colloidal particles in the mixed solution obtained by the following formula 5.
Formula 5) Np = Np (A) + Np (B)

ここで、Npは混合溶液中のコロイド粒子数[個]であり、Np(A)は溶液A中のコロイド粒子数[個]であり、Np(B)は溶液B中のコロイド粒子数[個]である。Np(A)及びNp(B)は下記式6及び7により求めることができる。
式6) Np(A)=Wp(A)/{ρp(A)×4/3×π×(dp(A)/2)3
式7) Np(B)=Wp(B)/{ρp(B)×4/3×π×(dp(B)/2)3
Here, Np is the number of colloidal particles in the mixed solution [number], Np (A) is the number of colloidal particles in the solution A [number], and Np (B) is the number of colloidal particles in the solution B [number]. ]. Np (A) and Np (B) can be obtained by the following equations 6 and 7.
Formula 6) Np (A) = Wp (A) / {ρp (A) × 4/3 × π × (dp (A) / 2) 3 }
Formula 7) Np (B) = Wp (B) / {ρp (B) × 4/3 × π × (dp (B) / 2) 3 }

式6中、Wp(A)は溶液A中のコロイド粒子の質量[g]であり、ρp(A)は溶液Aに使用した市販コロイド溶液のコロイド粒子の密度[g/cm3]であり、dp(A)は溶液Aに使用した市販コロイド溶液のコロイド粒子の平均粒子径[cm]である。また式7中、Wp(B)は溶液B中のコロイド粒子の質量[g]であり、ρp(B)は溶液Bに使用した市販コロイド溶液のコロイド粒子の密度[g/cm3]であり、dp(B)は溶液Bに使用した市販コロイド溶液のコロイド粒子の平均粒子径[cm]である。Wp(A)及びWp(B)は下記式8及び9により求めることができ、ρp(A)及びρp(B)は下記式10及び11により求めることができる。
式8) Wp(A)=Csol(A)×Wsol(A)/100
式9) Wp(B)=Csol(B)×Wsol(B)/100
式10) ρp(A)=Csol(A)×ρsol(A)/(1−ρsol(A)+ρsol(A)×Csol(A))
式11) ρp(B)=Csol(B)×ρsol(B)/(1−ρsol(B)+ρsol(B)×Csol(B))
In Equation 6, Wp (A) is the mass [g] of the colloidal particles in the solution A, and ρp (A) is the density [g / cm 3 ] of the colloidal particles in the commercial colloidal solution used in the solution A. dp (A) is the average particle diameter [cm] of the colloidal particles of the commercially available colloidal solution used for the solution A. In Formula 7, Wp (B) is the mass [g] of the colloidal particles in the solution B, and ρp (B) is the density [g / cm 3 ] of the colloidal particles in the commercial colloidal solution used for the solution B. , Dp (B) is the average particle size [cm] of the colloidal particles of the commercially available colloidal solution used for solution B. Wp (A) and Wp (B) can be obtained by the following equations 8 and 9, and ρp (A) and ρp (B) can be obtained by the following equations 10 and 11.
Formula 8) Wp (A) = Csol (A) × Wsol (A) / 100
Formula 9) Wp (B) = Csol (B) × Wsol (B) / 100
Formula 10) ρp (A) = Csol (A) × ρsol (A) / (1−ρsol (A) + ρsol (A) × Csol (A))
Formula 11) ρp (B) = Csol (B) × ρsol (B) / (1−ρsol (B) + ρsol (B) × Csol (B))

式8及び10中、Csol(A)は溶液Aに使用した市販コロイド溶液のコロイド質量濃度[質量%]であり、式9及び11中、Csol(B)は溶液Bに使用した市販コロイド溶液のコロイド質量濃度[質量%]である。また式8中、Wsol(A)は溶液A中の市販コロイド溶液の質量[g]であり、式9中、Wsol(B)は溶液B中の市販コロイド溶液の質量[g]である。また式10中、ρsol(A)は溶液Aに使用した市販コロイド溶液の比重[g/cm3]で
あり、式11中、ρsol(B)は溶液Bに使用した市販コロイド溶液の比重[g/cm3]である。ρsol(A)及びρsol(B)は、コロイド溶液の体積当たりの質量を測定することによって求めることができる。
In Formulas 8 and 10, Csol (A) is the colloid mass concentration [% by mass] of the commercially available colloidal solution used in Solution A, and in Formulas 9 and 11, Csol (B) is that of the commercially available colloidal solution used in Solution B. The colloid mass concentration is [% by mass]. In Formula 8, Wsol (A) is the mass [g] of the commercial colloidal solution in solution A, and in Formula 9, Wsol (B) is the mass [g] of the commercial colloidal solution in solution B. In Formula 10, ρsol (A) is the specific gravity [g / cm 3 ] of the commercially available colloid solution used in Solution A, and in Formula 11, ρsol (B) is the specific gravity of the commercially available colloidal solution used in Solution B [g / Cm 3 ]. ρsol (A) and ρsol (B) can be determined by measuring the mass per volume of the colloidal solution.

また、混合溶液中のコロイド粒子の溶媒質量に対するコロイドの粒子数濃度は、下記式12により求めることができる。
式12) Cp=Np/Wm
Further, the particle number concentration of the colloid with respect to the solvent mass of the colloid particles in the mixed solution can be obtained by the following formula 12.
Formula 12) Cp = Np / Wm

式12中、Cpは混合溶液中のコロイド粒子の溶媒(水)質量に対するコロイドの粒子数濃度[個/g]であり、Wmは混合溶液の水(溶媒)の質量[g]である。Wmは下記式13により求めることができる。
式13) Wm=Ww(A)+Wdw(A)+Ww(B)+Wdw(B)
In Formula 12, Cp is the particle number concentration [number / g] of colloid with respect to the mass of solvent (water) of colloidal particles in the mixed solution, and Wm is the mass [g] of water (solvent) of the mixed solution. Wm can be obtained by the following equation (13).
Formula 13) Wm = Ww (A) + Wdw (A) + Ww (B) + Wdw (B)

式13中、Ww(A)は溶液Aに使用した市販コロイド溶液中の溶媒(水)の質量[g]であり、Wdw(A)は溶液A作製時に市販コロイド溶液の希釈に用いた溶媒(水)の質量[g]であり、Ww(B)は溶液Bに使用した市販コロイド溶液中の溶媒(水)の質量[g]であり、Wdw(B)は溶液B作製時に市販コロイド溶液の希釈に用いた溶媒(水)の質量[g]である。Wdw(A)及びWdw(B)は下記式14及び15により求めることができる。
式14) Ww(A)=(1−Csol(A))×Wsol(A)
式15) Ww(B)=(1−Csol(B))×Wsol(B)
In Formula 13, Ww (A) is the mass [g] of the solvent (water) in the commercially available colloidal solution used for solution A, and Wdw (A) is the solvent ( Wg (B) is the mass [g] of the solvent (water) in the commercial colloidal solution used for solution B, and Wdw (B) is the mass of the commercial colloidal solution at the time of preparation of solution B. It is the mass [g] of the solvent (water) used for dilution. Wdw (A) and Wdw (B) can be obtained by the following equations 14 and 15.
Formula 14) Ww (A) = (1-Csol (A)) × Wsol (A)
Formula 15) Ww (B) = (1-Csol (B)) × Wsol (B)

また、市販コロイド溶液を希釈した溶液A又は溶液Bのコロイド質量濃度は、下記式16及び17により求めることができる。ただし式16中、Cdsol(A)は市販コロイド溶液を希釈した溶液Aのコロイド質量濃度[質量%]であり、式17中、Cdsol(B)は市販コロイド溶液を希釈した溶液Bのコロイド質量濃度[質量%]である。
式16) Cdsol(A)=Wp(A)/(Wdw(A)+Wp(A))×100
式17) Cdsol(B)=Wp(B)/(Wdw(B)+Wp(B))×100
Moreover, the colloid mass concentration of the solution A or the solution B which diluted the commercially available colloid solution can be calculated | required by following formula 16 and 17. However, in Formula 16, Cdsol (A) is the colloid mass concentration [mass%] of the solution A which diluted the commercial colloid solution, and in Formula 17, Cdsol (B) is the colloid mass concentration of the solution B which diluted the commercial colloid solution. [% By mass].
Expression 16) Cdsol (A) = Wp (A) / (Wdw (A) + Wp (A)) × 100
Expression 17) Cdsol (B) = Wp (B) / (Wdw (B) + Wp (B)) × 100

本発明の方法によるハロゲン化銀微粒子の生成機構は、コロイド溶液中のコロイド粒子を核として、その表面にハロゲン化銀が析出し、この原粒子が成長し、ハロゲン化銀微粒子を生成する機構であると考えられる。前記混合溶液におけるコロイド粒子の粒子数に対する銀元素数の比が105よりも大きいと、コロイド粒子の表面におけるハロゲン化銀の析出と原粒子の成長が進み過ぎ、ハロゲン化銀微粒子が巨大化することがある。生成するハロゲン化銀微粒子の粒径の制御とハロゲン化銀微粒子の量産性との観点から、前記混合溶液におけるコロイド粒子の粒子数に対する銀元素数の比は、コロイド粒子の粒子径をx(nm)とし、銀元素数の比をzとしたときに前記式3で求められる値において、係数kが0.6であるときの値以上でkが1であるときの値未満であることが好ましく、kが0.8であるときの値以上でkが1であるときの値未満であることがより好ましく、kが1であるときの値未満であることがさらに好ましい。 The formation mechanism of silver halide fine particles by the method of the present invention is a mechanism in which silver halide precipitates on the surface of colloidal particles in a colloidal solution and grows to produce silver halide fine particles. It is believed that there is. If the ratio of the number of silver elements to the number of colloidal particles in the mixed solution is larger than 10 5 , the silver halide precipitation and the growth of the original grains proceed too much on the surface of the colloidal particles, and the silver halide fine particles become enormous. Sometimes. From the viewpoint of controlling the particle size of the silver halide fine particles to be produced and mass productivity of the silver halide fine particles, the ratio of the number of silver elements to the number of colloidal particles in the mixed solution is determined as follows. ), And the value obtained by Equation 3 when the ratio of the number of silver elements is z is preferably not less than the value when the coefficient k is 0.6 and less than the value when k is 1. More preferably, the value is greater than or equal to the value when k is 0.8 and less than the value when k is 1, and more preferably less than the value when k is 1.

溶液A及び溶液Bのコロイド粒子の存在下での混合は、例えばコロイド粒子の量、溶液A中の銀イオンの量、溶液Aに溶解させる水溶性銀化合物の量等を調整することによって、前述したさらなる混合条件に調整することができる。しかしながら、前記さらなる混合条件を実現する方法はこれらに限定されない。   The mixing of the solution A and the solution B in the presence of the colloidal particles is performed by adjusting the amount of colloidal particles, the amount of silver ions in the solution A, the amount of the water-soluble silver compound dissolved in the solution A, etc. The further mixing conditions can be adjusted. However, the method of realizing the further mixing conditions is not limited to these.

さらに本発明では、混合溶液におけるコロイド粒子の質量濃度が低くなるように溶液A及びBをコロイド粒子の存在下で混合することが、生成するハロゲン化銀微粒子の銀含有率を高める観点から好ましい。生成するハロゲン化銀微粒子における銀含有率は、溶液Bにおけるハロゲン化物イオンの種類等に応じて異なるが、混合溶液におけるコロイド粒子の質量濃度が5質量%未満であることが、銀含有率が15質量%以上であるハロゲン化銀
微粒子を製造する観点から好ましく、前記コロイド粒子の質量濃度が2質量%以下であることがより好ましい。
Furthermore, in the present invention, it is preferable that the solutions A and B are mixed in the presence of the colloidal particles so that the mass concentration of the colloidal particles in the mixed solution is low from the viewpoint of increasing the silver content of the silver halide fine particles to be generated. The silver content in the resulting silver halide fine particles varies depending on the type of halide ions in the solution B, but the colloidal particle mass concentration in the mixed solution is less than 5% by mass, and the silver content is 15%. It is preferable from the viewpoint of producing silver halide fine grains having a mass% or more, and more preferably the mass concentration of the colloidal grains is 2 mass% or less.

前記溶液Aは、銀イオンを含有する水である。溶液Aは、銀イオンが含有されるのであれば、他のイオンや界面活性剤のような水溶性の有機成分等の他の成分をさらに含有していても良い。溶液Aは、水溶性の銀化合物を、前記他の成分を含有していても良い水に溶かすことによって得られる。   The solution A is water containing silver ions. The solution A may further contain other components such as other ions and water-soluble organic components such as a surfactant as long as silver ions are contained. The solution A is obtained by dissolving a water-soluble silver compound in water that may contain the other components.

溶液Aで使用される銀化合物は水溶性であれば良いが、ハロゲン化銀微粒子の量産性を考慮すると溶解度の高い銀化合物が好ましい。このような銀化合物には、例えば硝酸銀、過塩素酸銀、及びフッ化銀等が挙げられる。中でも、コストが低いことから、前記銀化合物は硝酸銀であることが好ましい。   The silver compound used in the solution A may be water-soluble, but a silver compound having high solubility is preferable in consideration of mass productivity of silver halide fine particles. Examples of such silver compounds include silver nitrate, silver perchlorate, and silver fluoride. Especially, since the cost is low, the silver compound is preferably silver nitrate.

前記溶液Bは、フッ化物を除くハロゲン化物、すなわち塩化物、臭化物及びヨウ化物の少なくともいずれかのハロゲン化物のイオンを含有する水である。溶液Bは、溶液Aと同様に、前記ハロゲン化物が含有されるのであれば前記他の成分をさらに含有していても良い。溶液Bは、水溶性のハロゲン化物を、前記他の成分を含有していても良い水に溶かすことによって得られる。   The solution B is water containing halide ions excluding fluoride, that is, halide ions of at least one of chloride, bromide and iodide. As with the solution A, the solution B may further contain the other components as long as the halide is contained therein. The solution B is obtained by dissolving a water-soluble halide in water that may contain the other components.

溶液Bで使用されるハロゲン化物は水溶性であれば良いが、ハロゲン化銀微粒子の量産性を考慮すると溶解度の高い化合物が好ましい。また、前記ハロゲン化物は、溶液Aと溶液Bとを混合したときに、溶液A中の銀イオンの対イオン(例えば硝酸銀の場合は硝酸イオン)と溶液B中のハロゲンイオンの対イオン(例えば塩化アンモニウムではアンモニウムイオン)とが不溶性の塩又は溶解度の低い塩を生成しない化合物であることが好ましい。   The halide used in the solution B may be water-soluble, but a compound having high solubility is preferable in consideration of mass productivity of silver halide fine particles. Further, when the solution A and the solution B are mixed, the halide is a counter ion of silver ion in the solution A (for example, nitrate ion in the case of silver nitrate) and a counter ion of halogen ion in the solution B (for example, chloride). Ammonium ion) is preferably a compound that does not form an insoluble salt or a salt with low solubility.

さらに溶液Bは、溶液Aの銀イオンに対する溶液Bのハロゲンイオンが1当量未満となる量のハロゲン化物のイオンを含有していることが好ましい。溶液B中のハロゲンイオンが1当量以上となる量のハロゲン化物のイオンが溶液Bに含有されていると、生成するハロゲン化銀微粒子が凝集して巨大化することがある。溶液Bは、生成するハロゲン化銀微粒子の粒径の制御とハロゲン化銀微粒子の量産性との観点から、溶液Aの銀イオン数に対して溶液B中のハロゲンイオン数が0.60〜0.99当量となる量のハロゲン化物のイオンを含有していることがより好ましく、0.80〜0.99当量となる量のハロゲン化物のイオンを含有していることがさらに好ましい。   Further, the solution B preferably contains halide ions in an amount such that the halogen ions in the solution B are less than 1 equivalent to the silver ions in the solution A. If the solution B contains halide ions in such an amount that the halogen ions in the solution B are 1 equivalent or more, the silver halide fine particles that are produced may aggregate and become enormous. Solution B has a number of halogen ions in solution B of 0.60 to 0 with respect to the number of silver ions in solution A, from the viewpoint of controlling the particle size of the silver halide fine particles to be produced and mass productivity of silver halide fine particles. It is more preferable to contain halide ions in an amount of .99 equivalents, and it is even more preferable to contain halide ions in an amount of 0.80 to 0.99 equivalents.

なお、溶液Bに用いられるハロゲン化物からフッ化物が除かれている理由は、フッ素イオンを含有する溶液Bと溶液Aとを混合するとフッ化銀が生成するが、フッ化銀は水溶性が高いためフッ化銀粒子として析出しにくいためである。   The reason why the fluoride is removed from the halide used in the solution B is that when the solution B containing fluorine ions and the solution A are mixed, silver fluoride is generated, but silver fluoride is highly water-soluble. Therefore, it is difficult to precipitate as silver fluoride particles.

フッ化物については、溶液Aと溶液Bとを混合したときに、水に易溶な有機溶剤やフッ化銀よりも易溶な塩等の易溶成分を前記混合溶液に添加して前記混合溶液における易溶成分の濃度を高める等の、生成するフッ化銀を析出しやすくする工程をさらに含めることによって生成するフッ化銀を析出しやすくする条件をさらに付加すれば、フッ化物を溶解してなる溶液Bを前述した溶液Bと同様に用いることができると考えられる。生成したフッ化物銀微粒子は、他のハロゲンによるハロゲン化銀微粒子に比べて容易に雰囲気中の水分に溶解するので、例えば水が循環しない系での抗菌剤に適用することが可能である。   For the fluoride, when the solution A and the solution B are mixed, an easily soluble component such as an organic solvent that is readily soluble in water or a salt that is more soluble than silver fluoride is added to the mixed solution. If the conditions that make the silver fluoride produced easier to precipitate by further including the step of making the produced silver fluoride easier to precipitate, such as increasing the concentration of the easily soluble component in the solution, dissolve the fluoride. It is considered that the solution B can be used in the same manner as the solution B described above. Since the produced silver fluoride fine particles are easily dissolved in moisture in the atmosphere as compared with silver halide fine particles by other halogens, it can be applied to, for example, an antibacterial agent in a system in which water does not circulate.

溶液Bに用いられるハロゲン化物には、ハロゲンのアンモニウム塩、ハロゲンのアルカリ金属塩、及びハロゲンのアルカリ土類金属塩等が挙げられる。溶液Bに含有されるハロゲンのイオンは一種類でも良いし二種類以上であっても良い。溶液Bに用いられるハロゲ
ン化物も、一種類でも良いし二種類以上であっても良い。前記ハロゲン化物は塩化物であることが、ハロゲン化銀微粒子の量産性や抗菌効果及びその持続性の観点から好ましく、前記塩化物は塩化ナトリウム又は塩化アンモニウムであることが、ハロゲン化銀微粒子の量産性の観点から好ましい。
Examples of the halide used for the solution B include halogen ammonium salts, halogen alkali metal salts, and halogen alkaline earth metal salts. The halogen ions contained in the solution B may be one type or two or more types. The halide used for the solution B may be one type or two or more types. The halide is preferably a chloride from the viewpoint of mass productivity and antibacterial effect of silver halide fine particles and its sustainability, and the chloride is sodium chloride or ammonium chloride. From the viewpoint of sex.

本発明に用いられるコロイド粒子には、水中でコロイド状態で存在する固体粒子が特に限定されずに用いられる。このような固体粒子には例えば金属酸化物の粒子が挙げられる。前記金属酸化物の粒子には、ケイ素酸化物、アルミニウム酸化物、亜鉛酸化物、チタン酸化物、ジルコニウム酸化物、タングステン酸化物、タンタル酸化物、バナジウム酸化物、スズ酸化物、銅酸化物、銀酸化物、カルシウム酸化物、マグネシウム酸化物、ストロンチウム酸化物、バリウム酸化物、ホウ素酸化物、ガリウム酸化物、イットリウム酸化物、ゲルマニウム酸化物、アンチモン酸化物等の粒子が挙げられる。前記固体粒子は一種類の化合物の粒子であっても良いし、二種以上の化合物の粒子の混合物であっても良い。   As the colloidal particles used in the present invention, solid particles that exist in a colloidal state in water are not particularly limited. Examples of such solid particles include metal oxide particles. The metal oxide particles include silicon oxide, aluminum oxide, zinc oxide, titanium oxide, zirconium oxide, tungsten oxide, tantalum oxide, vanadium oxide, tin oxide, copper oxide, silver Examples thereof include particles of oxide, calcium oxide, magnesium oxide, strontium oxide, barium oxide, boron oxide, gallium oxide, yttrium oxide, germanium oxide, antimony oxide, and the like. The solid particles may be one kind of compound particles or a mixture of two or more kinds of compound particles.

特に前記コロイド粒子はケイ素酸化物であることが、安価に入手可能であることから好ましい。   In particular, the colloidal particles are preferably silicon oxide because they are available at low cost.

また、前記固体粒子は、密度が小さいほど質量基準の銀含有率の高いハロゲン化銀微粒子を製造する観点から好ましく、1.0〜4.5g/cm3であることが好ましい。固体粒子には、粒子径及び密度が明らかな市販の固体粒子、及びそのコロイド溶液を用いることができる。 The solid particles are preferably from the viewpoint of producing silver halide fine particles having a high silver content on a mass basis as the density is small, and it is preferably 1.0 to 4.5 g / cm 3 . As the solid particles, commercially available solid particles having a clear particle size and density, and colloidal solutions thereof can be used.

前記コロイド粒子の粒子径は、通常は1〜500nmであり、特に限定されない。しかしながら、コロイド粒子は、同じ質量濃度においては粒子径が小さいものほどコロイド粒子の粒子数の濃度は高くなる。このため、前述した第一又は第二の混合条件を満たしつつハロゲン化銀微粒子を量産する観点から、コロイド粒子には粒子径の小さな粒子を用いることが好ましい。実用的にはコロイド粒子の粒子径は50nm未満であることがより好ましく、5〜50nmであることがより一層好ましく、5〜30nmであることがさらに好ましい。   The particle diameter of the colloidal particles is usually 1 to 500 nm and is not particularly limited. However, for colloidal particles, the smaller the particle diameter at the same mass concentration, the higher the concentration of the number of colloidal particles. For this reason, from the viewpoint of mass-producing silver halide fine particles while satisfying the first or second mixing conditions described above, it is preferable to use particles having a small particle diameter as the colloidal particles. Practically, the colloidal particle diameter is more preferably less than 50 nm, even more preferably 5 to 50 nm, and even more preferably 5 to 30 nm.

溶液A及びBのコロイド粒子の存在下における混合は、前記コロイド粒子の粒子数に対する銀元素数の比zが前記式3で求められる値未満の条件で、溶液Aの銀イオン濃度をできるだけ高い濃度にして実施することが、ハロゲン化銀微粒子の量産の観点から好ましい。   The mixing of the solutions A and B in the presence of colloidal particles is performed by increasing the silver ion concentration of the solution A as high as possible under the condition that the ratio z of the number of silver elements to the number of colloidal particles is less than the value obtained by the above equation 3. It is preferable to carry out the process from the viewpoint of mass production of silver halide fine grains.

溶液A及びBのコロイド粒子の存在下における混合によって生成したハロゲン化銀微粒子は、公知の手段を用いて溶液から精製された状態で得ることができる。例えば前記混合による生成物を遠心分離等の公知の手段により溶液から分離し、分離した生成物を再度水中に分散した後遠心分離等によって回収する工程を一回乃至複数回行うことにより、ハロゲン化銀微粒子を得ることができる。   The silver halide fine particles produced by mixing the solutions A and B in the presence of the colloidal particles can be obtained in a purified state from the solution using a known means. For example, the halogenated product can be obtained by separating the product resulting from the mixing from a solution by a known means such as centrifugation, dispersing the separated product in water again, and then collecting the product by centrifugation once or multiple times. Silver fine particles can be obtained.

前述したハロゲン化銀微粒子の製造方法は、溶液A中の銀イオン、溶液B中のハロゲンイオン、及びコロイド粒子の相対的な混合量を、溶液A及びBの混合溶液におけるコロイド粒子の質量濃度やコロイド粒子の粒子径に基づいて調整して混合することによって、粒径が5μm以下で銀含有率が15質量%以上のハロゲン化微粒子を製造することができる。前述した方法では、混合工程における量的制御が行われる代わりに、混合過程におけるpHの調整や混合後の養生のための温度制御や静置を特に必要としないので、粒径が5μm以下で銀含有率が15質量%以上という、銀含有率が高く、水が存在する系に適用される抗菌剤微粒子として好適なハロゲン化銀微粒子を簡易に安定して製造することができる。   The silver halide fine particle production method described above is based on the relative mixing amount of silver ions in the solution A, halogen ions in the solution B, and colloidal particles, the mass concentration of the colloidal particles in the mixed solution of the solutions A and B, By adjusting and mixing based on the particle size of the colloidal particles, halogenated fine particles having a particle size of 5 μm or less and a silver content of 15% by mass or more can be produced. In the method described above, instead of quantitative control in the mixing step, there is no particular need for temperature adjustment or standing for the pH adjustment in the mixing process or curing after mixing, so the silver particle size is 5 μm or less. Silver halide fine particles suitable as antibacterial fine particles applied to a system having a high silver content and a water content of 15% by mass or more can be easily and stably produced.

なお、得られたハロゲン化銀微粒子の粒径は、液体媒体中の粒子又は粒子そのものの体積平均粒径を測定する装置や方法によって測定することができ、例えばレーザー回析・散乱式粒度分布測定器(LMS−30、セイシン企業)によって測定することができる。また得られたハロゲン化銀微粒子は、必要に応じて分級し、5μm以下の所望の粒径にそろえても良いし、分級品の二種以上を新たに混合しても良い。   The particle size of the obtained silver halide fine particles can be measured by an apparatus or method for measuring the volume average particle size of the particles in the liquid medium or the particles themselves, for example, laser diffraction / scattering type particle size distribution measurement. (LMS-30, Seishin company). Further, the obtained silver halide fine particles may be classified as necessary, so as to have a desired particle size of 5 μm or less, or two or more kinds of classified products may be newly mixed.

また、得られたハロゲン化銀微粒子の銀含有量は、X線光電子分光法によって測定することができる。   Moreover, the silver content of the obtained silver halide fine particles can be measured by X-ray photoelectron spectroscopy.

本発明によれば、生成しようとするハロゲン化銀微粒子の種類に応じて、本発明で規定する条件の範囲内で適宜調整することにより、粒径が5μm以下で銀含有率が15質量%以上の種々のハロゲン化銀微粒子を製造することができる。例えば、銀含有率を最も高くし難いヨウ化銀微粒子の場合では、粒子径が5〜50nmであり固体密度が4.5g/cm3以下のコロイド粒子を用いて、前述した条件の範囲内で、溶液A中の銀イオン数に対する溶液B中のハロゲン化銀イオン数の比nを0.6以上とすることによって、ヨウ化銀微粒子を好適に製造することができる。 According to the present invention, the grain size is 5 μm or less and the silver content is 15% by mass or more by appropriately adjusting within the range of conditions defined in the present invention according to the type of silver halide fine particles to be produced. Various silver halide fine grains can be produced. For example, in the case of silver iodide fine particles in which the silver content is hardly increased, colloidal particles having a particle size of 5 to 50 nm and a solid density of 4.5 g / cm 3 or less are used within the range of the above-described conditions. When the ratio n of the number of silver halide ions in the solution B to the number of silver ions in the solution A is 0.6 or more, silver iodide fine particles can be preferably produced.

特に、コロイド粒子には、固体密度が2.5g/cm3以下で粒子径が5〜25nm以下のケイ素酸化物等の粒子を用い、ハロゲン化銀微粒子として銀含有率が50〜68質量%の塩化銀を製造することが、ハロゲン化銀微粒子の製造における実用性や抗菌剤微粒子としての有用性の観点から特に好ましい。 In particular, as colloidal particles, particles such as silicon oxide having a solid density of 2.5 g / cm 3 or less and a particle size of 5 to 25 nm or less are used, and silver content is 50 to 68% by mass as silver halide fine particles. It is particularly preferable to produce silver chloride from the viewpoint of practicality in the production of silver halide fine particles and usefulness as antibacterial fine particles.

生成したハロゲン化銀微粒子は、塗料や樹脂に分散させる等の通常の方法に従って抗菌剤として使用することができる。このような抗菌剤は、一種類のハロゲン化銀微粒子から構成することができるし、また例えば抗菌剤としての寿命や抗菌力を調整する観点から二種以上を混合して用いることもできるし、また前述したハロゲン化銀微粒子以外の他の抗菌剤をさらに併用することもできる。   The produced silver halide fine particles can be used as an antibacterial agent according to a usual method such as dispersion in a paint or resin. Such an antibacterial agent can be composed of one kind of silver halide fine particles, and can also be used as a mixture of two or more from the viewpoint of adjusting the life and antibacterial power as an antibacterial agent, Further, an antibacterial agent other than the silver halide fine particles described above can be used in combination.

<実施例1>
コロイド粒子として平均粒子径6nm、密度2.65g/cm3のケイ素酸化物(SiO2、ファインカタロイドF−120、触媒化成工業株式会社)を0.1質量%で水に含有させたコロイド溶液1,001g(うち、水の質量は1,000g)に硝酸銀24gを加え、溶液Aを作製した。また、コロイド粒子として平均粒子径6nm、密度2.65g/cm3のケイ素酸化物(SiO2、ファインカタロイドF−120、触媒化成工業株式会社)を0.1質量%で水に含有させたコロイド溶液1,001g(うち、水の質量は1,000g)に、ハロゲン化物塩としての塩化アンモニウム7g(溶液Aの銀元素数に対する溶液Bのハロゲン化物イオン数の比n=0.93)を加え、溶液Bを作製した。なお、溶液Aと溶液Bとを混合する際、この場合の混合溶液におけるコロイド粒子の粒子数に対する銀元素数の比は、1.1×104となる。次に、溶液Aと溶液Bとを実際に混合攪拌し、塩化銀微粒子を生成した。
<Example 1>
Colloidal solution containing 0.1% by mass of silicon oxide (SiO 2 , Fine Cataloid F-120, Catalyst Chemical Industry Co., Ltd.) having an average particle diameter of 6 nm and a density of 2.65 g / cm 3 as colloidal particles. Solution A was prepared by adding 24 g of silver nitrate to 1,001 g (of which the mass of water was 1,000 g). Further, silicon oxide (SiO 2 , Fine Cataloid F-120, Catalytic Chemical Industry Co., Ltd.) having an average particle diameter of 6 nm and a density of 2.65 g / cm 3 as colloid particles was contained in water at 0.1 mass%. To 1,001 g of colloidal solution (of which the mass of water is 1,000 g), 7 g of ammonium chloride as a halide salt (ratio of the number of halide ions in solution B to the number of silver elements in solution A n = 0.93) In addition, Solution B was prepared. When the solution A and the solution B are mixed, the ratio of the number of silver elements to the number of colloidal particles in the mixed solution in this case is 1.1 × 10 4 . Next, the solution A and the solution B were actually mixed and stirred to produce silver chloride fine particles.

なお、前記コロイド粒子の粒子数は、前述の式5によって求め、前記銀元素数は前述の式4によって求めた。   In addition, the number of particles of the colloidal particles was determined by the above-described formula 5, and the number of silver elements was determined by the above-described formula 4.

得られた塩化銀微粒子を含む溶液をレーザー回析・散乱式粒度分布測定器(LMS−30、セイシン企業)によって観察したところ、得られた塩化銀微粒子の粒径は5μm以下であった。   When the obtained solution containing silver chloride fine particles was observed with a laser diffraction / scattering type particle size distribution analyzer (LMS-30, Seishin Enterprise), the particle size of the obtained silver chloride fine particles was 5 μm or less.

また、得られた塩化銀の溶解度は室温で数ppm程度であり、微粒子化せず溶存している銀イオンは、生成した塩化銀の質量に対して極めて微量である。したがって、生成した塩化銀微粒子中の不純物はコロイド粒子のみと見なすことができる。得られた塩化銀微粒子の銀含有率は、溶液中の全てのコロイド粒子が生成した塩化銀微粒子中に混合したと仮定して、下記式18より求めると約68質量%である。
式18) AG=Wag/(Was+Wp)×100
Further, the solubility of the obtained silver chloride is about several ppm at room temperature, and the silver ions dissolved without being finely divided are extremely small with respect to the mass of the produced silver chloride. Therefore, the impurities in the produced silver chloride fine particles can be regarded only as colloidal particles. The silver content of the obtained silver chloride fine particles is about 68% by mass when calculated from the following formula 18 on the assumption that all colloidal particles in the solution are mixed in the produced silver chloride fine particles.
Expression 18) AG = Wag / (Was + Wp) × 100

なお、式18中、AGは銀含有率[質量%]であり、Wagは銀元素の質量[g]であり、Wasは成したハロゲン化銀の質量[g]であり、Wpは溶液中のコロイド粒子の質量[g]である。Wag及びWasは下記式19及び20により求めることができる。
式19) Wag=Was×107.9/Mas
式20) Was=Nas×Mas/NA
It is to be noted that, in equation 18, AG is silver content [wt%], Wag is the mass of elemental silver [g], W the as is the mass [g] of silver halide form, Wp in solution Mass of the colloidal particles [g]. Wag and Was can be obtained by the following equations 19 and 20.
Expression 19) Wag = Was × 107.9 / Mas
Equation 20) Was = Nas × Mas / NA

式19及び20中、Masは生成したハロゲン化銀の分子量である。また式20中、Nasは生成したハロゲン化銀の分子数[個]であり、NAはアボガドロ数(6.02×1023[個])である。Nasは下記式21により求めることができる。
式21) Nas=n×Nag
In the formulas 19 and 20, Mas is the molecular weight of the produced silver halide. In Formula 20, Nas is the number of molecules of silver halide produced [number], and NA is the Avogadro number (6.02 × 10 23 [pieces]). Nas can be obtained by the following equation (21).
Equation 21) Nas = n × Nag

式21中、nは、銀およびハロゲン元素はすべて溶液中でイオン化していると仮定したときの、溶液A中の銀イオン数に対するB溶液中のハロゲン化物イオン数の比であり、Nagは溶液中の銀元素数[個]である。nは下記式22により求めることができる。
式22) n=(mhc×Whc/Mhc)/(mac×Wac/Mac)
In equation 21, n is the ratio of the number of halide ions in solution B to the number of silver ions in solution A, assuming that all silver and halogen elements are ionized in solution, and Nag is the solution The number of silver elements in the element. n can be obtained by the following equation (22).
Formula 22) n = (mhc × Whc / Mhc) / (mac × Wac / Mac)

式22中、mhcは溶液Bの作製に用いたハロゲン化物の1分子中のハロゲン元素数であり、Whcは溶液Bの作製に用いたハロゲン化物の質量[g]であり、Mhcは溶液Bの作製に用いたハロゲン化物の分子量であり、macは溶液Aの作製に用いた銀化合物の1分子中の銀元素数であり、Wacは溶液Aの作製に用いた銀化合物の質量[g]であり、Macは溶液Aの作製に用いた銀化合物の分子量である。   In Equation 22, mhc is the number of halogen elements in one molecule of the halide used for preparing the solution B, Whc is the mass [g] of the halide used for preparing the solution B, and Mhc is the solution B The molecular weight of the halide used for preparation, mac is the number of silver elements in one molecule of the silver compound used for preparation of solution A, and Wac is the mass [g] of the silver compound used for preparation of solution A. Yes, Mac is the molecular weight of the silver compound used to prepare solution A.

<実施例2>
コロイド粒子の粒子径、コロイド粒子の質量濃度、及びハロゲン化物塩の種類を変えて、実施例1と同様に溶液A及びBを作製し、混合し、コロイド粒子の粒子数に対する銀元素数の比が異なる塩化銀微粒子を作製した。その結果を表1に示す。コロイド粒子の質量濃度は、水に投入するケイ素酸化物の量を変えることによって調整した。
<Example 2>
The ratio of the number of silver elements to the number of colloidal particles was prepared by mixing and mixing solutions A and B in the same manner as in Example 1 by changing the particle diameter of the colloidal particles, the mass concentration of the colloidal particles, and the type of halide salt. Silver chloride fine particles with different values were prepared. The results are shown in Table 1. The mass concentration of the colloidal particles was adjusted by changing the amount of silicon oxide introduced into water.

また、そのときの混合溶液における水の質量に対するコロイド粒子の粒子数濃度を表2に、コロイド粒子の粒子数に対する銀元素数の比を表3に、生成した塩化銀微粒子の銀含有率を表4に示す。なお、塩化銀微粒子については、式3のkは1であり、式21及び22のnは0.93である。   In addition, Table 2 shows the concentration of colloidal particles with respect to the mass of water in the mixed solution, Table 3 shows the ratio of the number of silver elements to the number of colloidal particles, and Table 3 shows the silver content of the resulting silver chloride fine particles. 4 shows. For silver chloride fine particles, k in Formula 3 is 1, and n in Formulas 21 and 22 is 0.93.

Figure 2007161649
Figure 2007161649

Figure 2007161649
Figure 2007161649

Figure 2007161649
Figure 2007161649

Figure 2007161649
Figure 2007161649

表1において、「○」は粒径5μm以下の塩化銀微粒子が良好に生成したことを示し、「×」は塩化銀が巨大粒子として生成し粒径5μm以下とならなかったことを示し、「××」は溶液A又はBがゲル化、固化して塩化銀微粒子が得られなかったことを示す。なお、実施例1の結果は、表1〜4において、ケイ素酸化物1の行と、コロイド粒子の質量濃
度が0.1質量%の列とが交差するマスに示されている。
In Table 1, “◯” indicates that silver chloride fine particles having a particle diameter of 5 μm or less were generated satisfactorily, and “×” indicates that silver chloride was generated as giant particles and did not have a particle diameter of 5 μm or less. “XX” indicates that the solution A or B gelled and solidified, and silver chloride fine particles were not obtained. In addition, the result of Example 1 is shown by the mass which the row | line | column of the silicon oxide 1 and the row | line | column whose mass concentration of colloidal particles cross | intersect 0.1 mass% in Tables 1-4.

また、臭化銀微粒子、ヨウ化銀微粒子の生成の場合の銀含有率を、前述の塩化銀微粒子と同様の条件で算出した結果を表5及び6にそれぞれ示す。さらに、nを0.6として生成される塩化銀微粒子、臭化銀微粒子、及びヨウ化銀微粒子の銀含有率を算出した結果を表7〜9にそれぞれ示す。   Tables 5 and 6 show the results of calculating the silver content in the case of forming silver bromide fine particles and silver iodide fine particles under the same conditions as those for the silver chloride fine particles. Furthermore, the results of calculating the silver content of silver chloride fine particles, silver bromide fine particles, and silver iodide fine particles produced with n being 0.6 are shown in Tables 7 to 9, respectively.

なお、前記の実施例における銀含有率の算出では、銀の原子量は107.9とし、塩素の原子量は35.5とし、臭素の原子量は79.9とし、ヨウ素の原子量は126.9とした。また、銀含有率の算出の過程で得られる数値については、有効数字2ケタとした。   In the calculation of the silver content in the above examples, the atomic weight of silver was 107.9, the atomic weight of chlorine was 35.5, the atomic weight of bromine was 79.9, and the atomic weight of iodine was 126.9. . Moreover, about the numerical value obtained in the process of calculation of silver content rate, it was set as two significant figures.

Figure 2007161649
Figure 2007161649

Figure 2007161649
Figure 2007161649

Figure 2007161649
Figure 2007161649

Figure 2007161649
Figure 2007161649

Figure 2007161649
Figure 2007161649

粒子径45nm以下のケイ素酸化物のコロイド溶液を用いて溶液A及びBを作製し、溶液A及びBを混合したときに、混合後の溶液中においてコロイド粒子の溶媒(水)の質量に対する粒子数濃度が式1で求められる値以上であり、かつ式2で求められる値以下となる範囲において、粒径5μm以下の塩化銀微粒子が良好に生成したことが確認された。また、コロイド粒子の粒子数濃度が上記の範囲外では、粒径5μm以下の塩化銀微粒子が良
好に得られなかったことが確認された。
When the solutions A and B are prepared using a colloidal solution of silicon oxide having a particle diameter of 45 nm or less and the solutions A and B are mixed, the number of particles with respect to the mass of the solvent (water) of the colloidal particles in the mixed solution It was confirmed that silver chloride fine particles having a particle diameter of 5 μm or less were favorably generated in a range where the concentration was not less than the value obtained by Formula 1 and not more than the value obtained by Formula 2. Further, it was confirmed that when the colloidal particle number concentration was outside the above range, silver chloride fine particles having a particle diameter of 5 μm or less could not be obtained satisfactorily.

さらに、粒子径45nm以下のケイ素酸化物のコロイド溶液を用いて溶液A及びBを作製し、溶液A及びBを混合したときに、混合後の溶液におけるコロイド粒子の粒子数に対する銀元素数の比が式3で求められる値未満となる範囲で、粒径5μm以下の塩化銀微粒子が良好に生成したことが確認された。また、コロイド粒子の粒子数濃度とコロイド粒子の粒子数に対する銀元素数の比とが上記の範囲外では、粒径5μm以下の塩化銀微粒子が良好に得られなかったことが確認された。   Furthermore, when the solutions A and B were prepared using a colloidal solution of silicon oxide having a particle diameter of 45 nm or less and the solutions A and B were mixed, the ratio of the number of silver elements to the number of colloidal particles in the mixed solution It was confirmed that silver chloride fine particles having a particle diameter of 5 μm or less were well formed in a range in which is less than the value obtained by Formula 3. Further, it was confirmed that silver chloride fine particles having a particle diameter of 5 μm or less were not satisfactorily obtained when the particle number concentration of colloidal particles and the ratio of the number of silver elements to the number of colloidal particles were outside the above range.

Claims (6)

銀イオンを含有する溶液Aと、塩化物、臭化物及びヨウ化物の少なくともいずれかのハロゲン化物のイオンを含有する溶液Bとをコロイド粒子の存在下で混合してハロゲン化銀微粒子を製造する方法において、
コロイド粒子の粒子径をx(nm)とし、溶液A及び溶液Bを混合した混合溶液におけるコロイド粒子の溶媒質量に対する粒子数濃度をy(個/g)とし、前記混合溶液におけるコロイド粒子の粒子数に対する銀元素数の比をzとしたときに、コロイド粒子の粒子数濃度yが下記式1で求められる値以上でありかつ下記式2で求められる値以下となり、かつ銀元素数の比が下記式3で求められる値未満となるように、溶液A及びBをコロイド粒子存在下で混合することを特徴とする方法。
式1) y=1.16×1017×(1/x)1.9
式2) y=9.23×1019×(1/x)3.0
式3) z=k×(175.3x2+2196.3x+2793)
(式3中、kは1である。)
In a method for producing silver halide fine particles, a solution A containing silver ions and a solution B containing ions of halides of at least one of chloride, bromide and iodide are mixed in the presence of colloidal particles. ,
The particle diameter of the colloid particles is x (nm), the concentration of the number of the colloid particles in the mixed solution obtained by mixing the solution A and the solution B is y (number / g), and the number of colloid particles in the mixed solution. When the ratio of the number of silver elements to z is z, the particle number concentration y of the colloidal particles is not less than the value obtained by the following formula 1 and not more than the value obtained by the following formula 2, and the ratio of the number of silver elements is A method comprising mixing the solutions A and B in the presence of colloidal particles so as to be less than the value obtained by Equation 3.
Formula 1) y = 1.16 × 10 17 × (1 / x) 1.9
Formula 2) y = 9.23 × 10 19 × (1 / x) 3.0
Formula 3) z = k × (175.3 × 2 + 2196.3 × + 2793)
(In Formula 3, k is 1.)
前記混合溶液におけるコロイド粒子の質量濃度が5質量%未満であることを特徴とする請求項1記載の方法。   The method according to claim 1, wherein the mass concentration of colloidal particles in the mixed solution is less than 5 mass%. 前記コロイド粒子の粒子径は50nm未満であることを特徴とする請求項1又は2に記載の方法。   The method according to claim 1 or 2, wherein the colloidal particles have a particle diameter of less than 50 nm. 前記溶液Bは、前記溶液Aの銀イオンに対する溶液Bのハロゲンイオンが1当量未満となる量のハロゲン化物のイオンを含有していることを特徴とする請求項1〜3のいずれか一項に記載の方法。   The solution B contains halide ions in an amount such that the halogen ions of the solution B are less than one equivalent with respect to the silver ions of the solution A. The method described. 前記コロイド粒子はケイ素酸化物であり、前記塩化物は塩化ナトリウム又は塩化アンモニウムであることを特徴とする請求項1〜4のいずれか一項に記載の方法。   The method according to any one of claims 1 to 4, wherein the colloidal particles are silicon oxide and the chloride is sodium chloride or ammonium chloride. 前記溶液Aは硝酸銀の水溶液であることを特徴とする1〜5のいずれか一項に記載の方法。   The method according to any one of 1 to 5, wherein the solution A is an aqueous solution of silver nitrate.
JP2005360484A 2005-12-14 2005-12-14 Method for producing antibacterial fine particles Active JP4959186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005360484A JP4959186B2 (en) 2005-12-14 2005-12-14 Method for producing antibacterial fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005360484A JP4959186B2 (en) 2005-12-14 2005-12-14 Method for producing antibacterial fine particles

Publications (2)

Publication Number Publication Date
JP2007161649A true JP2007161649A (en) 2007-06-28
JP4959186B2 JP4959186B2 (en) 2012-06-20

Family

ID=38244955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005360484A Active JP4959186B2 (en) 2005-12-14 2005-12-14 Method for producing antibacterial fine particles

Country Status (1)

Country Link
JP (1) JP4959186B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009001505A (en) * 2007-06-19 2009-01-08 Takasago Thermal Eng Co Ltd Method for producing antibacterial agent microparticle, antibacterial coating and antibacterial heat exchanger
US20090092538A1 (en) * 2007-10-08 2009-04-09 Amit Khanolkar Methods for forming stabilized metal salt particles
WO2014163126A1 (en) 2013-04-03 2014-10-09 株式会社ソフセラ Method for controlling particle size of silver particles, silver particles, antimicrobial agent containing silver particles, and use thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2629080C1 (en) * 2016-02-24 2017-08-24 Республиканское Государственное Предприятие На Праве Хозяйственного Ведения "Казахский Национальный Университет Имени Аль-Фараби" Method for obtaining silver chloride particles

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07191424A (en) * 1993-09-16 1995-07-28 Agfa Gevaert Nv Manufacture of regular silver bromide or photosensitive emulsion of silver bromide and iodide and material containing above described emulsion

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07191424A (en) * 1993-09-16 1995-07-28 Agfa Gevaert Nv Manufacture of regular silver bromide or photosensitive emulsion of silver bromide and iodide and material containing above described emulsion

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009001505A (en) * 2007-06-19 2009-01-08 Takasago Thermal Eng Co Ltd Method for producing antibacterial agent microparticle, antibacterial coating and antibacterial heat exchanger
US20090092538A1 (en) * 2007-10-08 2009-04-09 Amit Khanolkar Methods for forming stabilized metal salt particles
JP2010540680A (en) * 2007-10-08 2010-12-24 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッド Method for forming stabilized metal salt particles
KR101561859B1 (en) 2007-10-08 2015-10-20 존슨 앤드 존슨 비젼 케어, 인코포레이티드 Methods for forming stabilized metal salt particles
US9872501B2 (en) 2007-10-08 2018-01-23 Johnson & Johnson Vision Care, Inc. Methods for forming stabilized metal salt particles
WO2014163126A1 (en) 2013-04-03 2014-10-09 株式会社ソフセラ Method for controlling particle size of silver particles, silver particles, antimicrobial agent containing silver particles, and use thereof

Also Published As

Publication number Publication date
JP4959186B2 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
Cioffi et al. Synthesis, analytical characterization and bioactivity of Ag and Cu nanoparticles embedded in poly-vinyl-methyl-ketone films
JP5479347B2 (en) Method for forming stabilized metal salt particles
Libert et al. Model of controlled synthesis of uniform colloid particles: cadmium sulfide
JP4959186B2 (en) Method for producing antibacterial fine particles
JP6653973B2 (en) Manufacturing method of metal nanowire
JP2010513718A (en) Method for producing monodisperse and stable nanometallic silver and product obtained by said method
CN109819979A (en) Nano silver copper bimetallic colloid/liquid of high anti-microbial property and preparation method thereof
US8877861B2 (en) One-pot synthetic method for synthesizing silver-containing waterborne polyurethane
JP2007070299A (en) Aqueous dispersion of inorganic antibacterial agent and method for producing the same
JP3402214B2 (en) Method for producing metal fine particle dispersion
JP2008274423A (en) Fine silver particle, and process for producing fine silver particle
JP5486053B2 (en) Antibacterial paint and antibacterial heat exchanger
JP5189320B2 (en) Antimicrobial fine particle production method, antibacterial paint and antibacterial heat exchanger
JP4181782B2 (en) Anti-mold glass, anti-resin composition and method for producing anti-glass
KR100551979B1 (en) Method for preparing high concentration silver colloid
JP2013129559A5 (en)
JPH04318841A (en) High chloride iodine silver halide emulsion containing iodine at high rate
JP2000256102A (en) Antimicrobial agent and its production
WO2012117562A1 (en) Method for manufacturing nanoparticle dispersion liquid
KR100838254B1 (en) Silver colloid and producing method thereof
TWI392697B (en) The silver particle-containing aqueous polyurethane
Hikmah et al. Synthesis of silver-copper nanoparticles via polyol method: effect of reaction time and temperature
JP2018118943A (en) Antibacterial deodorant composition
JPH03215608A (en) Manufacture of noble super fine particles
KR20150077601A (en) Method of preparation for metal naanowires and metal nanowires manufactured therefrom

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4959186

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150