JP2008255378A - Method for producing silver particulate - Google Patents

Method for producing silver particulate Download PDF

Info

Publication number
JP2008255378A
JP2008255378A JP2007095660A JP2007095660A JP2008255378A JP 2008255378 A JP2008255378 A JP 2008255378A JP 2007095660 A JP2007095660 A JP 2007095660A JP 2007095660 A JP2007095660 A JP 2007095660A JP 2008255378 A JP2008255378 A JP 2008255378A
Authority
JP
Japan
Prior art keywords
silver
ammonia
fine particles
reducing agent
addition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007095660A
Other languages
Japanese (ja)
Inventor
Akihiro Higami
晃裕 樋上
Takahiro Uno
貴博 宇野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2007095660A priority Critical patent/JP2008255378A/en
Priority to KR1020097016576A priority patent/KR20090128380A/en
Priority to CN2008800069565A priority patent/CN101626856B/en
Priority to PCT/JP2008/056319 priority patent/WO2008123494A1/en
Priority to TW97111682A priority patent/TWI468240B/en
Publication of JP2008255378A publication Critical patent/JP2008255378A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for stably and efficiently producing fine silver particulates having high dispersibility and suitable as paste components to form into a wiring material and an electrode material of an electronic device. <P>SOLUTION: Regarding the method for producing silver particulates, in a method where ammonia and a reducing agent are added to a silver ion solution so as to reductively precipitate silver particulates, the reducing agent is added within 20 sec after the addition of the ammonia, thus the fine silver particulates are precipitated. By regulating the time from the addition of the ammonia to the addition of the reducing agent, the particle diameter of the silver particulates to be precipitated is controlled. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、銀イオンの還元によって銀粒子を製造する技術において、微細な銀粒子を安定に効率よく製造する技術に関する。より詳しくは、本発明は電子デバイスの配線材料や電極材料となるペースト成分として好適な微細な高分散性の銀粒子を安定に効率よく製造する技術に関する。   The present invention relates to a technique for producing fine silver particles stably and efficiently in a technique for producing silver particles by reduction of silver ions. More specifically, the present invention relates to a technique for stably and efficiently producing fine, highly dispersible silver particles suitable as a paste component that becomes a wiring material or an electrode material of an electronic device.

近年、電子機器の高機能化を図るために、電子デバイスの小型化と高密度化が要請されており、配線および電極のファイン化を達成するために、これらを形成するペースト材料に用いられる銀微粒子についても、より微細で高分散性の微粒子が求められている。   In recent years, there has been a demand for miniaturization and high density of electronic devices in order to improve the functionality of electronic equipment. In order to achieve finer wiring and electrodes, silver used as a paste material for forming them As for the fine particles, finer and highly dispersible fine particles are required.

従来、電子機器材料に用いられる銀微粒子の製造方法として、銀塩のアンミン錯体を還元して銀微粒子を沈澱させ、これを洗浄乾燥して平均粒径が数μm程度の銀微粒子を得る方法が知られている。例えば、特開平8−134513号公報には、銀アンミン錯体を還元して銀微粒子を析出させる際に、還元時の液温を25〜60℃に調整して微細な銀粒子を製造する方法が記載されている(特許文献1)。また特開2001−107101号公報には、硝酸銀溶液にアンモニア水を添加して銀アンミン錯体溶液を形成した後に、還元剤を添加する際に、還元剤を20秒以内に混合することによってBET比表面積0.25m2/g以上の微細銀粒子を析出させる方法が記載されている(特許文献2)。しかし、これらの製造方法では、析出した銀粒子の粒度分布が広く、しかも粒子が凝集し易いため、粒径が均一で0.2〜2.5μmの微細な銀微粒子を製造するのが難しいと云う問題があった。 Conventionally, as a method for producing silver fine particles used in electronic device materials, there is a method of obtaining silver fine particles having an average particle diameter of about several μm by reducing silver salt ammine complexes to precipitate silver fine particles, and washing and drying them. Are known. For example, JP-A-8-134513 discloses a method for producing fine silver particles by reducing the silver ammine complex to precipitate silver fine particles and adjusting the liquid temperature during reduction to 25 to 60 ° C. (Patent Document 1). Japanese Patent Laid-Open No. 2001-107101 discloses that after adding ammonia water to a silver nitrate solution to form a silver ammine complex solution, the reducing agent is mixed within 20 seconds when the reducing agent is added. A method for precipitating fine silver particles having a surface area of 0.25 m 2 / g or more is described (Patent Document 2). However, in these production methods, it is difficult to produce fine silver particles having a uniform particle size and 0.2 to 2.5 μm because the particle size distribution of the precipitated silver particles is wide and the particles are likely to aggregate. There was a problem.

そこで、銀アンミン錯体水溶液が流れる流路の途中に有機還元剤溶液を合流させることによって、管路内で銀を還元して結晶子径の小さい銀微粒子を製造する方法が知られている(特許文献3、4)。ところが、この製造方法は、管路内で銀アンミン錯体の還元を行うので銀の析出によって流路が狭くなり、しかも管壁に析出した銀片が剥離して粗大な粒子が混入するなどの問題がある。また、微細な銀粒子を得るには銀濃度が非常に薄い銀アンミン錯体水溶液を用いるので製造効率が低い。
特開平8−134513号公報 特開2001−107101号公報 特開2005−48236号公報 特開2005−48237号公報
Therefore, a method is known in which silver fine particles having a small crystallite diameter are produced by reducing the silver in the pipe by joining the organic reducing agent solution in the middle of the flow path through which the silver ammine complex aqueous solution flows (patent) References 3, 4). However, in this production method, the silver ammine complex is reduced in the pipe, so that the flow path becomes narrow due to silver deposition, and the silver particles deposited on the pipe wall peel off and coarse particles are mixed. There is. In addition, in order to obtain fine silver particles, a silver ammine complex aqueous solution having a very low silver concentration is used, so that the production efficiency is low.
JP-A-8-134513 JP 2001-107101 A JP-A-2005-48236 JP 2005-48237 A

本発明は、従来の製造方法における上記問題を解決した銀微粒子の製造方法を提供するものであり、微細な銀粒子を安定に効率よく製造する方法および装置を提供する。   The present invention provides a method for producing silver fine particles that solves the above-mentioned problems in conventional production methods, and provides a method and apparatus for producing fine silver particles stably and efficiently.

本発明によれば、以下の構成によって上記課題を解決した銀微粒子の製造方法および装置が提供される。
(1)銀イオン溶液にアンモニアと還元剤を添加して銀微粒子を還元析出させる方法において、アンモニア添加後20秒以内に還元剤を添加することによって、微細な銀微粒子を析出させることを特徴とする銀微粒子の製造方法。
(2)アンモニア添加から還元剤を添加するまでの時間を調整することによって、析出する銀微粒子の粒径を制御する上記(1)の銀微粒子の製造方法。
(3)上記(1)または上記(2)の方法において、アンモニア添加後から還元剤を添加するまでの時間(経過時間)について、(i)上記経過時間を0.3秒〜0.5秒以内にして平均粒径0.2μm〜0.5μmの銀微粒子を析出させる方法、(ii)上記経過時間を0.5秒〜2秒以内にして平均粒径0.5μm〜1.5μmの銀微粒子を析出させる方法、(iii)上記経過時間を2秒〜5秒以内にして平均粒径1.5μm〜2.0μmの銀微粒子を析出させる方法、または(iv)上記経過時間を5秒〜20秒以内にして平均粒径2.0μm〜2.5μmの銀微粒子を析出させる方法。
(4)銀イオン溶液にアンモニアと還元剤を添加して銀微粒子を還元析出させる製造装置であって、銀イオン溶液槽、アンモニア水溶液槽、および還元液槽を有し、銀イオン溶液槽の管路とアンモニア水溶液槽の管路との交叉位置Aが銀イオン溶液槽の管路と還元液槽の管路との交叉位置Bよりも銀イオン溶液槽側に設けられていることを特徴とする銀微粒子の製造装置。
(5)交叉位置Bにおいて両管路が僅かに離れて相対向して設置されており、交叉位置Aから交叉位置Bに至る距離が調整可能である上記(4)の製造装置。
According to this invention, the manufacturing method and apparatus of the silver fine particle which solved the said subject with the following structures are provided.
(1) In the method of reducing and precipitating silver fine particles by adding ammonia and a reducing agent to a silver ion solution, the method is characterized in that fine silver fine particles are precipitated by adding the reducing agent within 20 seconds after the addition of ammonia. A method for producing fine silver particles.
(2) The method for producing silver fine particles according to the above (1), wherein the particle size of the precipitated silver fine particles is controlled by adjusting the time from the addition of ammonia to the addition of the reducing agent.
(3) In the method of (1) or (2) above, the time (elapsed time) from the addition of ammonia to the addition of the reducing agent is (i) the elapsed time is set to 0.3 seconds to 0.5 seconds. (Ii) silver having an average particle diameter of 0.5 μm to 1.5 μm within a period of 0.5 second to 2 seconds, and depositing silver fine particles having an average particle diameter of 0.2 μm to 0.5 μm. A method of precipitating fine particles, (iii) a method of precipitating silver fine particles having an average particle size of 1.5 μm to 2.0 μm within 2 to 5 seconds, or (iv) a time of 5 seconds to A method of depositing silver fine particles having an average particle diameter of 2.0 μm to 2.5 μm within 20 seconds.
(4) A production apparatus for reducing and precipitating silver fine particles by adding ammonia and a reducing agent to a silver ion solution, comprising a silver ion solution tank, an ammonia aqueous solution tank, and a reducing solution tank, and a tube of the silver ion solution tank The crossing position A between the channel and the ammonia aqueous solution tank is provided closer to the silver ion solution tank than the crossing position B between the pipe of the silver ion solution tank and the pipe of the reducing solution tank. Silver fine particle production equipment.
(5) The manufacturing apparatus according to the above (4), wherein both pipes are installed slightly opposite to each other at the crossover position B, and the distance from the crossover position A to the crossover position B can be adjusted.

本発明の製造方法において、アンモニア添加後20秒以内に還元剤を添加することによって、銀アンミン錯体が形成される前に一時的に生成する水酸化銀(AgOH)もしくは酸化銀(Ag2O)が核となり、結晶子の大きさが25nm〜150nmの銀の結晶性一次粒子が形成され、この一次粒子どうしが凝集して銀微粒子が形成される。核の生成数が多く、それに伴い凝集中心点数が多くなると銀微粒子の大きさは小さくなるため、核となる水酸化銀および酸化銀が多数存在するアンモニア添加後20秒以内に還元剤を添加すれば、微細な銀微粒子を安定に効率よく得ることができる。具体的には、例えば、平均粒径2.5μm以下の微細銀粒子を99%以上の収率で得ることができる。一方で、アンモニア添加後から還元剤添加までの時間が長いと、混合初期に生成する水酸化銀もしくは酸化銀は、ほぼ全量が銀アンミン錯体へと変化しているため、核として機能することができず、核生成数が制御できないため、合成される銀粒子径は安定しないものとなる。 In the production method of the present invention, by adding a reducing agent within 20 seconds after the addition of ammonia, silver hydroxide (AgOH) or silver oxide (Ag 2 O) temporarily formed before the silver ammine complex is formed. Serves as a nucleus, and silver crystalline primary particles having a crystallite size of 25 nm to 150 nm are formed, and the primary particles aggregate to form silver fine particles. When the number of nuclei is large and the number of aggregation centers increases, the size of the silver fine particles becomes small. Therefore, the reducing agent should be added within 20 seconds after the addition of ammonia in which many silver hydroxides and silver oxides are present. Thus, fine silver fine particles can be obtained stably and efficiently. Specifically, for example, fine silver particles having an average particle size of 2.5 μm or less can be obtained in a yield of 99% or more. On the other hand, if the time from the addition of ammonia to the addition of the reducing agent is long, almost all of the silver hydroxide or silver oxide produced in the initial stage of mixing has changed into a silver ammine complex, so it can function as a nucleus. Since the nucleation number cannot be controlled, the synthesized silver particle size is not stable.

また、本発明の製造方法によれば、アンモニア添加後から還元剤を添加するまでの経過時間を調整することによって、平均粒径0.2μm〜2.5μmの銀微粒子を製造することができる。   Moreover, according to the production method of the present invention, silver fine particles having an average particle diameter of 0.2 μm to 2.5 μm can be produced by adjusting the elapsed time from the addition of ammonia to the addition of the reducing agent.

また、本発明の製造装置は、銀イオン溶液槽の管路とアンモニア水溶液槽の管路との交叉位置Aが銀イオン溶液槽の管路と還元液槽の管路との交叉位置Bよりも銀イオン溶液槽側に設けたものであり、上記製造方法を容易に実施することができる。また、本発明の製造装置は交叉位置Aの接続部分を移動可能に形成することによって、交叉位置Aから交叉位置Bに至る距離を変更することができ、アンモニア添加後から還元剤を添加するまでの経過時間を容易に調整することができる。   In the production apparatus of the present invention, the crossing position A between the pipe of the silver ion solution tank and the pipe of the aqueous ammonia solution tank is more than the crossing position B of the pipe of the silver ion solution tank and the pipe of the reducing solution tank. It is provided on the silver ion solution tank side, and the above production method can be easily carried out. In addition, the manufacturing apparatus of the present invention can change the distance from the crossing position A to the crossing position B by forming the connecting portion of the crossing position A so that it can move, and after the ammonia is added until the reducing agent is added. The elapsed time can be easily adjusted.

以下、本発明を実施例と共に具体的に説明する。
本発明の方法は、銀イオン溶液にアンモニアと還元剤を添加して銀微粒子を還元析出させる方法において、アンモニア添加後20秒以内に還元剤を添加することによって、微細な銀微粒子を析出させることを特徴とする銀微粒子の製造方法である。
Hereinafter, the present invention will be specifically described with examples.
The method of the present invention is a method for reducing and precipitating silver fine particles by adding ammonia and a reducing agent to a silver ion solution. By adding a reducing agent within 20 seconds after adding ammonia, fine silver fine particles are precipitated. Is a method for producing silver fine particles.

銀イオン溶液としては硝酸銀溶液などを用いることができる。硝酸銀溶液にアンモニアを添加すると銀アンミン錯体が形成され、これを還元することによって銀が析出する。還元剤としてはヒドロキノン液〔OH(C6H4)OH、以下H2Qと略記する場合がある〕などを用いると良い。アンモニアの添加量は液中にアンミン錯体を形成しない銀イオンが残留しない量が好ましく、その量は銀1モルに対してアンモニアが2〜3モルとなる量である。還元剤の添加量は液中に未反応の銀アンミン錯体が残留しない量が好ましく、その量は還元剤にヒドロキノンを用いた場合、銀1モルに対してヒドロキノンが0.3〜1.0モルとなる量である。 As the silver ion solution, a silver nitrate solution or the like can be used. When ammonia is added to the silver nitrate solution, a silver ammine complex is formed, and silver is precipitated by reducing this. As the reducing agent, a hydroquinone solution (OH (C 6 H 4 ) OH, hereinafter sometimes abbreviated as H 2 Q) may be used. The amount of ammonia to be added is preferably such that silver ions that do not form an ammine complex do not remain in the solution, and the amount is such that ammonia is 2 to 3 moles per mole of silver. The amount of the reducing agent added is preferably such that no unreacted silver ammine complex remains in the solution. When hydroquinone is used as the reducing agent, the amount of hydroquinone is 0.3 to 1.0 mole per mole of silver. This is the amount.

本発明の製造方法は、銀イオン溶液にアンモニアを添加した後に20秒以内に還元剤を添加する。アンモニア添加後の短時間のうちに還元剤を添加することによって、銀アンミン錯体が形成される前に一時的に生成する水酸化銀(AgOH)もしくは酸化銀(Ag2O)を核にして銀の結晶性一次粒子が形成され、この一次粒子どうしが凝集して銀微粒子が形成される。アンモニア添加後20秒以内であると、アンミン錯体を形成していない水酸化銀または酸化銀が多く残留しておりこれが核となるため、銀イオンの還元による銀クラスター核の生成の場合よりも初期核の数を多くすることができ、一次粒子の凝集中心点数も多くすることができるので、例えば、平均粒径2.5μm以下の微細な銀微粒子になる。一方、アンモニア添加後20秒以上経過した場合、初期に生成する酸化銀および酸化銀は銀アンミン錯体となり、水酸化銀および酸化銀の初期核とした結晶性一次粒子を形成しえない。銀イオンの還元による銀クラスター核の初期核の生成数は少数になり、一次粒子の凝集中心点数も少数になるので、微細な銀微粒子を得るのが難しい。 In the production method of the present invention, the reducing agent is added within 20 seconds after adding ammonia to the silver ion solution. By adding a reducing agent within a short period of time after the addition of ammonia, silver is temporarily formed from silver hydroxide (AgOH) or silver oxide (Ag 2 O) that forms temporarily before the silver ammine complex is formed. Crystalline primary particles are formed, and the primary particles are aggregated to form silver fine particles. Within 20 seconds after the addition of ammonia, a large amount of silver hydroxide or silver oxide that does not form an ammine complex remains and becomes a nucleus, which is earlier than when silver cluster nuclei are produced by reduction of silver ions. Since the number of nuclei can be increased and the number of aggregation centers of primary particles can be increased, for example, fine silver particles having an average particle diameter of 2.5 μm or less are obtained. On the other hand, when 20 seconds or more have passed after the addition of ammonia, the silver oxide and silver oxide that are initially formed become a silver ammine complex, and crystalline primary particles having the initial nuclei of silver hydroxide and silver oxide cannot be formed. It is difficult to obtain fine silver fine particles because the number of initial nuclei of silver cluster nuclei generated by the reduction of silver ions is small and the number of aggregation centers of primary particles is also small.

本発明の製造方法は、銀イオン溶液にアンモニアを添加した後に20秒以内に還元剤を添加する方法であるので、銀イオン溶液にあらかじめアンモニアを添加して銀アンミン錯体を形成したものや、銀イオン溶液に先に還元剤を添加したものは用いられない。   Since the production method of the present invention is a method of adding a reducing agent within 20 seconds after adding ammonia to a silver ion solution, a silver ammine complex formed by adding ammonia to a silver ion solution in advance, What added the reducing agent previously to the ionic solution is not used.

本発明の製造方法は、アンモニア添加後20秒以内の範囲において、アンモニア添加後から還元剤を添加するまでの経過時間を調整することによって析出する銀微粒子の粒径を制御することができる。具体的には、経過時間を以下のように銀微粒子の粒径を制御することができる。   The production method of the present invention can control the particle size of silver fine particles deposited by adjusting the elapsed time from the addition of ammonia to the addition of the reducing agent within a range of 20 seconds after the addition of ammonia. Specifically, the particle size of the silver fine particles can be controlled as follows.

(i)上記経過時間を0.3秒〜0.5秒以内に調整して平均粒径0.2μm〜0.5μmの銀微粒子を析出させることができる。
(ii)上記経過時間を0.5秒〜2秒以内に調整して平均粒径0.5μm〜1.5μmの銀微粒子を析出させることができる。
(iii)上記経過時間を2秒〜5秒以内に調整して平均粒径1.5μm〜2.0μmの銀微粒子を析出させることができる。
(iv)上記経過時間を5秒〜20秒以上にして平均粒径2.0μm〜2.5μmの銀微粒子を析出させることができる。
(i) Silver fine particles having an average particle diameter of 0.2 μm to 0.5 μm can be precipitated by adjusting the elapsed time to be within 0.3 seconds to 0.5 seconds.
(ii) Silver fine particles having an average particle diameter of 0.5 μm to 1.5 μm can be precipitated by adjusting the elapsed time to be within 0.5 second to 2 seconds.
(iii) Silver fine particles having an average particle diameter of 1.5 μm to 2.0 μm can be precipitated by adjusting the elapsed time within 2 seconds to 5 seconds.
(iv) Silver fine particles having an average particle size of 2.0 μm to 2.5 μm can be precipitated by setting the elapsed time to 5 seconds to 20 seconds or more.

本発明の製造装置は、銀イオン溶液にアンモニアと還元剤を添加して銀微粒子を還元析出させる製造装置である。その構成例を図1に示す。図示ように、本発明の装置は、銀イオン溶液槽10、アンモニア水溶液槽11、および還元液槽12を有する。銀イオン溶液槽10の管路13とアンモニア水溶液槽11の管路14との交叉位置Aが銀イオン溶液槽11の管路13と還元液槽12の管路15との交叉位置Bよりも銀イオン溶液槽側に設けられている。   The production apparatus of the present invention is a production apparatus for reducing and precipitating silver fine particles by adding ammonia and a reducing agent to a silver ion solution. An example of the configuration is shown in FIG. As illustrated, the apparatus of the present invention includes a silver ion solution tank 10, an aqueous ammonia solution tank 11, and a reducing solution tank 12. The crossing position A between the pipe line 13 of the silver ion solution tank 10 and the pipe line 14 of the aqueous ammonia solution tank 11 is more silver than the crossing position B between the pipe line 13 of the silver ion solution tank 11 and the pipe line 15 of the reducing solution tank 12. It is provided on the ion solution tank side.

上記装置構成において、銀イオン溶液には管路13の交叉位置Aにおいて最初にアンモニア水が添加され、次いで、管路13の交叉位置Bにおいて還元液と混合される。アンモニア添加後から還元液添加までの時間は交叉位置Aから交叉位置Bに至る距離Lによって定まり、アンモニア添加後20秒以内の還元液が添加されるように距離Lが設定されている。   In the above apparatus configuration, ammonia water is first added to the silver ion solution at the crossover position A of the pipe 13 and then mixed with the reducing solution at the crossover position B of the pipe 13. The time from the addition of ammonia to the addition of the reducing liquid is determined by the distance L from the crossover position A to the crossover position B, and the distance L is set so that the reducing liquid is added within 20 seconds after the addition of ammonia.

なお、管路13と管路14との接続箇所を移動可能に形成し、または交叉位置Aから交叉位置Bに至る管路を伸縮可能に形成することによって、交叉位置Aから交叉位置Bに至る距離Lを調整可能に形成することができ、アンモニア添加後から還元液添加までの経過時間を調整可能にすることができる。   It should be noted that the connecting point between the pipe line 13 and the pipe line 14 is formed to be movable, or the pipe line from the crossing position A to the crossing position B is formed to be extendable, so that the crossing position A reaches the crossing position B. The distance L can be adjusted, and the elapsed time from the addition of ammonia to the addition of the reducing solution can be adjusted.

上記装置構成において、交叉位置Bの管路13と管路15はその管端開口が互いに僅かに離れて相対向して設置されているのが好ましい。管端開口が互いに僅かに離れて相対向して設置されていることによって、管路13を通じて流れるアンモニア添加銀イオン溶液と、管路15を通じて流れる還元液とが、管路の外側で混合され、銀微粒子の析出場が管路外の開放空間に形成されるので、管路内壁に銀微粒子が付着することがなく、粗大な剥離粒子が混入する問題を生じないので、均一な粒径の銀微粒子を得ることができる。   In the above apparatus configuration, it is preferable that the pipe line 13 and the pipe line 15 at the crossing position B are installed so that the pipe end openings are slightly separated from each other. By installing the pipe end openings slightly opposite each other, the ammonia-added silver ion solution flowing through the pipe line 13 and the reducing liquid flowing through the pipe line 15 are mixed outside the pipe line, Since the silver fine particle deposition field is formed in an open space outside the pipe, silver fine particles do not adhere to the inner wall of the pipe, and there is no problem of mixing coarse exfoliated particles. Fine particles can be obtained.

以下、本発明を実施例によって具体的に示す。
〔実施例および比較例〕
表1に示す硝酸銀溶(AgNO3液)とアンモニア水(NH3水)を用い、還元剤としてヒドロキノン液(OH(C6H4)OH液)を用い、硝酸銀溶液にアンモニア水を混合重量比8.0〜8.2に保ちながら添加後20秒以内に還元剤を添加して銀微粒子を還元析出させた。還元液を添加するまでの経過時間を表2に示すように調整し、析出した銀微粒子の平均粒径をレーザー散乱法によって測定した。
Hereinafter, the present invention will be specifically described by way of examples.
[Examples and Comparative Examples]
Using silver nitrate solution (AgNO 3 solution) and ammonia water (NH 3 water) shown in Table 1, using hydroquinone solution (OH (C 6 H 4 ) OH solution) as the reducing agent, mixing the ammonia water with the silver nitrate solution While maintaining 8.0 to 8.2, a reducing agent was added within 20 seconds after the addition to reduce and precipitate silver fine particles. The elapsed time until the reducing solution was added was adjusted as shown in Table 2, and the average particle size of the precipitated silver fine particles was measured by a laser scattering method.

本発明の試料A1〜A7の結果を表2に示した。比較試料B1〜B5の結果を表3に示した。硝酸銀溶液にアンモニア水を添加した後に還元剤を添加するまでの経過時間と銀粒子の粒径との関係を図2に示した。試料A1〜A5の銀粒子の粒子状態を示す電子顕微鏡写真を図3〜図7に示した。   The results of the samples A1 to A7 of the present invention are shown in Table 2. The results of Comparative Samples B1 to B5 are shown in Table 3. FIG. 2 shows the relationship between the elapsed time from the addition of aqueous ammonia to the silver nitrate solution and the addition of the reducing agent and the particle size of the silver particles. The electron micrograph which shows the particle state of the silver particle of sample A1-A5 was shown in FIGS.

表2および図2に示すように、(i)上記経過時間が0.3秒〜0.5秒以内のときには平均粒径0.2μm〜0.5μmの銀微粒子が析出する。(ii)上記経過時間が0.5秒〜2秒以内のときには平均粒径0.5μm〜1.5μmの銀微粒子が析出する。(iii)上記経過時間が2秒〜5秒以内のときには平均粒径1.5μm〜2.0μmの銀微粒子が析出する。(iv)上記経過時間が5秒〜20秒以内のときには平均粒径2.0μm〜2.5μmの銀微粒子が析出する。   As shown in Table 2 and FIG. 2, (i) When the elapsed time is within 0.3 seconds to 0.5 seconds, silver fine particles having an average particle diameter of 0.2 μm to 0.5 μm are deposited. (ii) When the elapsed time is within 0.5 second to 2 seconds, silver fine particles having an average particle diameter of 0.5 μm to 1.5 μm are deposited. (iii) When the elapsed time is within 2 seconds to 5 seconds, silver fine particles having an average particle diameter of 1.5 μm to 2.0 μm are deposited. (iv) When the elapsed time is within 5 seconds to 20 seconds, silver fine particles having an average particle diameter of 2.0 μm to 2.5 μm are deposited.

本発明の装置構成の概念図Conceptual diagram of apparatus configuration of the present invention 実施例においてアンモニア添加後の経過時間と銀微粒子の平均粒径のグラフGraph of elapsed time after addition of ammonia and average particle diameter of silver fine particles in Examples 試料A1の銀粒子の粒子状態を示す電子顕微鏡写真Electron micrograph showing the particle state of the silver particles of sample A1 試料A2の銀粒子の粒子状態を示す電子顕微鏡写真Electron micrograph showing the particle state of the silver particles of sample A2. 試料A3の銀粒子の粒子状態を示す電子顕微鏡写真Electron micrograph showing the particle state of the silver particles of sample A3 試料A4の銀粒子の粒子状態を示す電子顕微鏡写真Electron micrograph showing the particle state of the silver particles of sample A4 試料A7の銀粒子の粒子状態を示す電子顕微鏡写真Electron micrograph showing the particle state of the silver particles of Sample A7

符号の説明Explanation of symbols

10−銀イオン溶液槽、11−アンモニア水溶液槽、12−還元液槽、13−銀イオン溶液槽の管路、14−アンモニア水溶液槽の管路、15−還元液槽の管路、A−管路13と管路14の交叉位置、B−管路13と管路15の交叉位置。 10-silver ion solution tank, 11-ammonia aqueous solution tank, 12-reduction liquid tank, 13-silver ion solution tank line, 14-ammonia aqueous solution tank line, 15-reduction liquid tank line, A-tube Crossing position of the line 13 and the pipe line 14, B-crossing position of the pipe line 13 and the pipe line 15.

Claims (5)

銀イオン溶液にアンモニアと還元剤を添加して銀微粒子を還元析出させる方法において、アンモニア添加後20秒以内に還元剤を添加することによって、微細な銀微粒子を析出させることを特徴とする銀微粒子の製造方法。
In a method for reducing and precipitating silver fine particles by adding ammonia and a reducing agent to a silver ion solution, silver fine particles are precipitated by adding a reducing agent within 20 seconds after the addition of ammonia. Manufacturing method.
アンモニア添加から還元剤を添加するまでの時間を調整することによって、析出する銀微粒子の粒径を制御する請求項1の銀微粒子の製造方法。
The method for producing silver fine particles according to claim 1, wherein the particle size of the silver fine particles to be precipitated is controlled by adjusting the time from the addition of ammonia to the addition of the reducing agent.
請求項1または請求項2の方法において、アンモニア添加後から還元剤を添加するまでの時間(経過時間)について、(i)上記経過時間を0.3〜0.5秒以内にして平均粒径0.2〜0.5μmの銀微粒子を析出させる方法、(ii)上記経過時間を0秒〜2秒以内にして平均粒径0.5μm〜1.5μmの銀微粒子を析出させる方法、(iii)上記経過時間を2秒〜5秒以内にして平均粒径1.5μm〜2.0μmの銀微粒子を析出させる方法、または(iv)上記経過時間を5〜20秒以内にして平均粒径2.0μm〜2.5μmの銀微粒子を析出させる方法。
3. The method according to claim 1 or 2, wherein the time (elapsed time) from the addition of ammonia to the addition of the reducing agent is set as follows: (i) The average particle size is set within the range of 0.3 to 0.5 seconds. (Ii) a method of precipitating silver fine particles having an average particle diameter of 0.5 μm to 1.5 μm by depositing silver fine particles of 0.2 to 0.5 μm, and (iii) ) A method of precipitating silver fine particles with an average particle size of 1.5 μm to 2.0 μm with the elapsed time within 2 to 5 seconds, or (iv) An average particle size of 2 with the elapsed time within 5 to 20 seconds. A method of depositing silver fine particles of 0.0 μm to 2.5 μm.
銀イオン溶液にアンモニアと還元剤を添加して銀微粒子を還元析出させる製造装置であって、銀イオン溶液槽、アンモニア水溶液槽、および還元液槽を有し、銀イオン溶液槽の管路とアンモニア水溶液槽の管路との交叉位置Aが銀イオン溶液槽の管路と還元液槽の管路との交叉位置Bよりも銀イオン溶液槽側に設けられていることを特徴とする銀微粒子の製造装置。
A manufacturing apparatus for reducing and precipitating silver fine particles by adding ammonia and a reducing agent to a silver ion solution, having a silver ion solution tank, an aqueous ammonia solution tank, and a reducing solution tank, and a silver ion solution tank line and ammonia The silver fine particle characterized in that the crossing position A with the pipe of the aqueous solution tank is provided closer to the silver ion solution tank than the crossing position B of the pipe of the silver ion solution tank and the pipe of the reducing liquid tank. Manufacturing equipment.
交叉位置Bにおいて両管路が僅かに離れて相対向して設置されており、交叉位置Aから交叉位置Bに至る距離が調整可能である請求項4の製造装置。 5. The manufacturing apparatus according to claim 4, wherein both pipe lines are installed slightly opposite to each other at the crossover position B, and the distance from the crossover position A to the crossover position B can be adjusted.
JP2007095660A 2007-03-30 2007-03-30 Method for producing silver particulate Withdrawn JP2008255378A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007095660A JP2008255378A (en) 2007-03-30 2007-03-30 Method for producing silver particulate
KR1020097016576A KR20090128380A (en) 2007-03-30 2008-03-31 Fine silver particle, process for producing fine silver particle, and apparatus for producing fine silver particle
CN2008800069565A CN101626856B (en) 2007-03-30 2008-03-31 Fine silver particle, process for producing fine silver particle, and apparatus for producing fine silver particle
PCT/JP2008/056319 WO2008123494A1 (en) 2007-03-30 2008-03-31 Fine silver particle, process for producing fine silver particle, and apparatus for producing fine silver particle
TW97111682A TWI468240B (en) 2007-03-30 2008-03-31 Silver fine particles, method for manufacturing silver fine particles, and apparatus for manufacturing silver fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007095660A JP2008255378A (en) 2007-03-30 2007-03-30 Method for producing silver particulate

Publications (1)

Publication Number Publication Date
JP2008255378A true JP2008255378A (en) 2008-10-23

Family

ID=39979255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007095660A Withdrawn JP2008255378A (en) 2007-03-30 2007-03-30 Method for producing silver particulate

Country Status (1)

Country Link
JP (1) JP2008255378A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023210662A1 (en) * 2022-04-28 2023-11-02 Dowaエレクトロニクス株式会社 Spherical silver powder, production method for spherical silver powder, spherical silver powder production device, and electrically conductive paste
WO2023210663A1 (en) * 2022-04-28 2023-11-02 Dowaエレクトロニクス株式会社 Spherical silver powder, method for producing spherical silver powder, apparatus for producing spherical silver powder, and conductive paste

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023210662A1 (en) * 2022-04-28 2023-11-02 Dowaエレクトロニクス株式会社 Spherical silver powder, production method for spherical silver powder, spherical silver powder production device, and electrically conductive paste
WO2023210663A1 (en) * 2022-04-28 2023-11-02 Dowaエレクトロニクス株式会社 Spherical silver powder, method for producing spherical silver powder, apparatus for producing spherical silver powder, and conductive paste

Similar Documents

Publication Publication Date Title
Tang et al. Spontaneous transformation of stabilizer‐depleted binary semiconductor nanoparticles into selenium and tellurium nanowires
JP4344001B2 (en) Composition containing fine silver particles, method for producing the same, method for producing fine silver particles, and paste having fine silver particles
JP2010070793A (en) Spherical silver powder and method for producing the same
JP5827341B2 (en) Reactor for silver powder production and continuous production method
CN101778799B (en) Spherical assembly particle composition of cuprous oxide and preparation method thereof
WO2021136059A1 (en) Preparation system and method capable of controlling size of nano-conductor/semiconductor material
JP5725699B2 (en) Silver powder and method for producing silver powder
JP5224022B2 (en) Method and apparatus for producing silver fine particles
JP2005146408A (en) Superfine silver particulate-stuck silver powder, and method for producing the superfine silver particulate-stuck silver powder
JP2009540111A (en) Method for producing highly dispersible spherical silver powder particles and silver particles formed therefrom
JP6168837B2 (en) Copper fine particles and method for producing the same
JPH10317022A (en) Production of metallic particulate powder
JP2010534932A (en) Method for forming electrically conductive copper pattern layer by laser irradiation
JP2007191786A (en) Nickel powder and method for producing nickel powder
JP2010144197A (en) Metal powder, and method for producing the same
JP2008255378A (en) Method for producing silver particulate
CN101626856B (en) Fine silver particle, process for producing fine silver particle, and apparatus for producing fine silver particle
JP2008255377A (en) Method for producing silver particulate
WO2018142943A1 (en) Method for manufacturing highly crystalline silver particles
JP2004068072A (en) Manufacturing method of silver particulate colloid dispersion solution
JP5163843B2 (en) Method for producing silver fine particles
JP2008121043A (en) Fine particle, fine particle dispersion, method for producing fine particle and method for producing fine particle dispersion
JP2017039991A (en) Silver-coated copper powder, method for producing the same, and conductive paste using the same
TWI468240B (en) Silver fine particles, method for manufacturing silver fine particles, and apparatus for manufacturing silver fine particles
JP2005097677A (en) Method for manufacturing copper particulate and copper particulate dispersion liquid

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100601