JP2008547019A - 放射線走査用の中性子放射の低いx線放射線源 - Google Patents

放射線走査用の中性子放射の低いx線放射線源 Download PDF

Info

Publication number
JP2008547019A
JP2008547019A JP2008518174A JP2008518174A JP2008547019A JP 2008547019 A JP2008547019 A JP 2008547019A JP 2008518174 A JP2008518174 A JP 2008518174A JP 2008518174 A JP2008518174 A JP 2008518174A JP 2008547019 A JP2008547019 A JP 2008547019A
Authority
JP
Japan
Prior art keywords
target
housing
acceleration energy
neutron generation
peak acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008518174A
Other languages
English (en)
Inventor
クレイトン,ジェームズ,イー.
Original Assignee
ヴァリアン メディカル システムズ テクノロジーズ インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヴァリアン メディカル システムズ テクノロジーズ インコーポレイテッド filed Critical ヴァリアン メディカル システムズ テクノロジーズ インコーポレイテッド
Publication of JP2008547019A publication Critical patent/JP2008547019A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/005Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using neutrons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/531Nuclear device

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Particle Accelerators (AREA)
  • X-Ray Techniques (AREA)

Abstract

一実施例において、放射線源は、筐体および筐体内の加速室を備え、ピーク加速エネルギーはタンタルの最低中性発生閾値よりも高い。荷電粒子源は、筐体により支えられ、加速室内に荷電粒子を放射する。標的は、加速室の下流にある筐体により支えられる。標的は、本質的に、ピーク加速エネルギーよりも大きな中性子発生閾値を有する少なくとも1つの同位体からなる。したがって、中性子は発生しない。線源は、さらに、従来技術に比べて中性子発生を低減するか、または発生しなくする、ピーク加速エネルギーよりも高い中性子発生閾値を有する少なくとも1つの同位体を含むコリメータ、標的遮蔽、および/または筐体遮蔽を備えることもできる。線源を備えるシステム、線源を動作させる方法、および線源を製造する方法も開示される。

Description

本発明は、X線放射源、およびより具体的には、物体の放射線走査を行うための中性子放射の低いX線放射源に関する。
X線放射源は、一般に、物体の非破壊検査用の放射線検査システムにおいて使用される。X線放射は、タングステンまたはタンタルなどの高原子番号(「Z」)標的物質に加速された電子のビームを衝突させることによりそのような線源内で発生させることができる。電子は、加速エネルギーと呼ばれる、加速室を横切る形で確立される電位差により加速される。標的物質の原子の原子核による入射電子の減速は、制動放射と呼ばれる、放射を発生させる。発生した放射線の一部を検査対象の物体に当てて、発生した放射線を所望のサイズおよび形状に形成するために、コリメータが備えられる。物体を透過した、および/または物体から散乱された放射線を測定するため1つまたは複数の放射線検出器が備えられている。放射線源の本体も遮蔽することができる。放射線が放射線検査システムから漏れ出るのを防ぐために、さらに全体としてシステムの周りに遮蔽が設けられる。
手荷物および機内持ち込み用バッグなどの小さな物体は、典型的には、キロボルト範囲の放射線により調べられる。しかし、キロボルト範囲の放射線は、厚さ約5フィート(1.52メートル)を超える物体を、特に物体が高密度物質で満たされている場合には貫通できない。標準的貨物専用コンテナは、典型的には、長さ20〜50フィート(6.1〜15.2メートル)、高さ8フィート(2.4メートル)、幅6〜9フィート(1.8〜2.7メートル)である。空輸貨物専用コンテナは、飛行機の機体内に格納される複数の手荷物または他の貨物を収納するために使用され、サイズ(長さ、高さ、幅(厚さ))は約35×21×21インチ(0.89×0.53×0.53メートル)から最大約240×118×96インチ(6.1×3.0×2.4メートル)までの範囲とすることができる。多数の手荷物などの物体の大きな集合体は、さらに、パレットで支えることもできる。パレットは、支持側壁を備えることができ、少なくとも物体を支持するときに貨物専用コンテナに匹敵するサイズのものとしてよい。「貨物輸送」という用語は、すべての種類の貨物専用コンテナおよび物体を支持する同等のサイズのパレット(および他のそのようなプラットフォーム)を指す。
密度の低い物質を貫通するよりも密度の高い物質を貫通する方が、また薄い物質を貫通するよりも厚い物質を貫通する方が、高いエネルギー放射線ビームを必要とする。上述の典型的なX線手荷物バッグ走査装置で使用される低エネルギーは、一般的に低すぎて、かなり大きな、特に幅または厚さが5フィート(1.5メートル)以上の貨物専用コンテナを貫通することができない。必要なエネルギー準位は、コンテナの内容物およびコンテナの幅に依存するが、メガボルト範囲の放射線が、典型的には必要である。例えば、6MeVから10MeVを使用することができる。9MeVが一般的に使用されるが、それは内容物に関係なく大半の貨物専用コンテナを貫通するからである。しかし、タングステン、タンタル、およびモリブデンなどの、X線放射線源で一般に使用される高Z金属および中間Z金属は、約6MeVから約10MeVまでの範囲の中性子発生閾値(同位体の原子核から中性子を除去するのに必要なエネルギー)を有する安定同位体を含む。例えば、タングステンの同位体について計算で求められた中性子発生閾値は、6.191MeVから8.415MeVまでの範囲である。タンタルの安定同位体に対する計算で求められた中性子発生閾値は、7.651MeVである。モリブデンの安定同位体について計算で求められた中性子発生閾値は、7.369MeVから12.667MeVまでの範囲である。6MeVから10MeVまでは、貨物輸送を調べるための一般的範囲であるため、中性子が、典型的には生成される。
単位体積当たり低い原子番号の金属に比べて大量の光子を吸収する能力があるため、タングステンおよび鉛などの高Z金属も、典型的には、標的を遮蔽し、放射線ビームをコリメートするために使用される。鉛の安定同位体では、計算で求められた中性子発生閾値は、6.737MeVから8.394MeVまでの範囲である。物体を調べるために使用される生成されたX線放射は、遮蔽物質およびコリメータの中性子発生閾値を超えるエネルギーを有し、中性子も発生される。
中性子は、走査システムの近くにいる人々に害を及ぼす可能性があるため、走査システムまたは走査システムが収められている部屋から中性子が漏れ出るのを防ぐために、厚い遮蔽が必要になることがある。すると、システムのサイズおよびコストが増大しかねない。走査システムを収めた部屋を遮蔽し、中性子およびX線が部屋から漏れ出るのを防止または漏れ出る可能性のある中性子およびX線の量を減らすために、コンクリート壁が一般に使用される。スペースまたは他の要求条件のせいで、コンクリート壁を使用できない場合、多層壁を使用できる。例えば、ポリエチレンまたはホウ素含有ポリエチレンの厚い壁を内層として使用して中性子を遮蔽し、鉛または鋼鉄を外層として使用し、X線を遮蔽することができる。外層は、さらに、ポリエチレンにより放射されるガンマ線も遮蔽する。
カリフォルニア州パロアルト所在のVarian Medical Systems,Inc.(「Varian」)社は、検出器アレイも支える回転可能ガントリーにより支えられる薬物療法用のX線放射線源を販売している。ガントリー、線源、および検出器は、CLINAC(登録商標)という商標名で販売されている集積回路を備える。放射線源は、銅製標的とタングステン製遮蔽を備える。銅は、治療目的用の十分なX線放射線を発生し、タングステンよりも安価である。CLINAC(登録商標)は、4MeV、6MeV、10MeVおよびそれ以上のものが市販されている。銅は、2つの安定同位体、計算された中性子発生閾値が9.910MeVである銅65および計算された中性子発生閾値が10.852MeVである銅63を有する。CLINAC(登録商標)の10MeV以上のモデルでは、加速エネルギーが銅65およびタングステンの中性子発生閾値よりも高いので、中性子が発生される。コリメータは、タングステンと鉛の組み合わせを備え、これがさらに中性子を発生する。タングステン遮蔽は、中性子も発生する。
放射線療法など、薬物療法で使用されるX線源からの中性子放射を低減する努力が続けられてきた。例えば、「Neutron Contamination from Medical Electron Accelerators」NRCP Report No. 79, National Council on Radiation Protection and Measurements, Bethesda, Maryland, pp.59-60 (1995)を参照のこと。既存の線源で利用できる空間内で、放射線の1有効光子ラド当たりの発生される中性子の個数を減らすことは困難であると言われている。(同上)タングステンまたは鉛の代わりに、鉄などの中間Z金属に不要な中性子を吸収させることにより中性子放射を低減することができることが注目されるが、また、タングステンまたは鉛よりもかなり多くの鉄が必要とされ、この低減を完全に利用しようにも空間が不足していることも注目される(同上)。
Varian社は、さらに、1〜10MeVの範囲のX線放射を発生するLinatron(登録商標)シリーズのX線源も販売している。これらの線源では、標的は、タングステンであり、典型的には円板形態である。銅の円板が電子ビームの、タングステンの下流側に取り付けられており、熱を放散し、タングステン標的を通過する電子の最終電子ストッパーとして機能する。タングステン標的は、一次X線放射源である。銅円板でも、電子がタングステン標的を通過することにより少量のX線放射が発生しうると考えられている。線源の加速エネルギーがタングステンの中性子発生閾値よりも大きい場合、中性子が発生されうる。
本発明の一実施形態によれば、筐体および筐体に入っている加速室を備える放射線源が開示される。加速室は、使用時に、タンタルの中性子発生閾値を超えるピーク加速エネルギーを有する。荷電粒子源は、筐体により支えられ、加速室内に荷電粒子を放射する。標的は、加速室の下流にある筐体により支えられる。加速された荷電粒子による標的の衝撃が、放射線を発生する。標的は、本質的に、ピーク加速エネルギーよりも大きな中性子発生閾値を有する少なくとも1つの同位体からなる。ピーク加速エネルギーは、例えば、約7.7MeVよりも大きいものとしてよい。タンタルのピーク加速エネルギーよりも高いピーク加速エネルギーを持つ線源では、中性子発生閾値がピーク加速エネルギーよりも小さい同位体を含む、タングステン、タンタル、またはモリブデンを標的が含む場合、中性子が発生する。
一実施例では、ピーク加速エネルギーが8MeV以下である場合、標的は、炭素、アルミニウム、スカンジウム、チタン、バナジウム、マンガン、コバルト、および銅の少なくとも1つの同位体からなる群から選択される。他の実施例では、ピーク加速エネルギーが8MeV超、9MeV以下である場合、標的は、アルミニウム、スカンジウム、バナジウム、マンガン、コバルト、および銅の少なくとも1つの同位体からなる群から選択される。他の実施例では、ピーク加速エネルギーが9MeV超、10MeV以下である場合、標的は、アルミニウム、スカンジウム、マンガン、およびコバルトの少なくとも1つの同位体からなる群から選択される。他の実施例では、ピーク加速エネルギーが10MeV超、11MeV未満である場合、標的は、スカンジウムおよびアルミニウムの少なくとも1つの同位体からなる群から選択される。他の実施例では、ピーク加速エネルギーが11MeV超、約13.1MeV未満である場合、標的は、アルミニウムである。銅は、ピーク加速エネルギーが約9.9MeV未満である場合に好ましい物質である。
線源は、さらにコリメータ、標的遮蔽、および筐体遮蔽を備えることができる。これらのコンポーネントのどれも、またはすべては、ピーク加速エネルギーよりも大きな中性子発生閾値を有する少なくとも1つの同位体も含むことができる。
本発明の他の実施形態によれば、筐体および筐体に入っている加速室を備える放射線源が開示される。加速室は、使用時に、タングステンの最低中性子発生閾値を超えるピーク加速エネルギーを有する。荷電粒子源は、筐体により支えられ、加速室内に荷電粒子を放射する。標的は、加速室の下流にある筐体により支えられる。ピーク加速エネルギーは、同様に、モリブデンまたはタンタルの最低中性子発生閾値よりも大きくなる可能性がある。ピーク加速エネルギーは、約6.2MeV、6.8MeV、または7.7MeVよりも大きいものとしてよい。コリメータの実施形態では、コリメータは、タングステン材料の近くにある筐体に結合され、コリメータは、ピーク加速エネルギーよりも高い中性子発生閾値を有する少なくとも1つの同位体を含む。標的遮蔽の実施形態では、標的遮蔽は、標的の少なくとも一部を囲み、標的遮蔽は、ピーク加速エネルギーよりも高い中性子発生閾値を有する少なくとも1つの同位体を含む。
本発明の利点のいくつかは、線源の特定のコンポーネントのみが、本質的に、中性子発生閾値が線源のピーク加速エネルギーよりも大きい少なくとも1つの同位体からなる場合に得られることに留意されたい。したがって、コリメータの実施形態では、コリメータは、中性子発生閾値がピーク加速エネルギーよりも大きい、本質的に少なくとも1つの同位体からなる少なくとも1つの第1のセクションと中性子発生閾値がピーク加速エネルギーよりも大きい少なくとも1つの同位体を含む少なくとも1つの第2のセクションを備えることができる。標的遮蔽の実施形態において、標的遮蔽は、中性子発生閾値がピーク加速エネルギーよりも大きい、本質的に少なくとも1つの同位体からなる少なくとも1つの第1のセクションと中性子発生閾値がピーク加速エネルギーよりも大きい少なくとも1つの同位体を含む少なくとも1つの第2のセクションを備えることができる。いずれの場合も、中性子発生は、従来技術のコリメータおよび標的遮蔽を放射線源において使用することに比べて低減される。コリメータおよび/または標的遮蔽は、銅を含むことができる。
他の実施形態によれば、筐体および筐体に入っている加速器室を備える放射線源が開示される。この実施形態では、加速室は、銅の最低中性子発生閾値未満のピーク加速エネルギーを有する。荷電粒子源は、筐体により支えられ、加速器室内に荷電粒子を放射し、標的は、加速器室の下流の筐体により支えられる。コリメータは、標的の近くで筐体に結合される。標的遮蔽は、標的を遮蔽するために、少なくとも部分的に標的を囲む。標的、コリメータ、および標的遮蔽は、銅を含む。ピーク加速エネルギーは、例えば、約9.9MeVよりも小さいものとしてよい。ピーク加速エネルギーは、約9MeV以下としてよい。ピーク加速エネルギーは、同様に、タングステン、モリブデン、またはタンタルの最低中性子発生閾値よりも大きくなることがある。ピーク加速エネルギーは、約6.1MeV、6.8MeV、または7.7MeVよりも大きいものとしてよい。
コリメータは、標的の近くにある、本質的に銅からなる第1のセクションと、第1のセクションの下流にある、ピーク加速エネルギーよりも小さい中性子発生閾値を有する少なくとも1つの同位体を含む第2のセクションを備えることができる。標的遮蔽は、標的の近くにある、本質的に銅からなる第1のセクションと、第1のセクションの上流にある、ピーク加速エネルギーよりも小さい中性子発生閾値を有する少なくとも1つの同位体を含む第2のセクションを備えることができる。線源は、さらに、筐体を遮蔽するための筐体遮蔽を備えることができ、筐体遮蔽は、銅を含む。鉛遮蔽は、コリメータと標的遮蔽の少なくとも一部分を囲むことができる。
本発明の他の実施形態によれば、上述のように放射線源が開示されており、標的は、本質的に、線源のピーク加速エネルギーよりも高い中性子発生閾値を有する少なくとも1つの同位体を含む低い原子番号の物質からなる。
本発明の他の実施形態によれば、荷電粒子をタンタルの最低中性子発生閾値を超えるピーク加速エネルギーまで加速することおよび荷電粒子を、ピーク加速エネルギーよりも小さい中性子発生閾値を有する、本質的に少なくとも1つの同位体からなる標的に衝突させることを含む放射線を発生する方法が開示される。この方法は、さらに、中性子を発生させることなく、荷電粒子を標的に衝突させることで放射線を発生させることを含む。この方法は、さらに、ピーク加速エネルギーよりも大きな中性子発生閾値を有する少なくとも1つの同位体を含むコリメータにより発生した放射線をコリメートとすることを含むことができる。この方法は、さらに、ピーク加速エネルギーよりも大きな中性子発生閾値を有する少なくとも1つの同位体を含む遮蔽物質で標的を遮蔽することを含むことができる。この方法は、さらに、ピーク加速エネルギーよりも大きな中性子発生閾値を有する少なくとも1つの同位体を含む遮蔽物質で筐体を遮蔽することを含むことができる。ピーク加速エネルギーは、例えば、約7.7MeVよりも大きいものとしてよい。
本発明の他の実施形態によれば、物体を照射するように配置された放射線源および物体と相互作用した後に放射線を受け取る検出器を備える物輸送を調べるためのシステムが開示される。放射線源は、筐体および筐体により支えられる加速室を備える。加速室は、銅の最低中性子発生閾値よりも小さく、タングステンの最低中性子発生閾値を超えるピーク加速エネルギーを有する。ピーク加速エネルギーは、例えば、約9.9MeVよりも小さいものとしてよい。ピーク加速エネルギーは、例えば、6.1MeVよりも大きいものとしてよい。荷電粒子源は、筐体により支えられ、加速室内に荷電粒子を放射し、標的は、加速室の下流の筐体により支えられる。標的は、本質的に、銅の少なくとも1つの同位体からなる。線源のピーク加速エネルギーで中性子を発生しない他の物質の他の同位体を、中性子発生に関して標的の基本特性に実質的な影響を及ぼすことなく含めることができる。コリメータは、筐体に結合され、標的遮蔽は、筐体により、部分的に標的の周りで支えられる。コリメータおよび標的遮蔽のいずれかまたは両方は、銅も含む。システムは、さらに、筐体の少なくとも一部の上で物質を遮蔽することを含むことができ、これは、さらに、ピーク加速エネルギーよりも小さい中性子発生閾値を有する少なくとも1つの同位体も含む。貨物輸送を支え、運ぶように適合されたコンベヤーも、備えることができる。貨物輸送は、厚さが5フィート以上としてよい。貨物輸送は、標準貨物輸送としてよい。ピーク加速エネルギーは、少なくとも約6.2MeVとすることができる。ピーク加速エネルギーは、少なくとも約7.7MeVとしてよい。
本発明の他の実施形態によれば、少なくとも1つの同位体が線源のピーク加速エネルギーよりも小さい中性子発生閾値を有する標的、コリメータ、および標的遮蔽のうちの少なくとも1つ(つまり、標的、コリメータ、および/または標的遮蔽)を選択することと、選択された物質を含む線源を組み立てることとを含む、放射線源を製造する方法が開示される。この方法は、さらに、ピーク加速エネルギーよりも小さい中性子発生閾値を有する、本質的に少なくとも1つの同位体からなる筐体遮蔽を選択することと、選択された筐体遮蔽物質で線源を組み立てることとを含むことができる。
この方法は、さらに、少なくとも中性子発生要件を満たす放射線源の予備設計を準備することと、予備設計をシミュレーションに投入して中性子発生を予測することと、シミュレーションの出力を受け取ることと含むことができる。出力が要件を満たしていない場合、この方法は、さらに、設計を調整することと、調整された設計をシミュレーションに投入して中性子発生を予測することとを含むことができる。この方法は、さらに、サイズ要件および/またはX線放射線発生要件に基づいて予備設計を準備することを含むことができる。
本明細書で使用されているように、「約」という用語は、丸め誤差および典型的な測定能力による差を指し、「少なくとも1つの」という言いまわしは、「1つまたはそれ以上の」を意味し、「本質的に、からなる」という言いまわしは、線源のピーク加速エネルギーで中性子を発生しない他の物質の同位体を含めることができることを意味し、「ピーク加速エネルギー」という用語は、「最大」加速エネルギーを意味する。
本発明のいくつかの実施形態によれば、X線放射線源などの放射線源は、中性子発生閾値が線源のピーク加速エネルギーを超える物質を使用することにより線源、コリメータ、および/または遮蔽用の典型的な物質を含む放射線源と比較して、中性子発生をもたらさないか、または中性子発生の低減を示す。(上述のように、本明細書では、「ピーク加速エネルギー」という用語は、「最大」加速エネルギーを意味する)。例えば、銅製標的、銅製コリメータ、および標的と筐体の銅製遮蔽を含むピーク加速エネルギーが約9.9MeV未満のX線源は、中性子を発生しない。サイズ、重量、および/またはコストの制約条件があるため、線源のピーク加速エネルギーよりも低い中性子発生閾値を持つ物質のみを使用することが実現可能でない場合、特定のコンポーネントの全部または一部にそのような物質を使用することにより、中性子発生を低減することができる。物質を適切に選択することにより、ピーク加速エネルギー、したがって約6.2MeVから約13.1MeV未満までの範囲のピーク放射エネルギーを持つ放射線源において、中性子発生をなくすか、または中性子発生を低減することができる。
中性子発生が低減されるか、または中性子発生がないということの利点の1つは、走査システムを収めた部屋を含む、線源および走査システム全体の遮蔽の物理的サイズを縮小することができるという点にある。さらに、中性子捕獲反応による検査対象の物体および走査室の、またはその中の特定のいくつかの物質の活性化のリスクも低減されうる。
使用することができる物質のクラスは、本明細書では、「原子番号の低い物質」または「低Z物質」と呼ばれるが、それは、これらの物質が、従来技術でよく使われている物質であるタングステン(Z=74)、タンタル(Z=73)、鉛(Z=82)、およびモリブデン(42)よりも著しく小さい原子番号(「Z」)を有するからである。例えば、銅は、原子番号29を有する。一実施例では、低Z物質の原子番号Zは30以下とすることができる。特定の用途に適切な原子番号の低い物質は、線源のピーク加速エネルギーよりも大きな最低中性子発生閾値を持ち、その物質により中性子は発生しない。
サイズの違いのため、標的に比べて、遮蔽およびコリメータ物質の方が、さらに多くの中性子を発生しうる。また、すべての低Z物質が、厚さ5フィート(1.524メートル)を超える可能性のある、貨物輸送を調べる場合の有効範囲である、約6MeVから10MeVまでの貨物輸送を調べるための好ましいピーク加速範囲において適切であるとは限らないことに留意されたい。例えば、原子番号が4である、ベリリウムは、すべての元素の最低中性子発生閾値を1.665MeVで有する。
図1は、本発明の一実施形態による、X線直線加速器などの、放射線源100の一実施例の概略断面図である。直線加速器100は、加速室120を定める筐体110を備える。筐体は、入力125および出力130を定める。標的140は、筐体110の出力130内、またはその近くで支えられる。標的140は、加速された荷電粒子による衝撃に応答して制動放射線を発生する物質である。一実施例では、標的140は、好ましくは、本質的に、加速室120の加速度ポテンシャルよりも小さい中性子発生閾値を有する低Z物質の同位体からなる。例えば、銅を使用することができる。電子銃150が、入力125を貫通する。電子銃は、加速室120内に支えられている、フィラメント160を備える。加速室内に電磁場を発生させるために、マグネトロン165が加速室120に結合されている。電磁場は、加速室120内で、フィラメント160により生成された電子を所望のエネルギー準位まで加速する。加速された電子は、電子ビーム170を形成し、このビームは、出力130において標的140に衝突し、X線放射175のビームの形態で光子の放射を引き起こす。例えば、筐体110は、薄い銅壁を含むことができる。
この実施例では、標的遮蔽物質180は、標的140の周囲を囲み、電子ビームに垂直な方向にX線放射線が漏れ出るのを防ぐ。筐体遮蔽182は、必要ならば、筐体110の周りに備えることができる。筐体遮蔽182が必要かどうかは、加速器設計、標的遮蔽180、および必要な減衰レベルに依存しうる。加速器がソレノイドを使用するか、または他の何らかの方法により標的140上に電子ビームを狭く集束し、および/または必要な減衰が低い場合、迷走電子を遮蔽するために、筐体遮蔽が必要でないと思われる。標的遮蔽180が標的の背後に十分に広がっている場合、筐体遮蔽182は、標的の背後で放射される放射線を遮蔽するのに必要ないと思われる。図4〜6の実施形態は、そのような設計を示している。本発明のこの実施形態によれば、標的遮蔽180および筐体遮蔽182がもし存在すればその全部または一部も、線源のピーク加速エネルギーより小さい中性子発生閾値を有する適切な低Z物質の同位体を含み、遮蔽による中性子発生が回避されるが、これは必要なことではない。例えば、銅を使用することができる。標的遮蔽180および筐体遮蔽182は、単一物質片または1つまたは複数の物質片としてよい。遮蔽物質180および182は、同じであっても、または異なっていてもよい。
コリメータ190は、筐体110の遠位端に結合される。これは、例えば、標的遮蔽182および筐体遮蔽182に接続することができる。コリメータ190の物質は、放射線175を通すことができる通路195を定める。通路は、放射線ビーム175を定めるような形状である。本発明の実施形態によれば、コリメータ190の全部または一部は、中性子の発生を回避するため低Z物質の同位体で構成されるが、これも、必要というわけではない。例えば、銅を使用することができる。コリメータ190は、さらに、単一物質片または複数の物質片を含むこともできる。
遮蔽物質180、182およびコリメータ190の厚さは、直線加速器100上の場所が異なると変化しうる。1MeVを超えるピークエネルギーでは、標的から放射される放射線の強度は、標的140を通る電子ビーム170の経路の軸にそって、順方向で最大となる。強度は、軸からの角度が大きくなるにつれ減少する。したがって、コリメータ190は、遮蔽物質180、182よりも厚くなりうる。遮蔽物質180、182は、さらに、当業で知られているように、角度が軸に近づくほど厚くなりうる。標的140が、中性子発生閾値が線源のピーク加速エネルギーを超える、適切な低Z物質でできている場合、中性子を遮蔽する必要がないため、遮蔽180、182およびコリメータ190は、標的が高Z物質である場合ほどは厚くなくてよい。
線源100の異なるコンポーネントは、異なる物質を含むことができる。例えば、天然銅標的140、天然銅遮蔽180a、180b、および天然鉄コリメータ190は、7.646MeVの鉄57の中性子発生閾値よりも小さいピークエネルギーで動作するX線源100で使用することができる。
低Z物質は、異なる中性子発生閾値を有する異なる安定同位体を持つことができる。したがって、中性子の所望の低減または排除を実現するために標的140、遮蔽180、182、およびコリメータ190に適した物質を選択するときに低Z物質の同位体組成が考慮されなければならない。すべての中性子発生を回避するために、すべての同位体に対する中性子発生閾値が特定の放射線源のピークエネルギーよりも大きくなるように、標的140、遮蔽180、182、およびコリメーティング物質190が選択される。一実施例では、天然に存在する銅は、計算された中性子発生閾値10.852MeVを有する69.17%の銅63、および計算された中性子発生閾値9.910MeVを有する30.83%の銅65を含む。したがって、天然に存在する銅は、中性子発生が0の場合に、9.910MeVよりも低いピーク加速エネルギーで動作する線源に対し標的140、遮蔽180、182、およびコリメータ190物質として使用することができる。同位体的に純粋な銅63は、10.852MeVよりも低いピーク加速エネルギーで動作する線源に対し標的140、遮蔽180、182、およびコリメータ190物質として使用することができる。
他の実施例では、天然に存在する鉄は、計算された中性子発生閾値が11.197MeVである91.75%の鉄56、計算された中性子発生閾値が13.37MeVである5.85%の鉄54、計算された中性子発生閾値が7.646MeVである2.12%の鉄57、および計算された中性子発生閾値が10.044MeVである0.28%の鉄58を含む。したがって、天然に存在する鉄が、標的140、遮蔽180、182、およびコリメータ190として使用される場合、7.646MeVよりも低いピーク加速エネルギーで動作するX線源は、中性子を発生しない。鉄56のみからなる同位体的に純粋な鉄遮蔽は、中性子を発生することなく、最大11.197MeVまでのピーク加速エネルギーで動作するX線源100において標的140、遮蔽180a、180b、およびコリメータ190として使用することが可能であろう。
鉄標的が10.044MeVまで(ただし、それより小さい)で動作するX線源において使用される場合、標的140、遮蔽180、182、およびコリメータ190の約2.12%のみが、中性子を発生することに留意されたい。したがって、10.044MeV未満のピークエネルギーでは、天然に存在する鉄標的140、遮蔽180、182、およびコリメータ190は、タングステンを使用した場合に比べて、中性子発生の量が著しく少ないが、排除されるわけではない。ある量の中性子発生が許容されうるが、タングステン、タンタル、モリブデン、または鉛が使用される場合に比べて中性子発生が少ないことが望まれている場合、線源のピークエネルギーよりも低い中性子発生閾値を有する特定のいくつかの同位体および線源のピークエネルギーよりも高い中性子発生閾値を有する特定のいくつかの同位体を持つ金属を選択することができる。例えば、ピーク加速エネルギーが8.5MeVである線源において、標的140、遮蔽180、182、およびコリメータ190に使用できる材料は、マグネシウム(計算された中性子発生閾値7.331MeVを有するマグネシウム24からなる10%)、鉄(計算された中性子発生閾値7.646MeVを有する鉄57からなる2.12%)、ニッケル(計算された中性子発生閾値7.82MeVを有するニッケル61からなる3.63%)、および亜鉛(計算された中性子発生閾値7.051MeVを有する亜鉛67からなる4.10%)である。このグループからの異なる物質を、標的140、遮蔽180、182、およびコリメータ190に使用することができる。このような低減は、特定の用途において有利な場合もある。例えば、遮蔽に対する要件を引き下げることができる。
中性子発生を低減するが、必ずしも完全に除去するわけではない構成の他の実施例では、例えば、標的140などのいくつかのコンポーネントは、適切な低Z物質とすることができるが、コリメータ190、標的遮蔽180、および/または筐体遮蔽182などの1つまたは複数の他のコンポーネントは、例えば、タングステン、タンタル、または鉛などの、中性子を発生しうる高Z物質を含むことができる。タングステン、タンタル、鉛、または他のそのような物質の使用は、X線放射線の適切な発生または遮蔽をもたらすことができ、したがって、いくつかのコンポーネント、またはいくつかのコンポーネントのうちの一部について、後述のように、例えば、線源に対する性能およびサイズ要件を満たすうえでそれらの物質を使用する必要がある場合がある。したがって、本発明の他の実施形態によれば、中性子発生は、そのコンポーネントにタングステン、タンタル、モリブデン、または鉛を使用する場合と比べて、必ずしもすべてではなく、少なくとも1つのコンポーネントに対し適切な低Z物質を使用することにより低減される。
同位体的に精製された高Z原子物質を標的140、遮蔽180、182、および/またはコリメータ190として使用することで、さらに、中性子発生を低減するか、または除去することもでき、高Z物質を使用することの利点の一部または全部を活かせる。例えば、計算された中性子発生閾値8.064MeVを有する、同位体的に純粋なタングステン182は、中性子を発生することなく、8.064MeV未満のピーク加速エネルギーを有する線源において使用することができる。9.677MeVのピーク加速エネルギーを有する、同位体的に純粋なモリブデン94は、中性子を発生することなく、9.677MeV未満のピーク加速エネルギーを有する線源において使用することができる。ピーク加速エネルギーを超える適切な同位体の混合物も、同様に、使用できる。例えば、モリブデン96およびモリブデン94の混合物は、中性子を発生することなく、8.064MeV未満のピーク加速エネルギーを有する線源において使用することができる。
典型的には金属である、標的140、遮蔽180、182、および/またはコリメータ190は、炭素などの非金属とすることができる。炭素の安定同位体の1つである炭素13は、存在量がわずか1.11%であり、計算された中性子発生閾値は8.071MeVである。炭素のもう1つの安定同位体である炭素12は、存在量が98.89%であり、計算された中性子発生閾値は18.721MeVである。8.071MeV未満のピーク加速エネルギーを有する線源は、中性子を一切発生しないが、8.071MeVよりも高く、18.721MeVよりも小さいエネルギーで動作する線源では、炭素(炭素13)のわずか1.11%で中性子が発生する。好ましくは、例えば、黒鉛またはダイヤモンドなどの炭素の安定した形態が使用される。
当業で知られているように、原子番号の低い金属を含む、すべての金属の同位体に対する中性子発生閾値は、以下の式により計算することができる。
閾値(MeV)=(質量超過(Z,A-1)+中性子質量超過)-質量超過(Z,A)
上記の式中、Zは、元素の原子の原子番号であり、Aは、元素の原子の質量数(陽子と中性子の個数の総和)であり、(Z,A)は、元素の原子の元の同位体(X線放射とやり取りした結果中性子を失う前の)であり、(Z,A-1)は、1個の中性子が失われた後に元素の結果として得られる同位体の原子の質量である。質量超過(Z,A-1)は、0MeVの質量超過を持つ、炭素12と比較して、結果として得られる同位体の質量の等価エネルギーである。中性子質量超過は、8.071MeVに等しい定数であり、特定の同位体の中性子質量と炭素12の中性子質量との差のエネルギーであり、0MeVに設定される。質量超過(Z,A)は、初期同位体の質量超過の等価エネルギーである。当業で知られているように、同様に、質量超過の代わりに質量を使用して閾値を決定することができる。
例えば、マグネシウム24の中性子発生閾値は、以下のように計算される。マグネシウム24は、X線光子のビームと相互作用した後、1個の中性子を放出し、結果として生じる同位体であるマグネシウム23になる、元の同位体である。マグネシウム23(-5.473MeV)の質量超過(Z,A-1)が、中性子質量超過(8.071MeV)に加えられる。次いで、マグネシウム24の質量超過(Z,A)が差し引かれ(-13.933MeV)、以下に示されるように16.531MeVの中性子発生閾値が得られる。
(-5.473MeV+8.071MeV)-(-13.933MeV)=16.531MeV
負の質量超過(Z,A)が大きいことから、原子核中の光子および中性子は強固に結合されていることがわかる。原子核から1個の中性子を取り出すのに、負の質量超過の絶対値を超える外部エネルギーの量が必要である。つまり、特定の同位体の中性子発生閾値は、その同位体の原子核から1個の中性子を放出するのに持つ必要のある最小のエネルギーである。
複数の物質のそれぞれの同位体に対する計算された中性子発生閾値を、以下の表Iにまとめた。表Iにおいて、丸め誤差のせいで、いくつかの存在量を加えても100%にならない場合がある。存在量情報は、不安定な同位体については示されていない。ベリリウムからウランまでの元素の同位体に対する中性子発生閾値は、さらに、「Neutron Contamination from Medical Electron Accelerators」,National Council on Radiation Protection and Measurements, Bethesda, Maryland, pp.18-23(1995)でも説明されており、そこでは、「分離エネルギー」と呼ばれている。
Figure 2008547019
Figure 2008547019
Figure 2008547019
図2は、上の表に示されている多くの物質の同位体の最低中性子発生閾値を示すグラフである。図2では、表Iの中性子発生閾値は、最も近い1/10(tenth)に丸められている。最低ピーク加速エネルギーがこれらの閾値のそれぞれよりも高い、標的140、遮蔽180、182、および選択された物質(天然に存在する)のコリメータ190を含むX線源100において、中性子は一切発生されない。例えば、銅の最低中性子発生閾値は、9.910MeVである。銅の標的140、遮蔽180、182、および9.910MeV未満で動作するコリメータ190を備える線源は、動作時に中性子を発生しない。
上の表および図2に示されているように、他の実施例では、最大7MeVまでのピーク加速エネルギーで動作するX線源100において中性子発生が(タングステンと比べて)まったくないか、または低減されるのが望ましい場合、標的140、遮蔽180、182、および/またはコリメータ190に適している天然に存在する低Z物質は、炭素、マグネシウム、アルミニウム、スカンジウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、および亜鉛である。
他の実施例では、7MeVから8MeVまでの範囲のピーク加速エネルギーを使用するX線源100において中性子発生が(タングステンと比べて)まったくないか、または低減されるのが望ましい場合、標的140、遮蔽180、182、および/またはコリメータ190に適している天然に存在する低Z物質は、炭素、アルミニウム、スカンジウム、チタン、バナジウム、マンガン、コバルト、および銅である。
他の実施例では、8MeVから9MeVまでの範囲のピーク加速エネルギーを使用するX線源100において中性子発生が(タングステンと比べて)まったくないか、または低減されるのが望ましい場合、標的140、遮蔽180、182、および/またはコリメータ190に使用できる天然に存在する低Z物質は、アルミニウム、スカンジウム、バナジウム、マンガン、コバルト、および銅である。貨物輸送を走査する際に使用する放射線源は、多くの場合、9MeVのピークエネルギーを持つ放射線を発生するために9MeVのピーク加速エネルギーを有する。9MeVは、内容に関係なく、標準的な貨物輸送を含む、ほとんどの貨物輸送を貫通するのに十分である。銅は、9MeVを含む、9.910MeV未満のピーク加速エネルギーで使用するための好ましい物質である。
他の実施例では、9MeVから10MeVまでの範囲のピーク加速エネルギーを使用するX線源100において中性子発生が(タングステンと比べて)まったくないか、または低減されるのが望ましい場合、標的140、遮蔽180、182、および/またはコリメータ190に使用できる天然に存在する物質は、アルミニウム、スカンジウム、およびコバルトである。
10MeVから11MeVまでの範囲のピーク加速エネルギーでは、スカンジウムおよびアルミニウムを使用することができ、11MeVから13MeVまでの範囲のピーク加速エネルギーでは、アルミニウムを使用できる。
中性子発生閾値に加えて、製造可能性および性能は、標的、コリメータ、および/または遮蔽物質の選択の際に考慮すべき別の事項である。例えば、特定の物質の熱伝導率、融点、疲労、鑞付けと接着の能力、真空シールは、重要な考慮事項である。標的物質については、制動放射X線放射線を発生する能力および発生する量も一考慮事項である。銅は、これらの考慮事項の多くに当てはまり、したがって、好ましい低Z物質である。
例えば、標的は、例えば、ニュージャージー州ニューアーク所在のOMG Americasが販売するGlidCop(登録商標)AL-60 Dispersion Strengthened Copperとすることができる。GlidCop(登録商標)AL-60は、98.9重量%の天然に存在する銅および1.1重量%の酸化アルミニウム(Al2O3)を含むと言われている。これは、322ワット/メートル・ケルビンの熱伝導率、413〜517MPaの引っ張り強度、2.2e-006Ω・cmの抵抗率を持つと言われている。例えば、日本所在の日立金属株式会社およびミシガン州サウスフィールド所在のCopper and Brass Sales社が販売している無酸素のElectronic Copper, UNS C10100は、標的遮蔽220に使用することができる。UNS C10100は、少なくとも99.99重量%の銅であると言われている。その密度は、8.89〜8.94g/ccであると言われ、そのヴィッカース硬度は、75〜90であると言われる。低グレードの銅は、コリメータ190に使用することができる。
低Z物質は、典型的には、高Z物質の等体積よりも少ないX線光子を吸収するので、低Z遮蔽のさらに大きな体積は、同じ量の光子を吸収するのに必要である。しかし、低Z物質は、高Z物質よりも低い密度を持つため、放射線検査システムの重量は、高Z物質遮蔽を持つシステムとほぼ同じままとすることができる。特定のエネルギー準位を有する特定の量の光子を吸収するのに必要な遮蔽の厚さは、等方的に放出する点源について、以下の式に従って計算される。
I(t)=I0exp(-μ*t)/(4πR2)
ここで、tは、線源と測定点との間の遮蔽物質の厚さであり、I(t)は、厚さtを持つ遮蔽物質を通過した後の放射線の強度であり、I0は、放射線の初期強度であり、μは、X線減衰係数であり、Rは、線源と測定点との間の距離である。当業で知られているように、遮蔽を含む物質のブロードビーム1/10価層テーブル(broadbeam tenth value layer)を使用して、特定のエネルギーについて、物質のμを計算することができる。
中性子発生を防止または低減するために適切な低Z物質が放射線源100の標的140として使用される場合、X線光子放射の確率は、標的に当たるそれぞれの加速された電子について、高Z物質の確率よりも小さい。この自然現象を補正するために、さらに多くの電子を加速して標的140に送り込むことができる。
低Z遮蔽による中性子の吸収は、当業で知られているように、遮蔽物質に応じて、X線走査システムの他のコンポーネントによる中性子捕獲のせいで物質を活性化する(X線放射を発生する)ために使用できる中性子の個数を減らすか、または除去することができる。放射線検査システムを中性子吸収物質により遮蔽することで、従来技術の静止システムとは反対に移動システムとしてそのようなシステムを使用することが簡単になる。
図3は、本発明の一実施形態による、中性子発生のないX線放射線源を製造する方法200の一実施例である。線源の所望のピーク加速エネルギーおよび/またはピーク放射線エネルギーは、工程210において選択される。ピーク加速エネルギーまたはピーク放射線エネルギーよりも小さい中性子発生閾値を有する標的物質は、工程220において選択される。加速エネルギーよりも小さい中性子発生閾値を有する遮蔽物質は、工程230において選択される。加速エネルギーよりも小さい中性子発生閾値を有するコリメータ物質は、工程240において選択される。線源は、工程210において、選択された1つまたは複数の物質とともに組み立てられる。工程220、230、および240は、任意の順序で選択できる。同じ、または異なる物質を、コンポーネント毎に選択できる。それぞれのコンポーネントの物質は、例えば、上述のように、表Iの表などの中性子発生閾値の表、図2のグラフ、または計算に基づいて選択できる。
X線源100に関してサイズ、重量、および/またはコストの制約がなければ、標的140、遮蔽180、182、およびコリメータ190は、すべて、本質的に、中性子発生閾値が線源のピーク加速エネルギーよりも小さい1つまたは複数の物質からなるとしてよい。しかし、X線および中性子遮蔽およびX線コリメーションを行うために必要な、銅などの低Z物質の量は、タングステンの約2倍の体積を占有する可能性があり、タングステンを使用する場合よりもコストがかかる。他の低Z物質のサイズ、重量、およびコストの差は、同程度である。
したがって、特定の用途において、サイズ、重量、およびコストを考慮する場合は、中性子発生の低減または除去の価値と突き合わせてバランスをとる必要がある。特定の用途におけるX線発生、中性子発生、サイズ、重量、および/またはコストに対する要求条件を満たすために、中性子発生閾値よりも高い物質と低い物質の両方が必要になることがある。図4は、本発明の一実施形態による、X線源で使用する円柱状X線ヘッド300の一実施例を示しており、これは、所定の加速エネルギーを持つ線源における所定の中性子発生およびサイズの要件を満たすように設計される。例えば、X線ヘッドは、9MeVのピーク加速エネルギーで中性子を1時間当たり所定の量(タングステンが使用された場合に発生されるよりも少ない)まで発生し、所定の体積(標的、遮蔽、およびコリメータが銅のみでできている場合に必要な体積よりも少ない)を包含するように設計することができる。体積および中性子発生要件を満たすために、X線ヘッドは、銅、タングステン、および鉛の組み合わせを含む。図4では、コリメータ305は、鉛遮蔽309により囲まれるように示されている。この実施例では、コリメータは、放射線の扇型ビームを定義する通路306を定める。
図5は、図4のX線ヘッド300の断面斜視図である。X線ヘッド300は、標的アセンブリ317内の銅標的円板315を備える。標的アセンブリ317は、さらに、ガイドフロントエンド321から標的315まで伸びているドリフト管319も備える。ガイドフロントエンド321は、使用中の、例えば、直線加速器の加速室の出力に結合される。加速室により加速された電子は、ドリフト管319に入り、標的315と衝突する。標的315は、すべての電子を停止させる十分な厚さを持つとよい。
電子ビームに垂直な方向に、標的の背後で、標的315からのX線放射線の漏れを減衰させるために、標的アセンブリ317の周りに標的アセンブリ遮蔽324が設けられる。標的アセンブリ遮蔽324は、標的アセンブリ317の周りの円柱の形態の銅の第1の標的アセンブリ遮蔽セクション326および標的アセンブリ317の背後のタングステンの第2の標的アセンブリ遮蔽セクション328を備える。この実施例では、第1の標的アセンブリ遮蔽セクション326は、X線放射線を10%だけ減衰させるのに十分な、銅の1/10価層(「TVL」)を含む。同様に、異なる物質の追加のセクションも設けることができる。
図4に示されているコリメータ305は、図5の標的315の下流にある。コリメータ305は、銅の第1の上流のコリメータセクション330およびタングステンの第2の下流のコリメータセクション332を備える。上流のコリメータセクション330は、さらに、銅のTVLも備える。第1および第2のセクション330、332は、この実施例において放射線ビームを定義する形状をとる、図4にも示されている、通路307を形成する一致する外向きにテーパーの付いている内径を持つ円柱である。第2のコリメータセクション332は、製造および組立が楽に行えるように複数のタングステン円板を備えることができる。複数の通路も、同様に定義できる。同様に、異なる物質の追加のセクションも設けることができる。
通路307は、同様に、円錐型ビーム、鉛筆型ビーム、または他のそのような望ましい形状を定義する形状とすることができる。コリメータ305は、通路307の外側の、標的315の順方向でX線放射線の漏れを妨げる。
図4にも示されている、鉛遮蔽310には、標的アセンブリ遮蔽217、コリメータ305、および上流の標的アセンブリ遮蔽324が入る。第2の標的アセンブリ遮蔽セクション32内と、第2のコリメータセクション332内の十分なタングステン、さらに鉛遮蔽310が用意され、これにより、特定の用途に対する空間とX線の漏れの要求条件を満たす。
図6は、図5の標的アセンブリの拡大断面図であり、銅円板315およびドリフト管319を示している。冷却管340も示されている。当業で知られているように、冷却管340により供給される冷却液を受け取るために標的315内に開口部342が備えられる。ドリフト管319の下流端は、部分的に、標的315内に伸びる。当業で知られているように、カリフォルニア州パロアルト所在のVarian Inc.社またはカリフォルニア州ヘーワード所在のMDL Vacuum Products Corporation社が販売しているConflat(登録商標)マウントなどの金属製真空シーリングフランジ344は、ドリフト管の一端に設けられ、標的アセンブリ317内に真空シールを形成する。標的絶縁体346は、銅管319の第1の標的アセンブリ遮蔽セクション326内のドリフトの周りに備えられる。銅などの、柔らかい物質のたわみ部分348は、ドリフト管319の周りに備えられ、当業で知られているように、許容誤差を補正する。
X線ヘッド300は、例えば、直線加速器の前端に結合される。好適な直線加速器100の一実施例は、図1に示されている。X線ヘッド300は、標的140および標的遮蔽180の代わりに、直線加速器100の下流端に取り付けることができる。ドリフト管319の上流端は、所望の加速エネルギーを持つ図1の加速室120などの加速室の出力に結合される。動作中、電子銃150により発生した電子は、上述のように加速される。加速された電子は、ドリフト管319に入り、銅標的315に衝突する。銅標的315が電子ビームの電子を減速するときに、9MeVのピークエネルギーを有する制動放射X線放射線が発生する。直線加速器100のピーク加速エネルギー(9MeV)は、銅標的315の最低中性子発生閾値(9.910MeV)よりも小さいため、標的315では、中性子を発生しない。
標的315の前方で放出されるX線放射線は、通路307により、所望の形状、つまりここでは扇型ビームにコリメートされる(図4および5を参照)。通路307を通過しない前方で放出された放射線の大半は、銅の第1のコリメータセクション330により吸収される。銅は、線源および発生したX線放射のピーク加速エネルギーよりも小さい中性子発生閾値を有するため、中性子は発生されない。残りの放射線の多くは、タングステンの第2のコリメータセクション332により吸収される。そのX線放射線は、タングステンの第2のコリメータセクション340による中性子の発生を引き起こしうるが、第2のセクションに到達するX線放射線の量は、第1のセクション335によりすでに低減されているため、コリメータ全体が、例えば従来技術のようにタングステン、タンタル、または鉛である場合よりもずっと少ない中性子が発生される。コリメータ全体305が銅だと、中性子を発生しないようにしながらX線放射に対し同じ遮蔽効果を得るために、コリメータ305は、かなり大きくしなければならない。
上で示されているように、銅の第1の標的アセンブリ遮蔽326に向けて標的315により放出されたX線放射線の約10%は、銅遮蔽のTVLにより吸収される。中性子は、上で説明されている同じ理由から、発生しない。標的アセンブリ遮蔽326を通過する放射線の大半は、鉛筐体310とタングステンの第2の標的アセンブリ遮蔽328により吸収される。わずかな漏れは許容できる。中性子は、放射線のピークエネルギーよりも低い中性子発生閾値を有する鉛とタングステンにより発生しうるが、X線放射は減衰されるため、中性子発生は、低くなる--標的と遮蔽がすべてタングステン、タンタル、または鉛であった場合に比べてかなり低くなる。それに加えて、標的315の後に放出された放射線は、標的の前方に放出された放射線よりも強度がかなり低い。銅はタングステンの代わりに後部標的アセンブリ遮蔽において使用することが可能であるが、上で説明されているように、タングステンと同じ遮蔽効率を得るためにはかなり大量の銅を必要とすることになるであろう。最大100%までの中性子発生の低減は全体として、許容可能な空間に応じてもたらされうる。
X線ヘッド300の設計のせいで、図1の筐体遮蔽182などの筐体遮蔽は、標的315の背後の方向に放出されるX線放射線を遮蔽するためには必要でないと言えるが、それは、X線ヘッド300により十分な遮蔽がなされているからである。加速器の設計によって、上述のように、迷走電子を遮蔽するための筐体遮蔽が不要になると思われる。筐体遮蔽が使用される場合、これは、例えば、銅などの適切な低Z物質とすることもできる。それに加えて、銅などの低Z物質とタングステンなどの高Z物質の組み合わせも、特定の用途において、必要ならば実現できる。
線源のピーク加速エネルギーで中性子を発生しないタングステンおよびモリブデンの同位体も、標的315およびX線ヘッド300の他のコンポーネント内の銅および他の物質の代わりに、またはそれらとともに使用することができる。
線源100またはX線ヘッド300は、加速エネルギー、X線発生、中性子発生、サイズ、重量、およびコストの要求条件を満たすように、反復プロセスでモンテカルロシミュレーションまたは他のそのようなランダムイベントシミュレーションの助けを借りて開発することができる。例えば、テネシー州オークリッジ所在のOak Ridge National Laboratoriesから販売されているMCNP5 Monte Carlo simulationを使用することができる。他の要件を満たす他の線源構成も、同様に、モンテカルロまたは他のそのようなシミュレーション、および本発明の教示を用いて、当業者により開発されうる。
本発明の他の実施形態による線源を設計する反復プロセス400の一実施例が、図7に示されている。第1の予備設計は、工程410において、最大中性子発生要件を満たすように作成される。設計は、例えば、X線発生レベル、サイズ、および重量などの他の要件も満たすようになされうる。標的、コリメータ、および遮蔽に銅を使用すると、利用可能なサイズを超える線源ができあがることが知られていること、および所定の量の中性子発生が許容可能であることを仮定すると、第1の予備設計は、例えば所定のサイズの銅標的、タングステン標的アセンブリ遮蔽、タングステンコリメータ、タングステン上流標的アセンブリ遮蔽、および鉛遮蔽を備えることができる。モンテカルロシミュレーションなどのシミュレーションが、工程420で実行され、予備設計から得られる予想中性子発生を決定する。X線発生の予想レベルも、決定されうる。シミュレーションの結果は、工程430において、評価される。これらの要件が満たされた場合、線源は、工程440において、設計に基づき組み立てることができる。これらの要件が満たされない場合、設計は、工程450において、シミュレーションの結果に基づき見直される。例えば、工程440のシミュレーションの結果から、中性子発生が多すぎることがわかった場合、タングステン標的アセンブリ遮蔽の全部または一部を銅で作ることができる。このシミュレーションは、工程420において再び実行され、結果は、工程430において評価される。シミュレーションから、中性子発生がまだ高すぎる場合、さらに次の見直し設計を準備することができる。次の見直された設計では、標的に一番近いコリメータの一部を、例えば銅製とすることができる。工程420〜450は、中性子発生要件および他の要件が、もし存在すれば、満たされるまで繰り返される。シミュレーションにより、最終設計に向けて設計および寸法のわずかな調整の試験も簡単に行える。
本発明のいくつかの実施形態による放射線源は、例えば、本発明の他の実施形態により、図8に示されている貨物走査システム500などの放射線検査システムで使用することができる。図1の線源100と類似の、および/または図4〜6のX線ヘッド300を含みうる、X線源502は、貨物輸送504の片側に示されている。貨物輸送504は、幅が約6〜9フィート(1.8〜2.7メートル)である標準的な貨物輸送または他のサイズの貨物輸送としてよい。厚い部分を貫通するためには高いエネルギー放射線ビームが必要なので、本発明の実施形態の線源およびシステムは厚さが5フィート(1.5m)以上の貨物輸送で特に有用といえる。例えば、構成に応じて、それぞれ、少なくとも約6.2MeV、6.7MeV、または7.7MeVのピーク(最大)エネルギーを有する放射線を発生するために、線源のピーク加速エネルギーは、少なくとも約6.2MeV、少なくとも約6.7MeV、または少なくとも約7.7MeVとすることができる。ピーク加速エネルギーは、例えば、約9MeVとしてよい。
線源502は、コリメータ503を含む。放射線ビームRを定めるためにコリメータ503を通るスロット503aが設けられる。検出器506は、貨物輸送と相互作用する放射線を検出するために、貨物輸送504の反対側で支えられる。検出器506は、例えば、貨物輸送504を透過する放射線を検出するように配置することができる。貨物専用コンテナ504は、コンベヤーシステム508により、遮蔽されたトンネル510を通り、線源502と検出器506との間に運ばれる。検出器506は、例えば第1のアーム512がトンネルの背後に置かれ、第2のアーム514がトンネルの上部に置かれているL字型検出器アレイとすることができる。直線型または他の形状の検出器も、使用することができる。
トンネル510は、X線放射線ビームRを通すことができる窓516を備える。遮蔽壁518は、線源502、検出器506、および輸送システム508の一部を囲む。コンクリートは、中性子とX線の両方に対し好ましい遮蔽物質である。スペースまたは他の要求条件のせいで、コンクリートを使用できない場合、多層遮蔽を使用できる。例えば、ポリエチレンを内層として使用して中性子を遮蔽し、鉛または鋼鉄を外層として使用してX線を遮蔽することができる。外層は、さらに、ポリエチレンにより放射されるガンマ線も遮蔽する。コンベヤーシステム508により走査システム500を出入りできるように、貨物輸送504の遮蔽壁518内に開口部(図に示されていない)が設けられる。
X線源502は、X線放射線ビームの下側部分がコンベヤーシステム508の上部に平行もしくは平行に近くなるように配置することができる。放射線ビームRがコンベヤーシステム508をインターセプトし、コンベヤーシステム508がベルトまたはトラックを備える場合、放射線の低減衰をもたらす物質を使用することができる。コンベヤーシステム508が、ローラーを備えている場合、必要ならば、複数のローラー間に間隙を設けることができる。必要ならば、コンベヤーシステム508を支える構造物内に窓を備えることもできる。散乱した放射線が検出器506に到達するのをブロックするために、貨物輸送504と検出器506との間にコリメータ(図に示されていない)を設けることができる。コンベヤーシステム508を逆にして、例えば、貨物輸送504の一部または全体を再び調べたり、貨物輸送504に異なるエネルギー分布の放射線を照射したりすることができる。貨物輸送504が走査ユニット500に通されているときに2つまたはそれ以上のエネルギー準位の間で急速サイクル動作することにより複数のエネルギーを貨物輸送504に照射することもできる。
検出器506は、ディスプレイ522に結合されている、画像プロセッサブロック520に電気的に結合される。画像プロセッサブロック520は、当業で知られているように、アナログ-デジタル変換、およびデジタル処理コンポーネントを備える。1つまたは複数のコンピュータ524は、X線源500、検出器506、コンベヤーシステム508、画像プロセッサ520、およびディスプレイ522のうちの1つまたは複数に電気的に結合され、それらの動作を制御する。コンピュータとすべてのコンポーネントとの間の接続は、図を簡単にするため示されていない。1つまたは複数のコンピュータ524は、画像プロセッサ520の処理機能も備えることができる。
図8に示されているように、コリメーティングスロット503aおよびX線放射線ビームRがコンベヤーシステム202の上の領域に向けられ、貨物輸送504を照射する。放射線ビームRは、角度θで逸れうる。X線源502は、好ましくは、ビームRが貨物輸送504全体をインターセプトするように貨物輸送504から十分な距離だけずらされる。角度θは、例えば、約30度から約90度までの範囲とすることができる。
検出器506の構成は、コリメートされた放射線ビームの形状に依存しうる。例えば、コリメータとされた放射線ビームRが扇型ビームである場合、1列に並んだ検出器要素を備える一次元検出器アレイ504を備えることができる。コリメートされた放射線ビームRが円錐型ビームである場合、検出器アレイは、隣接する2つまたはそれ以上の列で並ぶ検出器要素を備える二次元検出器アレイ506を備えることができる。検出器アレイ506は、それぞれ筐体で支えられる1つまたはそれ以上の列で並ぶ検出器要素を備える検出器の複数のモジュールを備えることができる。
上述の実施形態は、特定の検査条件の下で、中性子を放出することが知られている検査物質を検出する際に有用な場合もある。例えば、物質は、遅延中性子の放出など、光中性子過程に通すことができる。この実施形態で中性子の発生が著しく低減された場合(または、発生がなくなった場合)、検査物質により放出される中性子の数を正確に決定できるようにすることにより検査物質の識別および分類がしやすくなる。
本発明の低中性子遮蔽を備える放射線源は、単一または複数のエネルギー準位で動作できる。複数のエネルギー準位で放射線を放出するために使用できる直線型加速器は、本発明の譲受人に譲渡され、参照により本明細書に組み込まれている、米国特許第6,366,021号B1、米国特許第4,400,650号、および米国特許第4,382,208号で説明されている。使用できる他の直線型加速器は、本発明の譲受人に譲渡され、参照により本明細書に組み込まれている、2003年12月24日に出願された米国出願第10/745,947号で説明されている。カリフォルニア州パロアルト所在のVarian Medical Systems, Inc.社が製造するLinatron M9直線型加速器も、単一または複数のエネルギーで使用することができる。
貨物輸送が上で説明されているが、本発明の実施形態は、手荷物、バッグ、箱などの他の物体を調べるために使用することができる。それに加えて、物体は、放射線走査または放射線療法を受ける患者であってもよい。
上で説明されている荷電粒子は電子であり、発生する放射線はX線放射線であるが、陽子および重陽子などの他の荷電粒子を使用して、他の種類の放射線を発生することができる。例えば、ガンマ線放射線は、陽子をリチウム、炭素、または硫黄などの物質にぶつけることにより発生させることができる。
上で説明されている線源は、直線型加速器であるが、ベータトロン、サイクロトロン、または高周波四重極などの他の種類の線源も使用できる。
本明細書で説明されている実施形態は、本発明の実装の実施例である。請求項により定義されている、本発明の範囲から逸脱することなく、これらの実施例に修正を加えることができる。
本発明の一実施形態による、放射線源の一実施例の概略断面図である。 多くの物質について、最低閾値の同位体の中性子発生閾値とを示すグラフである。 本発明の一実施形態による、中性子発生のないX線放射線源を製造する方法の一実施例を示す図である。 本発明の一実施形態による、X線源で使用する円柱状X線ヘッドの一実施例を示す図である。 図4のX線ヘッドの断面斜視図である。 図5の標的アセンブリの拡大断面図である。 本発明の他の実施形態による線源を設計する反復プロセスの一実施例を示す図である。 本発明による、貨物走査システムの正面図である。

Claims (52)

  1. 放射線源であって、
    筐体と、
    使用時に、タンタルの中性子発生閾値を超えるピーク加速エネルギーを有する、前記筐体内の加速室と、
    前記筐体により支えられ、前記加速室内に荷電粒子を放出する荷電粒子源と、
    前記加速室の下流にある前記筐体により支えられる標的とを備え、
    前記加速された荷電粒子による前記標的の衝撃が、放射線を発生し、
    前記標的は、本質的に、前記ピーク加速エネルギーよりも大きな中性子発生閾値を有する少なくとも1つの同位体からなる放射線源。
  2. 前記ピーク加速エネルギーは、8MeV以下であり、
    前記標的は、炭素、アルミニウム、スカンジウム、チタン、バナジウム、マンガン、コバルト、および銅の少なくとも1つの同位体からなる群から選択される請求項1に記載の放射線源。
  3. 前記ピーク加速エネルギーは、8MeVよりも大きく、9MeV以下であり、
    前記標的は、アルミニウム、スカンジウム、バナジウム、マンガン、コバルト、および銅の少なくとも1つの同位体からなる群から選択される請求項1に記載の放射線源。
  4. 前記ピーク加速エネルギーは、9MeVよりも大きく、10MeV以下であり、
    前記標的は、アルミニウム、スカンジウム、マンガン、およびコバルトの少なくとも1つの同位体からなる群から選択される請求項1に記載の放射線源。
  5. 前記ピーク加速エネルギーは、10MeVよりも大きく、11MeV未満であり、
    前記標的は、スカンジウムおよびアルミニウムの少なくとも1つの同位体からなる群から選択される請求項1に記載の放射線源。
  6. 前記ピーク加速エネルギーは、11MeVよりも大きく、約13.1MeV未満であり、
    前記標的は、本質的に、アルミニウムからなる請求項1に記載の放射線源。
  7. さらに、
    前記ピーク加速エネルギーよりも大きな中性子発生閾値を有する少なくとも1つの同位体を備える、前記筐体に結合されているコリメータを備える請求項1に記載の放射線源。
  8. さらに、
    前記ピーク加速エネルギーよりも高い中性子発生閾値を有する少なくとも1つの同位体を含む、前記標的の少なくとも一部を囲む標的遮蔽を備える請求項7に記載の放射線源。
  9. さらに、
    前記ピーク加速エネルギーよりも大きな中性子発生閾値を有する少なくとも1つの同位体を備える、前記筐体を遮蔽する筐体遮蔽を備える請求項1に記載の放射線源。
  10. 前記標的は、本質的に、銅の少なくとも1つの同位体からなる請求項1に記載の放射線源。
  11. 前記ピーク加速エネルギーは、少なくとも約7.7MeVである請求項1に記載の放射線源。
  12. 放射線源であって、
    筐体と、
    使用時に、タングステンの前記最低中性子発生閾値を超えるピーク加速エネルギーを有する、前記筐体内の加速室と、
    前記筐体により支えられ、前記加速室内に荷電粒子を放出する荷電粒子源と、
    前記加速室の下流にある前記筐体により支えられる標的と、
    前記標的物質の近くで前記筐体に結合されるコリメータとを備え、
    前記加速された荷電粒子による前記標的の衝撃が、放射線を発生し、
    前記コリメータは、本質的に、前記ピーク加速エネルギーよりも大きな中性子発生閾値を有する少なくとも1つの同位体を含む放射線源。
  13. 前記コリメータは、
    本質的に、前記ピーク加速エネルギーよりも大きな中性子発生閾値を有する少なくとも1つの同位体からなる少なくとも1つの第1のセクションと、
    前記ピーク加速エネルギーよりも大きな中性子発生閾値を有する少なくとも1つの同位体からなる少なくとも1つの第2のセクションとを備える請求項12に記載の放射線源。
  14. さらに、
    前記標的を遮蔽する標的遮蔽を備え、前記標的遮蔽物質は前記ピーク加速エネルギーよりも大きな中性子発生閾値を有する少なくとも1つの同位体を含む請求項12に記載の放射線源。
  15. さらに、
    前記ピーク加速エネルギーよりも大きな中性子発生閾値を有する少なくとも1つの同位体を備える、前記筐体を遮蔽する筐体遮蔽を備える請求項12に記載の放射線源。
  16. 前記コリメータは、銅を含む請求項12に記載の放射線源。
  17. 前記ピーク加速エネルギーは、モリブデンの前記最低中性子発生閾値よりも大きい請求項12に記載の放射線源。
  18. 前記ピーク加速エネルギーは、タンタルの前記中性子発生閾値よりも大きい請求項17に記載の放射線源。
  19. 放射線源であって、
    筐体物質を入れた筐体と、
    使用時に、タングステンの前記最低中性子発生閾値を超えるピーク加速エネルギーを有する、前記筐体内の加速室と、
    前記筐体により支えられ、前記加速室内に荷電粒子を放出する荷電粒子源と、
    前記加速室の下流にある前記筐体により支えられる標的と、
    前記標的の少なくとも一部を囲む標的遮蔽とを備え、
    前記加速された荷電粒子による前記標的物質の衝撃が、放射線を発生し、
    前記標的遮蔽物質は、本質的に、前記ピーク加速エネルギーよりも大きな中性子発生閾値を有する少なくとも1つの同位体を含む放射線源。
  20. 前記標的遮蔽は、
    本質的に、前記標的の近くの、前記ピーク加速エネルギーよりも大きな中性子発生閾値を有する少なくとも1つの同位体からなる少なくとも1つの第1のセクションと、
    前記第1のセクションの上流の、前記ピーク加速エネルギーよりも小さな中性子発生閾値を有する少なくとも1つの同位体からなる少なくとも1つの第2のセクションとを備える請求項19に記載の放射線源。
  21. 前記標的遮蔽は、銅を含む請求項19に記載の放射線源。
  22. 前記ピーク加速エネルギーは、モリブデンの最低中性子発生閾値よりも大きい請求項19に記載の放射線源。
  23. 前記ピーク加速エネルギーは、タンタルの最低中性子発生閾値よりも大きい請求項22に記載の放射線源。
  24. 放射線源であって、
    筐体と、
    銅の最低中性子発生閾値未満のピーク加速エネルギーを有する、前記筐体内の加速器室と、
    前記加速器室内に荷電粒子を放出する荷電粒子源と、
    前記加速器室の下流にある、前記筐体により支えられる標的であって、前記加速された荷電粒子による前記標的の衝撃が放射線を発生する、標的と、
    前記標的の近くで前記筐体に結合されるコリメータと、
    前記標的を遮蔽するために、少なくとも部分的に前記標的を囲む標的遮蔽とを備え、
    前記標的、前記コリメータ、および前記標的遮蔽は、銅を含む放射線源。
  25. 前記コリメータは、前記標的の近くの、本質的に銅からなる第1のセクションと、
    前記第1のセクションの下流の、前記ピーク加速エネルギーよりも小さな中性子発生閾値を有する少なくとも1つの同位体からなる第2のセクションとを備える請求項24に記載の放射線源。
  26. 前記標的遮蔽は、
    前記標的の近くの、本質的に銅からなる第1のセクションと、
    前記第1のセクションの上流の、前記ピーク加速エネルギーよりも小さな中性子発生閾値を有する少なくとも1つの同位体からなる第2のセクションとを備える請求項25に記載の放射線源。
  27. さらに、
    前記筐体を遮蔽する筐体遮蔽を備え、
    前記筐体遮蔽は、銅を含む請求項25に記載の放射線源。
  28. さらに、
    前記コリメータと前記標的遮蔽の少なくとも一部分を囲む鉛遮蔽を備える請求項25に記載の放射線源。
  29. 前記加速室は、タングステンの前記最低中性子発生閾値よりも大きいピーク加速エネルギーを有する請求項22に記載の放射線源。
  30. 前記加速室は、モリブデンの前記最低中性子発生閾値よりも大きいピーク加速エネルギーを有する請求項29に記載の放射線源。
  31. 前記加速室は、タンタルの前記中性子発生閾値よりも大きいピーク加速エネルギーを有する請求項30に記載の放射線源。
  32. 前記ピーク加速エネルギーは、約9MeV以下である請求項25に記載の放射線源。
  33. 放射線を発生させる方法であって、
    荷電粒子をタンタルの前記中性子発生閾値を超えるピーク加速エネルギーになるまで加速することと、
    前記荷電粒子を、本質的に、前記ピーク加速エネルギーよりも小さな中性子発生閾値を有する少なくとも1つの同位体からなる標的に衝突させることと、
    中性子を発生させることなく、前記荷電粒子を前記標的に衝突させることで放射線を発生させることとを含む方法。
  34. さらに、
    前記ピーク加速エネルギーよりも大きな中性子発生閾値を有する少なくとも1つの同位体を含むコリメータにより発生した放射線をコリメートすることを含む請求項33に記載の方法。
  35. さらに、
    前記標的を、本質的に、前記ピーク加速エネルギーよりも大きな中性子発生閾値を有する少なくとも1つの同位体を含む遮蔽で遮蔽することを含む請求項33に記載の方法。
  36. さらに、
    前記筺体を、本質的に、前記ピーク加速エネルギーよりも大きな中性子発生閾値を有する少なくとも1つの同位体を含む遮蔽物質で遮蔽することを含む請求項33に記載の方法。
  37. 貨物輸送を調べるシステムであって、
    物体を照射するために位置決めされている放射線源と、
    前記物体と相互作用した後に放射線を受け取るように位置決めされている検出器とを備え、
    前記放射線源は、
    筐体と、
    銅の前記最低中性子発生閾値よりも小さく、タングステンの前記最低中性子発生閾値を超えるピーク加速エネルギーを有する、前記筐体により支えられている、加速室と、
    前記筐体により支えられ、前記加速室内に荷電粒子を放出する荷電粒子源と、
    前記加速室の下流にある前記筐体により支えられる標的とを備え、
    前記加速された荷電粒子による前記標的物質の衝撃が、放射線を発生し、
    前記標的は、本質的に、銅の少なくとも1つの同位体からなるシステム。
  38. さらに、
    前記筐体に結合されたコリメータと、
    部分的に前記標的の周りにある、前記筐体により支えられる標的遮蔽とを備え、
    前記コリメータおよび前記標的遮蔽の少なくとも1つは、銅を含む請求項37に記載のシステム。
  39. さらに、
    前記筐体の少なくとも一部を覆う遮蔽を備え、
    前記遮蔽は、銅を含む請求項37に記載のシステム。
  40. さらに、
    走査のため前記物体を支え、前記物体を運んで前記システムに通す、貨物輸送を支え、運ぶように構成されているコンベヤーを備える請求項37に記載のシステム。
  41. 前記貨物輸送は、厚さが少なくとも5フィート(1.5メートル)ある請求項40に記載のシステム。
  42. 前記貨物輸送は、標準的な貨物輸送である請求項41に記載のシステム。
  43. 前記ピーク加速エネルギーは、モリブデンの最低中性子発生閾値よりも大きい請求項37に記載のシステム。
  44. 前記ピーク加速エネルギーは、タンタルの最低中性子発生閾値よりも大きい請求項43に記載のシステム。
  45. 前記ピーク加速エネルギーは、約9.9MeVよりも小さく、約6.1MeVよりも大きい請求項37に記載のシステム。
  46. 放射線源を製造する方法であって、
    本質的に、前記線源のピーク加速エネルギーよりも小さな中性子発生閾値を有する少なくとも1つの同位体からなる標的、コリメータ、および標的遮蔽のうちの少なくとも1つについて選択することと、
    前記選択された物質を備える線源を組み立てることとを含む方法。
  47. さらに、
    本質的に、前記ピーク加速エネルギーよりも小さな中性子発生閾値を有する少なくとも1つの同位体からなる筐体遮蔽物質を選択することと、
    前記選択された筐体遮蔽物質で線源を組み立てることとを含む請求項46に記載の方法。
  48. さらに、
    少なくとも中性子発生要件を満たすように放射線源の予備設計を準備することと、
    前記予備設計をシミュレーションに入力し、中性子発生を予測することと、
    前記シミュレーションの出力を受け取ることとを含む請求項46に記載の方法。
  49. 前記出力が要件を満たさない場合、さらに、
    前記設計を調整することと、
    前記調整済み設計を前記シミュレーションに入力し、中性子発生を予測することとを含む請求項48に記載の方法。
  50. サイズ要件およびX線放射線発生要件のうちの少なくとも1つに基づいて予備設計を準備することを含む請求項48に記載の方法。
  51. 放射線源であって、
    筐体と、
    使用時に、タンタルの中性子発生閾値を超えるピーク加速エネルギーを有する、前記筐体内の加速室と、
    前記筐体により支えられ、前記加速室内に荷電粒子を放出する荷電粒子源と、
    前記加速室の下流にある前記筐体により支えられる標的とを備え、
    前記加速された荷電粒子による前記標的の衝撃が、放射線を発生し、
    前記標的は、本質的に、前記ピーク加速エネルギーよりも大きな中性子発生閾値を有する少なくとも1つの同位体を含む原子番号の低い物質からなる放射線源。
  52. 前記原子番号の低い物質は、本質的に銅からなる請求項51に記載の放射線源。
JP2008518174A 2005-06-24 2006-05-23 放射線走査用の中性子放射の低いx線放射線源 Pending JP2008547019A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/165,972 US7436932B2 (en) 2005-06-24 2005-06-24 X-ray radiation sources with low neutron emissions for radiation scanning
PCT/US2006/020070 WO2007001693A2 (en) 2005-06-24 2006-05-23 X-ray radiation sources with low neutron emissions for radiation scanning

Publications (1)

Publication Number Publication Date
JP2008547019A true JP2008547019A (ja) 2008-12-25

Family

ID=37567352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008518174A Pending JP2008547019A (ja) 2005-06-24 2006-05-23 放射線走査用の中性子放射の低いx線放射線源

Country Status (5)

Country Link
US (2) US7436932B2 (ja)
EP (1) EP1900000A2 (ja)
JP (1) JP2008547019A (ja)
CN (1) CN101366096A (ja)
WO (1) WO2007001693A2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015114132A (ja) * 2013-12-09 2015-06-22 キヤノン株式会社 放射線管及び放射線検査装置
KR101835659B1 (ko) * 2010-04-19 2018-03-08 제너럴 일렉트릭 캄파니 동위원소 생성 시스템을 위한 자체-차폐형 타겟
CN107949146A (zh) * 2017-08-01 2018-04-20 赫文波 智能化辐射防护系统
JP2021004768A (ja) * 2019-06-25 2021-01-14 株式会社日立製作所 放射性核種の製造方法及び装置

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7963695B2 (en) 2002-07-23 2011-06-21 Rapiscan Systems, Inc. Rotatable boom cargo scanning system
WO2006012467A2 (en) 2004-07-21 2006-02-02 Still River Systems, Inc. A programmable radio frequency waveform generator for a synchrocyclotron
US7436932B2 (en) * 2005-06-24 2008-10-14 Varian Medical Systems Technologies, Inc. X-ray radiation sources with low neutron emissions for radiation scanning
US7467008B2 (en) * 2005-09-30 2008-12-16 Siemens Medical Solutions Usa, Inc. Ectography multimodality imaging system for diagnosis and treatment
EP2389977A3 (en) 2005-11-18 2012-01-25 Still River Systems, Inc. Charged particle radiation therapy
US8111025B2 (en) 2007-10-12 2012-02-07 Varian Medical Systems, Inc. Charged particle accelerators, radiation sources, systems, and methods
US8581523B2 (en) 2007-11-30 2013-11-12 Mevion Medical Systems, Inc. Interrupted particle source
US8933650B2 (en) 2007-11-30 2015-01-13 Mevion Medical Systems, Inc. Matching a resonant frequency of a resonant cavity to a frequency of an input voltage
US8241532B2 (en) * 2009-09-14 2012-08-14 Los Alamos National Security, Llc Actinide/beryllium neutron sources with reduced dispersion characteristics
US9224573B2 (en) 2011-06-09 2015-12-29 Rapiscan Systems, Inc. System and method for X-ray source weight reduction
US9218933B2 (en) 2011-06-09 2015-12-22 Rapidscan Systems, Inc. Low-dose radiographic imaging system
DE102012221638B4 (de) * 2012-01-11 2016-12-08 Siemens Healthcare Gmbh Röntgenstrahler
IN2014DN06514A (ja) 2012-02-03 2015-06-12 Rapiscan Systems Inc
WO2013180883A1 (en) * 2012-05-30 2013-12-05 Indiana University Research And Technology Corporation Revolving collimator for proton stereotactic body radiotherapy
EP2901823B1 (en) 2012-09-28 2021-12-08 Mevion Medical Systems, Inc. Controlling intensity of a particle beam
EP2901824B1 (en) 2012-09-28 2020-04-15 Mevion Medical Systems, Inc. Magnetic shims to adjust a position of a main coil and corresponding method
EP2900324A1 (en) 2012-09-28 2015-08-05 Mevion Medical Systems, Inc. Control system for a particle accelerator
WO2014052734A1 (en) 2012-09-28 2014-04-03 Mevion Medical Systems, Inc. Controlling particle therapy
TW201422279A (zh) 2012-09-28 2014-06-16 Mevion Medical Systems Inc 聚焦粒子束
JP6138947B2 (ja) 2012-09-28 2017-05-31 メビオン・メディカル・システムズ・インコーポレーテッド 磁場再生器
US10254739B2 (en) 2012-09-28 2019-04-09 Mevion Medical Systems, Inc. Coil positioning system
WO2014052719A2 (en) 2012-09-28 2014-04-03 Mevion Medical Systems, Inc. Adjusting energy of a particle beam
TWI604868B (zh) 2012-09-28 2017-11-11 美威高能離子醫療系統公司 粒子加速器及質子治療系統
MX351335B (es) * 2013-02-06 2017-10-11 Rapiscan Systems Inc Sistemas y metodos para reduccion de peso de fuente de rayos x.
US8791656B1 (en) 2013-05-31 2014-07-29 Mevion Medical Systems, Inc. Active return system
US9730308B2 (en) 2013-06-12 2017-08-08 Mevion Medical Systems, Inc. Particle accelerator that produces charged particles having variable energies
CN105764567B (zh) 2013-09-27 2019-08-09 梅维昂医疗系统股份有限公司 粒子束扫描
US10675487B2 (en) 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
US9962560B2 (en) 2013-12-20 2018-05-08 Mevion Medical Systems, Inc. Collimator and energy degrader
US9661736B2 (en) 2014-02-20 2017-05-23 Mevion Medical Systems, Inc. Scanning system for a particle therapy system
CN104010431B (zh) * 2014-05-15 2016-04-06 上海原子科兴药业有限公司 一种fdg靶系统
US9950194B2 (en) 2014-09-09 2018-04-24 Mevion Medical Systems, Inc. Patient positioning system
CN107661577B (zh) * 2014-12-08 2019-12-13 南京中硼联康医疗科技有限公司 用于中子捕获治疗的射束整形体
US10786689B2 (en) 2015-11-10 2020-09-29 Mevion Medical Systems, Inc. Adaptive aperture
EP3906968A1 (en) 2016-07-08 2021-11-10 Mevion Medical Systems, Inc. Treatment planning
US11103730B2 (en) 2017-02-23 2021-08-31 Mevion Medical Systems, Inc. Automated treatment in particle therapy
EP3389055A1 (de) * 2017-04-11 2018-10-17 Siemens Healthcare GmbH Röntgeneinrichtung zur erzeugung von hochenergetischer röntgenstrahlung
JP6940676B2 (ja) 2017-06-30 2021-09-29 メビオン・メディカル・システムズ・インコーポレーテッド リニアモーターを使用して制御される構成可能コリメータ
US20190272970A1 (en) * 2018-03-02 2019-09-05 AcceleRAD Technologies, Inc. Static collimator for reducing spot size of an electron beam
EP3599619A1 (de) 2018-07-25 2020-01-29 Siemens Healthcare GmbH Target zum erzeugen von röntgenstrahlung, röntgenemitter und verfahren zum erzeugen von röntgenstrahlung
CN109587926B (zh) * 2019-01-17 2021-01-05 中国科学院合肥物质科学研究院 一种小型化强流中子发生器
US10811214B2 (en) * 2019-01-18 2020-10-20 Applied Materials, Inc. Low emission cladding and ion implanter
WO2020185544A1 (en) 2019-03-08 2020-09-17 Mevion Medical Systems, Inc. Delivery of radiation by column and generating a treatment plan therefor
US10866503B1 (en) 2019-07-26 2020-12-15 Applied Materials, Inc. Low emission implantation mask and substrate assembly
CN111403073B (zh) * 2020-03-19 2023-01-03 哈尔滨工程大学 一种基于电子加速器的多用途终端
CN111694046B (zh) * 2020-07-24 2022-06-07 中国工程物理研究院核物理与化学研究所 一种单能γ装置
CN116170933B (zh) * 2023-01-09 2023-09-05 中国科学院近代物理研究所 用于应用型等时性回旋加速器的磁场装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4320298A (en) 1962-04-27 1982-03-16 The Marquardt Corporation Warhead detector
US4317035A (en) * 1979-12-20 1982-02-23 Western Electric Gold monitoring procedure
US4833335A (en) * 1987-07-15 1989-05-23 Mcginley Patton H Neutron shielded door for radiation therapy rooms
US5124658A (en) 1988-06-13 1992-06-23 Adler Richard J Nested high voltage generator/particle accelerator
IL94327A0 (en) 1989-05-08 1991-03-10 Scient Innovations Inc Apparatus and method for scanning an object to determine an element of interest
US5115459A (en) * 1990-08-15 1992-05-19 Massachusetts Institute Of Technology Explosives detection using resonance fluorescence of bremsstrahlung radiation
KR970705920A (ko) 1994-08-19 1997-10-09 안소니 제이. 롤린스 중(重)동위원소 생산용 초전도성 사이클로트론 및 타겟(superconducting cyclotron and target for use in the production of heavy isotopes)
US5786611A (en) * 1995-01-23 1998-07-28 Lockheed Idaho Technologies Company Radiation shielding composition
US5838759A (en) 1996-07-03 1998-11-17 Advanced Research And Applications Corporation Single beam photoneutron probe and X-ray imaging system for contraband detection and identification
US6009146A (en) 1997-06-23 1999-12-28 Adler; Richard J. MeVScan transmission x-ray and x-ray system utilizing a stationary collimator method and apparatus
US6069936A (en) 1997-08-18 2000-05-30 Eg&G Astrophysics Material discrimination using single-energy x-ray imaging system
DE69841746D1 (de) * 1998-09-11 2010-08-12 Gsi Helmholtzzentrum Schwerionenforschung Gmbh Ionenstrahl-Therapieanlage und Verfahren zum Betrieb der Anlage
US6172463B1 (en) 1998-11-05 2001-01-09 International Isotopes, Inc. Internally cooled linear accelerator and drift tubes
GB9906886D0 (en) 1999-03-26 1999-05-19 Bede Scient Instr Ltd Method and apparatus for prolonging the life of an X-ray target
US6628745B1 (en) 2000-07-01 2003-09-30 Martin Annis Imaging with digital tomography and a rapidly moving x-ray source
US6445766B1 (en) 2000-10-18 2002-09-03 Siemens Medical Solutions Usa, Inc. System and method for improved diagnostic imaging in a radiation treatment system
US6463123B1 (en) * 2000-11-09 2002-10-08 Steris Inc. Target for production of x-rays
US6493424B2 (en) * 2001-03-05 2002-12-10 Siemens Medical Solutions Usa, Inc. Multi-mode operation of a standing wave linear accelerator
US8139705B2 (en) * 2002-08-01 2012-03-20 Gsi Helmholtzzentrum Für Schwerionenforschung Gmbh Screened chamber for ion therapy
US20050077472A1 (en) * 2003-10-10 2005-04-14 Steris Inc. Irradiation system having cybernetic parameter acquisition system
DE102004014445B4 (de) * 2004-03-24 2006-05-18 Yxlon International Security Gmbh Sekundärkollimator für eine Röntgenstreuvorrichtung sowie Röntgenstreuvorrichtung
US7436932B2 (en) 2005-06-24 2008-10-14 Varian Medical Systems Technologies, Inc. X-ray radiation sources with low neutron emissions for radiation scanning

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101835659B1 (ko) * 2010-04-19 2018-03-08 제너럴 일렉트릭 캄파니 동위원소 생성 시스템을 위한 자체-차폐형 타겟
JP2015114132A (ja) * 2013-12-09 2015-06-22 キヤノン株式会社 放射線管及び放射線検査装置
CN107949146A (zh) * 2017-08-01 2018-04-20 赫文波 智能化辐射防护系统
JP2021004768A (ja) * 2019-06-25 2021-01-14 株式会社日立製作所 放射性核種の製造方法及び装置
JP7179690B2 (ja) 2019-06-25 2022-11-29 株式会社日立製作所 放射性核種の製造方法及び装置

Also Published As

Publication number Publication date
WO2007001693A2 (en) 2007-01-04
US20090041197A1 (en) 2009-02-12
EP1900000A2 (en) 2008-03-19
US7436932B2 (en) 2008-10-14
WO2007001693A3 (en) 2009-05-22
US7783010B2 (en) 2010-08-24
CN101366096A (zh) 2009-02-11
US20060291628A1 (en) 2006-12-28

Similar Documents

Publication Publication Date Title
US7436932B2 (en) X-ray radiation sources with low neutron emissions for radiation scanning
EP1540664B1 (en) Radiation source
US9939550B2 (en) Detection of special nuclear material and other contraband by prompt and/or delayed signatures from photofission
CA2313729C (en) Ionization chamber with electron source
Flaska et al. Modeling of the GELINA neutron target using coupled electron–photon–neutron transport with the MCNP4C3 code
US10441815B2 (en) Neutron capture therapy system and gamma ray detector for neutron capture therapy
Holmlid et al. Decay of muons generated by laser-induced processes in ultra-dense hydrogen H (0)
Llovet et al. Monte Carlo simulation of X‐ray emission using the general‐purpose code PENELOPE
Miceli et al. Comparison of simulated and measured spectra of an industrial 450 kV X-ray tube
Satoh et al. Measurement of neutron-production double-differential cross sections of natC, 27Al, natFe, and natPb by 20, 34, 48, 63, and 78 MeV protons in the most-forward direction
Ambrosi et al. A Monte Carlo study of the effect of neutron scattering in a fast neutron radiography facility
Hoff et al. Using Geant4 Monte Carlo toolkit to evaluate a low power X-ray tube generator configuration
Ryzhkov et al. Selective determination of collectively accelerated 12C ion bunches by neutron time-of-flight spectrometry
CN108696977B (zh) 用于产生高能量x射线辐射的x射线设备
Miller et al. Shielding a monoenergetic photon source for nonproliferation applications analysis
Mozley Particle sources and radiography
Gupta et al. Lifetime measurement of the Ex= 2485.3 keV level of 25Al populated through 24Mg (p, γ) 25Al resonance reaction
Golubev et al. Pion emission in 2H, 12C, 27Al (γ, π+) reactions at threshold
Zhang et al. Measurement of thick target neutron yield from 80.5 MeV/u 12C incidence on Be, C, W, and Pb targets
Quintieri et al. Feasibility study of a neutron source at the daΦne beam test facility, using Monte Carlo codes
Yamada et al. A practical method to generate brilliant hard x-rays with a tabletop electron storage ring
Wells et al. “Cabinet-safe” study of 1–8 MeV electron accelerators
Holmes Development of Dose Verification Detectors Towards Improving Proton Therapy Outcomes
Lim The interaction of energetic charged particles with gas and boundaries in the particle simulation of plasmas
Mauritzsson Developing a test procedure for neutron detection/non detection using a Small TPC Prototype