JP2008274423A - Fine silver particle, and process for producing fine silver particle - Google Patents
Fine silver particle, and process for producing fine silver particle Download PDFInfo
- Publication number
- JP2008274423A JP2008274423A JP2008088839A JP2008088839A JP2008274423A JP 2008274423 A JP2008274423 A JP 2008274423A JP 2008088839 A JP2008088839 A JP 2008088839A JP 2008088839 A JP2008088839 A JP 2008088839A JP 2008274423 A JP2008274423 A JP 2008274423A
- Authority
- JP
- Japan
- Prior art keywords
- silver
- fine particles
- solution
- silver fine
- molar ratio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002245 particle Substances 0.000 title claims abstract description 92
- 239000010946 fine silver Substances 0.000 title claims abstract description 19
- 238000000034 method Methods 0.000 title claims abstract description 17
- 229910052709 silver Inorganic materials 0.000 claims abstract description 165
- 239000004332 silver Substances 0.000 claims abstract description 163
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims abstract description 145
- -1 silver ions Chemical class 0.000 claims abstract description 49
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 claims abstract description 11
- 150000004820 halides Chemical class 0.000 claims abstract description 9
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 8
- 239000010419 fine particle Substances 0.000 claims description 90
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver nitrate Substances [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 claims description 31
- 238000004519 manufacturing process Methods 0.000 claims description 27
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 claims description 22
- 229910052736 halogen Inorganic materials 0.000 claims description 16
- 150000002367 halogens Chemical class 0.000 claims description 16
- 229910001961 silver nitrate Inorganic materials 0.000 claims description 16
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 claims description 15
- 229910052740 iodine Inorganic materials 0.000 claims description 15
- 239000011630 iodine Substances 0.000 claims description 15
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 12
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 10
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 claims description 10
- 239000010944 silver (metal) Substances 0.000 claims description 10
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 8
- IOLCXVTUBQKXJR-UHFFFAOYSA-M potassium bromide Chemical compound [K+].[Br-] IOLCXVTUBQKXJR-UHFFFAOYSA-M 0.000 claims description 8
- JHJLBTNAGRQEKS-UHFFFAOYSA-M sodium bromide Chemical compound [Na+].[Br-] JHJLBTNAGRQEKS-UHFFFAOYSA-M 0.000 claims description 8
- XZXYQEHISUMZAT-UHFFFAOYSA-N 2-[(2-hydroxy-5-methylphenyl)methyl]-4-methylphenol Chemical compound CC1=CC=C(O)C(CC=2C(=CC=C(C)C=2)O)=C1 XZXYQEHISUMZAT-UHFFFAOYSA-N 0.000 claims description 7
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 claims description 7
- VAYROLOSUUAGTR-UHFFFAOYSA-N [Ag].[I] Chemical compound [Ag].[I] VAYROLOSUUAGTR-UHFFFAOYSA-N 0.000 claims description 7
- 229940107816 ammonium iodide Drugs 0.000 claims description 7
- FVAUCKIRQBBSSJ-UHFFFAOYSA-M sodium iodide Chemical compound [Na+].[I-] FVAUCKIRQBBSSJ-UHFFFAOYSA-M 0.000 claims description 7
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 claims description 6
- 230000001376 precipitating effect Effects 0.000 claims description 4
- 239000011780 sodium chloride Substances 0.000 claims description 4
- SWLVFNYSXGMGBS-UHFFFAOYSA-N ammonium bromide Chemical compound [NH4+].[Br-] SWLVFNYSXGMGBS-UHFFFAOYSA-N 0.000 claims description 3
- 235000019270 ammonium chloride Nutrition 0.000 claims description 3
- 239000001103 potassium chloride Substances 0.000 claims description 3
- 235000011164 potassium chloride Nutrition 0.000 claims description 3
- 235000009518 sodium iodide Nutrition 0.000 claims description 2
- 239000000463 material Substances 0.000 abstract description 4
- 239000002244 precipitate Substances 0.000 abstract description 3
- 239000007772 electrode material Substances 0.000 abstract description 2
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 49
- 235000011114 ammonium hydroxide Nutrition 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 10
- 238000000635 electron micrograph Methods 0.000 description 8
- 239000011164 primary particle Substances 0.000 description 7
- 239000000460 chlorine Substances 0.000 description 5
- 230000002776 aggregation Effects 0.000 description 3
- 229910052794 bromium Inorganic materials 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- ZBCATMYQYDCTIZ-UHFFFAOYSA-N 4-methylcatechol Chemical compound CC1=CC=C(O)C(O)=C1 ZBCATMYQYDCTIZ-UHFFFAOYSA-N 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- WQGWDDDVZFFDIG-UHFFFAOYSA-N pyrogallol Chemical compound OC1=CC=CC(O)=C1O WQGWDDDVZFFDIG-UHFFFAOYSA-N 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000012266 salt solution Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- AZUYLZMQTIKGSC-UHFFFAOYSA-N 1-[6-[4-(5-chloro-6-methyl-1H-indazol-4-yl)-5-methyl-3-(1-methylindazol-5-yl)pyrazol-1-yl]-2-azaspiro[3.3]heptan-2-yl]prop-2-en-1-one Chemical compound ClC=1C(=C2C=NNC2=CC=1C)C=1C(=NN(C=1C)C1CC2(CN(C2)C(C=C)=O)C1)C=1C=C2C=NN(C2=CC=1)C AZUYLZMQTIKGSC-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- XUPUBWXZOFHCCQ-UHFFFAOYSA-N benzene-1,4-diol;silver Chemical compound [Ag].OC1=CC=C(O)C=C1 XUPUBWXZOFHCCQ-UHFFFAOYSA-N 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000002050 diffraction method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-M iodide Chemical compound [I-] XMBWDFGMSWQBCA-UHFFFAOYSA-M 0.000 description 1
- 229940006461 iodide ion Drugs 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 229940079877 pyrogallol Drugs 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- GGCZERPQGJTIQP-UHFFFAOYSA-N sodium;9,10-dioxoanthracene-2-sulfonic acid Chemical compound [Na+].C1=CC=C2C(=O)C3=CC(S(=O)(=O)O)=CC=C3C(=O)C2=C1 GGCZERPQGJTIQP-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
- Non-Insulated Conductors (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、高濃度の銀イオン溶液を用いて微細な銀粒子を安定に効率よく製造する方法と、その銀微粒子に関する。より詳しくは、本発明は、電子デバイスの配線材料や電極材料となるペースト成分として好適な微細な高分散性の銀粒子を安定に効率よく製造する方法と、その銀微粒子に関する。 The present invention relates to a method for stably and efficiently producing fine silver particles using a high-concentration silver ion solution, and the silver fine particles. More specifically, the present invention relates to a method for stably and efficiently producing fine, highly dispersible silver particles suitable as a paste component that becomes a wiring material or an electrode material of an electronic device, and the silver fine particles.
近年、電子機器の高機能化を図るために、電子デバイスの小型化と高密度化が要請されており、配線および電極のファイン化を達成するために、これらを形成するペースト材料に用いられる銀微粒子についても、より微細で高分散性の微粒子が求められている。 In recent years, there has been a demand for miniaturization and high density of electronic devices in order to improve the functionality of electronic equipment, and in order to achieve finer wiring and electrodes, silver used as a paste material for forming them. As for the fine particles, finer and highly dispersible fine particles are required.
従来、電子機器材料に用いられる銀微粒子の製造方法として、銀塩のアンミン錯体を還元して銀微粒子を沈澱させ、これを洗浄乾燥して平均粒径が数μm程度の銀微粒子を得る方法が知られている(特許文献1、2)。しかし、この製造方法では平均粒径1μm以下の微粒子を安定に得るのが難しく、また粒度分布が広く、しかも粒子が凝集し易いため、粒径が均一で1μm以下の微細な銀微粒子を製造するのが難しいと云う問題があった。 Conventionally, as a method for producing silver fine particles used in electronic device materials, there is a method of obtaining silver fine particles having an average particle diameter of about several μm by reducing silver salt ammine complexes to precipitate silver fine particles, and washing and drying them. Known (Patent Documents 1 and 2). However, in this production method, it is difficult to stably obtain fine particles having an average particle size of 1 μm or less, and since the particle size distribution is wide and the particles are easy to aggregate, fine silver particles having a uniform particle size of 1 μm or less are produced. There was a problem that it was difficult.
また、銀アンミン錯体水溶液が流れる流路の途中に有機還元剤溶液を合流させることによって、管路内で銀を還元して結晶子径の小さい銀微粒子を製造する方法が知られている(特許文献3、4)。ところが、この製造方法は、管路内で銀アンミン錯体の還元を行うので銀の析出によって流路が狭くなり、しかも管壁に析出した銀片が剥離して粗大な粒子が混入するなどの問題がある。また、微細な銀粒子を得るには銀濃度が非常に薄い銀アンミン錯体水溶液を用いるので製造効率が低く、回収時ロスも多いため収率も低い。
本発明は、従来の製造方法における上記問題を解決した銀微粒子とその製造方法を提供するものであり、高濃度の銀イオン溶液を用いて分散性に優れた微細な銀粒子を安定に効率よく製造する方法と、その銀微粒子を提供する。 The present invention provides a silver fine particle that solves the above problems in the conventional production method and a production method thereof, and stably and efficiently produces fine silver particles excellent in dispersibility using a high concentration silver ion solution. A manufacturing method and silver fine particles thereof are provided.
本発明によれば、以下の構成によって上記課題を解決した銀微粒子とその製造方法が提供される。
〔1〕銀微粒子中にハロゲンが銀に対して5.0×10-8〜1.5×10-3のモル比で含まれていることを特徴とする銀微粒子。
〔2〕請求項1に記載する銀微粒子であって、ハロゲンが銀に対して5.0×10-8〜1.8×10-6のモル比で含まれている平均粒径1.5〜0.5μm銀微粒子、または、ハロゲンが銀に対して1.8×10-6〜3.0×10-5のモル比で含まれている平均粒径0.5〜0.15μmの銀微粒子、または、ハロゲンが銀に対して3.0×10-5〜1.5×10-3のモル比で含まれている平均粒径0.15〜0.08μmの銀微粒子。
〔3〕銀イオン溶液に還元剤を添加して銀微粒子を還元析出させる方法において、ハロゲン化物イオンの存在下で銀イオンを還元することによって、微細な銀微粒子を析出させることを特徴とする銀微粒子の製造方法。
〔4〕銀濃度に対するハロゲン化物濃度を調整することによって、析出する銀微粒子の粒径を制御する上記[3]に記載する銀微粒子の製造方法。
〔5〕銀イオン溶液としてアンモニア水を加えた硝酸銀溶液を用い、還元液としてヒドロキノン液を用い、ハロゲン化物イオン源として塩化アンモニウム(NH4Cl)、臭化アンモニウム(NH4Br)、ヨウ化アンモニウム(NH4I)、塩化カリウム、臭化カリウム、ヨウ化カリウム、塩化ナトリウム、臭化ナトリウム、またはヨウ化ナトリウムを用いる上記[3]または上記[4]に記載する銀微粒子の製造方法。
〔6〕銀イオンを還元する際に、(i)銀に対するヨウ素のモル比(I/Ag)を5.0×10-8〜1.8×10-6に調整して平均粒径1.5〜0.5μmの銀微粒子を析出させ、または、(ii)上記銀ヨウ素モル比を1.8×10-6〜3.0×10-5に調整して平均粒径0.5〜0.15μmの銀微粒子を析出させ、または、(iii)上記銀ヨウ素モル比を3.0×10-5〜1.5×10-3に調整して平均粒径0.15〜0.08μmの銀微粒子を析出させる上記[3]〜上記[5]の何れかに記載する銀微粒子の製造方法。
〔7〕アンモニア水を加えた硝酸銀溶液にヒドロキノン液を添加して銀イオンを還元する際に、銀濃度50g/L以上の硝酸銀溶液において、銀に対するヨウ素のモル比(I/Ag)を5.0×10-8〜1.5×10-3に調整することによって、平均粒径1.5〜0.08μmの銀微粒子の収率が99%以上である上記[3]〜上記[6]の何れかに記載する銀微粒子の製造方法。
According to this invention, the silver fine particle which solved the said subject with the following structures, and its manufacturing method are provided.
[1] Silver fine particles, wherein the silver fine particles contain a halogen in a molar ratio of 5.0 × 10 −8 to 1.5 × 10 −3 with respect to silver.
[2] The silver fine particles described in [1], wherein an average particle size of 1.5 containing a halogen in a molar ratio of 5.0 × 10 −8 to 1.8 × 10 −6 with respect to silver. ~0.5μm silver particles or silver having an average particle diameter of 0.5~0.15μm halogen is contained at a molar ratio of 1.8 × 10 -6 ~3.0 × 10 -5 with respect to silver Fine particles or silver fine particles having an average particle diameter of 0.15 to 0.08 μm in which halogen is contained in a molar ratio of 3.0 × 10 −5 to 1.5 × 10 −3 with respect to silver.
[3] In a method of reducing and precipitating silver fine particles by adding a reducing agent to a silver ion solution, silver particles are precipitated by reducing silver ions in the presence of halide ions. A method for producing fine particles.
[4] The method for producing silver fine particles according to the above [3], wherein the particle diameter of the silver fine particles to be deposited is controlled by adjusting the halide concentration relative to the silver concentration.
[5] A silver nitrate solution added with aqueous ammonia as a silver ion solution, a hydroquinone solution as a reducing solution, ammonium chloride (NH 4 Cl), ammonium bromide (NH 4 Br), ammonium iodide as a halide ion source The method for producing silver fine particles according to [3] or [4] above, using (NH 4 I), potassium chloride, potassium bromide, potassium iodide, sodium chloride, sodium bromide, or sodium iodide.
[6] When reducing silver ions, (i) the molar ratio of iodine to silver (I / Ag) is adjusted to 5.0 × 10 −8 to 1.8 × 10 −6 to obtain an average particle size of 1. 5 to 0.5 μm of silver fine particles are precipitated, or (ii) the silver iodine molar ratio is adjusted to 1.8 × 10 −6 to 3.0 × 10 −5 to obtain an average particle size of 0.5 to 0 Or (iii) adjusting the silver / iodine molar ratio to 3.0 × 10 −5 to 1.5 × 10 −3 to adjust the average particle size to 0.15 to 0.08 μm. The method for producing silver fine particles according to any one of [3] to [5] above, wherein silver fine particles are precipitated.
[7] When a hydroquinone solution is added to a silver nitrate solution to which aqueous ammonia is added to reduce silver ions, the molar ratio (I / Ag) of iodine to silver is set to 5. in a silver nitrate solution having a silver concentration of 50 g / L or more. By adjusting to 0 × 10 −8 to 1.5 × 10 −3 , the yield of silver fine particles having an average particle size of 1.5 to 0.08 μm is 99% or more. [3] to [6] A method for producing silver fine particles according to any one of the above.
本発明の銀微粒子は、ハロゲン化物イオンの存在下で銀イオンを還元することによって製造した銀微粒子であり、ハロゲンが銀に対して5.0×10-8〜1.5×10-3のモル比で含まれており、微細な分散性の良い銀微粒子である。 The silver fine particles of the present invention are silver fine particles produced by reducing silver ions in the presence of halide ions, and the halogen content is 5.0 × 10 −8 to 1.5 × 10 −3 with respect to silver. It is contained in a molar ratio and is a fine silver particle having fine dispersibility.
本発明の製造方法は、ハロゲン化物イオンの存在下で銀イオンを還元することによって微細な分散性の良い銀微粒子を製造する方法であり、該銀微粒子を安定に効率よく製造することができる。本発明の製造方法によれば、銀イオンの還元時に、ハロゲン化銀が優先的に生成し、それを核に銀の結晶性一次粒子が形成され、この一次粒子どうしが凝集して銀微粒子が形成される。ハロゲン化物イオンが存在しない場合と比較して、小さなエネルギーで容易に確実に初期核を形成でき、また、その初期核の数を多くすることができ、一次粒子の凝集中心点数も多くすることができるので、微細な銀微粒子が安定に効率よく析出する。 The production method of the present invention is a method of producing fine silver particles having fine dispersibility by reducing silver ions in the presence of halide ions, and the silver fine particles can be produced stably and efficiently. According to the production method of the present invention, silver halide is preferentially produced during the reduction of silver ions, and silver crystalline primary particles are formed using the silver halide as a core, and the primary particles are aggregated to form silver fine particles. It is formed. Compared to the case where there is no halide ion, initial nuclei can be easily and reliably formed with small energy, the number of initial nuclei can be increased, and the number of primary particle aggregation centers can be increased. As a result, fine silver fine particles are stably and efficiently deposited.
また、本発明の製造方法によれば、銀濃度に対するハロゲン化物イオン濃度を調整することによって、析出する銀微粒子の粒径を制御することができるので、上記ハロゲン濃度を調整することによって、例えば、平均粒径1.5〜0.5μmの銀微粒子、平均粒径0.5〜0.15μmの銀微粒子、または平均粒径0.15〜0.08μmの銀微粒子など用途に応じた粒径の銀微粒子を効率よく安定に得ることができる。 Further, according to the production method of the present invention, by adjusting the halide ion concentration with respect to the silver concentration, it is possible to control the particle diameter of the silver fine particles to be deposited. By adjusting the halogen concentration, for example, Silver particles having an average particle diameter of 1.5 to 0.5 μm, silver particles having an average particle diameter of 0.5 to 0.15 μm, silver particles having an average particle diameter of 0.15 to 0.08 μm, etc. Silver fine particles can be obtained efficiently and stably.
さらに、本発明の製造方法によれば、高濃度の銀イオン溶液を用いて微細な銀微粒子を効率よく製造することができる。具体的には、例えば、銀濃度50g/L以上のアンモニア水を加えた硝酸銀溶液を用いて、平均粒径1.5〜0.08μmの銀微粒子を99%以上の収率で得ることができる。 Furthermore, according to the production method of the present invention, fine silver fine particles can be efficiently produced using a high concentration silver ion solution. Specifically, for example, silver fine particles having an average particle diameter of 1.5 to 0.08 μm can be obtained in a yield of 99% or more using a silver nitrate solution to which ammonia water having a silver concentration of 50 g / L or more is added. .
また、本発明の製造方法は、ハロゲン化物イオンの存在下で銀イオンを還元するので、還元液と共にハロゲン化物イオン源を添加すればよく、管路内に還元液を注入するような特殊な装置構成を必要としないので、容易に実施することができる。 In addition, since the production method of the present invention reduces silver ions in the presence of halide ions, it is only necessary to add a halide ion source together with the reducing solution, and a special apparatus that injects the reducing solution into the pipeline. Since no configuration is required, it can be easily implemented.
以下、本発明を実施例と共に具体的に説明する。
本発明の銀微粒子は、ハロゲン化物イオンの存在下で銀イオンを還元することによって製造した銀微粒子であり、ハロゲン化物が銀に対して5.0×10-8〜1.5×10-3のモル比で含まれており、微細な分散性の良い銀微粒子である。
Hereinafter, the present invention will be specifically described together with examples.
The silver fine particles of the present invention are silver fine particles produced by reducing silver ions in the presence of halide ions, and the halide is 5.0 × 10 −8 to 1.5 × 10 −3 with respect to silver. These are silver fine particles having a fine dispersibility.
本発明の銀微粒子は、銀イオン溶液に還元剤を添加して銀微粒子を還元析出させる方法において、ハロゲン化物イオンの存在下で銀イオンを還元することによって製造することができる。また、この製造方法において、銀濃度に対するハロゲン化物イオン濃度を調整することによって、析出する銀微粒子の粒径を制御することができる。 The silver fine particles of the present invention can be produced by reducing silver ions in the presence of halide ions in a method of reducing and precipitating silver fine particles by adding a reducing agent to a silver ion solution. Moreover, in this manufacturing method, the particle diameter of the silver fine particles to precipitate can be controlled by adjusting the halide ion concentration with respect to the silver concentration.
銀イオン溶液としてはアンモニア水を加えた硝酸銀溶液などを用いることができる。アンモニアの存在によって銀アンミン錯体が形成され、還元剤を添加することによって銀が還元されて析出する。 As the silver ion solution, a silver nitrate solution to which ammonia water is added can be used. A silver ammine complex is formed by the presence of ammonia, and silver is reduced and precipitated by adding a reducing agent.
還元液としてはヒドロキノン液、ピロガロール液、3,4-ジヒドロキシトルエン液のようにフェノール基を持つ有機還元剤の溶液などを用いることが出来る。還元剤の添加量は液中の銀が十分に還元析出する量が好ましい。 As the reducing solution, a solution of an organic reducing agent having a phenol group such as a hydroquinone solution, a pyrogallol solution, and a 3,4-dihydroxytoluene solution can be used. The amount of the reducing agent added is preferably such that the silver in the solution is sufficiently reduced and precipitated.
ハロゲン化物イオン源としては、塩化アンモニウム(NH4Cl)、臭化アンモニウム(NH4Br)、ヨウ化アンモニウム(NH4I)、塩化カリウム(KCl)、臭化カリウム(KBr)、ヨウ化カリウム(KI)、塩化ナトリウム(NaCl)、臭化ナトリウム(NaBr)、または、ヨウ化ナトリウム(NaI)などを用いることができる。なお、ヨウ素、臭素、塩素の順に微細化の効果が強い傾向がある。 Examples of halide ion sources include ammonium chloride (NH 4 Cl), ammonium bromide (NH 4 Br), ammonium iodide (NH 4 I), potassium chloride (KCl), potassium bromide (KBr), potassium iodide ( KI), sodium chloride (NaCl), sodium bromide (NaBr), sodium iodide (NaI), or the like can be used. In addition, there exists a tendency for the effect of refinement | increase to be strong in order of an iodine, a bromine, and chlorine.
ハロゲン化物イオンが存在することによって、銀イオンの還元時に、ハロゲン化銀が優先的に生成し、それを核に銀の結晶性一次粒子が形成され、この一次粒子どうしが凝集して銀微粒子が形成される。ハロゲン化物イオンが存在しない場合と比較して、小さなエネルギーで容易に確実に初期核を形成でき、また、その初期核の数を多くすることができ、一次粒子の凝集中心点数も多くすることができるので、微細な銀微粒子が安定に効率よく析出する。 Due to the presence of halide ions, silver halide is preferentially produced during the reduction of silver ions, and silver crystalline primary particles are formed using these as nuclei. These primary particles aggregate to form silver fine particles. It is formed. Compared to the case where there is no halide ion, initial nuclei can be easily and reliably formed with small energy, the number of initial nuclei can be increased, and the number of primary particle aggregation centers can be increased. As a result, fine silver fine particles are stably and efficiently deposited.
ハロゲン化物イオンが存在しないと、銀イオンの還元による銀クラスター核が形成されるときに核生成に大きなエネルギーを必要とし、容易に初期核を形成することができないので初期核の数が少なくなり、一次粒子の凝集中心点数も少なくなるので、微細な銀微粒子を得るのが難しい。 In the absence of halide ions, a large amount of energy is required for nucleation when silver cluster nuclei are formed by reduction of silver ions, and the number of initial nuclei is reduced because initial nuclei cannot be formed easily. Since the number of aggregation center points of the primary particles is reduced, it is difficult to obtain fine silver fine particles.
ハロゲン化物イオンの濃度は、例えば、硝酸銀溶液にアンモニア水を加えた溶液に、ヒドロキノン液を添加して銀イオンを還元する場合、銀に対するヨウ素のモル比(I/Ag)は5.0×10-8以上が適当であり、平均粒径1.6μm以下の銀微粒子を得ることができる。また、銀に対するヨウ素のモル比が高いほど微細な銀微粒子を得ることができる。具体的には、銀に対するヨウ素のモル比が1.0×10-7以上の範囲において、例えば、銀濃度50g/L以上の硝酸銀溶液を用い、99%以上の収率で、平均粒径1.5μm〜0.08μmの銀微粒子を得ることができる。 The concentration of halide ions is, for example, when a hydroquinone solution is added to a solution obtained by adding aqueous ammonia to a silver nitrate solution to reduce silver ions, the molar ratio of iodine to silver (I / Ag) is 5.0 × 10. -8 or more is suitable, and silver fine particles having an average particle diameter of 1.6 μm or less can be obtained. Further, the finer silver fine particles can be obtained as the molar ratio of iodine to silver is higher. Specifically, when the molar ratio of iodine to silver is 1.0 × 10 −7 or more, for example, a silver nitrate solution having a silver concentration of 50 g / L or more is used, and the average particle diameter is 1 with a yield of 99% or more. Silver fine particles of .5 μm to 0.08 μm can be obtained.
一方、ハロゲン化物の添加量が多すぎると銀微粒子の形状が球形になり難く、また凝集しやすくなる。従って、銀に対するハロゲン化物イオンのモル比は1.5×10-3以下が適当である。 On the other hand, when the added amount of the halide is too large, the shape of the silver fine particles is not easily formed into a spherical shape and tends to aggregate. Therefore, the molar ratio of halide ions to silver is suitably 1.5 × 10 −3 or less.
本発明の製造方法では、銀濃度に対するハロゲン濃度を調整することによって、析出する銀微粒子の粒径を制御することができる。例えば、アンモニア水を加えた硝酸銀溶液にヒドロキノン液を添加して銀イオンを還元析出させる際に、銀に対するヨウ素のモル比(I/Ag)を以下のように調整して平均粒径0.08μm〜1.5μmの銀微粒子を得ることができる。 In the production method of the present invention, the particle size of the silver fine particles to be deposited can be controlled by adjusting the halogen concentration relative to the silver concentration. For example, when a hydroquinone solution is added to a silver nitrate solution to which ammonia water is added to reduce and precipitate silver ions, the molar ratio of iodine to silver (I / Ag) is adjusted as follows to obtain an average particle size of 0.08 μm. Silver fine particles of ˜1.5 μm can be obtained.
(イ)銀ヨウ素モル比(I/Ag)を5.0×10-8〜1.8×10-6に調整して平均粒径1.5〜0.5μmの銀微粒子を析出させることができる。
(ロ)銀ヨウ素モル比を1.8×10-6〜3.0×10-5に調整して平均粒径0.5〜0.15μmの銀微粒子を析出させることができる。
(ハ)上記銀ヨウ素モル比を3.0×10-5〜1.5×10-3に調整して平均粒径0.15〜0.08μmの銀微粒子を析出させることができる。
(A) The silver iodine molar ratio (I / Ag) is adjusted to 5.0 × 10 −8 to 1.8 × 10 −6 to precipitate silver fine particles having an average particle size of 1.5 to 0.5 μm. it can.
(B) Silver fine particles having an average particle diameter of 0.5 to 0.15 μm can be precipitated by adjusting the silver iodine molar ratio to 1.8 × 10 −6 to 3.0 × 10 −5 .
(C) The silver iodine molar ratio can be adjusted to 3.0 × 10 −5 to 1.5 × 10 −3 to precipitate silver fine particles having an average particle size of 0.15 to 0.08 μm.
本発明の製造方法は、析出する銀微粒子の粒径の制御性に優れており、析出する銀微粒子の粒径は、同じ銀ハロゲン化物モル比で10回試験して求めた平均粒径の±10%の範囲内である。また、本発明の方法によって調製した薬液は経時安定性に優れており、調製後9時間以内に合成した銀微粒子の粒径変化は±10%以内である。 The production method of the present invention is excellent in controllability of the particle diameter of the silver fine particles to be precipitated, and the particle diameter of the silver fine particles to be precipitated is an average particle diameter ± It is within the range of 10%. Moreover, the chemical solution prepared by the method of the present invention is excellent in stability over time, and the particle size change of the silver fine particles synthesized within 9 hours after the preparation is within ± 10%.
本発明の製造方法は、銀イオンの還元時にハロゲン化物イオンを存在させるので、析出した銀微粒子はハロゲン化物を含有しているが、銀イオンは還元析出して次第に成長するのでハロゲンは銀微粒子の内部に含有されており、従って溶出され難く、銀微粒子を用いるときにハロゲンによる影響は殆どない。 In the production method of the present invention, halide ions are present at the time of reduction of silver ions, so the precipitated silver fine particles contain halides, but since silver ions are gradually deposited by reduction precipitation, halogens are silver fine particles. It is contained inside and therefore hardly eluted, and there is almost no influence of halogen when using silver fine particles.
以下、本発明を実施例によって具体的に示す。なお、粒径の測定はレーザ散乱/回折法により個数基準で演算して求めた。 Hereinafter, the present invention will be specifically described by way of examples. The particle size was determined by calculating on the basis of the number by the laser scattering / diffraction method.
〔実施例1〕
アンモニア水を加えた硝酸銀溶液に、ヨウ化アンモニウム液を加えたヒドロキノン溶液を添加して銀を還元析出させた。アンモニア水、硝酸銀溶液、ヒドロキノン溶液の組成を表1に示した。また、ヨウ化アンモニウム溶液の使用量、銀に対するヨウ素のモル比を表2に示した。析出した銀微粒子の平均粒径、収率、ヨウ素含有量を表2に示した。さらに、一部の試料について粒子のSEM写真を図3〜図6に示した。なお、ヨウ化アンモニウム液を添加しないものを比較例1a、ヨウ素添加量が好ましい範囲よりも過剰な例を比較例1bとして示した。また、ヨウ素の添加量に対する銀微粒子の平均粒径の変化を図1に示した。図中の測定値に示す上下のバーは10回試験による測定値のバラツキの範囲を示す。
[Example 1]
A silver hydroquinone solution added with an ammonium iodide solution was added to a silver nitrate solution added with aqueous ammonia to cause silver to be reduced and precipitated. Table 1 shows the compositions of aqueous ammonia, silver nitrate solution, and hydroquinone solution. Table 2 shows the amount of ammonium iodide used and the molar ratio of iodine to silver. Table 2 shows the average particle diameter, yield, and iodine content of the precipitated silver fine particles. Further, SEM photographs of particles for some samples are shown in FIGS. In addition, the thing which does not add an ammonium iodide liquid was shown as Comparative Example 1a, and the example in which the addition amount of iodine is more than the preferred range is shown as Comparative Example 1b. Moreover, the change of the average particle diameter of silver fine particles with respect to the addition amount of iodine is shown in FIG. The upper and lower bars shown in the measured values in the figure indicate the range of variation in the measured values obtained by 10 tests.
表2および図1に示すように、ヨウ化アンモニウムを添加しない比較試料では平均粒径1.5μm以上の銀微粒子が析出するが、ヨウ化物イオンが存在すると銀微粒子が微細になり、ヨウ化物イオン量に応じて銀微粒子の平均粒径が変化する。具体的には、(i)銀ヨウ素モル比(I/Ag)が5.0×10-8〜1.8×10-6の範囲では、平均粒径1.5〜0.5μmの銀微粒子が析出し、(ii)銀ヨウ素モル比が1.8×10-6〜3.0×10-5の範囲では平均粒径0.5〜0.15μmの銀微粒子が析出し、(iii)銀ヨウ素モル比が3.0×10-5〜1.5×10-3の範囲では平均粒径0.15〜0.08μmの銀微粒子が析出する。 As shown in Table 2 and FIG. 1, silver particles having an average particle size of 1.5 μm or more are precipitated in the comparative sample to which ammonium iodide is not added. However, when iodide ions are present, the silver particles become finer, and iodide ions The average particle diameter of the silver fine particles changes depending on the amount. Specifically, (i) Silver fine particles having an average particle diameter of 1.5 to 0.5 μm when the silver iodine molar ratio (I / Ag) is in the range of 5.0 × 10 −8 to 1.8 × 10 −6. And (ii) silver fine particles having an average particle diameter of 0.5 to 0.15 μm were precipitated when the silver-iodine molar ratio was in the range of 1.8 × 10 −6 to 3.0 × 10 −5 , and (iii) Silver fine particles having an average particle diameter of 0.15 to 0.08 μm are deposited when the silver / iodine molar ratio is in the range of 3.0 × 10 −5 to 1.5 × 10 −3 .
また、表2および図1に示すように、本発明の銀微粒子は粒径の制御性が良く、実施例の銀微粒子の粒径は何れも10回試験して求めた平均粒径の±10%の範囲内である(表2の粒径制御)。さらに、本発明に用いる薬液は経時安定性にも優れており、調製後9時間以内に合成した銀微粒子の粒径も±10%の範囲に収まっている。 Further, as shown in Table 2 and FIG. 1, the silver fine particles of the present invention have good particle size controllability, and the silver fine particles of the examples all have a mean particle size of ± 10 obtained by testing 10 times. % (Particle size control in Table 2). Furthermore, the chemical solution used in the present invention is excellent in stability over time, and the particle size of silver fine particles synthesized within 9 hours after preparation is also within a range of ± 10%.
〔実施例2〕
アンモニア水を加えた硝酸銀溶液に、予めハロゲン化アンモニウム液を加えたヒドロキノン液(ハロゲン化物のモル数:2.82×10-5)を添加して、銀を還元析出させた。硝酸銀溶液、ヒドロキノン液、アンモニウム液は表1に示すものを用いた。ハロゲンの種類は表3に示すように、NH4Cl、NH4Br、NH4Iを用いた。析出した銀微粒子の平均粒径を測定した。平均粒径の測定方法は実施例1と同様である。この結果を表3および図7〜図10に示した。なお、ハロゲン化アンモニウム液を添加しないものを比較試料2として示した。表3および図7〜図10に示すように、ヨウ素、臭素、塩素の順に銀粒子に対する微細化の効果が強い。
[Example 2]
To a silver nitrate solution to which aqueous ammonia was added, a hydroquinone solution (halide mole number: 2.82 × 10 −5 ) in which an ammonium halide solution had been added in advance was added to cause silver to be reduced and precipitated. The silver nitrate solution, hydroquinone solution, and ammonium solution shown in Table 1 were used. As shown in Table 3, NH 4 Cl, NH 4 Br, and NH 4 I were used as the type of halogen. The average particle size of the precipitated silver fine particles was measured. The method for measuring the average particle diameter is the same as in Example 1. The results are shown in Table 3 and FIGS. A sample to which no ammonium halide solution was added was shown as Comparative Sample 2. As shown in Table 3 and FIGS. 7 to 10, the effect of refinement on silver particles is strong in the order of iodine, bromine, and chlorine.
〔実施例3〕
実施例2のハロゲン化アンモニウム液に代えて、表4に示すハロゲン化塩水溶液を用いた以外は実施例2と同じ条件で銀を還元析出させ、析出した銀微粒子の平均粒径を測定した。平均粒径の測定方法は実施例1と同様である。この結果を表4に示した。なお、ハロゲン化塩水溶液を添加しないものを比較試料3として示した。表4に示すように、ハロゲン化物イオンのカウンターイオンが変わっても本発明の効果は変わらない。
Example 3
Instead of the ammonium halide solution of Example 2, silver was reduced and precipitated under the same conditions as in Example 2 except that an aqueous halide salt solution shown in Table 4 was used, and the average particle diameter of the precipitated silver fine particles was measured. The method for measuring the average particle diameter is the same as in Example 1. The results are shown in Table 4. A sample to which no aqueous halide salt solution was added was shown as Comparative Sample 3. As shown in Table 4, the effect of the present invention does not change even if the counter ion of the halide ion changes.
〔比較例〕
表5(比較試料4)および表6(比較試料5)に示すアンモニア水を加えた硝酸銀溶液を用い、この溶液にヒドロキノン液を添加して、銀を還元析出させ、析出した銀微粒子の平均粒径を測定した。平均粒径の測定方法は実施例1と同様である。この結果を表7に示した。ハロゲン化物イオンを還元液に予め添加しない場合においても、銀濃度を薄くすることで平均粒径が0.50μm以下の銀微粒子を得ることができるが、回収が困難であるため収率が99%を下回るものとなる。
[Comparative Example]
Using silver nitrate solution to which ammonia water shown in Table 5 (Comparative Sample 4) and Table 6 (Comparative Sample 5) was added, hydroquinone solution was added to this solution to reduce and precipitate silver, and the average grain size of the precipitated silver fine particles The diameter was measured. The method for measuring the average particle diameter is the same as in Example 1. The results are shown in Table 7. Even when halide ions are not added to the reducing solution in advance, silver fine particles having an average particle size of 0.50 μm or less can be obtained by reducing the silver concentration. However, since the recovery is difficult, the yield is 99%. Less than
Claims (7)
Silver fine particles characterized in that halogen is contained in silver fine particles in a molar ratio of 5.0 × 10 −8 to 1.5 × 10 −3 with respect to silver.
2. The silver fine particles according to claim 1, wherein halogen has a mean particle diameter of 1.5 to 0.5 in which a halogen is contained in a molar ratio of 5.0 × 10 −8 to 1.8 × 10 −6 with respect to silver. 5 μm silver fine particles, or silver fine particles having an average particle diameter of 0.5 to 0.15 μm in which halogen is contained in a molar ratio of 1.8 × 10 −6 to 3.0 × 10 −5 with respect to silver, or Silver fine particles having an average particle diameter of 0.15 to 0.08 μm in which halogen is contained at a molar ratio of 3.0 × 10 −5 to 1.5 × 10 −3 with respect to silver.
In the method of reducing and precipitating silver fine particles by adding a reducing agent to a silver ion solution, the production of silver fine particles characterized by precipitating fine silver fine particles by reducing silver ions in the presence of halide ions Method.
The method for producing silver fine particles according to claim 3, wherein the particle size of the silver fine particles to be deposited is controlled by adjusting the halide concentration relative to the silver concentration.
Aqueous ammonia silver nitrate solution was added as a silver ion solution, a hydroquinone solution as a reducing solution, ammonium chloride as a halide ion source (NH 4 Cl), ammonium bromide (NH 4 Br), ammonium iodide (NH 4 The method for producing silver fine particles according to claim 3 or 4, wherein I), potassium chloride, potassium bromide, potassium iodide, sodium chloride, sodium bromide, or sodium iodide is used.
When reducing silver ions, (i) the molar ratio of iodine to silver (I / Ag) is adjusted to 5.0 × 10 −8 to 1.8 × 10 −6 to obtain an average particle size of 1.5 to 0. Or (ii) adjusting the silver / iodine molar ratio to 1.8 × 10 −6 to 3.0 × 10 −5 to adjust the average particle size to 0.5 to 0.15 μm. Silver fine particles are precipitated, or (iii) silver fine particles having an average particle diameter of 0.15 to 0.08 μm are prepared by adjusting the silver iodine molar ratio to 3.0 × 10 −5 to 1.5 × 10 −3. The method for producing silver fine particles according to any one of claims 3 to 5, wherein the silver fine particles are deposited.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008088839A JP5376109B2 (en) | 2007-03-30 | 2008-03-28 | Method for producing silver fine particles |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007095657 | 2007-03-30 | ||
JP2007095657 | 2007-03-30 | ||
JP2008088839A JP5376109B2 (en) | 2007-03-30 | 2008-03-28 | Method for producing silver fine particles |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008274423A true JP2008274423A (en) | 2008-11-13 |
JP5376109B2 JP5376109B2 (en) | 2013-12-25 |
Family
ID=40052744
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008088839A Expired - Fee Related JP5376109B2 (en) | 2007-03-30 | 2008-03-28 | Method for producing silver fine particles |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5376109B2 (en) |
CN (1) | CN101626856B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013099818A1 (en) * | 2011-12-28 | 2013-07-04 | 戸田工業株式会社 | Silver fine particles, production process therefor, and conductive paste, conductive membrane and electronic device, containing said silver fine particles |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102699341B (en) * | 2012-04-26 | 2015-09-23 | 蔡雄辉 | A kind of wet chemical preparation method of silver-colored micro-/ nano line |
CN103341643B (en) * | 2013-07-26 | 2015-09-30 | 武汉理工大学 | The complex reducing agent liquid phase preparation process of coated with silver on surface shell conductive composite particle |
CN107297510B (en) * | 2016-04-15 | 2019-06-14 | 中国科学院理化技术研究所 | Method for preparing nano-scale silver particle powder by reducing silver salt intermediate in grading manner |
CN107755711B (en) * | 2017-10-20 | 2019-07-05 | 昆明理工大学 | A kind of pros' micro-nano silver powder, preparation method thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6417803A (en) * | 1987-07-14 | 1989-01-20 | Agency Ind Science Techn | Method for coating metal fine powder with other metal |
JPH10265812A (en) * | 1997-03-24 | 1998-10-06 | Sumitomo Metal Mining Co Ltd | Production of superfine silver particle |
JPH111733A (en) * | 1997-06-06 | 1999-01-06 | Sumitomo Metal Mining Co Ltd | Ag-ni electric contact point material and its manufacture |
JP2001240901A (en) * | 1999-12-22 | 2001-09-04 | Mitsui Mining & Smelting Co Ltd | Surface-decorated silver powder and its producing method |
JP2004353089A (en) * | 2003-05-27 | 2004-12-16 | Samsung Electronics Co Ltd | Method for producing non-magnetic nickel powder |
JP2005325411A (en) * | 2004-05-14 | 2005-11-24 | Fukuda Metal Foil & Powder Co Ltd | Metal powder having excellent sinterability, its production method and method for producing sintered compact using the metal powder |
-
2008
- 2008-03-28 JP JP2008088839A patent/JP5376109B2/en not_active Expired - Fee Related
- 2008-03-31 CN CN2008800069565A patent/CN101626856B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6417803A (en) * | 1987-07-14 | 1989-01-20 | Agency Ind Science Techn | Method for coating metal fine powder with other metal |
JPH10265812A (en) * | 1997-03-24 | 1998-10-06 | Sumitomo Metal Mining Co Ltd | Production of superfine silver particle |
JPH111733A (en) * | 1997-06-06 | 1999-01-06 | Sumitomo Metal Mining Co Ltd | Ag-ni electric contact point material and its manufacture |
JP2001240901A (en) * | 1999-12-22 | 2001-09-04 | Mitsui Mining & Smelting Co Ltd | Surface-decorated silver powder and its producing method |
JP2004353089A (en) * | 2003-05-27 | 2004-12-16 | Samsung Electronics Co Ltd | Method for producing non-magnetic nickel powder |
JP2005325411A (en) * | 2004-05-14 | 2005-11-24 | Fukuda Metal Foil & Powder Co Ltd | Metal powder having excellent sinterability, its production method and method for producing sintered compact using the metal powder |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013099818A1 (en) * | 2011-12-28 | 2013-07-04 | 戸田工業株式会社 | Silver fine particles, production process therefor, and conductive paste, conductive membrane and electronic device, containing said silver fine particles |
Also Published As
Publication number | Publication date |
---|---|
CN101626856B (en) | 2012-10-10 |
CN101626856A (en) | 2010-01-13 |
JP5376109B2 (en) | 2013-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | pH-assisted crystallization of Cu 2 O: Chemical reactions control the evolution from nanowires to polyhedra | |
JP5032005B2 (en) | High crystal silver powder and method for producing the high crystal silver powder | |
JP5376109B2 (en) | Method for producing silver fine particles | |
JP5074837B2 (en) | Method for producing flat silver powder, flat silver powder, and conductive paste | |
JP2005048237A (en) | Superfine silver powder and method of producing the superfine silver powder | |
JP2007239077A (en) | Method for producing particulate silver particle, and particulate silver particle obtained by the method | |
JPWO2009001710A1 (en) | Spherical copper fine powder and method for producing the same | |
Avramović et al. | Correlation between crystal structure and morphology of potentiostatically electrodeposited silver dendritic nanostructures | |
JP6606076B2 (en) | Plating solution and method for producing the same, and composite material, copper composite material and method for producing the same | |
JP5163843B2 (en) | Method for producing silver fine particles | |
JP5566743B2 (en) | Method for producing copper alloy fine particles | |
JP2009203484A (en) | Method for synthesizing wire-shaped metal particle | |
JP2020015975A (en) | Method for producing cuprous oxide powder, cuprous oxide powder, method for producing copper powder, and copper powder | |
TWI468240B (en) | Silver fine particles, method for manufacturing silver fine particles, and apparatus for manufacturing silver fine particles | |
JP2991700B2 (en) | Method for producing nickel fine powder | |
JP2018104724A (en) | Production method of silver-coated copper powder | |
JP5435611B2 (en) | Method for producing copper alloy fine particles | |
JPH05221637A (en) | Production of cuprous oxide powder and copper powder | |
JP2008255377A (en) | Method for producing silver particulate | |
JP2008274424A (en) | Process for producing fine silver particle | |
JP2009256776A (en) | Method for producing silver fine particle | |
JP2008255378A (en) | Method for producing silver particulate | |
JP3989795B2 (en) | Electrolytic hard gold plating solution and plating method using the same | |
TW201609558A (en) | Solder ball and method of making the same | |
JP7380947B2 (en) | Method for producing conductive metal particles and conductive metal particles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100929 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121212 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130131 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130424 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130722 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20130807 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130828 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130910 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |